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Static axisymmetric thin-shell wormholes are constructed within the framework of the Brans-Dicke

scalar-tensor theory of gravity. Examples of wormholes associated with vacuum and electromagnetic

fields are studied. All constructions must be threaded by exotic matter, except in the case of geometries

with a singularity of finite radius, associated with an electric field, which can have a throat supported by

ordinary matter. These results are achieved with any of the two definitions of the flare-out condition

considered.
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I. INTRODUCTION

The study of wormholes began in the early days of
general relativity [1] (for a historical perspective, see
Ref. [2]). After traversable Lorentzian wormholes were
introduced by Morris and Thorne [3], such topologically
nontrivial solutions of the equations of gravitation have
received considerable attention [2]. However, the necessity
of exotic matter (matter not fulfilling the energy condi-
tions) supporting compact wormhole geometries, which
seems unavoidable within the framework of general rela-
tivity, constitutes the main obstacle for the actual existence
of these objects. In particular, this aspect has been analyzed
in detail for wormholes of the thin-shell class [2,4], that is,
configurations which are mathematically constructed by
cutting and pasting two geometries, so that a matter layer is
located at the throat (see Ref. [5] and references therein).

In the last two decades, cylindrically symmetric geome-
tries have deserved considerable attention, mainly in rela-
tion to cosmic strings. These have been the object of a
detailed study, because of the important role they could
have played in structure formation in the early universe,
and also for their possible observation by gravitational
lensing effects (see Ref. [6]). Besides, open or closed
fundamental strings are the center of present day attempts
toward a unified theory. Then the interest in the gravita-
tional effects of both fundamental and cosmic strings, and
in general in axisymmetric solutions, has been recently
renewed (for example, see Ref. [7]). As a natural conse-
quence, cylindrically symmetric wormholes have been
studied in the last few years; see Refs. [8–11]. It was noted
in Ref. [9] that for noncompact wormholes—as cylindri-
cally symmetric ones are—there are two admissible defi-
nitions of the throat, and that one of them—that the
geodesics restricted to a plane normal to the symmetry

axis open up—can be compatible in general relativity with
the energy conditions. These cylindrical solutions satisfy-
ing the weak energy condition (WEC) cannot have a flat or
string asymptotic behavior at both sides of the throat. In
particular, nonexotic wormholes associated with an azimu-
thal magnetic field were found, which are neither symmet-
ric with respect to the throat nor flat or stringlike at infinity
(see Ref. [9] and references therein). Thin-shell cylindrical
wormholes with positive energy density at the throat were
found in Ref. [11] within the framework of Einstein’s
gravity.
On the other hand, the issue of matter supporting worm-

holes has been revisited in alternative theories, and it was
shown that the requirement of exotic matter could in some
cases be avoided [12,13]. In particular, some years ago,
Anchordoqui et al. [14] showed that, in Brans-Dicke grav-
ity, Lorentzian wormholes of the Morris-Thorne type are
compatible with matter which, apart from the Brans-Dicke
scalar field, satisfies the energy conditions; an analogous
result was found in [15] for spherical thin-shell configura-
tions. Other related aspects of wormholes in Brans-Dicke
or in scalar-tensor theories were also discussed in
Refs. [16–18].
In the present article we address the construction of

static cylindrical thin-shell wormholes in Brans-Dicke the-
ory, and we study in detail the energy conditions for the
matter supporting these objects. We work with the two
definitions of the flare-out condition proposed for axisym-
metric configurations. We consider some examples asso-
ciated with vacuum and Brans-Dicke-Maxwell cylindrical
spacetimes. Units such as G ¼ c ¼ 1 are adopted.

II. WORMHOLE CONSTRUCTION

In Brans-Dicke theory, matter and nongravitational
fields generate a long range scalar field � which, together
with them, acts as a source of gravitational field. The
metric equations generalizing those of general relativity
are, in the Jordan frame,
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where R�� is the Ricci tensor, and T�� is the energy-

momentum tensor of matter and fields (not including the
Brans-Dicke field). The field� is a solution of the equation
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where T is the trace of T��. With � ¼ const ¼ 1 the

Einstein’s equations are recovered. The dimensionless con-
stant ! can, in principle, take any value. Its relation to the
character of the scalar field is best understood by recalling
the Einstein frame Lagrangian [18]. There it is apparent
that !þ 3=2 determines the sign of the kinetic term of the
field �: when !>�3=2 the field is normal, if !<�3=2
this term is negative and the field is a ghost, and when
! ¼ �3=2 the field loses its dynamics. From now on we
shall exclude the particular value ! ¼ �3=2 in our
analysis.

We start the mathematical construction of a wormhole
from a solution of the field equations (1) and (2). The most
general static metric with cylindrical symmetry has the
form

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ CðrÞd’2 þDðrÞdz2; (3)

where A, B, C, and D are positive functions of r. From this
static geometry we take two copies M� ¼ fx=r � ag of
the region defined by r � a and join them at the hypersur-
face given as � � �� ¼ fx=r� a ¼ 0g. Thus we have a
new, geodesically complete, manifold M ¼ Mþ [M�.
The throat of the wormhole is a synchronous timelike
hypersurface, in which we adopt coordinates �i ¼
ð�; ’; zÞ, with � the proper time on the matter shell placed
at r ¼ a. The components of the extrinsic curvature cor-
responding to the two sides of the shell are

K�
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where n�� are the unit normals (n�n� ¼ 1) to � in M,

which with the definition H ðrÞ ¼ r� a ¼ 0 read
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If the convenient orthonormal basis fe�̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=AðrÞp

et; e’̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=CðrÞp

e’; eẑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=DðrÞp

ezg is adopted

on the shell, then the induced 2þ 1 metric reads g{̂ |̂ ¼

{̂ |̂ ¼ diagð�1; 1; 1Þ, and with this choice, for the metric

(3) we obtain

K�
�̂ �̂ ¼ � B0ðaÞ

2BðaÞ ffiffiffiffiffiffiffiffiffiffi

BðaÞp
; (6)

K�
’̂ ’̂ ¼ � C0ðaÞ

2CðaÞ ffiffiffiffiffiffiffiffiffiffi
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and

K�̂
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BðaÞp
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We have used the usual notation in which the prime rep-
resents d=dr. The Brans-Dicke equations on the shell, that
is the Lanczos equations [19,20] for Brans-Dicke gravity,
take the form [21]

� ½K{̂ |̂� þ ½K�g{̂ |̂ ¼ 8�

�

�
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where, as usual, ½K{̂ |̂� � Kþ̂
{ |̂ � K�̂

{ |̂, ½K� ¼ g{̂ |̂½K{̂ |̂� is the
trace of ½K{̂ |̂� and S{̂ |̂ ¼ diagð�; p’; pzÞ is the surface

stress-energy tensor of all matter and fields apart from
the Brans-Dicke field. This field is continuous across the
surface �, but its normal derivative �;N ¼ �;�n

� has a

jump ½�;N� associated with the trace S of the induced

surface stress-energy tensor. By replacing Eqs. (6)–(8) in
Eq. (9) and taking into account Eq. (10) we have that the
energy density and pressures for a static configuration are
given by
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In order to satisfy Eq. (10), the field � and the metric
functions must fulfill

2!
�0ðaÞ
�ðaÞ ¼

B0ðaÞ
BðaÞ þ

C0ðaÞ
CðaÞ þ

D0ðaÞ
DðaÞ ; (14)

that imposes a constraint on the possible values of the
throat radius a for which the wormhole construction can
be made from a given metric. The definition of the worm-
hole throat usually adopted for compact configurations
characterizes it as a minimal area surface. In the case of

cylindrical geometries, defining the area function AðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðrÞDðrÞp

, this condition implies that A should increase
at both sides of the throat, which meansA0ðaÞ> 0, so that
ðCDÞ0ðaÞ> 0. This can be called the areal flare-out con-
dition. In general relativity the scalar field is not present in
the junction conditions, and if ðCDÞ0ðaÞ ¼ C0ðaÞDðaÞ þ
CðaÞD0ðaÞ> 0, from Eq. (11) with � ¼ 1 and �0 ¼ 0
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one obtains that the surface energy density is negative, so
that matter at the throat is exotic. But this is not necessarily
the case in Brans-Dicke gravity because of the term asso-
ciated with the field �.

A different definition of the flare-out condition has been
recently proposed for infinite cylindrical configurations
[9]. Because a wormhole is defined by its nontrivial topol-
ogy, which constitutes a global property of spacetime, and
for static cylindrically symmetric geometries the global
properties are determined by the behavior of the circular

radius functionRðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi

CðrÞp

, then the flare-out condition
has been defined in Ref. [9] by requiring that this function
RðrÞ has a minimum at the throat. This definition can
be called the radial flare-out condition, and implies
C0ðaÞ> 0. In our recent work [11] we found that with
this definition and in general relativity, a positive energy
density is compatible with the existence of cylindrical thin-
shell wormholes (though the energy conditions are not
satisfied in the examples studied).

With respect to the global properties of wormholes,
besides the existence of a throat, a certain asymptotical
behavior could also be required. In the case of cylindrical
wormholes, a desirable asymptotics would be flat or cos-
mic stringlike [9]. A less restrictive condition could be the
existence of spatial infinities [18]. Though, wormhole top-
ologies have also been considered for which the throat
connects two regions that end at a finite distance.

III. ENERGY CONDITIONS

Within the framework of Einstein’s theory of gravity, a
general property of compact wormholes is the requirement
of exotic matter, that is, matter which does not fulfill the
energy conditions. The WEC states that for any timelike
vector u� the energy-momentum tensor must satisfy
T��u

�u� � 0; the WEC implies, by continuity, the null

energy condition (NEC), i.e. that for any null vector k� it
must be T��k

�k� � 0 [2]. In an orthonormal basis the

WEC reads � � 0, �þ pj � 0 8 j, while the NEC takes

the form �þ pj � 0 8 j. In our construction we will cut

and paste metrics for which the energy conditions are
satisfied, so the exotic matter can only be present at the
shell. At the throat we have pr ¼ 0, tangential pressures
p’ and pz, and surface energy density �; thus the con-

ditions to be satisfied by nonexotic matter would be� � 0,
�þ pz � 0, and �þ p’ � 0. For any of the two ways in

which the wormhole throat is characterized (areal or radial
flare-out definitions), in terms of the components of the
metric from which we start the construction, the conditions
to be examined are

� ¼ �þ pr ¼ � �ðaÞ
8�
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These inequalities must be analyzed under the restriction
imposed by Eq. (14). In general, for the class of metrics
considered in the examples below, the radial dependence of
the Brans-Dicke field has the power form �ðrÞ ¼ �0r

1�n

so that �0ðrÞ ¼ ð1� nÞ�0r
�n. Therefore the condition

(15) can be recast as
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a

�
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If a cylindrical wormhole construction satisfies Eqs. (15)–
(17) then it is supported by a shell of ordinary matter. We
shall address this point in the following examples, in which
the wormhole construction starts from vacuum and Brans-
Dicke-Maxwell solutions. As we shall see, the most inter-
esting case will turn out to be the one associated with a
radial electric field, which allows for a configuration sup-
ported by a shell of matter satisfying the energy conditions.

IV. EXAMPLES

A. Vacuum metric

The general static solution with cylindrical symmetry of
the Brans-Dicke equations (1) and (2) in the vacuum case
T�� ¼ 0 is given by the metric functions [22,23]

AðrÞ ¼ BðrÞ ¼ r2dðd�nÞþ�ð!Þ; (19)

CðrÞ ¼ W2
0r

2ðn�dÞ; (20)

DðrÞ ¼ r2d; (21)

where n and d are constants of integration; n is related to
the departure from pure general relativity—see below—
and d can be understood as a mass parameter. We
have introduced the definition1 �ð!Þ ¼ ½!ðn� 1Þ þ
2n�ðn� 1Þ. The scalar field takes the form

� ¼ �0r
1�n: (22)

The solution for Einstein’s gravity is obtained for n ¼ 1
(which corresponds to a uniform field � ¼ �0), and is the
well-known Levi-Civita metric. By replacing the metric
functions in Eqs. (11)–(13) the energy density and the
pressures at the throat are obtained. From Eq. (14) the
throat radius a is given in terms of the parameters. For

1In Ref. [22] there is a typo in Eq. (31), where a factor (n� 1)
multiplying ! is missing, as can be deduced by comparison with
the previous equations.
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the coefficients given by Eqs. (19)–(21) we have
C0ðaÞ=CðaÞ ¼ 2ðn� dÞ=a and CðaÞDðaÞ ¼ W2

0a
2n, so

that ðC0=CÞðaÞ þ ðD0=DÞðaÞ ¼ 2n=a. Thus the radial
flare-out condition requires n� d > 0, while the areal
flare-out condition requires n > 0. If any of the flare-out
conditions are satisfied, the manifold corresponds to a
wormhole which extends to infinity at both sides of the
throat. Outside the throat there is vacuum, so the energy
conditions are fulfilled. By substituting � and �0 in the
expressions for the energy density and pressures of the
associated thin-shell wormhole, we immediately obtain

� ¼ �þ pr ¼ � �0

4�an
ffiffiffiffiffiffiffiffiffiffi

BðaÞp
: (23)

The wormhole construction then cannot satisfy the energy
conditions at the throat for a positive Brans-Dicke field.

B. Magnetic fields

The geometries induced by static axisymmetric mag-
netic fields have been recently studied in Brans-Dicke
theory [23]. The cylindrically symmetric geometry corre-
sponding to an axial static magnetic field (and thus asso-
ciated with an angular stationary current distribution) is
determined by the metric functions

AðrÞ ¼ BðrÞ ¼ r2dðd�nÞþ�ð!Þð1þ c2r�2dþnþ1Þ2; (24)

CðrÞ ¼ W2
0r

2ðn�dÞð1þ c2r�2dþnþ1Þ�2; (25)

DðrÞ ¼ r2dð1þ c2r�2dþnþ1Þ2: (26)

Instead, for an axial stationary current we have an azimu-
thal static magnetic field, which has associated the axisym-
metric geometry described by

AðrÞ ¼ BðrÞ ¼ r2dðd�nÞþ�ð!Þð1þ c2r2d�nþ1Þ2; (27)

CðrÞ ¼ W2
0r

2ðn�dÞð1þ c2r2d�nþ1Þ2; (28)

DðrÞ ¼ r2dð1þ c2r2d�nþ1Þ�2: (29)

In both cases �ð!Þ is defined as above, and d and n are
constants of integration with a physical meaning analogous
to the vacuum case; the constant c � 0 is related to the
magnetic field strength [23]. The Brans-Dicke field has the
same form as in the vacuum case, shown in Eq. (22). The
Einstein’s gravity solutions [24] are obtained for n ¼ 1,
while the Brans-Dicke vacuum solution is recovered with
c ¼ 0. The energy density and the pressures at the throat
are obtained from Eqs. (11)–(13), and Eq. (14) gives the
throat radius a in terms of the parameters. If any of the

flare-out conditions are fulfilled, we obtain a wormhole
which extends to infinity at both sides of the throat. There
is a magnetic field outside the throat, so the energy con-
ditions are satisfied there. Though the behavior of the two
Brans-Dicke metrics with magnetic field is different, in
both cases the product CD is the same and ðC0=CÞðaÞ þ
ðD0=DÞðaÞ ¼ 2n=a, so we obtain

� ¼ �þ pr ¼ � �0

4�an
ffiffiffiffiffiffiffiffiffiffi

BðaÞp
: (30)

Hence a thin-shell wormhole constructed from the geome-
tries associated with both kinds of magnetic field cannot
fulfill the energy conditions at the throat for a positive
Brans-Dicke field.

C. Radial electric field

The static metric associated with a radial electrostatic
field was also recently obtained in [23]. A cylindrically
symmetric static charge distribution leads to a radial
electric field which induces an axisymmetric geometry
described by the metric functions

AðrÞ ¼ r2dð1� c2r2d�nþ1Þ�2; (31)

CðrÞ ¼ W2
0r

2ðn�dÞð1� c2r2d�nþ1Þ2; (32)

BðrÞ ¼ DðrÞ ¼ r2dðd�nÞþ�ð!Þð1� c2r2d�nþ1Þ2; (33)

where d and n are integration constants with a meaning
analogous to the preceding cases, and c � 0 is associated
with the value of the electric field; �ð!Þ is defined as
before. The corresponding Brans-Dicke field is given
again by Eq. (22). Thus Einstein’s solution [24] corre-
sponds to n ¼ 1 which gives a uniform scalar field � ¼
�0. For n ¼ 1 and c ¼ 0 the well-known Levi-Civita
solution is obtained, which can be put in the form pointed
out above by means of a suitable coordinate change [25].

When 2d� nþ 1 � 0, the metric is singular at rs ¼
c�2=ð2d�nþ1Þ; then this radius should be excluded as a
possible throat radius. The case 2d� nþ 1 ¼ 0 and
jcj � 1 is equivalent to a global rescaling of the coordi-
nates of the vacuum case c ¼ 0, so that it presents no
interest, while the case 2d� nþ 1 ¼ 0 and jcj ¼ 1 has
no physical meaning. From now on we shall consider only
the case 2d� nþ 1 � 0.
From the relation (14) between the trace of the surface

energy-momentum tensor and the jump in the normal
derivative of the scalar field we obtain the wormhole throat
radius in terms of the parameters and the Brans-Dicke
constant:

a ¼
� �dþ 2d2 � n� 2dnþ 2n2 � n!þ n2!

c2ð3þ 5dþ 2d2 � 4n� 2dnþ 2n2 � n!þ n2!Þ
�

1=ð1þ2d�nÞ
: (34)
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The regions a > rs and a < rs are shown in Fig. 1. When
a > rs the singular surface is removed from the manifold
and the construction is regular and extends to infinity at both
sides of the throat, while for a < rs the geometry is singular
at a finite radius. In this case, the configuration is not
asymptotically well behaved due to the presence of the
singularity; thus the construction could be understood as a
wormhole only in the more restricted sense associated with
the mere existence of a throat. Taking into account Eq. (34),
the radial flare-out condition can be expressed in the form

� 2d� 2d2 þ 2dnþ 4n� 2n2 þ ð1� nÞn!> 0; (35)

and the areal flare-out condition reads

� 2d� 2d2 þ 2dnþ 4n� 2n2 þ ð1� nÞð3þ nÞ!> 0:

(36)

Outside the shell we have the energy-momentum tensor
corresponding to an electric field, so the energy conditions
are satisfied there. On the shell, the conditions �þ pr � 0
and �þ p’ � 0 lead to

� 6þ 2dþ 2d2 þ 2n� 2dnþ 2n2

� ð1� nÞð3þ nÞ! � 0; (37)

and

2dþ 2d2 � 4n� 2dnþ 2n2 þ ð1� nÞ2! � 0; (38)

respectively. Because the metric functions BðrÞ and DðrÞ
are equal, the inequality �þ pz � 0 is automatically
satisfied. From the equations above we can straightfor-
wardly relate the parameter n with the Brans-Dicke con-
stant: choosing the radial flare-out condition it is
necessary (but not sufficient) that �2<!< 0 and n > 1
in order to satisfy the energy conditions. On the other
hand, if the areal flare-out condition is adopted the energy
conditions require that !< 0 and n > 1. Given the num-
ber of parameters involved in the analysis and the range of
values that they can take, a natural approach is to draw the
intersection of conditions (35), (37), and (38) and of the
conditions (36)–(38). The results are shown for the radial
flare-out condition in Fig. 2, and for the areal flare-out
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FIG. 1. Geometries with a radial electric field: The regions where a > rs (dark gray) and a < rs (light gray) are shown in terms of the
parameters d and n, for different values of the Brans-Dicke constant !. White zones are nonphysical, since they correspond to values
such that the throat radius is not real and positive. The upper row corresponds to values of the Brans-Dicke constant for which the field
is a ghost, while the lower row corresponds to normal fields.
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condition in Fig. 3, choosing different values of the
parameters and of the Brans-Dicke constant. By compar-
ing these figures with Fig. 1, they reveal that in the case of
the regular constructions (a > rs), the existence of a
throat requires the presence of exotic matter. Instead, for
manifolds with a singularity at a finite radius (a < rs), the
existence of a throat is compatible with a layer of matter
satisfying the energy conditions. This happens with any of
the two definitions of the flare-out condition and for both
normal and ghost scalar fields. The regions where the
energy conditions are fulfilled turn out to be larger in
the case of the areal definition; the reason can be found in
the fact that the areal condition reflects the fast increase in
the function D with the radius a corresponding to n > 1
and negative values of !.

V. SUMMARYAND DISCUSSION

We have constructed static cylindrical thin-shell
wormholes within the Brans-Dicke theory of gravity.
Two possible definitions of the flare-out condition—

areal and radial—were considered, and the character
of matter in the shell placed at the throat has been
studied. Examples of wormholes obtained by the cut
and paste procedure from the general cylindrical static
vacuum solution and from the metrics corresponding to
magnetic and electric axisymmetric fields have been
examined in detail. In the vacuum and in the magnetic
cases the wormhole construction can be performed, but
with exotic matter in the shell for all values of the
parameters. In the case associated with a radial electric
field, the metric adopted in the construction has a
singularity at a finite radius. Wormholes with regular
asymptotics can be constructed, but they must be
threaded by exotic matter. Configurations with a throat
without exotic matter are possible for certain values of
the parameters and of the Brans-Dicke constant, but
they present a singular surface at a finite radius. This
result is obtained for both definitions of the flare-out
condition and both normal or ghost Brans-Dicke fields.
The global properties in this case are rather unusual: the
geometry opens up at the throat but ends at a singular
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FIG. 2. Geometries with a radial electric field: The gray zones correspond to values of the parameters such that the energy conditions
are satisfied when the radial flare-out condition is adopted. The upper row corresponds to values of the Brans-Dicke constant for which
the field is a ghost, while the lower row corresponds to normal fields.
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surface of finite radius (some authors would not call
them true wormholes [18]). The nonexotic layers sup-
porting these geometries turn out to be possible even
for a nonghost scalar field. In Ref. [18] it was shown
that wormholes supported by nonexotic matter require
the presence of ghost fields in scalar-tensor theories of
gravity; however, these works deal with wormholes
which have compact throats and extend to infinity. We
understand that our results regarding throats supported

by ordinary matter are a consequence of the noncom-
pact character of the configurations considered, and of
the ill behavior of the geometry, which has a singularity
at a finite radius.
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