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The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented

in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); 74,

104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been

analyzed by considering specific examples. Here, generic relativistic positioning systems in the

Minkowski plane are studied. The information that can be obtained from the data received by a user of

the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters

and of the user along their trajectories are determined by the sole knowledge of the emitter positioning

data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called

master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the

interval between the emission time of a signal by an emitter and its reception time after being reflected by

the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the

user from specific sets of data received by the user.
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I. INTRODUCTION

Nowadays, it is widely accepted that the theory of
relativity offers a new range of applicability in GNSS
(global navigation satellite systems) and that different
(theoretical and technological) levels of understanding
are necessary to further develop such an applicability.
Thus, several authors [1–7] have independently addressed
positioning projects and related issues in a relativistic
scheme, starting from different motivations.

In [1,5,7], a proposal was done to convert current GNSS
into genuine relativistic positioning systems. In [2,6], the
relativistic space-time navigation equations were formu-
lated in terms of the Ruse-Synge world function emphasiz-
ing their geometrical meaning (parametrized families of
emission light cones) and considering perturbative time
transfer calculations in weak gravitational domains.1 In
[3], the main motivation was to provide a set of observ-
ables2 physically associated with parametrized emission
cones, and in [4] special constructions were performed
using totally symmetric3 real null bases.

Basically, a relativistic positioning system is defined by
four clocks �A (emitters) in arbitrary motion broadcasting
their proper times �A in some region of a (four-dimensional)

space-time (cf. [1–7,16–19]). Then, every event reached by
the signals is naturally labeled by the four times f�Ag: the
emission coordinates of this event.4 The first to propose
such physical construction of emission coordinates seems to
have been Coll [1], followed independently by Bahder [2]
and Rovelli [3]. A brief report on relativistic positioning can
be found in [20].
In relativistic positioning, the space-time location of a

user is a key issue whose solution is accomplished by
solving the algebraic system associated with four emission
light cones based on different emitters. In [19], we have
addressed this location problem in four-dimensional flat
space-time, taking advantage of the fact that the world
function takes a simple expression in this case. A covariant
analysis of the equations of a relativistic positioning
system allows one to obtain explicitly the coordinate trans-
formation from emission to inertial coordinates (when the
emitters’ world lines are supposed to be known in the latter
coordinate system). This transformation provides addi-
tional understanding about the geometry of the coordinate
domains associated with the emission coordinates, a matter
which is closely related to the nonuniqueness of the
solutions in location calculations.5

Although these and other explicit results have been ob-
tained for generic four-dimensional relativistic positioning
[2–4,6,18,19,23–26], a full development of new prospects in
this theory requires a previous training on simple and
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1See the celebrated Synge book [8] for an exhaustive study on

the world function, and see Refs. [9,10] for its application to
general treatments and calculations using post-Newtonian
formalisms.

2Here, ‘‘observable’’ is understood in the Bergmann sense of
geometric space-time scalars [11] (for further discussions and
historical remarks, see [12,13]).

3A totally symmetric real basis is constituted by vectors
metrically indistinguishable; see [14,15].

4As a physical realization of a mathematical coordinate sys-
tem, the positioning system defined above presents interesting
qualities and, among them, those of being generic, (gravity-)free
and immediate [1,5,7,16].

5This lake of uniqueness is inherent to the nonlinearity of the
general problem and was already stressed some years ago (see
[21,22]) in connection with the algorithms used in the Global
Positioning System (GPS).
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particular situations. A two-dimensional approach to rela-
tivistic positioning systems allows one to use precise and
explicit diagrams which improve the qualitative comprehen-
sion of general four-dimensional positioning systems.

Indeed, there are a lot of issues in relativistic positioning
that go beyond the location problem. For instance, the
possibility of making relativistic gravimetry, which could
require the improvement of the system with interlink capa-
bilities [5,7,16–18]; the prospect of obtaining dynamical
information on the system when the user also receives the
acceleration of the emitters [16,17]; and the availability of
a full set of user data which could be submitted to internal
constraints (we develop this idea in this work). It seems
that these related subjects have not been extensively con-
sidered so far by researchers and perhaps some of these
subjects have not yet been raised.

A two-dimensional space-time is an adequate arena to
start with these incipient concepts, going beyond the
constructions of simple toy models. Important topics in
gravitational physics have just been stated and solved
in low dimension, to deal with the general statement of
the problem. On the other hand, two-dimensional space-
time treatments are appropriated to solve some real posi-
tioning problems like, for instance, the location in the
region between a geostationary satellite and a beacon
placed on the Earth’s surface.

The basic features of this two-dimensional approach and
the explicit relation between emission coordinates and any
given null coordinate system have been presented in [16].
There, we have also studied in detail the positioning system
defined in flat space-time by geodesic emitters.

In a subsequent work [17] we have studied the possibil-
ity of making relativistic gravimetry or, more generally, the
possibility of obtaining the dynamics of the emitters and/or
of the user, as well as the detection of the absence or
presence of a gravitational field and its measure. This
possibility is examined by means of a (nongeodesic)
stationary positioning system constructed in two different
scenarios: Minkowski and Schwarzschild planes.

In this work we go further in the analysis of two-
dimensional positioning problems. Until now [17] we
have considered stationary or geodesic positioning systems
in which the user had, a priori, a partial or full information
about the gravitational field and a partial or full informa-
tion about the positioning system. Here we consider a new
situation: the user knows the space-time where he is im-
mersed (flat, Schwarzschild, . . .) but he has no information
about the positioning system. Can the data received by the
user determine the characteristics of the positioning sys-
tem? Can the user obtain information on his local units of
time and distance and on his acceleration?

The answer to these questions is still an open problem for
a generic space-time, but in this work we undertake
this query for the Minkowski plane and we analyze the
minimum set of data that determines all the user and system

information. A remarkable result is that the data received by
a user of the positioning system are not independent quan-
tities, but are submitted to what we call the public data
constraints. A consequence of these constraints is the delay
master equation, which implies that the accelerations of the
emitters and of the user along their trajectories are deter-
mined by the sole knowledge of the emitter positioning data
and of the acceleration of only one of the emitters and only
during a (causal) echo interval, i.e., the interval between the
emission time of a signal by an emitter and its reception time
after being reflected by the other emitter.
In order to better understand our results we illustrate

them with two specific situations, the positioning systems
defined, respectively, by two inertial emitters or by two
(stationary) uniformly accelerated emitters. In them, start-
ing from a partial set of user data, we obtain the proper time
and acceleration of the user and we determine the full
dynamical properties of the positioning system.
The work is organized as follows. In Sec. II we summa-

rize the basic concepts and notation about relativistic posi-
tioning systems in a two-dimensional space-time. In Sec. III
we obtain some constraint conditions which restrict the user
data and show that all the user and system information can
be obtained from the emitter positioning data and the ac-
celeration of only one of the emitters. Sections IVand Vare
devoted to illustrate these general results by considering the
above mentioned particular situations. In Sec. VI we deduce
stronger restrictions on the user data, the delay master
equation, and we clarify the role that this equation plays
by applying it to the positioning systems considered before.
We finish in Sec. VII with a short discussion about the
present results and comments on prospective work.
A short communication of some results of this work

was presented at the Spanish Relativity Meeting
ERE-2007 [27].

II. TWO-DIMENSIONAL APPROACH

In a two-dimensional space-time, a relativistic position-
ing system is defined by two clocks, with world lines �1

and �2 (emitters), broadcasting their proper times �1 and �2

by mean of electromagnetic signals. In the region � be-
tween both emitters, the past light cone of every event cuts
the emitter world lines at �1ð�1Þ and �2ð�2Þ, respectively.
Then f�1; �2g are the emission coordinates of the event:
the two proper time signals received by any observer at the
event from the two clocks [see Fig. 1(a)]. Nevertheless,
the signals �1 and �2 do not constitute coordinates for the
events in the outside region [16].
The plane f�1g � f�2g (�1, �2 2 R) in which the differ-

ent data of the positioning system can be transcribed is the
grid of the positioning system. In this grid, the trajectories
of the two emitters define an interior region and
two exterior ones. This interior region in the grid is in
one-to-one correspondence with the interior region in the
space-time, i.e., with the set � of events that can be
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distinguished by the pair of times ð�1; �2Þ that reach them.
But the exterior regions in the grid have no physical mean-
ing (see [17] for more details on the grid).

An observer �, traveling throughout an emission coor-
dinate domain � and equipped with a receiver reading the
received proper times ð�1; �2Þ at each point of his trajec-
tory, is called a user of the positioning system.

We consider in this work autolocating positioning sys-
tems, which are systems in which every emitter clock not
only broadcasts its proper time but also the proper time that
it receives from the other. Thus, the physical components
of an autolocating positioning system are [16]:

(i) a spatial segment constituted by two emitters �1, �2

broadcasting their proper times �1, �2 and the proper
times ��2, ��1 that they receive each one from the
other; and

(ii) a user segment constituted by the set of all users
traveling in an internal domain � and receiving
these four broadcast times f�1; �2; ��1; ��2g.

Any user receiving continuously the user positioning
data f�1; �2g can extract the equation F of his trajectory
in the grid [see Fig. 1(a)]:

�2 ¼ Fð�1Þ: (1)

On the other hand, any user receiving continuously the
emitter positioning data f�1; �2; ��1; ��2g may extract from
them not only the equation (1) of his trajectory, but also the
equations of the trajectories of the emitters in the grid [see
Fig. 1(b)]:

’1ð�1Þ ¼ ��2; ’2ð�2Þ ¼ ��1: (2)

Eventually, the emitters �1, �2 could carry accelerom-
eters and broadcast their acceleration �1, �2, meanwhile
the users � could be endowed with receivers able to read
the broadcast emitter accelerations f�1; �2g. These new
elements allow any user to know the acceleration scalar
of the emitters:

�1 ¼ �1ð�1Þ; �2 ¼ �2ð�2Þ: (3)

Users can also generate their own data, carrying a clock
to measure their proper time � and/or an accelerometer to
measure their proper acceleration �. The user’s clock
allows any user to know his proper time function �ð�1Þ
[or �ð�2Þ] and, consequently by using (1), to obtain the
proper time parametrization of his trajectory:

� � f�1 ¼ c 1ð�Þ; �2 ¼ c 2ð�Þg: (4)

The user’s accelerometer allows any user to know his
proper acceleration scalar:

� ¼ �ð�Þ:
Thus, a relativistic positioning system may generate the

user data:

f�1; �2; ��1; ��2;�1; �2; �; �g: (5)

The emitter trajectories (2) and the emitter accelerations
(3) do not depend on the user who receives them. Thus,
among the user data (5) we can distinguish the subsets:
(i) emitter positioning data f�1; �2; ��1; ��2g,
(ii) public data f�1; �2; ��1; ��2;�1; �2g,
(iii) user proper data f�; �g.
The purpose of the (relativistic) theory of positioning

systems is to develop the techniques necessary to deter-
mine the space-time metric as well as the dynamics of
emitters and users from (a subset of) the user data.
In order to study specific positioning systems in known

space-times, it is useful to obtain the explicit expression of
the emission coordinates in terms of arbitrary null coordi-
nates fu;vg.6 The general method to obtain this transforma-
tion has been exposed in [16] and, in the next section, we
apply it to the inertial null coordinates in flat space-time.7

FIG. 1 (color online). (a) Geometric interpretation of the emission coordinates: the proper times f�1; �2g received by a user � give his
emission coordinates. These user positioning data f�1; �2g allow the user to know his trajectory �2 ¼ Fð�1Þ in emission coordinates
and he can draw it in the grid f�1g � f�2g. (b) The emitter positioning data f�1; �2; ��1; ��2g allow the user to know the emitter trajectories
’1ð�1Þ, ’2ð�2Þ in emission coordinates.

6In a two-dimensional space-time, null coordinates fu;vg are
those whose gradients, du, dv, determine lightlike directions.

7In a flat two-dimensional space-time, for every inertial coor-
dinate system ft; xg we can define the inertial null coordinates
fu;vg: u ¼ tþ x, v ¼ t� x. In this coordinates fu;vg, the
metric tensor takes the form: ds2 ¼ dt2 � dx2 ¼ dudv.
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III. POSITIONING IN FLAT SPACE-TIME

In the development of the two-dimensional approach we
have analyzed situations [16,17] under the assumption that
the user has a priori information about the positioning
system, that is, the user knows, at least partially, the
dynamics of the emitters. Now, we work under the weaker
assumption that the user knows the space-time where he is
immersed but he has no a priori information about the
positioning system. Then, we want to analyze if the public
data received by the user afford information about: (i) his
local unities of time, (ii) his acceleration, (iii) the metric in
emission coordinates, (iv) the coordinate transformation
from emission coordinates to a characteristic coordinate
system of the given space-time, and (v) his trajectory and
emitter trajectories in this characteristic coordinate system.

Although some results obtained elsewhere [17] for the
Schwarzschild plane suggest that many of the results that
we present here could be generalized to nonflat space-
times, from now on we focus on the flat case.

A. From emission to inertial coordinates

Let us consider the positioning system defined by the
emitters �1 and �2 in the Minkowski plane, and let us
assume for the moment that the proper time history of the
emitters is known in an inertial null coordinate system
fu;vg:

�1 �
�
u ¼ u1ð�1Þ
v ¼ v1ð�1Þ; �2 �

�
u ¼ u2ð�2Þ
v ¼ v2ð�2Þ: (6)

The transformation from emission coordinates f�1; �2g
to the inertial null system fu;vg is given by [16]

u ¼ u1ð�1Þ
v ¼ v2ð�2Þ;

�1 ¼ u�1
1 ðuÞ ¼ �1ðuÞ

�2 ¼ v�1
2 ðvÞ ¼ �2ðvÞ: (7)

Note that relations (7) define emission coordinates in the
emission coordinate domain � between both emitters.
Outside this region the transformation (7) also determines
null coordinates, but they are not emission coordinates for
our positioning system, i.e., they cannot be constructed by
means of signals broadcasted by its two clocks [16].

In emission coordinates, the emitter trajectories take the
expression

�1 �
�
�1 ¼ �1

�2 ¼ ’1ð�1Þ; �2 �
�
�1 ¼ ’2ð�2Þ
�2 ¼ �2;

(8)

where, from (6) and (7), the functions ’i are given by

’1 ¼ v�1
2 � v1; ’2 ¼ u�1

1 � u2: (9)

Conversely, from these last formulas, we obtain

v1 ¼ v2 � ’1; u2 ¼ u1 � ’2: (10)

As obtained in (2), the emitter positioning data determine
the emitter trajectories ’ið�iÞ in the grid. Then, taking into
account (6) and the expression of the transformation (7),

relations (10) give the precise expression of the following
simple fact:
Statement 1.—If one knows the transformation from

emission to inertial coordinates, the emitter positioning
data f�1; �2; ��1; ��2g determine the proper time history of
the emitters in inertial coordinates.

B. Metric in emission coordinates

From the metric line element in inertial null coordinates
fu;vg, ds2 ¼ dudv, and the coordinate transformation (7),
we obtain that the metric tensor in emission coordinates
f�1; �2g takes the expression
ds2¼mð�1;�2Þd�1d�2; mð�1;�2Þ¼u01ð�1Þv0

2ð�2Þ: (11)

Can the functions u1ð�1Þ and v2ð�2Þ be determined from
the public data? Besides the emitter positioning data
f�1; �2; ��1; ��2g, the user needs dynamical information of
the system. Let us suppose, for the moment, that he also
receives the two emitter accelerations f�1; �2g. Then, the
acceleration scalar functions, �ið�iÞ, i ¼ 1, 2, can be
known from the public data, and the emitter shift parame-
ters si can be calculated by means of [see (A9)]

sið�iÞ ¼ exp

�Z
�ið�iÞd�i

�
: (12)

Now we particularize the dynamic equation (A8) for the
emitter �1 (respectively, �2) by taking � ¼ �1, c 1ð�1Þ ¼
�1, c 2ð�1Þ ¼ ’1ð�1Þ [respectively, � ¼ �2, c 1ð�2Þ ¼
’2ð�2Þ, c 2ð�2Þ ¼ �2], and we obtain, respectively,

s1ð�1Þ ¼ u01ð�1Þ ¼
1

_’1ð�1Þv0
2ð’1ð�1ÞÞ

;

s2ð�2Þ ¼ 1

v0
2ð�2Þ

¼ _’2ð�2Þu01ð’2ð�2ÞÞ:
(13)

Then, from these equations and expression (11) of the
metric tensor, we obtain:
Statement 2.—In emission coordinates the metric

function m is given by the ratio between the shift of the
emitters:

mð�1; �2Þ ¼ s1ð�1Þ
s2ð�2Þ

: (14)

Note that the user data determine every shift (12) up to a
constant factor which is related to the chosen inertial null
system fu;vg. Of course, their ratio (14) that gives the
metric function in emission coordinates does not depend
on the inertial system. But, given the emitter acceleration
scalars, the constant factors which we take in the two
integrals (12) could correspond to two different inertial
systems. Nevertheless, we will see below that the con-
straints on the public data allow one to determine one
emitter shift in terms of the other emitter shift, both with
respect the same inertial system.
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C. Public data: constraint equations

The emitter dynamic equations (13) contain essential
information on the positioning system that we will now
analyze. From these four equalities we can eliminate
u01ð�1Þ and v0

2ð�2Þ and obtain the constraint equations for
the emitter shifts

s2ð�2Þ ¼ _’2ð�2Þs1ð’2ð�2ÞÞ; (15)

s1ð�1Þ _’1ð�1Þ ¼ s2ð’1ð�1ÞÞ: (16)

Moreover, by differentiating with respect to the proper
time one obtains the public data constraint equations:

�2ð�2Þ ¼ €’2ð�2Þ
_’2ð�2Þ

þ _’2ð�2Þ�1ð’2ð�2ÞÞ; (17)

�1ð�1Þ ¼ � €’1ð�1Þ
_’1ð�1Þ

þ _’1ð�1Þ�2ð’1ð�1ÞÞ: (18)

Equations (17) and (18) show that the public data
f�1; �2; ��1; ��2;�1; �2g are not independent quantities.
These constraints can be considered as differential equa-
tions on the emitter trajectories ’ið�iÞ if the acceleration
scalars �ið�iÞ are known, an approach that we will consider
elsewhere. In the present work we are interested in study-
ing autolocating positioning systems for which the emitter
positioning data f�1; �2; ��1; ��2g and, consequently, the
functions ’ið�iÞ are known. From this point of view the
public data constraint equations (17) and (18) state:

Statement 3.—If a user receives continuously the emitter
positioning data f�1; �2; ��1; ��2g and only the acceleration of
one of the emitters, then the user knows the acceleration of
the other emitter.

D. Public data: metric and system information

The constraint equations for the emitter shifts (15) and
(16) determine the shift of an emitter with respect to an
inertial system in terms of the shift of the other emitter with
respect to the same inertial system and the emitter position-
ing data f�1; �2; ��1; ��2g. Then, as a consequence of state-
ment 2, we have:

Statement 4.—If a user receives continuously the emitter
positioning data f�1; �2; ��1; ��2g and the acceleration of one
of the emitters, then the user knows the metric function
mð�1; �2Þ in emission coordinates.

On the other hand, if one knows the emitter shifts s1ð�1Þ
and s2ð�2Þ with respect to an inertial system then, as a
consequence of (13), one knows the derivatives of the
transformation (7) from emission to these inertial null
coordinates. Thus, we can obtain this transformation up
to two additive constants depending on the origin of the
inertial null system. Moreover, taking into account state-
ment 1, we have:

Statement 5.—If a user receives continuously the emitter
positioning data f�1; �2; ��1; ��2g and the acceleration of one

of the emitters, then the user knows the transformation
from emission to inertial coordinates and the proper time
history of the emitters in inertial coordinates.
The analytic expression of the results in statements 3, 4,

and 5 depends on which of the two accelerations is known.
Now we explain the steps to be followed to obtain all the
system information when the emitter positioning data
f�1; �2; ��1; ��2g and one of the accelerations, say �1, are
known.
Received user data: f�1; �2; ��1; ��2; �1g.
Step s1: From the pairs f�1; ��2g and f�2; ��1g, determine

the emitter trajectory functions ’1ð�1Þ and ’2ð�2Þ,
respectively.
Step s2: From the pair f�1;�1g, determine the emitter

acceleration scalar �1ð�1Þ.
Step s3: From the acceleration scalar �1ð�1Þ obtained in

step s2, determine the shift s1ð�1Þwith respect to an inertial
system fu;vg:

s1ð�1Þ ¼ exp

�Z
�1ð�1Þd�1

�
:

Step s4: From the function ’2ð�2Þ obtained in step s1
and the shift s1ð�1Þ obtained in step s3, determine the shift
s2ð�2Þ with respect to the inertial system fu;vg and the
acceleration scalar �2ð�2Þ:

s2ð�2Þ ¼ _’2ð�2Þs1ð’2ð�2ÞÞ; �2ð�2Þ ¼ _s2ð�2Þ
s2ð�2Þ :

Step s5: From the shifts s1ð�2Þ and s2ð�1Þ obtained in
steps s3 and s4, determine the metric function in emission
coordinates:

mð�1; �2Þ ¼ s1ð�1Þ
s2ð�2Þ

:

Step s6: From the shifts s1ð�1Þ and s2ð�2Þ obtained in
steps s3 and s4, determine the transformation from emis-
sion to inertial null coordinates fu;vg:

u ¼u1ð�1Þ¼
Z
s1ð�1Þd�1; v¼v2ð�2Þ¼

Z 1

s2ð�2Þ
d�2:

Step s7: From the functions ’1ð�1Þ and ’2ð�2Þ
obtained in step s1 and the coordinate transformation
fu1ð�1Þ; v2ð�2Þg obtained in step s6, determine the proper
time history of the emitters in inertial null coordinates
fu;vg:

�1 �
�
u ¼ u1ð�1Þ
v ¼ v2ð’1ð�1ÞÞ; �2 �

�
u ¼ u1ð’2ð�2ÞÞ
v ¼ v2ð�2Þ:

Note that the shift s1ð�1Þ obtained in step s4 is fixed up to
a constant factor. Every choice of this constant determines
a different null inertial system fu;vg whose origin depends
on the choice of two additive constants when obtaining
u1ð�1Þ and v2ð�2Þ in step s6.
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E. Public data: user information

Finally, we will see that the information provided by the
proper user data f�; �g can also be obtained from the
emitter positioning data f�1; �2; ��1; ��2g and the acceleration
of one emitter.

As explained in statement 4, the metric function in
emission coordinates can be obtained from these data.
Moreover, from the user positioning data f�1; �2g we can
extract the trajectory of the user in the grid, �2 ¼ Fð�1Þ.
Then, the proper time function �ð�1Þ satisfies Eq. (A4)
which now becomes

½�0ð�1Þ�2 ¼ s1ð�1Þ
s2ðFð�1ÞÞ

F0ð�1Þ: (19)

From the trajectory �2 ¼ Fð�1Þ and the proper time
function �ð�1Þ obtained from (19), we can get the proper
time history of the user in emission coordinates, �1 ¼
c 1ð�Þ, �2 ¼ c 2ð�Þ. Moreover, from (A8) and (A9) we
obtain the shift and the acceleration of the user as

sð�Þ ¼ _c 1ð�Þs1ðc 1ð�ÞÞ; �ð�Þ ¼ _sð�Þ
sð�Þ : (20)

As the coordinate transformation is also known (state-
ment 5), we can obtain the user proper time history in
inertial coordinates. Thus, we have:

Statement 6.—If a user receives the emitter positioning
data f�1; �2; ��1; ��2g and the acceleration of an emitter, then
the user knows his local unities of proper time, his accel-
eration, and his proper time history in both emission and
inertial coordinates.

Equations (19) and (20) can be useful in obtaining
system information from the proper user data f�; �g, a
question that we will consider elsewhere. Here we suppose
that the system information has been obtained, from the
emitter positioning data and one of the emitter accelera-
tions, following the steps s1–s7 presented in the subsection
above. Then, we can obtain the user information enumer-
ated in statement 6 in an alternative way that is well
adapted to the flat case. Indeed, from the user trajectory
in the grid and the coordinate transformation, we determine
the user trajectory in inertial null coordinates. Then, we
determine the proper time history in these coordinates, the
user shift, and the scalar acceleration.

Now we explain the steps to be followed to obtain all of
this user information when the emitter positioning data
f�1; �2; ��1; ��2g and one of the accelerations, say �1, are
known.

Received user data: f�1; �2; ��1; ��2; �1g.
Step u1: From these data, and following steps s1, s2, s3,

s4, and s6, determine the coordinate transformation
fu1ð�1Þ; v2ð�2Þg from emission to inertial coordinates fu;vg.

Step u2: From the pair f�1; �2g, determine the user
trajectory in the grid, �2 ¼ Fð�1Þ.

Step u3: From the user trajectory �2 ¼ Fð�1Þ obtained in
step u2 and the coordinate transformation fu1ð�1Þ; v2ð�2Þg

obtained in step u1, determine the user world line v ¼ fðuÞ
in the inertial system fu;vg:

v ¼ fðuÞ; f ¼ v2 � F � u�1
1 :

Step u4: From the user world line v ¼ fðuÞ obtained
in step u3, determine the user proper time function
� ¼ T ðuÞ:

� ¼ T ðuÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffi

f0ðuÞ
q

du:

Step u5: From the user proper time function � ¼ T ðuÞ
obtained in step u4 and the user world line v ¼ fðuÞ
obtained in step u3, determine the proper time history of
the user in the inertial null coordinates fu;vg:

� �
�
u ¼ uð�Þ;T ðuð�ÞÞ ¼ �
v ¼ vð�Þ ¼ fðuð�ÞÞ:

Step u6: From the proper time history of the user in the
inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5, determine the shift sð�Þ of the user with respect the
inertial system fu;vg, and the user acceleration �ð�Þ:

sð�Þ ¼ _uð�Þ; �ð�Þ ¼ €uð�Þ
_uð�Þ :

Step u7: From the proper time history of the user in the
inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5 and the coordinate transformation fu1ð�1Þ; v2ð�2Þg
obtained in step u1, determine the proper time history of
the user in emission coordinates:

� �
�
�1 ¼ c 1ð�Þ ¼ u�1

1 ðuð�ÞÞ
�2 ¼ c 2ð�Þ ¼ v�1

2 ðvð�ÞÞ;
and the proper time functions �ð�1Þ and �ð�2Þ of the user:

�ð�1Þ ¼ c�1
1 ð�1Þ; �ð�2Þ ¼ c�1

2 ð�2Þ:

Let us note that the proper time function obtained in
step u4 depends on an additive constant which fixes the
origin of the user proper time.

IV. INFORMATION PROVIDED BY THE USER
DATA: THE CASE OF INERTIAL EMITTERS

The positioning system defined in the Minkowski plane
by two inertial emitters has been analyzed in a previous
paper [16]. There we started from the proper time history
of the emitters in an inertial null coordinate system and we
studied what would be the data that a user of the position-
ing system would receive. Here we want to use this posi-
tioning system to illustrate the results presented in the
above section. Thus, now we will start, on one hand,
from the data received by an arbitrary user to obtain
information on the (positioning) system following the steps
of subsection III D and, on the other hand, from the data

COLL, FERRANDO, AND MORALES-LLADOSA PHYSICAL REVIEW D 82, 084038 (2010)

084038-6



received by a specific user to obtain information about
himself following the steps of subsection III E.

A. System information

Assumption S: The data I � f�1; �2; ��1; ��2; �1g received
by any user in the emission coordinate domain is such that:

(i) the pairs of data f�1; ��2g and f�2; ��1g show a linear
relation with the same slope,

�� 1 ¼ �20 þ ��1; ��2 ¼ �10 þ ��2;

i.e., complementary slope in the grid f�1; �2g [see
Fig. 2(a)],

(ii) the acceleration �1 identically vanishes,
�1 ¼ 0; 8 �1.

Step s1: From the first item of this assumption S, any
user obtains that the emitter trajectory functions’1ð�1Þ and
’2ð�2Þ are, respectively,

’1ð�1Þ ¼ �20 þ ��1; ’2ð�2Þ ¼ �10 þ ��2: (21)

Step s2: From the second item, any user obtains that the
emitter acceleration scalar �1ð�1Þ is

�1ð�1Þ ¼ 0:

Step s3: From the acceleration scalar �1ð�1Þ obtained in
step s2 any user obtains that the shift s1ð�1Þ with respect to
any inertial system is constant. Let fu;vg be an inertial
system such that

s1ð�1Þ ¼ 1:

Step s4: From the function ’2ð�2Þ obtained in step s1
and the shift s1ð�1Þ obtained in step s3 any user obtains that
the shift s2ð�2Þ with respect to the inertial system fu;vg,
and the acceleration �2ð�2Þ are, respectively,

s2ð�2Þ ¼ �; �2ð�2Þ ¼ 0:

Step s5: From the shifts s1ð�1Þ and s2ð�2Þ obtained in
steps s3 and s4 any user obtains that the metric function in
emission coordinates is

mð�1; �2Þ ¼ 1

�
:

Step s6: From the shifts s1ð�1Þ and s2ð�2Þ obtained in
steps s3 and s4 any user obtains that the transformation
from emission to the inertial null system fu;vg (for a
choice of the origin) is

u ¼ u1ð�1Þ ¼ �1; v ¼ v2ð�2Þ ¼ 1

�
ð�2 � �20Þ:

Step s7: From the functions ’1ð�1Þ and ’2ð�2Þ
obtained in step s1 and the coordinate transformation
fu1ð�1Þ; v2ð�2Þg obtained in step s6 any user obtains that
the proper time history of the emitters in the inertial null
coordinates fu;vg is, respectively,

�1 �
�
u ¼ �1

v ¼ �1;
�2 �

�
u ¼ �10 þ ��2

v ¼ 1
� ð�2 � �20Þ:

Steps s2 and s4 show that a user can receive the assumed
set of data I only if the positioning system is defined by two
inertial emitters. In step s3, the arbitrary constant factor
has been chosen so that emitter �1 is at rest with respect the
inertial system fu;vg [see Fig. 2(b)]. Moreover, from
step s6 we obtain that, in the orthonormal coordinate
system ft; xg associated with the null one fu;vg, the proper
time history of the emitter �1 is ft ¼ �1; x ¼ 0g. This
means that we have chosen the additive constants in
step s6 so that the origin of the inertial system is at the
event which the emitter �1 reaches when his proper time
clock watches zero.

FIG. 2 (color online). (a) Emitter positioning data f�1; �2; ��1; ��2g allowing the user � to find that, in the grid, (i) the trajectories of the
two emitters �1, �2 are two straight lines with complementary slope, (ii) his own trajectory is a straight line parallel to the bisector.
(b) If the user also receives an identically vanishing acceleration of an emitter, say �1 ¼ 0, he obtains that he and the emitters have an
inertial motion, and that his relative velocity with respect to every emitter is the same. Here we have drawn the trajectories in an inertial
system at rest with respect to �1.
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B. User information

Now we will illustrate how a specific user, receiving the
emitter positioning data and the acceleration of one of the
emitters, can determine his time and his dynamics.

AssumptionU: The specific user in question receives the
user data I � f�1; �2; ��1; ��2; �1g of the above assumption S
and, in addition:

(iii) the data f�1; �2g show a linear relation with slope 1
[see Fig. 2(a)].

Step u1: From these data, and following steps s1, s2, s3,
s4, and s6 above, the user has obtained the coordinate
transformation fu1ð�1Þ; v2ð�2Þg from emission to inertial
coordinates fu;vg.

Step u2: From the above assumption U the user obtains
that his trajectory in the grid is

�2 ¼ Fð�1Þ ¼ �1 þ C:

Step u3: From this user trajectory �2 ¼ Fð�1Þ
obtained in step u2 and the coordinate transformation
fu1ð�1Þ; v2ð�2Þg obtained in step u1 the user obtains that
his world line v ¼ fðuÞ in the inertial system fu;vg is

v ¼ fðuÞ ¼ 1

�
ðuþ C� �20Þ:

Step u4: From the user world line v ¼ fðuÞ obtained in
step u3 the user can obtain that his proper time function
� ¼ T ðuÞ is

� ¼ T ðuÞ ¼ 1ffiffiffiffi
�

p u:

Step u5: From the user proper time function � ¼ T ðuÞ
obtained in step u4 and the user world line v ¼ fðuÞ
obtained in step u3 the user obtains that his proper time
history in the inertial null coordinates fu;vg is

� �
�
u ¼ uð�Þ ¼ ffiffiffiffi

�
p

�
v ¼ vð�Þ ¼ 1ffiffiffi

�
p �þ 1

� ðC� �20Þ:

Step u6: From the proper time history of the user in the
inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5 the user obtains that his shift sð�Þ with respect the
inertial system fu;vg and his acceleration �ð�Þ are

sð�Þ ¼ ffiffiffiffi
�

p
; �ð�Þ ¼ 0:

Step u7: From the proper time history of the user in the
inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5 and the coordinate transformation fu1ð�1Þ; v2ð�2Þg
obtained in step u1 the user obtains that his proper time
history in emission coordinates is

� �
�
�1 ¼ c 1ð�Þ ¼

ffiffiffiffi
�

p
�;

�2 ¼ c 2ð�Þ ¼
ffiffiffiffi
�

p
�þ C;

and the user proper time lapse �� is

�� ¼ 1ffiffiffiffi
�

p ��1 ¼ 1ffiffiffiffi
�

p ��2:

Let us note that the hyperbolic angle between the trajec-
tories of the user and the emitter �1 is � ¼ lnsð�Þ ¼ 1

2 ln�,

and the hyperbolic angle between the trajectories of the
emitters �2 and �1 is �2 ¼ lns2ð�2Þ ¼ ln� ¼ 2�. Con-
sequently, the user has the same relative velocity with re-
spect to both emitters. [see Fig. 2(b)]. On the other hand, in
the proper time function obtained in step u4 we have chosen
the additive constant so that the user proper time clock
watches zero when time �1 ¼ 0 is received by the user.

V. INFORMATION PROVIDED BY THE USER
DATA: THE CASE OF STATIONARY EMITTERS

The positioning system defined in the Minkowski plane
by two (stationary) uniformly accelerated emitters has
been analyzed in a previous paper [17]. There we supposed
that the user knew, a priori, that the system was stationary.
Here we start from the emitter positioning data and the
acceleration of an emitter and, following the steps pre-
sented in subsections III D and III E, we obtain all the
system and user information.

A. System information

Assumption S: The data A � f�1; �2; ��1; ��2; �1g received
by any user in the emission coordinate domain is such that:
(i) the pairs of data f�1; ��2g and f�2; ��1g show linear

relations with inverse slopes,

�� 1 ¼ 1

!
ð�1 � q� �Þ; ��2 ¼ !�2 � qþ �;

with !> 1 and q > 0, i.e., parallel straight lines in
the grid f�1; �2g [see Fig. 3(a)],

(ii) the acceleration �1 takes the constant value
�1 ¼ 1

q ln!; 8 �1.

Step s1: From the first item of this assumption S, any
user obtains that the emitter trajectory functions’1ð�1Þ and
’2ð�2Þ are, respectively,

’1ð�1Þ¼ 1

!
ð�1�q��Þ; ’2ð�2Þ¼!�2�qþ�: (22)

Step s2: From the second item any user obtains that the
emitter acceleration scalar �1ð�1Þ is

�1ð�1Þ ¼ 1

q
ln! � �1:

Step s3: From the acceleration scalar �1ð�1Þ obtained in
step s2 any user obtains that the shift s1ð�1Þ with respect to
an inertial system fu;vg (fixed up to a choice of the
origin) is

s1ð�1Þ ¼ expð�1�
1Þ:
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Step s4: From the function ’2ð�2Þ obtained in step s1
and the shift s1ð�1Þ obtained in step s3 any user obtains that
the shift s2ð�2Þwith respect to the inertial system fu;vg and
the acceleration �2ð�2Þ are

s2ð�2Þ ¼ expð�2ð�2 � �20ÞÞ; �2ð�2Þ ¼ �2;

where �2 � !�1 and �20 � � �
! .

Step s5: From the shifts s1ð�1Þ and s2ð�2Þ obtained in
steps s3 and s4 any user obtains that the metric function in
emission coordinates is

mð�1; �2Þ ¼ !ð1=qÞð�1�!�2��Þ:

Step s6: From the shifts s1ð�1Þ and s2ð�2Þ obtained in
steps s3 and s4 any user obtains that the transformation
from emission to the inertial null system fu;vg (for a
choice of the origin) is

u ¼ u1ð�1Þ ¼ 1

�1

expð�1�
1Þ;

v ¼ v2ð�2Þ ¼ � 1

�2

expð��2ð�2 � �20ÞÞ:

Step s7: From the functions ’1ð�1Þ and ’2ð�2Þ obtained
in step s1 and the coordinate transformation
fu1ð�1Þ; v2ð�2Þg obtained in step s6 any user obtains that
the proper time history of the emitters in inertial null
coordinates fu;vg is

�1 �
�u ¼ 1

�1
expð�1�

1Þ
v ¼ � 1

�1
expð��1�

1Þ;

�2 �
�u ¼ 1

�2
expð�2ð�2 � �20ÞÞ

v ¼ � 1
�2

expð��2ð�2 � �20ÞÞ:

Steps s2 and s4 show that a user receiving the set of data
A is, necessarily, in the coordinate domain of a positioning
system defined by two uniformly accelerated emitters with
constant acceleration scalars �1ð�1Þ ¼ 1

q ln! � �1 and

�2ð�2Þ ¼ !�1 >�1. In step s3, the arbitrary constant
factor has been chosen so that emitter �1 is at rest with
respect the inertial system fu;vg when his proper time
clock watches zero.
From step s7, we have that the emitter trajectories in the

inertial system are �2
iuv ¼ �1. This means that in step s6

we could choose the additive constants (i.e., the origin of the
inertial coordinate system) so that the coordinate bisectors
are the asymptotes of both emitter trajectories [see Fig. 3(b)].
Thus, the emitters maintain a constant radar distance and,
consequently, they belong to a congruence of stationary
observers. On the other hand, �20 � � �

! gives the timewhich

watches the proper time clock of �2 at the event simulta-
neous to the event where the proper time clock of�1 watches
zero. This fact shows that in relativistic positioning the
synchronization between the emitter clocks is not necessary,
but it can be extracted from the emitter data.

B. User information

Now we will illustrate how a specific user, receiving the
emitter positioning data and the acceleration of one of the
emitters, can determine his time and his dynamics.
AssumptionU: The specific user in question receives the

user data A � f�1; �2; ��1; ��2; �1g of the above assumption S
and, in addition:
(iii) the data f�1; �2g show a linear relation with the

same slope as the emitters (parallel to the emitter
trajectories in the grid f�1; �2g; see Fig. 3(a)].

Step u1: From these data, and following steps s1, s2, s3,
s4, and s6 above, the user has obtained the coordinate

FIG. 3 (color online). (a) Emitter positioning data f�1; �2; ��1; ��2g allowing the user � to find that, in the grid, (i) the trajectories of the
two emitters �1, �2 are two parallel straight lines, (ii) his own trajectory is a straight line parallel to the emitters. Here we have plotted
the case c ¼ 0 and we have stressed the user when receiving vanishing emitter coordinates. (b) If the user also receives the acceleration
of the emitter �1 with the constant value �1 ¼ 1

q ln!, where! is the slope parameter and q is the separation parameter, he obtains that

he and the emitters have a noninertial stationary motion, and he can determine their constant accelerations and their synchronization.
Here we have drawn the trajectories when the synchronization parameter � ¼ 0. In green we have drawn the locus of simultaneous
events for the stationary congruence.
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transformation fu1ð�1Þ; v2ð�2Þg from emission to inertial
coordinates fu;vg.

Step u2: From the above assumption U the user can
obtain that his trajectory in the grid is

�2 ¼ Fð�1Þ ¼ 1

!
ð�1 � cÞ; q < c� �< q:

Step u3: From the user trajectory �2 ¼ Fð�1Þ obtained in
step u2 and the coordinate transformation fu1ð�1Þ; v2ð�2Þg
obtained in step u1 the user obtains that his world line
v ¼ fðuÞ in the inertial system fu;vg is

v ¼ fðuÞ ¼ � 1

�2u
; uv ¼ � 1

�2
;

� � ln!

q
!ð1=2qÞðqþ��cÞ ¼ �ð1=2qÞðq��þcÞ

1 �ð1=2qÞðqþ��cÞ
2 :

Step u4: From the user world line v ¼ fðuÞ obtained in
step u3 the user obtains that his proper time function
� ¼ T ðuÞ is

� ¼ T ðuÞ ¼ 1

�
lnð�uÞ:

Step u5: From the user proper time function � ¼ T ððuÞ
obtained in step u4 and the user world line v ¼ fðuÞ
obtained in step u3 the user obtains that his proper time
history in the inertial null coordinates fu;vg is

� �
�
u ¼ uð�Þ ¼ 1

� expð��Þ
v ¼ vð�Þ ¼ � 1

� expð���Þ:
Step u6: From the proper time history of the user in the

inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5 the user obtains that his shift sð�Þ with respect
the inertial system fu;vg and his acceleration �ð�Þ are,
respectively,

sð�Þ ¼ expð��Þ; �ð�Þ ¼ �:

Step u7: From the proper time history of the user in the
inertial null coordinates fu ¼ uð�Þ;v ¼ vð�Þg obtained in
step u5 and the coordinate transformation fu1ð�1Þ; v2ð�2Þg
obtained in step u1 the user obtains that his proper time
history in emission coordinates is

� �
� �1 ¼ �

�1
�� 1

2 ðqþ �� cÞ
�2 ¼ �

�2
�� 1

2! ðqþ �þ cÞ;
and his proper time lapse �� is

�� ¼ �1

�
��1 ¼ �2

�
��2;

where �
�1

� !ð1=2qÞðqþ��cÞ and �
�2

� !�ð1=2qÞðq��þcÞ.
Step u3 shows that the user also follows a stationary

motion that keeps a constant radar distance with respect the
two emitters [see Fig. 3(b)]. Moreover, the constant value
of the acceleration of the user is the weighted geometric

mean of the emitters’ accelerations. In the proper time
function obtained in step u4 we have chosen the additive
constant so that the events, where the proper time clocks of
the user and of the emitter �1 watch zero, are simultaneous.

VI. THE DELAY MASTER EQUATION

In Sec. III we have shown that, as a consequence of the
public data constraint equations (17) and (18), the emitter
positioning data and the acceleration of an emitter deter-
mine the acceleration of the other emitter. Nevertheless, in
the steps given in subsections III D and III E, which allow
one to obtain all the system and user information, we only
used one of these two restrictions or, more precisely, only
one of the two constraint equations for the shift (15) and
(16). Do these equations impose stronger restrictions on
the public data?
In this section we will see that the answer is affirmative

by obtaining the precise restrictions that the emitter posi-
tioning data impose on the dynamics of the emitters. This
study requires one to consider the shift constraint equations
(15) and (16), not as two independent equations, but as a
constraint system:

s2ð�2Þ ¼ _’2ð�2Þs1ð’2ð�2ÞÞ; (23)

s1ð�1Þ _’1ð�1Þ ¼ s2ð’1ð�1ÞÞ: (24)

A. The (past) echo functions and the delay
master equation

In Secs. III, IV, and V, when we obtained an emitter
acceleration from the emitter positioning data and the
acceleration of the other emitter, we supposed that the
user received continuously these data. Now, in order to
better understand the constraints on the public data, it is
useful to analyze its local behavior. In this sense, the
constraint system (23) and (24) can be read as follows
[see Fig. 4]:
Statement 7.—(i) If a user receives the trajectory

��1 ¼ ’2ð�2Þ in the vicinity of time �2 and the shift s1ð ��1Þ
at time ��1, then he can obtain the shift s2ð�2Þ at time �2.
(ii) If a user receives the trajectory ��2 ¼ ’1ð�1Þ in the

vicinity of time �1 and the shift s2ð ��2Þ at time ��2, then he
can obtain the shift s1ð�1Þ at time �1.
This interpretation of the constraint system has impor-

tant consequences. Let us define the past echo functions "i
as follows:

"1 ¼ ’2 � ’1; "2 ¼ ’1 � ’2: (25)

These (past) echo functions have the following geometric
interpretation [see Fig. 5]:
(i) If �1 receives at time �1 a signal after being echoed

by �2, it must be emitted at time "1ð�1Þ.
(ii) If �2 receives at time �2 a signal after being echoed

by �1, it must be emitted at time "2ð�2Þ.
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The proper time intervals ½"1ð�1Þ; �1� and ½"2ð�2Þ; �2�
are named (causal) echo intervals, i.e., an echo interval is
the interval between the emission of a signal by an emitter
and its reception after being reflected by the other emitter
[see Fig. 5].

Let us suppose that a user receives the emitter accelera-
tion �1 (and so he knows the shift s1) in the echo interval
½"1ð�1Þ; �1�, and that he also receives the emitter positioning
data f�1; �2; ��1; ��2g along the arc ½’1ð�1Þ; ’�1

2 ð�1Þ�, that is,
he knows the emitter trajectories’ið�iÞ along this arc. Then
the user knows the shift s2 along the arc ½’1ð�1Þ; ’�1

2 ð�1Þ�
as a consequence of (23) [see Fig. 6(a)]. Therefore the user
knows the shift s1 in the echo interval ½�1; "�1

1 ð�1Þ� as a
consequence of (24). And so on [see Fig. 6(b)].

We can obtain the analytical expression of this fact by
replacing �2 by ’1ð�1Þ in Eq. (23) and substituting in (24).
Then we arrive to the delay master equation:

s1ð�1Þ ¼ _’2ð’1ð�1ÞÞ
_’1ð�1Þ

s1ð"1ð�1ÞÞ: (26)

In a similar way, by replacing �1 with ’2ð�2Þ in Eq. (24)
and substituting in (23), we obtain

s2ð�2Þ ¼ _’2ð�2Þ
_’1ð’2ð�2ÞÞ

s2ð"2ð�2ÞÞ: (27)

The delay master equations (26) and (27) can be written
in terms of the echo operators Qið�iÞ as

s1ð�1Þ¼Q1ð�1Þs1ð"1ð�1ÞÞ; Q1ð�1Þ� _’2ð’1ð�1ÞÞ
_’1ð�1Þ

; (28)

s2ð�2Þ¼ 1

Q2ð�2Þ
s2ð"2ð�2ÞÞ; Q2ð�2Þ� _’1ð’2ð�2ÞÞ

_’2ð�2Þ
: (29)

Evidently, we can obtain the emitter shifts further from
an echo interval by applying the delay master equation
repeatedly. This fact can be expressed by using the n-echo
operators Qn

i ð�iÞ [see Fig. 6(b)]:
s1ð�1Þ ¼ Qn

1ð�1Þs1ð"n1ð�1ÞÞ; (30)

s2ð�2Þ ¼ 1

Qn
2ð�2Þ

s2ð"n2ð�2ÞÞ; (31)

FIG. 5 (color online). Geometric interpretation of the past echo functions "i and the echo intervals ½"1ð�1Þ; �1� and ½"2ð�2Þ; �2�: (a) If
�1 receives at time �1 a signal after being echoed by �2, it must be emitted at time "1ð�1Þ. (b) If �2 receives at time �2 a signal after
being echoed by �1, it must be emitted at time "2ð�2Þ.

FIG. 4 (color online). Geometric interpretation of the constraint equations: (a) If a user receives the trajectory ��1 ¼ ’2ð�2Þ in the
vicinity of time �2 and the shift s1ð ��1Þ at time ��1, then he can obtain the shift s2ð�2Þ at time �2. (b) If a user receives the trajectory
��2 ¼ ’1ð�1Þ in the vicinity of time �1 and the shift s2ð ��2Þ at time ��2, then he can obtain the shift s1ð�1Þ at time �1.
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Qn
i ð�iÞ �

Yn�1

r¼0

Qið"ri ð�iÞÞ: (32)

These equations allow one to state:
Statement 8.—A user may know the shift of an emitter

along his trajectory provided that he receives the shift
during a sole echo interval and the emitter positioning
data along his trajectory.

B. Getting the dynamics by means of
the delay master equation

Now, we can use the delay master equation to improve
the results in Sec. III. Indeed, if we take into account these
results and statement 8, we arrive to:

Statement 9.—If a user receives the emitter positioning
data f�1; �2; ��1; ��2g along his trajectory and the accelera-
tion of one of the emitters during a sole echo interval, then
this user can obtain a full information about his dynamics
and the dynamics of the emitters.

In order to obtain all this information in a specific
situation it is worth analyzing what is the minimum set
of equations which are necessary. We have obtained the
master delay equations (26) and (27) from the constraint
system (23) and (24), and a straightforward calculation
allows one to show:

Statement 10.—If the emitter trajectories in the grid
’1ð�1Þ and ’2ð�2Þ are known, then one of the constraint
equations (23) and (24) and one of the master delay equa-
tions (26) and (27) imply the full constraint system (23)
and (24).

Then, we can slightly modify the steps given in
subsections III D and III E in order to obtain all the system
and user information from a minimal set of public data.

Received user data: the emitter positioning data
f�1; �2; ��1; ��2g along the user trajectory and the accelera-
tion of an emitter, say �1, in an echo interval.

Step s1: From the pairs f�1; ��2g and f�2; ��1g, determine
the emitter trajectory functions ’1ð�1Þ and ’2ð�2Þ,
respectively.
Step s20: From the pair f�1;�1g, determine the emitter

acceleration scalar �1ð�1Þ in the echo interval.
Step s30: From the acceleration scalar �1ð�1Þ obtained in

step s20, determine the shift s1ð�1Þ with respect to an
inertial system fu;vg in the echo interval.
Step s300: From the shift s1ð�1Þ in the echo interval

obtained in step s30, determine the shift s1ð�1Þ with respect
to an inertial system fu;vg along the user trajectory:

s1ð�1Þ ¼ _’2ð’1ð�1ÞÞ
_’1ð�1Þ

s1ð"1ð�1ÞÞ; "1 ¼ ’2 � ’1:

Steps s4–s7: From the function ’2ð�2Þ obtained in
step s1 and the shift s1ð�1Þ obtained in step s300, determine:
the shift s2ð�2Þwith respect to the inertial system fu;vg and
the acceleration scalar �2ð�2Þ, the metric function in
emission coordinates, the transformation from emission
to inertial null coordinates fu;vg, and the proper time
history of the emitters in these inertial coordinates along
the whole emitter world lines.
Steps u1–u7: From the steps s1, s2, s300, s4, and s6 and

the pair f�1; �2g, determine: the user trajectory in the grid,
the user world line in the inertial system fu;vg, the user
proper time function � ¼ T ðuÞ, the proper time history of
the user in the inertial null coordinates fu;vg, the shift sð�Þ
of the user with respect the inertial system fu;vg and the
user acceleration �ð�Þ, and the proper time history of the
user in emission coordinates.

C. The delay master equation in positioning
with inertial emitters

Let us suppose that the user receives along his trajectory
a set of emitter positioning data f�1; �2; ��1; ��2g that leads,
following step s1, to the emitter trajectories (21) in the grid.

FIG. 6 (color online). Geometric interpretation of the master delay equation: (a) If a user receives the emitter positioning data
f�1; �2; ��1; ��2g along the arc ½’1ð�1Þ; ’�1

2 ð�1Þ� and the emitter shift s1 in the echo interval ½"1ð�1Þ; �1�, then the user knows the shift s2
in the arc ½’1ð�1Þ; ’�1

2 ð�1Þ� as a consequence of (23). Therefore the user knows the shift s1 in the echo interval ½�1; "�1
1 ð�1Þ� as a

consequence of (24). (b) The delay master equations can be applied repeatedly in order to obtain an emitter shift further from an echo
interval.
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Thus, the echo function "1 and the echo operator Q1 are,
respectively,

"1ð�1Þ ¼ �2�1 þ p; Q1ð�1Þ ¼ 1; (33)

where p � ��20 þ �10. Then, the delay master equation for

the shift s1ð�1Þ takes the expression
s1ð�1Þ ¼ s1ð��1 þ pÞ: (34)

Let us suppose moreover that, following step s20, the
data f�1;�1g determine that the acceleration scalar identi-
cally vanishes in an echo interval, �1ð�1Þ ¼ 0. Then, fol-
lowing step s30, a null inertial system fu;vg exists such that
the shift in this echo interval is s1ð�1Þ ¼ 1. Now, in
step s300, we apply the delay master equation (34) and
obtain s1ð�1Þ ¼ 1 along the user trajectory. At this point,
following the steps s4–s7 and u1–u7 we obtain all the
system and user information as we did in Sec. IV.

D. The delay master equation in positioning
with stationary emitters

Let us suppose that the user receives along his trajectory
a set of emitter positioning data f�1; �2; ��1; ��2g that leads,
following step s1, to the emitter trajectories (22) in the grid.
Thus, the echo function "1 and the echo operator Q1 are,
respectively,

"1ð�1Þ ¼ �1 � 2q; Q1ð�1Þ ¼ !2: (35)

Then, the delay master equation for the shift s1ð�1Þ takes
the expression

s1ð�1Þ ¼ !2s1ð�1 � 2qÞ: (36)

Let us suppose moreover that, following step s20, the
data f�1;�1g determine that the acceleration scalar takes
the constant value �1ð�1Þ ¼ 1

q ln! in an echo interval.

Then, following step s30, a null inertial system fu;vg exists
such that the shift in this echo interval is s1ð�1Þ ¼
expð�1�

1Þ. Now, in step s300 we apply the master delay
equation (36) and obtain s1ð�1Þ ¼ expð�1�

1Þ along the
user trajectory. At this point, following the steps s4–s7
and u1–u7 we obtain all the system and user information
as we did in Sec. V.

E. The delay equations for the emitter accelerations

In statement 7 we can replace the shifts s1 and s2 with
the accelerations �1 and �2 as a consequence of the public
data constraint equations (17) and (18). Then, from these
equations or from the delay master equations (28) and (29),
we can obtain the delay equations for the emitter accelera-
tion scalars:

�1ð�1Þ ¼
_Q1ð�1Þ
Q1ð�1Þ

þ �1ð"1ð�1ÞÞ _"1ð�1Þ; (37)

�2ð�2Þ ¼ �
_Q2ð�2Þ
Q2ð�2Þ

þ �2ð"2ð�2ÞÞ _"2ð�2Þ: (38)

Moreover, we can also obtain a restriction on the emitter
accelerations further from an echo interval:

�1ð�1Þ ¼
_Qn
1ð�1Þ

Qn
1ð�1Þ

þ �1ð"1ð�1ÞÞ _"n1ð�1Þ; (39)

�2ð�2Þ ¼ �
_Qn
2ð�2Þ

Qn
2ð�2Þ

þ �2ð"2ð�2ÞÞ _"n2ð�2Þ: (40)

Thus, as a consequence of these equations we can
replace in statement 8 the emitter shift with the emitter
acceleration.
The delay equations (37) and (38) for the emitter accel-

erations follow from the master equations (28) and (29) but
they are not sufficient conditions.
Thus, if we know the acceleration of an emitter in an

echo interval we must: firstly, obtain the shift and, sec-
ondly, apply the master equation, as explained in steps
presented in Sec. VI B. If, on the contrary, we first apply
the delay equation for the acceleration and, secondly, we
determine the shift, we could lose a part of the information
that the master equation provides.
We can better understand this point with an example. Let

us suppose that the user receives along his trajectory a set
of emitter positioning data that leads to the emitter trajec-
tories (22) in the grid. And let us also suppose that he
receives the acceleration of the emitter �1 in an echo
interval with a constant value �1. Then, we can obtain
the shift in this echo interval and the master equation
[which takes the expression (36)] implies that, under a
continuity assumption for the shifts, the acceleration takes,
necessarily, the constant value �1ð�1Þ ¼ 1

q ln!.

Nevertheless, if we apply first the delay equation for
the accelerations, �1ð�1Þ ¼ �1ð�1 � 2qÞ, we obtain
�1ð�1Þ ¼ �1 independently of the value of �1. This appar-
ent lack of constraint on �1 is deceptive: if we apply the
steps s1–s7 presented in Sec. III D for a value of the
acceleration �1 �

1
q ln!, we arrive at an inconsistency.

VII. DISCUSSION AND WORK IN PROGRESS

In this work we have analyzed the constraints on the
data received by a user of a relativistic positioning
system, and how these data can afford information on the
dynamics of the user and of the emitters. We have shown
that the user can obtain his acceleration and the accelera-
tion of the emitters provided that he receives the emitter
positioning data along his trajectory and the acceleration of
only one of the emitters and only during a (causal) echo
interval.
We have presented a protocol organized in steps which

allows one to obtain, from the minimal set of data, all the
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system and user information, namely, the acceleration of
the emitters and of the user, the transformation from the
emission to inertial null coordinates, and the proper time
history of the emitters and of the user in this inertial
system.

Our study shows that the delay master equation plays an
essential role in the internal behavior of a positioning
system built in a flat two-dimensional space-time. A forth-
coming work should deal with looking for a similar con-
straint in a four-dimensional space-time and in presence of
a gravitational field.

In a future extension to the four-dimensional case of the
two-dimensional methods used here we should take into
account the role that the angle between pairs of arrival
signals could play in obtaining information on the metric
tensor and on the positioning system.
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APPENDIX: TWO-DIMENSIONAL
KINEMATICS IN NULL COORDINATES

In a null coordinate system f�1; �2g the space-time
metric depends on a sole metric function m:

ds2 ¼ mð�1; �2Þd�1d�2: (A1)

The proper time history of an observer � is

�1 ¼ c 1ð�Þ; �2 ¼ c 2ð�Þ; (A2)

and its tangent vector is

Tð�Þ ¼ ð _c 1ð�Þ; _c 2ð�ÞÞ;
where a dot means derivative with respect proper time. The
unit condition for T becomes

mðc 1ð�Þ; c 2ð�ÞÞ ¼ 1
_c 1ð�Þ _c 2ð�Þ

: (A3)

This relation implies that when the unit tangent vector of
an observer is known in terms of his proper time, the metric
on the trajectory of this observer is also known.

The proper time parametrized trajectory (A2) is tanta-
mount to a (geometric) trajectory �2 ¼ Fð�1Þ and a proper
time function � ¼ �ð�1Þ related and restricted by the unit
condition. Indeed, from one of the expressions (A2) we can
obtain the proper time of the observer �, say

� ¼ �ð�1Þ ¼ c�1
1 ð�1Þ:

Then, the trajectory is given by

�2 ¼ Fð�1Þ ¼ c 2ðc�1
1 ð�1ÞÞ;

and, in terms of �2 ¼ Fð�1Þ and � ¼ �ð�1Þ, the unit con-
dition (A3) becomes

½�0ð�1Þ�2 ¼ mð�1; Fð�1ÞÞF0ð�1Þ: (A4)

From Eq. (A4) it follows: if the metric function is known,
(i) there always exists a congruence of users having a
prescribed proper time function, and (ii) the geometric
trajectory of an observer determines his local unit of time.
The acceleration of the observer (A2) in null coordinates

f�1; �2g takes the expression:
að�Þ ¼ ð €c 1 þ ðlnmÞ;1 _c 2

1;
€c 2 þ ðlnmÞ;2 _c 2

2Þ; (A5)

and the acceleration scalar �ð�Þ � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�a2ð�Þp
is

�ð�Þ ¼
€c 1

_c 1

þ ðlnmÞ;1 _c 1 ¼ �
€c 2

_c 2

� ðlnmÞ;2 _c 2: (A6)

The dynamic equation, i.e., the equation for the world
lines with a known acceleration �, and consequently the
geodesic equation (when � ¼ 0), can be written as two
coupled equations for the proper time functions c 1ð�Þ and
c 2ð�Þ:

€c 1

_c 1

þ ðlnmÞ;1 _c 1 ¼ �ð�Þ; m _c 1
_c 2 ¼ 1: (A7)

In (A7) the metric function mð�1; �2Þ is known and m
stands formð�1ð�Þ; �2ð�ÞÞ; therefore, it is a coupled system.

Dynamic equation in flat metric

In a two-dimensional flat space-time the metric function
m in null coordinates f�1; �2g factorizes

mð�1; �2Þ ¼ u0ð�1Þv0ð�2Þ;
where u ¼ uð�1Þ and v ¼ vð�2Þ give the transformation to
an inertial coordinate system fu;vg.
As a consequence of this factorization, the dynamic

equation (A7) can be partially integrated and it becomes

_c 1ð�Þu0ðc 1ð�ÞÞ ¼ 1
_c 2ð�Þv0ðc 2ð�ÞÞ

¼ sð�Þ; (A8)

where the shift parameter sð�Þ is defined as

sð�Þ � exp

�Z
�ð�Þd�

�
: (A9)

Note that sð�Þ is, actually, a shift parameter since it could
be obtained as

sð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ð�Þ
1� �ð�Þ

s
; (A10)

where �ð�Þ is the relative velocity between the given
observer and an inertial one. The hyperbolic angle between
both observers is �ð�Þ ¼ lnsð�Þ.
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