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We compute the transition amplitude between coherent quantum states of geometry peaked on

homogeneous-isotropic metrics. We work in the context of pure gravity without matter, we use the

holomorphic representations of loop quantum gravity and the Kaminski-Kisielowski-Lewandowski

generalization of the new vertex, and work at first order in the vertex expansion, second order in the

graph (multipole) expansion, and first order in volume�1. We show that the resulting amplitude is

in the kernel of a differential operator whose classical limit is the canonical Hamiltonian of a Friedmann-

Robertson-Walker cosmology. This result is an indication that the dynamics of loop quantum gravity

defined by the new vertex reproduces the gravity part of the Friedmann equation in the appropriate limit.
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I. INTRODUCTION

The dynamics of loop quantum gravity (LQG) can be
given in covariant form by using the spinfoam formalism.
In this paper we apply this formalism to cosmology. In
other words, we introduce a spinfoam formulation of
quantum cosmology, or a ‘‘spinfoam cosmology.’’ We
obtain two results. The first is that physical transition
amplitudes can be computed in an appropriate expansion.
We compute explicitly the transition amplitude between
homogeneous-isotropic coherent states, at first order. The
second and main result is that this amplitude is in the kernel
of an operatorH, and the classical limit ofH turns out to be
precisely the gravity part of the Hamiltonian constraint of
the Friedmann dynamics of homogeneous-isotropic cos-
mology. In other words, we show that LQG yields the
Friedmann equation in a suitable limit. Since we work in
the absence of matter, thought, the dynamics of the model
we consider is still rather trivial.

LQG has seen momentous developments in the last few
years. We make use of several of these developments here,
combining them together. The first ingredient we utilize is
the ‘‘new’’ spinfoam vertex [1–5]. The second is the
Kaminski-Kisielowski-Lewandowski extension of this to
vertices of arbitrary valence [6]. The third ingredient is the
coherent state technology [7–20] and, in particular, the
holomorphic coherent states discussed in detail in [21].
These states define a holomorphic representation of LQG
[8,22], and we work here in this representation.

Our strategy is the following. We consider the standard
Hilbert space of canonical LQG and we assume the
dynamics to be given by the new vertex. We consider
holomorphic coherent states in this Hilbert space and we
work in the holomorphic representation they define.
We truncate LQG down to a graph with a finite number

of links. In particular, the calculation is based on the
‘‘dipole’’ graph formed by two nodes connected by four
links [23]. This choice determines a Hilbert space, which
describes a finite number of the degrees of freedom of the
gravitational field. These degrees of freedom can be iden-
tified as the lowest modes in a multipole expansion of the
metric in hyper-spherical harmonics on S3 [24]. That is,
they describe a closed cosmology, with anisotropies and a
few low-mode inhomogeneities.
In particular, we consider coherent states that are peaked

on homogeneous-isotropic geometries. We emphasize the
fact that these states are just peaked on homogeneous and
isotropic geometries, but they also include fluctuations of
the inhomogeneous and anisotropic degrees of freedom.
So, the dynamics of the quantum theory we consider does
include inhomogeneous and anisotropic degrees of free-
dom. Homogeneous-isotropic coherent states are labeled
by two parameters which capture the scale factor a of
standard cosmology and its time derivative _a; or, equiva-
lently, the p and c canonical variables used in loop quan-
tum cosmology (LQC). In the holomorphic representation,
these two quantities appear in the complex combination
z ¼ �cþ i�p, and therefore the states we consider are
labeled by the complex number z. The transition amplitude
between two such states is then an analytic function
Wðz; z0Þ of two complex variables.
We write this transition amplitude at first order in a

vertex expansion. We view this as the analog of a first
order calculation in, say, QED perturbation theory.
We compute explicitly Wðz; z0Þ in the limit in which the
geometry is large compared to the Planck scale.
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In other words, we compute the transition amplitude
between macroscopical homogeneous-isotropic cosmo-
logical spaces in LQG, taking three approximations from
the complete theory: (i) the truncation of the degrees of
freedom to those defined on a finite graph; (ii) the restric-
tion to first order in the vertex expansion; (iii) the large
volume limit. The validity of these approximations can
only be justified a posteriori, from the correctness of the
result.

Our next step is to notice that the transition amplitude
computed solves the equation HWðz; z0Þ ¼ 0 for a certain
operator H ¼ Hðz; tℏ d

dzÞ. This fact implies that the ampli-

tude defines a quantum dynamics where the operator con-
straintH ¼ 0 holds. The corresponding classical dynamics
will be governed by (the ℏ ! 0 limit of) the classical
constraint Hðz; �zÞ ¼ 0. When written in terms of p and c,
this turns out to be precisely the Hamiltonian constraint
that governs (the gravitational part of) the dynamics of a
classical Friedmann cosmology in the limit of large
volume. Therefore LQG yields the Friedmann dynamics
in this limit.

Several words of caution are necessary. First, we work in
the Euclidean theory. Second, the cosmological dynamics
that we obtain is the one in the large volume limit and since
we do not have any matter present, this has only the
solution a ¼ constant, which is flat space. With these
caveats, our result is that there is an approximation in
LQG that leads to classical cosmology.

This result can be compared with those of LQC
[25,26]. In LQC, one first reduces the classical theory
to a cosmological system with a finite number of degrees
of freedom, and then applies a ‘‘loop quantization’’ to
this symmetry reduced model. Thus, one has a complete
quantum theory of a truncation of the classical theory.
Here, instead, we start from the full quantum theory and
take an approximation. Therefore, in LQC one studies
the exact solution in a truncated system, while here we
study approximated solutions in the (hopefully) exact
quantum theory. The possibility of introducing a
spinfoam-like expansion starting from LQC has been
considered in the following papers: [27–29]. These pa-
pers and the present work can be seen as two converging
attempts to construct a spinfoam version of quantum
cosmology.

Finally, in our opinion a main reason of interest of the
result we present here is that it represents an example of a
complete calculation of physical transition amplitude in
background independent quantum gravity. It complements
the calculation of the two-point function [30–34], that has
been recently completed [35].

In Sec. II, we briefly recall the definition of the full
quantum theory. In Sec. III, we discuss the approximation
that selects a cosmological sector, we compute the result-
ing transition amplitude. In Sec. IV, we study the classical
limit and recover the Friedmann dynamics.

II. THE THEORY

A. Kinematics

The theory is defined on the Hilbert space

H ¼ M
�

H �: (1)

The sum runs over the abstract graphs �. A graph � is here
a set of L links ‘ andN nodes n, together with two relations
s (source) and t (target) assigning a source node sð‘Þ and a
target node tð‘Þ to every link ‘. The Hilbert space H � is
defined to be

H � ¼ L2½SUð2ÞL=SUð2ÞN�; (2)

where the action of SUð2ÞN on the states c ðUlÞ 2
L2½SUð2ÞL� is

c ðUlÞ ! c ðVsð‘ÞUlV
�1
tð‘ÞÞ; Vn 2 SUð2ÞN: (3)

Two sets of operators are defined on each space H �.
For each link we have the ‘‘holonomy’’ multiplicative

operator Û‘c ðU‘Þ ¼ U‘c ðU‘Þ and the ‘‘triad’’ operator

Êi
‘c ðU‘Þ ¼ ð8�Gℏ�ÞLi

‘c ðU‘Þ where G is the Newton

constant and Li
‘ is the left-invariant vector field acting on

the variable U‘.
Finally, the state space of the theory is obtained by

factoring H by an equivalence relation, defined as
follows. If � is a subgraph of �0 then H � can be naturally
identified with a subspace of H �0 . Two states are equiva-
lent if they can be related by this identification, or if they
are mapped into each other by the discrete group of the
automorphisms of �.
These states are to be thought as ‘‘boundary states’’ in

the quantum theory. That is,H must be identified with the
space H �

out �H in of the initial and final states of
nonrelativistic quantum mechanics.

Coherent states

An overcomplete basis of coherent states in the Hilbert
space H � is provided by the holomorphic states

�H‘
ðU‘Þ ¼

Z
SUð2ÞN

dgn
Y
‘

Ktðg�1
sð‘ÞU‘gtð‘ÞH�1

‘ Þ: (4)

Here H‘ 2 SLð2;CÞ, and Kt is [the analytic continuation
to SLð2;CÞ of] the heat kernel function on SUð2Þ. This is a
function concentrated on the origin of the group, with a
spread of order t. Its explicit form is1

KtðUÞ ¼ X
j

ð2jþ 1Þe�2tℏjðjþ1Þ Tr½DjðUÞ�; (5)

1We choose a parameter t with the dimension of an inverse
action, and put ℏ explicitly in the definition of the coherent
states, in order to emphasize the fact that the small t limit is the
classical limit, and to keep track of the corresponding depen-
dence on ℏ. The factor of 2 is for later convenience.
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where DjðUÞ is the Wigner matrix of the spin-j represen-
tation of SUð2Þ.

As shown in [21], these states: (i) are the basis of the
holomorphic representation [8,22], (ii) are a special case
of Thiemann’s complexifier’s coherent states [9–18],
(iii) induce Speziale-Livine coherent tetrahedra [2,36,37]
on the nodes, and (iv) are equal to the Freidel-Speziale
coherent states [19,20] for large spins.

The states (4) are gauge-invariant semiclassical wave
packets. The integral in (4) projects (‘‘group averages’’)
on the gauge-invariant states. If H‘ is in the SUð2Þ sub-
group of SLð2;CÞ, the heat kernel peaks each U‘ on
H‘. The extension of H‘ to SLð2;CÞ has the same effect

as taking a Gaussian function c ðxÞ ¼ eðx�zoÞ2=2 �
eðx�xoÞ2=2eipox for a complex zo ¼ xo þ ipo; that is, it
adds a phase which peaks the states on a value of the
variable conjugate to U‘. Thus, the states (4) are peaked
on the variables U‘ as well as on their conjugate momenta.

The SLð2;CÞ labels H‘ can be given two related inter-
pretations. First, we can decompose each SLð2;CÞ label in
the form

H‘ ¼ ei4tE‘=8�G�U‘; (6)

whereU‘ 2 SUð2Þ and 2tE‘=ð8�Gℏ�Þ 2 suð2Þ. Then it is
not hard to show that U‘ and E‘ determine the expectation

values of the operators Û‘ and Ê‘ on the state c H‘

hc H‘
jÛ‘jc H‘

i
hc H‘

jc H‘
i ¼ U‘;

hc H‘
jÊ‘jc H‘

i
hc H‘

jc H‘
i ¼ E‘; (7)

and that the corresponding spread is small2

�U‘ �
ffiffiffiffiffi
tℏ

p
; �E‘ �G

ffiffiffiffiffiffiffiffi
ℏ=t

p
: (8)

Alternatively, we can decompose each SLð2;CÞ label in
the form

H‘ ¼ ns;‘e
�ið�‘þi�‘Þð�3=2Þn�1

t;‘ ; (9)

~� ¼ f�ig, i ¼ 1, 2, 3 are the Pauli matrices and ns;‘, nt;‘ 2
SUð2Þ. Freidel and Speziale discuss a compelling geomet-
rical interpretation for the ð ~ns; ~nt; �; �Þ labels of each link
[19] [here and below, unit-length vectors ~n and SUð2Þ
elements n are related by ~n � ~� ¼ n�3n

�1]. For appropri-
ate four-valent states representing a Regge 3 geometry with
intrinsic and extrinsic curvature, the vectors ~ns, ~nt are the
3d normals to the triangles the tetrahedra bounded by the
triangle; � is the extrinsic curvature at the triangle and � is
the area of the triangle divided by 8�Gℏ. For general
states, the interpretation extends to a simple generalization
of Regge geometries, that Freidel and Speziale have
baptized ‘‘twisted geometries.’’

Thus, the holomorphic coherent states provide a conve-
nient basis of wave packets with good geometrical
interpretation.

B. Dynamics

The spinfoam formalism associates an amplitude

hWjc i ¼ X
�

Y
f

dfð�Þ
Y
v

Wvð�Þ (10)

to each boundary state c 2 H . The sum is over the
spinfoams � bounded by c . See [5] for a description of
this formalism and for the notation. The vertex amplitude is
Wvð�Þ ¼ hWvjc vð�Þi, where c vð�Þ is the spin network
obtained by cutting � with a small three-sphere surround-
ing v and the vertex amplitude that defines the dynamics of
LQG is [2,4–6]

hWvjc i ¼ ðfc ÞðIÞ: (11)

Here f: H � ! L2½SOð4ÞL=SOð4ÞN� is defined as follows.
Let

j� ¼ 1� �

2
j (12)

and let Y be the map

Y: H ðjÞ ! H ðjþ;j�Þ jj;mi ! jjþ; mþ; j�; m�i
(13)

whose matrix elements are given by the Clebsch-Gordan
coefficients.

Ymþm�
m ¼ hjþ; mþ; j�; m�jj; mi: (14)

Consider the Peter-Weyl decomposition of L2½SUð2ÞL�
and, respectively, L2½ðSOð4ÞL�. Then f is defined by

mapping with Y each H ðjÞ term of the first into the

corresponding H ðjþ;j�Þ of the second.
Explicitly, the generalized state Wv in (11) is given by

WvðU‘Þ ¼
Z
SOð4ÞN

dGn

Y
‘

PoðU‘;Gsð‘ÞG�1
tð‘ÞÞ; (15)

where

PoðU;GÞ ¼X
j

ð2jþ 1ÞTr½DðjÞðUÞYyDðjþ;j�ÞðGÞY�: (16)

Here DðjÞ is the Wigner matrix of the spin-j representation

of SUð2Þ, while Dðjþ;j�Þ is the Wigner matrix of the
spin-ðjþ; j�Þ representation of SOð4Þ. The first has dimen-
sion 2jþ 1 while the second has dimension ð2jþ þ 1Þ�
ð2j� þ 1Þ. These matrices with different dimensions are
glued by the map Y.
The vertex amplitude takes a simple form on the

holomorphic basis defined by the coherent states. By com-
bining the definition (15) of the vertex and the definition
(4) of the coherent states, one obtains the holomorphic
form of the vertex amplitude [22]

2If we fix a length scale L 	 ffiffiffiffiffiffiffi
ℏG

p
and choose 2ℏt ¼ ℏG=L2

we have �U‘ �
ffiffiffiffiffiffiffi
ℏG

p
=L and �E‘ �

ffiffiffiffiffiffiffi
ℏG

p
L.
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WvðH‘Þ 
 hWvjc H‘
i

¼
Z
SUð2ÞL

dU‘WðU‘Þc H‘
ðU‘Þ

¼
Z
SOð4ÞN

dGn

Y
‘

PtðH‘;Gsð‘ÞG�1
tð‘ÞÞ; (17)

where

PtðH;GÞ ¼ X
j

ð2jþ 1Þe�2tℏjðjþ1Þ Tr½DðjÞðHÞYy

�Dðjþ;j�ÞðGÞY�: (18)

Here DðjÞ is the analytic continuation of the Wigner matrix
from SUð2Þ to SLð2;CÞ. Below, we use this last expression
to compute the quantum evolution in cosmology.

III. THE COSMOLOGICAL APPROXIMATION

A. Graph expansion

There is no physics without approximations. The first
approximation we take is to truncate H to a single fixed
graph �. Notice that the states with support on smaller
graphs (subgraphs of �) are all contained inH �; therefore
the truncation amounts to disregard all states that have
support on graphs ‘‘larger’’ than �.

We choose � to be the graph formed by two discon-
nected components �i and �f. We think of these as carry-

ing an initial and a final state. In particular we choose
�i ¼ �f ¼ ��

2, where the dipole graph ��
2 is defined by

the set of two nodes fn1; n2g, by the set of four links
f‘1; ‘2; ‘3; ‘4g, and by the source and target relations
sð‘Þ ¼ n1 and tð‘Þ ¼ n2, 8‘. That is

The operators defined on the Hilbert space H ��
2
are

ðU‘; E‘Þ. These can be interpreted as follows. Consider a
space M with the topology of a three-sphere, carrying a
triad field E and a connection A. Choose an immersion of
��

2 into M, and a cellular decomposition �2 of M, dual to
��

2. �2 is the triangulation of the three-sphere formed by 2
tetrahedra with all their faces identified.3 We can then
identify U‘ with the holonomy of A on the link ‘ and E‘

with the flux of the triad through the triangle cut by the link
‘, parallel transported to n1.

Homogeneous-isotropic coherent states

Consider the coherent states onH ��
2
. These are labeled

by four SLð2;CÞ elements H‘ ¼ eiE‘U‘. We are interested
here in homogeneous-isotropic coherent states. To find
them, let us compute ðU‘; E‘Þ for the case of a
homogeneous-isotropic space. Let A and E define such a
space. Then we can write A ¼ co! and E ¼ po! where
o! ¼ g�1dg is the fiducial connection defined by the
SUð2Þ Maurer-Cartan connection, upon identification of
M with the SUð2Þ group manifold [39]. Notice that A is
here the Ashtekar-Barbero connection, which is deter-
mined by both the spin connection and the extrinsic curva-
ture. The spin connection of a three-sphere is � ¼ o!, so
that in terms of the scale factor a we have c ¼ 1þ � _a.
Choose n1 to be the identity I and n2 to be �I, and choose
the links to be given by exponentiating a quadruplet ~n‘ of
vectors in suð2Þ normal to the faces of a regular tetrahedron
centered on the origin. There is an SOð3Þ freedom in
choosing the normals at each node. We choose n1‘ ¼
n2‘ :¼ n‘. This gives a realization of the immersion de-
fined in footnote 3. Then we can compute U‘ and E‘ [24]

U‘ ¼ n‘e
�i�cð�3=2Þn�1

‘ ;

E‘ ¼ �in‘
2�G�

t
�p

�3

2
n�1
‘ ;

(19)

where n‘ are SUð2Þ group elements such that n‘�3n
�1
‘ ¼

~n‘ � ~�, and � and � are constants that we do not determine
here. This implies that in (9) we have ns;‘ ¼ nt;‘ ¼ n‘ and

�‘ ¼ � ¼ �c; �‘ ¼ � ¼ �p; (20)

that is

H‘ð�; �Þ ¼ n‘e
�ið�þi�Þð�3=2Þn�1

‘ : (21)

The independence of �‘ and �‘ from ‘ can be seen as the
effect of isotropy and the equality of ns;‘ and nt;‘ can be

seen as the effect of homogeneity. The two numbers
c ¼ �=� and p ¼ �=� label the homogeneous-isotropic
coherent states.
Remarkably, the same states can be obtained by using

the Freidel-Speziale geometrical interpretation [20].
Consider a Regge geometry formed by two equal regular
tetrahedra with their faces identified and where the extrin-
sic curvature is the same at each triangle. This fixes the
labels ðns; nt; �; �Þ at each triangle ‘, and determines via
(9) an SLð2;CÞ group element which is precisely (21).
Finally, the quantity that we want to calculate is

Wð�i; �i;�f; �fÞ ¼ WðHlð�i; �iÞ; Hlð�f; �fÞÞ: (22)

Notice that this is an holomorphic function of zi and zf
where

z 
 �þ i�: (23)

Thus, we can write it as

3The metric structure defined by E determines a preferred
immersion, up to degeneracies. Pick two points n1 and n2 at
maximal distance from each other (the ‘‘north’’ and ‘‘south’’
pole in M), and let the equator be the set of points equidistant
from the poles. Chose four points on the equator at maximal
distance from one another, and connect them to the poles with
geodesic links ‘ (this gives the four meridians). The ‘‘equator’’
gets partitioned into four (Voronoı̈) triangles [38], each cut by
one of the links, defined by the minimal distance from the cuts.
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Wðzi; zfÞ ¼ Wð�i; �i;�f; �fÞ: (24)

This is the transition amplitude between a homogeneous-
isotropic universe with scale factor (square) pi and extrin-
sic curvature ci, to an homogeneous-isotropic universe
with scale factor (square) pf and extrinsic curvature cf.

By writing the in and out states

c zðU‘Þ :¼¼ c H‘ðzðc;pÞÞðU‘Þ :¼¼ hU‘jzi; (25)

we can interpret Wðzi; zfÞ as the physical scalar product

between (the projection on the physical state space of) the
state jzii and (the projection on the physical state space of)
the state jzif. That is4

Wðzi; zfÞ ¼ h�zfjziiphysical: (26)

We now compute this quantity to first order in the vertex
expansion.

B. Vertex expansion

At first order in the vertex expansion, the amplitude (26)
is given by the spinfoam formed by a single vertex bounded
by four edges and eight faces;

in this approximation (22) is given by the amplitude of the
single vertex v

Wðzi; zfÞ ¼ WvðH‘ðziÞ; H‘ðzfÞÞ: (27)

Using (17) and (18), this becomes

Wðzi;zfÞ¼
Z
SOð4Þ4

dGi
1dG

i
2dG

f
1dG

f
2

�Y
‘i

PtðH‘ðziÞ;Gi
1G

i�1
2 ÞY

‘f

PtðH‘ðzfÞ;Gf
1G

f�1
2 Þ

¼
Z
SOð4Þ2

dGidGf

�Y
‘i

PtðH‘ðziÞ;GiÞY
‘f

PtðH‘ðzfÞ;GfÞ:

Notice that this expression factorizes

Wðzi; zfÞ ¼ WðziÞWðzfÞ; (28)

where

WðzÞ ¼
Z
SOð4Þ

dG
Y
‘

PtðH‘ðzÞ; GÞ: (29)

This factorization happens only at first order. At this order,
therefore, the physical projector projects on a single state,
and (29) can be viewed as a Hartle-Hawking no-boundary
state [40,41].

C. Large volume expansion

Let us now compute (29) in the limit in which the
Universe is large. This limit is given by taking large p in

(6). Consider the factor DðjÞðHÞ in (18). Using (9), this
reads

DðjÞðH‘Þ ¼ DðjÞðn‘ÞDðjÞðe�izð�3=2ÞÞDðjÞðn�1
‘ Þ: (30)

For p 	 8�Gℏ�, namely, � 	 1 we have

DðjÞðe�ið�þi�Þð�3=2ÞÞ ¼ e�ið�þi�ÞjP; (31)

where P is the projector on the eigenstate of L3 with
maximum eigenvalue m ¼ j. It is easy to see that this
term dominates in the limit [22]. Inserting this result in
the previous equation gives

DðjÞðH‘Þ ¼ e�izjDðjÞðn‘ÞPDðjÞðn�1
‘ Þ :¼ e�izjP‘: (32)

Using this in (18) gives

PtðH‘;GÞ
¼ X

j

ð2jþ 1Þe�2tℏjðjþ1Þ�izj Tr½P‘Y
yDðjþ;j�ÞðGÞY�:

We show later that the trace gives a contribution polyno-
mial in j. Therefore we can compute the sum by approx-
imating it with a Gaussian integral. This is peaked on the
value j� jo ¼ �iz=4tℏ. Notice that the real part of jo is
given by the imaginary part of z, namely, p. For large p, we
have jo � �p=4tℏ. The Gaussian integral gives

PtðH‘;GÞ ¼
ffiffiffiffi
�

t

r
e�ðz2=8tℏÞ2joTr½P‘Y

yDðjþo ;j�o ÞðGÞY�: (33)

Using this in (29) yields

WðzÞ ¼
� ffiffiffiffi

�

t

r
e�ðz2=8tℏÞ2jo

�
4
Njo; (34)

where

Njo ¼
Z
SOð4Þ

dG
Y
‘

Tr½P‘Y
yDðjþo ;j�o ÞðGÞY�: (35)

This is the norm squared of the Livine-Speziale coherent
regular tetrahedron of size jo. It is given [2] by Njo ¼
Noj

�3
o . Using this and jo ¼ � i

4tℏ z, we conclude

4In standard quantum mechanics, the transition amplitude
Zðzf; ziÞ ¼ hzfj expiHtjzii is antilinear in the first variable,
therefore one may expect (26) to be antiholomorphic in zf.
However, since here we treat the past and future surfaces as
two components of the boundary of the spacetime region be-
tween the two, the initial surface is oriented toward the future
and the final surface towards the past. If we change the orienta-
tion of the final surface, zf goes to ��zf.
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WðzÞ ¼ Nze�ðz2=2tℏÞ; (36)

where N ¼ �2ið�=tℏÞ2No. Finally, inserting this into (28)
we have

Wðzi; zfÞ ¼ N2zizfe
�ð1=2tℏÞðz2iþz2

f
Þ: (37)

This is the transition amplitude between two cosmological
homogeneous-isotropic coherent states.

IV. CLASSICAL LIMIT

We now observe that the transition amplitude (37)
satisfies the equation

3

8�Gð4���Þ2
�
z2 � t2ℏ2 d2

dz2
� 3tℏ

�
2
Wðz; z0Þ ¼ 0 (38)

(the square and the overall factor are for later conve-
nience). Therefore, this amplitude describes a quantum
system where the operator equation

Ĥ :¼ 3

8�Gð4���Þ2
�
z2 � t2ℏ2 d2

dz2
� 3tℏ

�
2 ¼ 0 (39)

holds. Let us now look for a corresponding classical sys-
tem. Assume that z is the coordinate of a classical phase
space with symplectic structure

! ¼ i

t
dz ^ d�z; (40)

that is

fz; �zg ¼ it: (41)

The corresponding operators in the quantum theory that
satisfy ½z; �z� ¼ iℏfz; �zg are therefore

ẑ ¼ z; �̂z ¼ tℏ
d

dz
: (42)

We can thus rewrite (39) as

Ĥ ¼ 3

8�Gð4���Þ2 ðẑ
2 � �̂z2 � 3tℏÞ2 ¼ 0: (43)

Let us now take the classical limit of this equation.
Replacing operators with classical variables, we have

H ¼ 3

8�Gð4���Þ2 ðz
2 � �z2 � 3tℏÞ2

¼ 3

8�Gð4���Þ2 ð4i��� 3tℏÞ2 ¼ 0: (44)

Using (20), this is

H ¼ 3

8�Gð4���Þ2 ð4i��cp� 3tℏÞ2 ¼ 0: (45)

In the ℏ ! 0 limit we have

H ¼ � 3

8�G�2
c2p2 ¼ 0: (46)

Dividing by the volume of space Vol� p3=2 > 0, we have

H ¼ � 3

8�G�2

ffiffiffiffi
p

p
c2 ¼ 0: (47)

In the large volume limit and in the absence of matter the
dynamics of the universe approaches the flat (k ¼ 0) case
and the Friedmann hamiltonian constraint becomes

Hcl ¼ � 3

8�G
_a2a ¼ 0; (48)

in this regime c ¼ � _a and p ¼ a2 and this equation is
precisely (47).

V. CONCLUSIONS

We have introduced a spinfoam formulation of quantum
cosmology.
We have obtained two results. The first is that it is

possible to compute quantum transition amplitudes explic-
itly in suitable approximations. In detail, we have studied
three approximations: (i) cutting the theory to a finite
dimensional graph (the dipole), (ii) cutting the spinfoam
expansion to just one term with a single vertex, and (iii) the
large volume limit. The main hypothesis on which this
work is based is that the regime of validity in which these
approximations are viable includes the semiclassical limit
of the dynamics of large wavelengths. ‘‘Large’’ means here
of the order to the size of the universe itself. This regime
includes of course the standard Friedmann cosmology.
The second result is that the transition amplitude com-

puted appears to give the correct Friedmann dynamics in
the classical limit. These results must be taken with caution
for a number of reasons. First, we have used the Euclidean
theory, instead than the physical Lorentzian theory.
Second, the dynamics we have obtained is in fact trivial
due to the absence of matter. The solution of the constraint
equation (47) is either p ¼ 0 or c ¼ 0; that is, either the
Universe has no volume, or it is flat. This is physically
correct, since in the absence of a matter and in the limit of
an infinitely large radius one obtains precisely a flat space-
time. But this is only a weak indication that the full
Friedmann dynamics is recovered. Whether the result still
holds with matter, or a cosmological constant, must still be
checked. Also, in the derivation of the classical limit, the
symplectic structure (40) has been taken as an input. It can
be shown that this choice reproduces the symplectic struc-
tures of the LQC variables 5 ðc; pÞ or the one of the LQG
variables ðE‘;U‘Þ. Finally, the system that the approxima-
tion defines admits obvious improvements. In particular,
transitions must be computed on a larger graph, and at the
next order in the vertex amplitude, in order to investigate

5This fixes the product �� ¼ 3t=16�G�. Then � can be
determined by noticing that for c ¼ 1 the connection A is the
Cartan connection and its holonomy from the identity to g is g
itself. Taking ns ¼ I and nt ¼ �I gives easily � ¼ 2�.
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the validity of the approximation, and it is important to
understand what are the first order corrections to the
Friedman equation without matter. Can these be computed
and if yes, what is the expected physics from these terms?

We have noticed that at first order the transition ampli-
tude factorizes [see Eq. (28)]. To this order, the ‘‘projector’’
on physical states P ¼ P

nhnjni defined by hc fjPjc ii ¼
hWj �c f � c ii projects on a single state, say j0i, which can

be identified as the Hartle-Hawking ‘‘wave function of the
Universe’’defined by the so called ‘‘no-boundary proposal’’
[42]. We do not expect this factorization to survive higher
orders, where the projector can regain its general form.

From the point of view of cosmology, the system we
have described opens in principle the way to the descrip-
tion of inhomogeneous degrees of freedom at the bounce,
circumventing the difficulties of the model given in [23]. In
particular, the covariant dynamics used here can readily be
extended to larger graphs. Coherent states have been
largely used in loop quantum cosmology (see for instance
[43–46]), in particular, in relation to the problem of finding
effective equations or in numerical simulations [47–49].
Here, however, homogeneous and isotropic states appear
naturally as states peaked on homogeneous and isotropic
mean values of the quantum states, in the context of a
formalism which—we stress—is not a reduction of the
dynamics to homogeneous and isotropic degrees of free-
dom. In physical terms, these states represent a universe
where inhomogeneous and anisotropic degrees of freedom
are taken into account but fluctuate around zero. This
provides also an elegant solution of the problem of having

to choose between coordinate or momenta in imposing a
symmetry reduction in cosmology [50,51]. Ideally, this
formalism could describe inhomogeneous and anisotropic
quantum fluctuations of the geometry at the bounce.
The comparison of our results with those of standard

loop quantum cosmology requires more work and opens
several issues. In LQC the ‘‘natural’’ quantum dynamics
based on c and p requires care, because of the consequent
p dependence of the affine parameter, and the possible
dependence of the formalism on the ‘‘fiducial cell’’ [52].
Here the same problem does not appear since we do not use
such fiducial structure; however the issue deserves to be
investigated in more detail. One of the purposes of the
present paper is precisely to open a path for understanding
the relation between these peculiar aspects of loop quan-
tum cosmology and the full loop theory of quantum
gravity.
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