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We consider possible violations of the equivalence principle through the exchange of a light ‘‘dilaton-

like’’ scalar field. Using recent work on the quark-mass dependence of nuclear binding, we find that the

dilaton-quark-mass coupling induces significant equivalence-principle-violating effects varying like the

inverse cubic root of the atomic number—A�1=3. We provide a general parametrization of the scalar

couplings, but argue that two parameters are likely to dominate the equivalence-principle phenomenology.

We indicate the implications of this framework for comparing the sensitivities of current and planned

experimental tests of the equivalence principle.
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I. INTRODUCTION

At the heart of the theory of General Relativity is
Einstein’s Equivalence-Principle (EP). The weak
Equivalence-Principle predicts the composition indepen-
dence of the accelerations of test masses in a gravitational
field. This has been probed at a present sensitivity of

�a

a
� 10�13 (1)

in innovative and difficult experiments [1,2]. Further tests
of this principle remain important and relevant for new
physics [3,4]. We are fortunate that there are several ini-
tiatives to push the sensitivity several orders of magnitude
further using new space-based experiments such as
MICROSCOPE [5], the Galileo Galilei project [6] and
STEP [7] as well as new types of experiments using cold
atoms [8,9] and suborbital rockets [10].

One possible source of EP-violation is a very light1

scalar field with a coupling to matter that is weaker than
gravitational strength. We will refer to these generically as
‘‘dilatons,’’ although they may have origins other than
string-theory or models involving dilation symmetry. As
will become clear below, we will phenomenologically
define a ‘‘dilaton’’ as a scalar field � whose couplings to
matter effectively introduce a � dependence in the basic
dimensionless constants of Nature (such as the fine-
structure constant, etc.). String-theory may have such sca-
lars in the low-energy limit (string dilaton, moduli), and
these can naturally lead to EP-violation at a sizeable level
[11–15]. Likewise, theories of quintessence predict a light
scalar, as do theories with continuously varying coupling
constants as well as some theories of dark matter. While
scalars lead to an attractive interaction, like usual gravity,
they do not couple universally to all forms of energy in the

same way as in general relativity. Thus we expect differ-
ences in the forces for different elements.
Additionally, independently of any specific theoretical

model one might argue (along the ‘‘anthropic’’ approach to
the issue of a possibly extremely vast ‘‘multiverse’’ of
cosmological and/or string backgrounds) that: (i) the
‘‘Equivalence-Principle’’ is not a fundamental symmetry
principle of Nature (e.g. it is ‘‘violated’’ in any theory
containing very light scalars); (ii) the level ���a=a of
EP-violation can be expected to vary, quasi-randomly,
within some range of order unity, over the full multiverse
of possible (cosmological and/or theoretical) backgrounds;
(iii) as there is probably a maximal level of EP-violation,
say 0<�� � 1, which is compatible with the develop-
ment of life (and of physicists worrying about the EP), one
should a priori expect to observe, in our local environment,
an EP-violation � of order of ��. It is a challenge to give a
precise estimate (or at least upper bound) of ��. We note,
however, that this is a scientifically rather well-posed
challenge. For instance, one of the necessary conditions
for the existence of life is the existence of solarlike plane-
tary systems stable over billions of years. A sufficiently
large � � 0will jeopardize this stability, notably under the
influence of external, passing stars. The current very small
level of EP-violation ensures that stars passing at a distance
D disturb the inner dynamics of the solar-system only
through tidal effects that decrease like D�3. An EP-
violation � would increase this disturbing effect to a level
/ �R�2. It is also a well-posed question to determine the
level � which would destabilize the solar-system through
internal EP-violating gravitational effects.
Independently of these various motivations, our work

here will discuss the general type of composition-
dependence of EP-violation that is entailed by the exis-
tence of a light dilatonlike field. The theoretical challenge
is to connect the basic couplings of the dilaton Lagrangian
to the properties of real atomic systems.
Our work starts in Sec. II with a review of EP violat-

ions, and a general parametrization of possible dilaton

1We will generally assume in the following that the scalar field
we consider is essentially massless on the scales that we discuss.
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couplings, Eq. (12). Section III connects dilaton-coupling
parameters with the other couplings of the standard model,
which is preparation for understanding the effects of the
dilaton couplings. Section IV is our analysis of the effects
in nuclear-binding, while Sec. V is a summary of the
effects within individual nucleons, and Sec. VI describes
electromagnetic effects. In Sec. VII, we collect the results
of the previous sections and give a complete treatment of
the phenomenology of equivalence-principle violations,
including comparisons with existing experiments.
Section VIII provides a guide to experimental sensitivities
for existing and future experiments. Experimenters who
are willing to forgo the theoretical development of
Secs. III, IV, V, and VI can go directly to Secs. VII and
VIII or can consult our shorter paper [16] in which we have
collected our most phenomenologically useful results. In
particular, Sec. VII C contains what is probably the most
useful parametrization of our results, and Sec. VII D dis-
cusses the present experimental constraints. Section IX is a
brief summary.

II. FORMALISM

A. EP-violation

Let us start by recalling that a massless dilaton �
modifies the Newtonian interaction between a mass A
and a mass B, into the form (see, e.g. [14])

V ¼ �G
mAmB

rAB
ð1þ �A�BÞ: (2)

If the dilaton mass is important the second term includes an
extra exponential factor expð�m�rABÞ. In this interaction

potential, the scalar coupling to matter is measured by the
dimensionless factor

�A ¼ 1

�2mA

@½�mAð�Þ�
@�

: (3)

Here, � � ffiffiffiffiffiffiffiffiffiffi
4�G

p
is the inverse of the Planck mass2 so that

the product �mA is dimensionless. This ensures that this
definition of �A is valid in any choice of units, even if these
units are such that � depends on � (as in the so-called
‘‘string frame’’). In the following, we shall generally as-
sume that we work in the ‘‘Einstein frame’’ where the
(bare) Newton constant G is independent of �. The above
expression for the dimensionless scalar coupling �A has
been written in terms of a canonically normalized scalar
field, with kinetic term [using the signature ðþ;�;�;�Þ]

L � ¼ 1

2
ð@�Þ2 þ � � � (4)

Evidently, a small mass-term for the dilaton can readily be
added if desired. It can also be convenient to work with the
dimensionless scalar field

’ � ��; (5)

whose kinetic term is related to the Einstein-Hilbert
action via

� 1

16�G
ðR� 2ð@’Þ2Þ: (6)

When using ’ the definition of the dimensionless scalar
coupling reads

�A ¼ @ ln½�mAð’Þ�
@’

: (7)

In terms of the �A’s, the violation of the (weak) EP, i.e.
the fractional difference between the accelerations of two
bodies A and B falling in the gravitational field generated
by an external body E, reads

�
�a

a

�
AB

� 2
aA � aB
aA þ aB

¼ ð�A � �BÞ�E

1þ 1
2 ð�A þ �BÞ�E

’ ð�A � �BÞ�E: (8)

In the last (approximate) equation we have assumed that
the �’s are small, so that one can neglect the term
1
2 ð�A þ �BÞ�E in the denominator.

Our aim here is to provide a general analysis of the
possible EP violations in experiments comparing the free
fall accelerations of atoms (and/or nuclei). Most of
the effort needed for such an analysis is now understood
[12,13,15,17], and we will use it below. However, one
aspect of this analysis has been far less well-studied and
understood, namely, the contribution to EP-violation com-
ing from the possible�-dependence of the nuclear-binding
energy. The aim of this paper will mainly be to assess the
form of this contribution, coming from the quark-mass
contribution to nuclear-binding.3 Actually, our conclusion
will be that this contribution is, possibly in competition
with Coulomb-binding effects, likely to dominate the
atom-dependence of the EP-violation signal (8).
To motivate our general analysis, let us start by noting

that the mass of an atom can be decomposed as

mðAtomAÞ ¼ mA ¼ mrest mass
A þ Ebinding (9)

where

mrest mass
A ¼ Zmp þ Nmn þ Zme (10)

is the rest-mass contribution to the mass of an atom (Z
denoting the atomic number and N the number of neu-
trons), and where Ebinding is the binding energy of the atom,
which is dominated by the binding energy of the nucleus.
Ebinding � E3 þ E1 is the sum of a strong interaction con-
tribution, say E3, and of an electromagnetic one, say E1

(which is dominated by the electromagnetic effect within

2We use units such that c ¼ 1 ¼ ℏ.

3Damour [3] and Dent [17] have highlighted this need for the
study of the nuclear-binding energies.

THIBAULT DAMOUR AND JOHN F. DONOGHUE PHYSICAL REVIEW D 82, 084033 (2010)

084033-2



the nucleus). The indices 3 and 1 are used here as re-
minders of the gauge groups underlying the considered
interactions:, namely, SUð3Þ and Uð1Þ. Note that the index
A in mA is used here (like in the definition of the scalar
coupling �A) as a label for distinguishing several different
atoms. It should not be confused with the mass number (or
nucleon number) A � Zþ N which we shall use below.

B. The general dilaton Lagrangian

The basic organizing principle that we shall use in our
discussion is to keep track of the effect of all the possible�
modifications of the terms entering the effective action
describing physics at the scale of nuclei in their ground
states. We have in mind here an energy scale �� 1 GeV.
At such a scale, one has integrated out not only the effect of
weak interactions, but also the heavy quarks c, b and t. The
issue of the possible � sensitivity of effects linked to the
strange quark s is more delicate. In the Appendix we argue
that the possible EP violations linked to the � couplings to
s are expected to be quite small. In the bulk of the text we
shall therefore ignore s (assuming that its effect is taken
into account by changing some of the quantities we dis-
cuss, notably the QCD energy scale �3).

In this approximation, we are therefore talking about an
effective action containing, as real particles, the electron e,
the u quark, and the d quark, with interactions mediated
by the electromagnetic (A�) and gluonic (A

A
�) fields. [Here

we shall use a rescaled Uð1Þ gauge potential, which in-
corporates the electron charge e, but an unrescaled gluonic
field, which does not incorporate the SUð3Þ gauge cou-
pling g3.] Then each of the five terms in this effective
action, say

L eff ¼ � 1

4e2
F��F

�� � 1

4
FA
��F

A��

þ X
i¼e;u;d

½i �c i 6DðA; g3AAÞc i �mi
�c ic i�; (11)

(where DðAÞ denotes the Dirac operator coupled to the
gauge field(s) A) can couple to ’ ¼ �� with a (dimen-
sionless) coefficient. [We assume that we work in the
Einstein frame, with the gravity and � kinetic terms
displayed above.] This introduces five dimensionless
dilaton-coupling coefficients, say de, dg for the couplings

to the electromagnetic and gluonic field terms, and dme
,

dmu
, dmd

for the couplings to the fermionic mass terms.4

We shall normalize these five dimensionless dilaton-
coupling coefficients de, dg, dme

, dmu
, dmd

so that they

correspond (when considering the linear couplings to �)
to the following interaction terms:

L int� ¼ ��

�
þ de
4e2

F��F
�� � dg�3

2g3
FA
��F

A��

� X
i¼e;u;d

ðdmi
þ 	mi

dgÞmi
�c ic i

�
: (12)

We shall explain below the notation and our choice of
normalization for these interaction terms.
There are two equivalent ways of thinking about the

computation of the scalar-matter coupling �A, Eq. (3). One
way is to think that it is given by the matrix element (in the
quantum state of an atom) of the operator in the quantum
Hamiltonian (associated to the interaction Lagrangian
above) which is linear in �. A second way is to think
that it is obtained by the chain rule as

�A ¼ @ ln½�mAð’Þ�
@’

¼ X
a

@ ln½�mAðkaÞ�
@ka

@ka
@’

: (13)

where �mAðkaÞ is the expression of the dimensionless mass
ratio �mA ¼ mA=mPlanck as a function of the dimensionless
coupling constants of Nature, say ka ¼ k1; k2; . . . ; k20, en-
tering the standard model. Actually, because of the limited
number of terms entering the relevant low-energy action
(11), there are only five relevant dimensionless constants of
Nature ka corresponding to the five terms in (11). As we
shall see in detail below, the five terms in the interaction
terms (12) precisely correspond to introducing a � depen-
dence in the five following dimensionless constants of
Nature,

�; ��3; �me; �mu; �md; (14)

where � ¼ e2=ð4�Þ is the fine-structure constant, �3 the
QCD energy scale, me the electron (pole) mass, and where
mu and md denote some renormalization-group-invariant
measures of the light-quark masses (say, the �-running
masses taken at themultiple of�3 which is equal to 1 GeV).
In the next section we shall relate our normalization of

the five dimensionless dilaton-coupling parameters da en-
tering (12) to the constants (14), and explain in more detail
the dependence of the mass of an atom on the five constants
(14), and thereby on the five dilaton parameters da.

III. RELATION BETWEEN THE DILATON-
COUPLING PARAMETERS da AND THE

‘‘CONSTANTS OF NATURE’’

By comparing the �-interaction Lagrangian (12) to the
other terms in the effective action (11), we see that the
meaning of the dilaton-coupling coefficients da ¼ de, dg,

dme
, dmu

, dmd
seems clear for four of them. [Actually, we

shall see below that the meaning of the quark-mass
couplings dmi

is more subtle, because of the renor-

malization-group running of the quark masses, which is
associated with the 	mi

dg term in (12).] First, the cou-

pling de to the electromagnetic field modifies the
Maxwell action according to

4We are using here the fact that a �–dependent coupling to the
kinetic term of a fermion, fð�Þ �c i 6Dc , can be absorbed in a
suitable �–dependent rescaling of c .
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L EM ¼ � 1� de��

4e2
F��F

��

’ � 1

4ð1þ de��Þe2 F��F
�� (15)

where the last equality is valid at the linear level in ��
(which is the level at which we define the dilaton couplings
here). As we work with a rescaled electromagnetic field
(Ahere ¼ eAusual), the only location where the electric
charge occurs in the Lagrangian is the one explicitly shown
above. This allows the dilaton field to be absorbed into the
following � dependence of the fine-structure constant

�ð�Þ ¼ ð1þ de��Þ� ¼ ð1þ de’Þ�: (16)

Second, comparing (12) to the mass terms of the electron
and the light quarks, we see that our normalization is such
that dme

, dmu
, dmd

introduce the following� dependence of

the e, u and d masses:

mið�Þ ¼ ð1þ dmi
��Þmi ¼ ð1þ dmi

’Þmi;

ði ¼ e; u; dÞ: (17)

On the other hand, the terms in (12) that depend on our
‘‘dilaton-gluon’’ coupling dg call for a more subtle expla-

nation. The choice of these coupling terms is such that the
coefficient of dg is invariant under the renormalization-

group (RG). As the coefficient of dmi
(i.e. the mass-term

mi
�c ic i) is also, separately, RG-invariant, our choice of

normalization of the coefficients in (12) gives a RG-
invariant meaning to both dg and the dmi

’s.5

A. Connection with the QCD trace anomaly

The phenomenological consequences (for the scalar
coupling to hadrons) of the RG-invariant nature of the
couplings in (12) can be seen in two (equivalent) ways.
One way (which was used by [15,18]) consists in remark-
ing that the definition of the dg-dependent terms in (12) is

such that they couple � to the anomalous part of the trace
of the gluon stress-energy tensor, namely

L g� ¼ �dg��Tanom
g (18)

where [19]

Tanom
g ¼

�
�3

2g3
FA
��F

A�� þ 	m

X
i

mi
�c ic i

�
�
: (19)

Here, �3ðg3Þ ¼ �@g3=@� denotes the � function for the
running of the QCD coupling g3 with the (Wilsonian)

sliding energy scale �, 	mðg3Þ ¼ ��@ lnm=@� (with a
minus sign on the r.h.s.) is the (universal) anomalous
dimension giving the energy-running of the masses of the
QCD-coupled fermions, and the subscript � at the end
indicates that the operator on the r.h.s. must be renormal-
ized at the running scale �. We recall that, classically, the
trace of the gluonic stress-energy tensor vanishes (because
of the conformal invariance of the Yang-Mills action), but
that quantum effects linked to the necessity of regularizing
the UV infinities in the product of gluon field strengths at
the same spacetime point x introduce the (finite) ‘‘confor-
mal anomaly’’ (19) [19]. Then, by using the quantum
version of the virial theorem,6 one can see [15,18] that
the coupling (18) means that dg measures the coupling of

� to the part of the total mass-energy of the considered
hadron which is due to the (renormalized) gluonic field
energy, say Mg (where Mg can be defined by subtracting

from the total mass both the nonanomalous mass-term
contributions hPimi

�c ic ii, and the electromagnetic one).

B. Renormalization-group analysis

A second way of discussing the consequences (for the
scalar coupling to hadrons) of our normalization of cou-
plings in (12) is phenomenologically illuminating. It con-
sists in noting that our RG-invariant definitions are
equivalent to very simple consequences for the � depen-
dences of both the QCD mass scale �3, and the values of
the quark masses at the scale � ¼ �3. [Note that both �3

and mið�3Þ are RG-invariantly defined quantities.] Let us
start by defining the QCD mass scale �3 as being the mass
scale at which the running QCD coupling g3ð�Þ reaches
some fixed, reference dimensionless number of order unity,
say g� ¼ 2:5. [This numerical value, which corresponds to
�� ¼ g2�=ð4�Þ ¼ 0:5, is approximately reached when the
running scale � ’ 1 GeV (see, e.g., the figure giving
�sð�Þ in the QCD review in [20]).] This definition of �3

can be reexpressed in terms of the value gc � g3ð�cÞ of g3
at some high-energy ‘‘cut-off’’ scale �c (which could be
the Planck scale, or the string-scale) by integrating the �
equation giving the running of g3, d ln� ¼ dg3=�3ðg3Þ,
so that

ln�3ð�c; gcÞ ¼ ln�c �
Z gc

g�

dg3
�3ðg3Þ : (20)

The expression (20) defines �3 as a function of �c and
gc. If we assume for simplicity that the chosen cutoff �c

does not depend (in the Einstein frame) on �, the result
(20) shows that �3 will inherit a � dependence from
any eventual � dependence of gc according to (denoting
�c � �3ðgcÞ)

5We are here talking about invariance under the QCD-driven
running of the QCD gauge coupling g3, and of the masses of
fermions coupled to QCD. In view of the smallness of the
electromagnetic coupling � ’ 1=137 � �3, we are neglecting
the RG-running driven by electromagnetic effects. If one wanted
to take it into account, one should add to (12) additional terms
linked to the QED trace anomaly.

6We recall that this theorem says that the space integral of the
spatial components of the total stress-energy tensor T

��
tot ¼

T
��
g þ T

��
EM þ T

��
matter vanishes in an equilibrium bound state.
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@ ln�3

@’
¼ � gc

�c

@ lngc
@’

: (21)

Similarly, the integration of the RG equation for a
running fermionic mass mi, namely d lnmi ¼
�dg3	mðg3Þ=�3ðg3Þ, yields the following expression for
the value of mi at the QCD scale, lnmið�3Þ:

lnmið�3Þ ¼ lnmið�cÞ þ
Z gc

g�

	mðg3Þ
�3ðg3Þ dg3: (22)

Differentiating this result w.r.t. ’ then shows that the
logarithmic derivative of mið�3Þ w.r.t. ’ is the sum of
two separate contributions, namely, (denoting 	c �
	mðgcÞ)

@ lnmið�3Þ
@’

¼ @ lnmið�cÞ
@’

þ gc	c

�c

@ lngc
@’

: (23)

On the other hand, by comparing7 the �-dependent terms
in (12) to the basic action (11) (both being considered at the
cutoff scale �c), we see that the coefficients dg and dmi

have the effect of adding some�-dependence in the values
of gc and mið�cÞ of the form
@ lngc
@’

¼ �dg
�c

gc
;

@ lnmið�cÞ
@’

¼ dmi
þ 	cdg: (24)

Inserting these results in the ’-derivatives of �3 and
mið�3Þ derived above, finally leads (thanks to the cancel-
lation of the 	c-dependent contribution in the derivative of
the masses) to the simple results

@ ln�3

@’
¼ dg;

@ lnmið�3Þ
@’

¼ dmi
: (25)

Summarizing: the physical meaning of the five dilaton-
coupling coefficients da ¼ de, dg, dme

, dmu
, dmd

is (at the

linear level in �) to introduce a �-dependence in the
parameters entering the low-energy physics of the form

�3ð’Þ ¼ ð1þ dg’Þ�3; �ð’Þ ¼ ð1þ de’Þ�;
með’Þ ¼ ð1þ dme

’Þme;

½mið�3Þ�ð’Þ ¼ ð1þ dmi
’Þmið�3Þ; i ¼ u; d:

(26)

C. Ratios of dimensional parameters

Note that a consequence of these equations is that the
dimensionless ratios me=�3, muð�3Þ=�3, mdð�3Þ=�3 de-
pend on ’ through the ratios ð1þ dmi

’Þ=ð1þ dg’Þ ’
ð1þ ðdmi

� dgÞ’Þ. In other words, the ’ sensitivity of

these dimensionless ratios is

@ ln½mið�3Þ=�3�
@’

¼ dmi
� dg: (27)

Note that this involves only the differences dmi
� dg. In

particular, when the mass couplings dmi
are taken to be all

equal to dg, the effect of the � couplings is equivalent to

introducing a � dependence only in �3 and �. This fact
can also be seen by means of the formulation (18) of the dg
coupling. Indeed, when dmi

¼ dg the sum of (18) and of

the mass-term couplings is equivalent to having a coupling
between� and the sum of the anomalous, Tanom

g , and of the

nonanomalous, Tnonanom
g , parts of the trace of the total

stress-energy tensor. Therefore, modulo electromagnetic
effects, this would imply that � couples to the trace of
the total stress-energy tensor, i.e. (using the virial theorem)
that � couples to the total mass of the hadron. In this
particular case, the only violations of the EP would come
from electromagnetic effects.
However, in view of the fact that the physics which

determines (in the standard model) the masses of the lep-
tons and quarks involves the symmetry breaking of the
electroweak sector, and, in particular, the vacuum expecta-
tion value (vev) of the Higgs field, it does not seem a priori
likely that a fundamental theory describing the high-energy
couplings of the dilaton can ensure such a universal feature.
From this point of view, one can consider our final results
(26) as useful general parametrizations of the low-energy
dilaton couplings, independently of the complicated phys-
ics that might connect these parameters to an eventual high-
energy description of the� couplings to the fields entering
the basic Lagrangian. For example, heavy quarks do not
enter the field couplings (12), but they enter in the relation
between the QCD scale�3 (describing the physics at scales
& 1 GeV) and the high-energy boundary conditions, �c,
gc. Therefore, the parametrization of dg in (26) implicitly

takes into account the effect of heavy quarks. [Ref. [15]
showed how to explicitly take into account the effect of
heavy quarks, and it is easily checked that their results are
in agreement with the first equation in (26).]
We can use the above results to rewrite the expression of

the scalar couplings tomatter (3) and (7) in a useful form.As
the Planck scale 1=� does not directly enter physics at the
QCD scale (besides its possible impact on determining �3

via Eq. (20)), we can always write the mass of an atom as

mA ¼ �3MA

�
mu

�3

;
md

�3

;
me

�3

; �

�
; (28)

whereMA is a dimensionless quantity, which is a function of
the four indicated dimensionless quantities, say (for later
convenience)

ðku; kd; ke; k�Þ �
�
mu

�3

;
md

�3

;
me

�3

; �

�
: (29)

Using this notation, the scalar coupling to matter Eq. (7)
can be rewritten (when working in the Einstein frame) as

7In doing this comparison it is useful, as explained above for
the Maxwell action, to provisionally use a ‘‘geometric’’ normal-
ization of the gluon field, i.e. to absorb g3 in AA.
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�A ¼ dg þ ��A; (30)

where dg ¼ @ ln�3

@’ is a universal (non EP-violating) con-

tribution to �A, and where the EP-violating part ��A is
given by

��A � @ lnMA

@’
¼ 1

MA

@MA

@’
¼ 1

MA

X
a¼u;d;e;�

@MA

@ lnka

@ lnka
@’

:

(31)

The logarithmic derivatives of the ka are given by Eq. (26),
so thatwe canwritemore explicitly ��A as the following sum
of four contributions:

��A ¼ 1

MA

@MA

@’

¼ 1

MA

� X
a¼u;d;e

ðdma
� dgÞ @MA

@ lnka
þ de

@MA

@ ln�

�
: (32)

D. Redefining the quark-mass parameters

In the following, we will find it convenient to work with
the symmetric and antisymmetric combinations of the
light-quark masses, namely

m̂ ¼ 1

2
ðmd þmuÞ; 
m ¼ ðmd �muÞ: (33)

Working in terms of m̂ and 
m, means working in terms of
mass terms of the form

md
�ddþmu �uu ¼ m̂ð �ddþ �uuÞ þ 1

2

mð �dd� �uuÞ (34)

which couple to the dilaton as

L � ¼ . . . :� ��

�
dm̂m̂ð �ddþ �uuÞ þ d
m

2

mð �dd� �uuÞ

�
:

(35)

These definitions are such that, for instance, the coupling
of ’ to m̂ is equivalent to a Hamiltonian coupling of the
form,

H ¼ . . . :þ ð1þ dm̂’Þm̂ð �uuþ �ddÞ; (36)

i.e. to introducing a ’ dependence in the average light-
quark-mass of the type m̂ð’Þ ¼ ð1þ dm̂’Þm̂.

The link between these new dilaton-coupling coeffi-
cients and the previous ones reads

dm̂ � @ lnm̂

@’
¼ dmd

md þ dmu
mu

md þmu

;

d
m � @ ln
m

@’
¼ dmd

md � dmu
mu

md �mu

:

(37)

In term of this notation (32) reads

��A ¼ 1

MA

�
ðdm̂ � dgÞm̂ @MA

@m̂
þ ðd
m � dgÞ
m@MA

@
m

þ ðdme
� dgÞme

@MA

@me

þ de�
@MA

@�

�
: (38)

As displayed in Eq. (38), ��A is naturally decomposed
into a sum of four contributions, which are linear in the
four dilaton couplings: dma

� dg, or de. Another linear

decomposition can also be applied to the various terms in
��A: namely, the one corresponding to the various terms in
Eq. (9). Regrouping some terms in these two possible
linear decompositions, we shall find it convenient in our
calculations (before coming back to the more theoretically
rooted decomposition (38)) to decompose ��A into three
contributions:

��A ¼ ��r m wo: EM
A þ ��bind

A þ ��de
A (39)

where ��r m wo: EM
A denotes the contribution coming from the

terms linear in the quark and electron masses in the rest-
mass contribution (10) to mA (without the electromagnetic
contributions), where ��bind

A denotes the contribution com-
ing from the nuclear-binding energy Ebind in Eq. (9), i.e.

�� bind
A ¼ 1

MA

@ðEbindð’Þ=�3Þ
@’

ðwith fixed �Þ; (40)

and where ��de
A denotes the total electromagnetic contribu-

tion, coming both from the EM contributions to the masses
of the nucleons, and from the nuclear Coulomb energy

term E1, which is a part of Ebind in Eq. (9). Note that ��de
A

collects the terms in ��A which are proportional to the EM
dilaton-coupling de, i.e. which come from the ’ sensitivity
of the fine-structure constant �. This is why we have added
in the definition of ��bind

A above the fact that one must keep
� constant when computing it. As we shall see, the
Coulomb energy term plays a special role in that it depends
both on nuclear-binding effects, and on EM ones. As a
consequence it will give two separate contributions: one to

��bind
A and one to ��de

A .

IV. ANALYSIS OF SCALAR COUPLINGS TO THE
BINDING ENERGY OF NUCLEI

We will first focus on the scalar coupling to the nuclear-
binding energy, Eq. (40), because this term has not yet
received a satisfactory treatment in the literature.
When dealing with nuclear-binding it is convenient to

work with the (half) sum and difference of the light-quark8

masses, m̂ and 
m, as introduced above. Indeed, the quark-
mass dependence of nuclear-binding is dominated by its

8As explained above, heavy quarks are assumed to have been
integrated out from the theory, thereby producing a shift in the
QCD scale �3, and its associated dilaton-coupling dg. The effect
of the strange quark, which is intermediate between heavy and
light, is discussed in the Appendix.
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dependence on the average light-quark-mass m̂ because
pion exchanges yield the dominant contribution to nuclear-
binding, and pion masses are proportional to m̂, while they
are insensitive to the difference in quark masses. [The
quark-mass difference 
m is important for the neutron
and proton masses, and will enter the computation below
of the rest-mass contribution to EP-violation.]

As explained above, the ’ dependence of dm̂ implies the
following result for the ‘‘nuclear-binding energy’’ contri-
bution, Eq. (40), to EP-violation:

�� bind
A ¼ ðdm̂ � dgÞ

mA

m̂
@Ebind

@m̂
: (41)

In QCD, because the pion is almost a Goldstone boson of
the dynamically broken chiral symmetry, the pion mass-
squared is linear in the quark-mass, m2

� ’ b0�3m̂, where
b0 is a pure number. This relation is accurate in the
physical region, so that we can translate our formula into
one involving the pion mass,

�� bind
A ¼ ðdm̂ � dgÞ

mA

m2
�

@Ebind

@m2
�

: (42)

Our major task then translates into knowing the depen-
dence of nuclear-binding on the mass of the pion.

The semiempirical mass formula describes the binding
energy mA �mrest mass

A through the following terms:

mA �mrest mass
A ¼ Ebind; (43)

where the nuclear-binding energy is approximately de-
scribed as

Ebind ¼ �avAþ asA
2=3 þ aa

ðA� 2ZÞ2
A

þ ac
ZðZ� 1Þ
A1=3

� 

ap

A1=2
: (44)

The various contributions to the nuclear-binding energy9

are called, respectively, the volume energy, the surface
energy the asymmetry energy, the Coulomb energy and
the pairing energy. [In the latter, 
 ¼ 1

2 ½ð�ÞN þ ð�ÞZ�, i.e.

 ¼ þ1 for even-even nuclei, 
 ¼ �1 for odd-odd nuclei
and 
 ¼ 0 otherwise.] Typical fit values for these parame-
ters are [21] av ¼ 16 MeV, as ¼ 17 MeV, aa ¼ 23 MeV,
ap ¼ 12 MeV, ac ¼ 0:717 MeV. Note that, here and in

the following, the unit of 1 MeV is supposed to represent a
fixed fraction of the QCD mass scale, say ’ 10�3�3 if we
use, as indicated above, a reference value g� for g3 such
that �3 ’ 1 GeV.]

The m̂ sensitivity of Ebind comes from the m̂ sensitivity
of the various coefficients av, as, aa, ac, ap (taken in

units of �3). We shall discuss successively the m̂ sensitiv-
ities of: (i) av and as, (ii) aa, and (iii) ac. Concerning the
pairing interaction term ap we found that it was subdomi-

nant in our final results because it is down by a factor of

A7=6 compared to our primary A dependence. Even when
allowing for variations with quark-mass comparable to that
of the asymmetry energy we found that it is negligible in
the end, so we drop it at this stage.

A. The central nuclear force terms: av and as

Let us first consider the terms proportional to av and as.
They come from the isospin symmetric central nuclear
force, which is the dominant contribution in the binding
of heavy nuclei. Our previous work [22,23] shows that this
component has an enhanced dependence on the quark
masses and hence it has an enhanced coupling to a dilaton.
This large dependence comes because the central potential
involves competing effects of an intermediate range attrac-
tive force and a shorter range repulsive force. The cancel-
lation between these two effects (which are individually of
order �100 MeV per nucleon) lead to a binding energy
which is quite small on the QCD scale (namely of order
�10 MeV per nucleon). However, the attractive force is far
more sensitive to pion masses because it involves two pion
exchange. Changing the pion mass a modest amount upsets
the cancellation of the two components and leads to a
larger effect than might naively be expected.
The central force is parametrized by two terms denoting

the volume energy and the surface energy,

Ebind ¼ �avAþ asA
2=3 þ residual terms: (45)

The central potential is isospin symmetric, and can involve
exchanges which carry angular momentum quantum num-
bers 0 or 1. The work of Ref. [24] uses a general basis of
contact interactions [25] to quantify these contributions to
nuclear-binding. This parametrization only assumes that
the interactions have a range which is smaller than the
momentum in nuclei k� 200 MeV. The dominant contact
interactions are found to be those of an attractive scalar and
a repulsive vector, describing the integrated effects of the
potentials. They are parametrized by strengths GS (GV) for
the scalar (vector) channel. We can then use the results of
Ref. [24] to give the binding energy as a function of these
strengths, normalized to their physical values, by defining

�S � GS

GSjphysical ; �V � GV

GVjphysical : (46)

This results in

Ebind ¼ �ð120A� 97A2=3Þ�S þ ð67A� 57A2=3Þ�V

þ residual terms (47)

where the numbers are in units of MeV. One can see here
the cancellation between the primary terms as each is
larger than their sum. Of these two contributions, our

9Please be aware of a dual notation in that the letter A is used
both as a label for a certain type of atom, and, in the semi-
empirical mass formula, as a notation for the mass number A ¼
Zþ N.
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calculations indicate that it is the scalar channel (�S) that
has the most important effect. This is because the scalar
channel is dominated by the exchange of two pions, which
is highly sensitive to the pion mass. While the two pion
contribution is often parametrized by an effective sigma
meson, the low-energy exchange of two pions is required
in chiral perturbation theory and is calculable.10 This
accounts for much of the strength typically ascribed to
the sigma [27]. The vector interaction has a very small
low-energy contribution from three pions, and estimates of
the quark-mass dependence of the mass and couplings
of a massive vector boson indicate a tiny residual
contribution [22].

With these results we have argued that the main contri-
bution is the variation of the scalar strength with
quark-mass,

�� bind
A ¼ �ðdm̂ � dgÞ

mA

ð120A� 97A2=3Þm2
�

@�S

@m2
�

: (48)

We use the result of Ref. [22], displayed in Fig. 1 showing
the scalar strength as a function of the pion mass. This
variation arose almost entirely from the threshold modifi-
cation in the two pion effects at low-energy, where the
chiral techniques are most reliable and where we expect the
greatest sensitivity to a change in the mass [28,29]. We can
use this directly to obtain

m̂
@�S

@m̂
¼ m2

�

@�S

@m2
�

¼ �0:35� 0:10: (49)

The error bar comes from uncertainties in the chiral ex-
pansion. We will not display the error bar in subsequent
formulas, but all results in the binding energy carry this
level of uncertainty. Our final result for the central depen-
dence in the dilaton-coupling is

�� bind
A jcentral ¼

ðdm̂ � dgÞ
mA

ð42A� 34A2=3Þ ðMeVÞ

	 ðdm̂ � dgÞFA

�
0:045� 0:036

A1=3

�
: (50)

In the final line we have introduced the notation

FA � Amamu

mA

(51)

where mamu ¼ 931 MeV is the atomic mass unit (i.e. the
nucleon mass mN ¼ 939 MeV minus the average binding
energy per nucleon, ’ 8 MeV). The factor F ¼ Amamu=mA

remains quite close to 1 all over the periodic table (modulo
Oð10�3Þ). Note that our result Eq. (50) for the light-quark-
mass (m̂) dependence is significantly larger (by a factor
2.2) than the estimate used by Dent [17]. Indeed, Eq. (50)
corresponds, say for the crucial surface energy, to a

logarithmic sensitivity @ lnas=@ lnm̂ ¼ �34 MeV=as
¼ �2, while Ref. [17] estimated @ lnas=@ lnm̂ ’ �0:9.

B. The asymmetry energy term: aa

Let us now discuss the ’ sensitivity of the asymmetry
energy / aa which is, after the volume, surface and
Coulomb terms, the fourth dominant contribution to
Ebind. The asymmetry energy has two components. The
first comes from the Pauli principle which requires that,
when there is an excess of neutrons over protons, the extra
neutrons must be placed into higher energy states than the
protons. The other component is due to the nuclear force in
which the isospin dependent interactions create a stronger
attraction for an neutron and proton compared to two
neutrons or two protons.
The asymmetry energy has been calculated by Serot and

Walecka [30] in the same framework that we use in our
work on nuclear matter [23]. This takes the form

aa ¼ k2F

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2� þ k2F

q þ G�

12�2
k3F (52)

where

M� ¼ mN

�
1þ 	GSk

3
F

6�2

�
(53)

is the nucleon mass modified by interactions in nuclear
matter (with GS < 0 so that M� <mN). For isoscalar nu-
clear matter we have 	 ¼ 4. In meson exchange models
G� ¼ g2�=m

2
� and GS ¼ �g2�=m

2
� are the vector meson

and scalar coupling strengths. The k3F dependence in the
second term in aa comes from a calculation of the nuclear
density in terms of the Fermi momentum kF.
As mentioned above, our estimates indicate that the

mass dependence of the vector meson coupling strength
is weak. However, the Fermi momentum depends on the
scalar strength, which has a sizeable mass variation. The
Fermi momentum increases as the scalar strength in-
creases. We calculate this through our work on nuclear

ηS

m2
π

m2
phys

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

FIG. 1. The value of the scalar strength �S as a function of the
pion mass.

10Other estimates of mass dependence [26] have not explicitly
taken into account this low-energy effect.
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matter in which we solve for the Fermi momentum as a
function of the scalar strength (e.g. see Fig. 4 of [23]).
More precisely, using our approximate analytical model,
Eq. (17) of [23], with the values GS ¼ �355:388 GeV�2,
and GS ¼ þ262:89 GeV�2 (which entail the phenomeno-
logically good values av ¼ 15:75 MeV and kF ¼
1:30 fm�1) we find that

@ lnkF
@ lnGS

’ 0:525: (54)

Using that dependence we find that both components of the
asymmetry energy in Eq. (52) vary in the same direction
with the scalar strength. The kinetic contribution (first
term) varies with a logarithmic rate ’ 2:54, while the other
one varies like k3F, i.e. with a logarithmic rate 3
 0:525 ¼
1:575. The combination of the two contributions then
varies with a rate

@ lnaa
@ lnGS

’ 2:35: (55)

Combining this variation with the logarithmic mass varia-
tion Eq. (49) of the scalar strength GS then yields

m2
�

@aa
@m2

�

¼ @aa
@GS

m2
�

@GS

@m2
�

¼�0:82aa¼�19MeV: (56)

Note that our framework shows that @ lnaa=@ lnm̂ ’ �0:82
is rather different from @ lnas=@ lnm̂ ¼ �2. This shows
again the subtlety of quark-mass effects in nuclear physics.

C. The Coulomb energy term: ac

The Coulomb energy also has a dependence on the
strong interaction coupling terms. Dimensionally this is
because the electromagnetic coupling � is dimensionless,
so that the overall energy scale associated with ac comes
from the nuclear interactions. Physically, this dependence
is also logical because the Coulomb energy depends on
how tightly the nucleons are packed together. We estimate
this effect in this subsection.

An approximate analytic expression for the coefficient
of the Coulomb contribution to the nuclear-binding energy
is ac ’ ð3=5Þ�=r0 where r0 ’ 1:2 fm is the scaled nuclear

radius: rA ¼ r0A
1=3. Writing that the total baryonic num-

ber within the volume of the nucleus, i.e. �B4�r
3
A=3 (with

�B ¼ 	k3F=ð6�2Þ) is equal to A, one gets the link kFr0 ¼
ð9�=8Þ1=3. Therefore, r0 varies inversely proportionally to
kF, so that the above result shows that ac / �kF. This
yields a logarithmic sensitivity of ac to variations of GS

with the same rate as kF itself, i.e. 0.525, as quoted above.
Multiplying this rate by the rate �0:35 of Eq. (49), then
yields

m̂
@E1

@m̂
¼ �0:184ac

ZðZ� 1Þ
A1=3

¼ �0:13
ZðZ� 1Þ
A1=3

MeV:

(57)

D. The complete scalar coupling to the binding energy

Combining our partial results, we finally obtain for ��bind
A

the following sum

��bind
A ¼ ðdm̂ � dgÞFA

�
0:045� 0:036

A1=3
� 0:020

ðA� 2ZÞ2
A2

� 1:42
 10�4 ZðZ� 1Þ
A4=3

�
: (58)

In writing this result, we have, as above, factorized
FA ¼ Amamu=mA.

V. SCALAR COUPLINGS TO THE
REST-MASS OF ATOMS

In this section we study the first term on the r.h.s. of
Eq. (39), i.e. the contribution to ��A coming from the ’
sensitivity of the rest masses of the low-energy constituents
of atoms, namely, protons, neutrons and electrons
(à la [12]).
In view of the expression Eq. (34) for the mass terms

of the light quarks, we can write the masses of the nucleons
as [31]

mp ¼ mN3 þ �� 1

2

þ Cp�;

mn ¼ mN3 þ �þ 1

2

þ Cn�;

(59)

where mN3 is the nucleon mass in the ‘‘chiral limit’’ of
massless light11 quarks, and where the electromagnetic
contributions Cp�, Cn� will be ignored here and treated

in the next section. The quantities � and 
 in Eq. (59)
denote the matrix elements of the isoscalar ð/ �ddþ �uuÞ
and isovector ð/ �dd� �uuÞ terms in a neutron state:

� ¼ hnjm̂ð �ddþ �uuÞjni

 ¼ hnjðmd �muÞð �dd� �uuÞjni: (60)

These combinations of the quark-mass contributions to the
individual nucleons are reasonably well known. The iso-
scalar contribution is related to the �N sigma term and has
the value � ¼ 45 MeV [32]. The isovector difference can
be obtained by SU(3) sum rules


 ¼ md �mu

ms � m̂
½m� �m�� ¼ 3:1 MeV: (61)

The’ sensitivity of the rest-mass contribution (without the
EM contribution) of an atom,

mr m wo: EM
A ¼ AmN3

þ A�þ 1

2
ðN � ZÞ
þ Zme; (62)

comes from the fact that � / m̂ð’Þ, 
 / 
mð’Þ, and from
the ’ dependence of me. Using our general results above,
we therefore have

11In the present treatment, we absorb in mN3 / �3 the EP non
violating effect of the strange quark; see the Appendix.
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��r m wo: EM
A ¼ ðdm̂ � dgÞA�mA

þ 1

2
ðd
m

� dgÞ ðN � ZÞ

mA

þ ðdme
� dgÞZme

mA

: (63)

Inserting the numerical values of �, 
 and me yields

�� r m wo: EM
A ’ FA

�
0:048ðdm̂ � dgÞ þ 0:0017ðd
m

� dgÞ


 A� 2Z

A
þ 5:5
 10�4ðdme

� dgÞZA
�
:

(64)

VI. ELECTROMAGNETIC EFFECTS

In this section, we review the electromagnetic coupling,
which is contained in the Lagrangian, i.e. the contribution

�ðdeÞ
A ¼ de

mA

�
@mA

@�
: (65)

The main electromagnetic effects in the atomic masses
come from the electromagnetic shifts in the nucleon
masses and from the electromagnetic contribution to
nuclear-binding, E1.

�ðdeÞ
A ¼ de

mA

�
Z�

@mp

@�
þ ðA� ZÞ�@mn

@�
þ �

@E1

@�

�
: (66)

We follow Gasser and Leutwyler [31] in the estimate of the
electromagnetic portions of the proton and neutron masses

�
@mp

@�
¼ Cp ¼ 0:63 MeV

�
@mn

@�
¼ Cn ¼ �0:13 MeV:

(67)

The electromagnetic binding is known from the semiem-
pirical mass formula

�
@E1

@�
¼ ac

ZðZ� 1Þ
A1=3

(68)

with ac ¼ 0:717 MeV. These combine to yield

�� ðdeÞ
A ¼ deFA

�
�1:4þ 8:2

Z

A
þ 7:7

ZðZ� 1Þ
A4=3

�

 10�4:

(69)

As above, the factor FA ¼ Amamu=mA can be replaced by
one in lowest approximation.

VII. IMPLICATIONS FOR THE
EQUIVALENCE-PRINCIPLE

A. General parametrization

Summarizing our results, the dilaton-coupling to an
atom can be written as

�A ¼ dg þ ��r m wo: EM
A þ ��bind

A þ ��ðdeÞ
A (70)

where ��r m wo: EM
A is given by Eq. (64), ��bind

A by Eq. (58),

and ��ðdeÞ
A by Eq. (69). It will be convenient for the follow-

ing to rewrite this result as

�A ¼ dg þ ��A (71)

with the decomposition

��A ¼ ½ðdm̂ � dgÞQm̂ þ ðd
m � dgÞQ
m

þ ðdme
� dgÞQme

þ deQe�A (72)

where Qka can be thought of as the ‘‘ dilaton-charge’’

coupled to the parameter ka. These are given by

Qm̂ ¼ FA

�
0:093� 0:036

A1=3
� 0:020

ðA� 2ZÞ2
A2

� 1:4
 10�4 ZðZ� 1Þ
A4=3

�
; (73)

Q
m ¼ FA

�
0:0017

A� 2Z

A

�
; (74)

Qme
¼ FA

�
5:5
 10�4 Z

A

�
; (75)

and

Qe ¼ FA

�
�1:4þ 8:2

Z

A
þ 7:7

ZðZ� 1Þ
A4=3

�

 10�4: (76)

Here, as above, the factor FA denotes FA � Amamu=mA (it
can be replaced by one in lowest approximation).

B. Relation to theoretical expectations

Note that all the various contributions to the nonuniver-
sal part ��A of �A ¼ dg þ ��A contain small numerical

coefficients in front of the various basic dilaton couplings
dg, de, dm̂, d
m, dme

. It is therefore a priori probable that

the composition-dependent part ��A is small compared to
the composition-independent12 part �c:i:

A ¼ dg.

We recall that the latter composition-independent part is,
in principle, accessible in various experimental tests of
relativistic gravity. For instance, in the notation of tests
of post-Newtonian gravity, �c:i:

A ¼ dg, is related to the

Eddington parameter 	 via (see, e.g., [14])

	� 1 ¼ �2
d2g

1þ d2g
’ �2d2g: (77)

12Actually, if we define the composition-independent part of �A
by some average over the composition of the bodies relevant for
the considered gravity tests, �c:i:

A will have, besides dg, a
contribution coming from ��A, and notably from terms
�0:1ðdm̂ � dgÞ coming from the QCD binding of nucleons,
and the nuclear-binding of nuclei. To simplify our discussion
we shall assume that these terms are small. It is enough to
replace some of our factors dg below by �c:i:

A ¼ d�g ’
dg þ 0:1ðdm̂ � dgÞ þ � � � to refine our estimates.
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The most precise current test of relativistic gravity [33]
constrains ð	� 1Þ=2, i.e. d2g at the level

d2g ’ 1� 	

2
< 10�5: (78)

Planned improved solar-system tests might improve this
limit to the 10�7 level. As we are going to see, and as was
pointed out by many authors before (see, e.g. [34]), such
levels are much less constraining than the ones accessible
by experimental tests of the EP.

By contrast to the composition-independent tests whose
signals are proportional to d2g, the EP-violation signals will

all be (see Eq. (8)) proportional to

�Eð�A � �BÞ ’ �c:i:ð ��A � ��BÞ: (79)

Therefore EP signals will involve the product of dg (or

rather d�g ¼ �c:i:) by one of the other dilaton couplings

entering the ��A’s, i.e. they will be proportional to a combi-
nation of terms involving the following four coefficients

d�gðdm̂ � dgÞ; d�gðd
m � dgÞ;
d�gðdme

� dgÞ or d�gde:
(80)

This raises several issues of direct phenomenological
interest: (i) Can, in principle, EP experiments measure all
four (a priori independent) parameters (81)?; (ii) Are there
theoretical arguments suggesting that, among all the EP
signals associated to these parameters, some of them might
dominate over the others?

Concerning the first question (which has also been ad-
dressed in [17]), let us note that if we approximate the
factor FA ¼ Amamu=mA by one (and ZðZ� 1Þ by Z2), the
composition-dependence of our general dilaton-coupling
above will vary, along the periodic table, according to

��A ¼ a0 þ a1

A1=3
þ a2

A� 2Z

A
þ a3

ðA� 2ZÞ2
A2

þ a4
Z2

A4=3

(81)

where the five coefficients a0; . . . ; a4 are linear combina-
tions (which are easily read off the results above) of the
four dimensionless dilaton couplings dm̂ � dg, d
m � dg,

dme
� dg, de. Here the constant offset a0 is not measur-

able13 in EP experiments. By contrast, EP experiments can,
in principle, measure the coefficients of the four different
composition-dependences associated with a1; a2; a3; a4.
Barring some degeneracies, this means that, in principle,
a well-devised set of ideal EP experiments could measure
the four theoretical parameters (80) [see, e.g., [3] for dis-
cussions of the related optimization of the choice of mate-
rials in EP experiments, and [17] for an example of the

determination of four theoretical parameters from four
independent EP data].
However, EP experiments will be more likely to detect

signals associated with functions of A and Z that vary
significantly over the periodic table. From this point of
view, two signals, among the four ones in Eq. (81), are
likely to be more prominent: namely, the ones associated to

the parameters a1 and a4. Indeed, both A�1=3 and Z2A�4=3

vary significantly along the periodic table. By contrast, the
quantities ðA� 2ZÞ=A and ððA� 2ZÞ=AÞ2 vary only
mildly. Indeed, the ‘‘valley’’ of stable nuclei is located
along a specific line in the A, Z plane which is rather close
to the A ¼ 2Z (i.e. N ¼ Z) straight line. Actually, in
absence of the Coulomb repulsion between protons, the
Pauli principle would favor an equal number of protons and
neutrons (cf. the discussion of the asymmetry energy
above). The Coulomb effects modify this in favoring a
relatively small excess of neutrons over protons. More
precisely, the bottom of the valley of stable nuclei is
around [21]

Zstable ’ 1

2

A

1þ 0:015A2=3
: (82)

Using this result we see that ð2Z� AÞ=A ’
ð1þ 0:015A2=3Þ�1 � 1, which is small and whose variation
with A is reduced by the small coefficient 0.015.
In conclusion, the two EP signals that are probably most

easily measurable in Eq. (81) are the ones associated to

A�1=3 and Z2A�4=3. In previous work on the phenomeno-
logical consequences of dilaton couplings [3,12] it was
suggested that the EP signal would be essentially propor-

tional to Z2A�4=3, i.e. related to the Coulomb energy term
/ de in the results above. Our analysis of the quark-mass
sensitivity of nuclear-binding is now modifying this con-
clusion in suggesting that the ’ dependence of atomic
masses will contain, in addition to this Coulomb-related
term, another term (related to the quark-mass dependence

of nuclear-binding), with a A�1=3 variation over the peri-
odic table.
An important issue is to know whether theoretical con-

siderations can tell us a priori something about the relative
order of magnitude of these Coulomb and nuclear terms. In
order to discuss this we need to know something about the
expected relative magnitude of d�gde versus d�gðdg � dm̂Þ,
i.e. the relative magnitude of de versus dg � dm̂. We shall

next argue that it is theoretically plausible either that
de � dg � dm̂, or that de � ðdg � dm̂Þ=40.
Indeed, we have seen above that our dilaton coefficients

dg, dm̂, de were, respectively, defined as being the loga-

rithmic derivatives of �3, m̂, �. On the other hand, it is
natural to consider (at least in string-theory) that a dilaton
couples with roughly equal strengths to the various terms in
the Wilsonian action considered at some high-energy ‘‘cut-
off’’ scale �c, near the string-scale, i.e. probably near the
Planck scale mP ¼ 1=�� 3:44
 1018 GeV. If this is the

13At least in our approximation Amamu=mA ’ 1. If one were to
keep the small fractional (� 10�3) variations of the ratio
Amamu=mA, one might measure part of the a0 coefficient.
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case, the relative magnitudes of the low-energy dilaton
couplings dg, dm̂, de are determined by the functional

dependences that relate the low-energy quantities �3, m̂,
� to basic couplings at the string, or Planck, scale. In the
case, of the fine-structure constant, though it does run,
according to the RG, between the IR (i.e. me) and the
GUT or Planck scale, this running is relatively small be-
cause of the smallness of the factor ð2�=3�Þ which multi-
plies lnðmP=meÞ. As a consequence, one expects that the
low-energy EM dilaton-coupling de is similar to its more
fundamental high-energy counterpart. [This is also related
to the fact that we could neglect, in our action (12) the EM
analog of the ratio �3ðg3Þ=g3 (i.e. �3ðg3Þ=g33 with geomet-

rically normalized gauge fields), because �EMðeÞ=e3 is
essentially constant.] The situation is, however, quite dif-
ferent for the low-energy coupling dg to the gluon field

energy. There are two equivalent ways of seeing it. One
way (used in [15]) precisely consists in drawing the con-
sequences of having a factor�3ðg3Þ=g3 in front of ðFAÞ2 (to
ensure RG invariance). When comparing the matching of
this factor at the Planck scale, versus its meaning at the
low-scale �3 � 1 GeV, one sees that dg differs from its

high-energy counterpart by a largish factor of order

K ¼ fh:q:
g3ð�cÞ
�3ð�cÞ (83)

where the additional factor fh:q: takes into account the

effect of the heavy quarks [15]. The second way (used in
[12]) consists in differentiating the expression giving�3 in
terms of high-energy boundary conditions. We have seen
above that the definition of�3 coming from the integration
of the RG-running equation for g3 yields equivalent results,
with the same appearance of the largish factor
g3ð�cÞ=�3ð�cÞ. It is easily checked that this second way
also automatically includes the effect of heavy quarks, i.e.
the factor fh:q: in K. Actually, this second way provides a

quick way to estimate the order of magnitude of the factor
K above. Indeed, the reason why �3 is hierarchically
smaller than �c is that solving the RG-running equation
leads to a result of the type �3 ��c expð�C=g2cÞ.
Differentiating this expression w.r.t. ’ immediately shows
that the amplification factor between dg and the high-

energy dilaton-coupling @ lng2c=@’ can be written as

K ¼ lnð�c=�3Þ: (84)

Using, for instance, �c �mP ¼ 1=�� 3:44
 1018 GeV
then yieldsK � lnðmP=1 GeVÞ � 42:7, as in Ref. [12], and
consistently with the results of [15], for the MSSM case.
[We note also that the presence of this logarithmic en-
hancement factor in the dilaton-coupling was pointed out
in Ref. [11].]

When considering the low-energy dilaton-coupling to
the average light-quark-mass m̂, the second way of com-
puting it similarly suggests that it will contain a large
enhancement factor � lnð�c=m̂Þ with respect to some

high-energy counterpart that should a priori be comparable
to @ lng2c=@’. Indeed, let us recall that the quark masses are
of order mq � fH, where H is the Higgs’s vev, and f a

dimensionless Yukawa coupling. As we do not know what
is the mechanism which determines (from the UV) the
scale of the electroweak breaking (i.e. which allows for a
negative squared mass for the Higgs at low energies), we
cannot compute the sensitivity of mq to ’. However, it is

plausible, as indicated by the ‘‘no-scale’’ models [35], that
H is related to �c, via the RG-running of (scalar) masses,
by an exponential factor similar to the one linking �3 to
�c: more precisely, in these models one has
H� expð�C0=h2t Þ, where C0 is a constant of order unity,
and where ht is the Yukawa coupling of the top quark.
Then, the ’-derivative of lnmq will also contain an en-

hancement factor of order lnð�c=�3Þ, i.e. of the same order
as the enhancement K above, but probably differing by a
factor of order unity.
Summarizing: it seems theoretically plausible that, start-

ing from dilaton couplings which are of the same order, say
dc ¼ @ lng2c=@’, when considered at the high-energy scale
�c, the low-energy coupling EM de will remain de � dc,
while dg and the various dma

will be enhanced by factors of

order Ka � lnð�c=maÞ � 40. Notably, we can expect
dg � Kdc, and dm̂ � K0dc. This leaves us with the problem
of estimating the difference dg � dm̂ which enters in

composition-dependent effects. It is formally of order
�ðK � K0Þdc. We do not know to what extent there could
be a compensation between K and K0. If such a compen-
sation exists, i.e. if K � K0 � 1, instead of �40, one will
have dg � dm̂ � dc � de. On the other hand, if K and K0

differ by a factor of order unity (or have a different sign),
we will have dg � dm̂ � 40dc � de. Therefore, we can

only write an approximate link of the type de &

dg � dm̂. For our discussion of the relative importance of

various EP signals, it would be too restrictive to assume
that Nature has chosen the case where de is significantly
smaller than dg � dm̂. We shall therefore continue our

discussion under the general assumption de � dg � dm̂.

C. Simplified parametrization

Our theoretical treatment of nuclear-binding effects has
given us some specific predictions for the numerical co-
efficients of the various contributions to the ‘‘dilaton
charges’’ Qka . To better delineate what they imply for the

phenomenology of EP experiments we shall henceforth
make some further approximations. First, we replace the
overall factor FA ¼ Amamu=mA by one. This is allowed
because we shall see that the leading terms in the Qka’s

vary by factor of a few over the periodic table, while FA

differs from one only at the 10�3 level. The second ap-
proximation consists in using the approximate Eq. (82) to
estimate various Z-dependent terms in the dilaton charges.
Namely, using this link, and taking into account the
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predicted numerical coefficients in the dilaton charges, one
finds that the terms 0:020ðA� 2ZÞ2=A2 (in Qm̂), and
0:0017ðA� 2ZÞ=A (in Q
m), are numerically subdomi-
nant. [We assume here that, e.g., d
m � dg � dm̂ � dg
etc.] In addition, we find that we can replace Z=A by 1=2
in Qme

and Qe. After these simplifications, we can move

some leftover composition-independent numerical coeffi-
cients out of the Q’s, and into the general composition-
independent contribution dg in �A.

After these approximations, we end up with

�A ’ d�g þ ½ðdm̂ � dgÞQ0
m̂ þ deQ

0
e�A (85)

where

d�g ¼ dg þ 0:093ðdm̂ � dgÞ þ 0:00027de (86)

and where

Q0
m̂ ¼ � 0:036

A1=3
� 1:4
 10�4 ZðZ� 1Þ

A4=3
(87)

and

Q0
e ¼ þ7:7
 10�4 ZðZ� 1Þ

A4=3
: (88)

We think that these approximate expressions capture all the
potentially dominant EP-violation effects. We illustrate
the variation of these approximate dilaton charges over
the periodic table by giving in Table I their values for a
sample of elements. [Our table considers many of the same
elements as Table 1 of [17], but the crucial new informa-
tion we provide are the numerical factors in the charges, as
predicted from our results. We use the (noninteger) atomic
weights as an approximate way of averaging14 the result
over the natural isotopic composition.]

The two main lessons we can draw from Eq. (85) and the
numbers in Table I are: (i) Contrary to what general phe-
nomenological considerations (of the type of Eq. (81))
could suggest, there are only two dominant EP-violation
effects: one, Q0

e, coming from the ’ sensitivity of the fine-
structure constant, and the other one, Q0

m̂, coming from the

’ sensitivity of the average light-quark-mass in nuclear-
binding; (ii) in spite of the seemingly small numerical
coefficient entering the Q0

e term, this term can be compa-
rable to the Q0

m̂ one for heavy elements, such as Platinum

or beyond. Actually, one should remember that it is only
the variations of the Q’s over the periodic table which
matters. From this point of view, note that the total varia-
tion of Q0

m̂ between Li and Pt is �10�2, while the corre-
sponding total variation of Q0

e is �4
 10�3. Moreover,
while the variation of Q0

m̂ is localized around the light
elements, that of Q0

e keeps increasing for heavy elements.

[Formally, Q0
e / Z2=A4=3 � A2=3, while Q0

m̂ / A�1=3.]
Summarizing: our theoretical framework suggests that

there are two dominant ‘‘directions’’ for the EP-violation
signals associated to a long-range dilatonlike field, namely

�
�a

a

�
BC

¼ ð�B � �CÞ�E ¼ ½Dm̂Q
0
m̂ þDeQ

0
e�BC (89)

where ½Q�BC � QB �QC, and where the ‘‘dilaton
charges’’ are (approximately) given by Eqs. (73) and (76).
The coefficients D are given by

Dm̂ ¼ d�gðdm̂ � dgÞ; De ¼ d�gde (90)

where

d�g ’ �c:i: ’ dg þ 0:093ðdm̂ � dgÞ: (91)

If we were assuming that the dilaton-coupling de is much
smaller than dm̂ � dg, we could go further and conclude (in

view of the numerical results indicated in Table I) that the
signal Q0

e is subdominant w.r.t. Q0
m̂. In that case we would

end up with a unidimensional EP signal proportional to
½Q0

m̂�BC.

D. Experimental bounds

The fact that two types of EP signals are expected to
dominate allow one to derive simultaneous constraints on
the two dominant theoretical parameters Dm̂, De by using
only two independent sets of EP experiments. We can use
to that effect the two current EP experiments which have
reached the 10�13 level, namely, the terrestrial EötWash
experiment, and the celestial Lunar Laser Ranging one.
The EötWash collaboration has compared the relative

acceleration of Be and Ti in the gravitational field of the
Earth [1]. The Lunar Laser Ranging (LLR) experiments [2]
measured the differential acceleration of the Earth and the
Moon towards the Sun. We can use our framework to
translate the results from these two experiments on con-
straints on the two theoretical parameters Dm̂, De.
The EötWash result concerns Be (A ¼ 9, Z ¼ 4) and Ti

(A ¼ 47:9, Z ¼ 22), and reads

TABLE I. Approximate EP-violating ‘‘dilaton charges’’ for a
sample of materials. These charges are averaged over the (iso-
topic or chemical, for SiO2) composition.

Material A Z �Q0
m̂ Q0

e

Li 7 3 18:88
 10�3 0:345
 10�3

Be 9 4 17:40
 10�3 0:494
 10�3

Al 27 13 12:27
 10�3 1:48
 10�3

Si 28.1 14 12:1
 10�3 1:64
 10�3

SiO2 . . . . . . 13:39
 10�3 1:34
 10�3

Ti 47.9 22 10:28
 10�3 2:04
 10�3

Fe 56 26 9:83
 10�3 2:34
 10�3

Cu 63.6 29 9:47
 10�3 2:46
 10�3

Cs 133 55 7:67
 10�3 3:37
 10�3

Pt 195.1 78 6:95
 10�3 4:09
 10�3
14Essentially we are using the approximation hfðAÞi ’ fðhAiÞ,
which is valid to first order for a smooth function fðAÞ.
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�
�a

a

�
Be Ti

¼ ð�Be � �TiÞ�Earth ¼ ð0:3� 1:8Þ 
 10�13:

(92)

Working at the two-sigma level, i.e. ð0:3� 3:6Þ 
 10�13,
and neglecting the central value 0.3, the rewriting of this
equation in terms of the theoretical parameters Dm̂, De

yields

10�3½�7:11Dm̂ � 1:55De� ¼ �3:6
 10�13: (93)

The Lunar Laser Ranging measurement constrains the
relative acceleration of the Earth and the Moon towards
the Sun: �

�a

a

�
Earth Moon

¼ ð�Earth � �MoonÞ�Sun

¼ ð�1:0� 1:4Þ 
 10�13: (94)

In addition to the composition-dependence of the matter
in these objects, it has the remarkable ability to test the
equivalence of the gravitational self-energy [36]. For dila-
ton models where the scalar also couples to matter, it is the
matter couplings which will be most important,15 and we
will not consider here the gravitational couplings. The
Moon has a very similar composition as the Earth’s mantle,
which is mostly silicate (primarily silicon and oxygen).
The composition differences between the Earth and the
Moon come primarily from the Earth’s core which is
dominantly iron.

We approximate the mantle composition as being SiO2,
and the Earth’ core as being iron. In addition, we follow
Ref. [34] in assigning to the core a relative mass of 32%.
Working as above at the 2-sigma level, and rewriting this
constraint in terms of our theoretical parameters16 yields

0:32
 10�3½3:55Dm̂ þ 1:0De� ¼ �2:8
 10�13: (95)

It is interesting to notice the origin of the various numerical
coefficients in this equation, as well as in the correspond-
ing EötWash one above. The right-hand sides feature the
10�13 sensitivity level. The left-hand sides have coeffi-
cients of order a few times 10�3, which is typical for the
differences of ‘‘dilaton charges’’ listed in Table I. In addi-
tion, the LLR l.h.s. has an extra factor 0.32 due to the fact
that only 32% of the Earth differs in composition from the
Moon. Finally, we need to solve two linear equations for

the two unknowns Dm̂, De and this introduces an inverse
determinant which will further increase the result for the
D’s. At the end of the day, if one denotes 
Eot ¼ �3:6

10�10 and 
LLR ¼ �2:8
 10�10 (i.e. the two, random
two-sigma errors multiplied by 103) the solution for Dm̂,
De reads

Dm̂ ¼ �0:625
Eot � 3:0
LLR;

De ¼ 2:2
Eot þ 14:0
LLR:
(96)

If 
Eot and 
LLR were nonzero EP-violation signals, this
would give us the values of the dilaton parameters in terms
of EP data. In the present situation, however, 
Eot and 
LLR
are only (independent) random errors. This expression then
shows that the LLR error is dominating the error level in
the final result. A LLR EP measurement should be about 6
times below the 10�13 level to contribute the same error
level as a terrestrial EP measurement at the 10�13 level.
Adding the right-hand sides of the previous expressions in
quadrature finally leads to the following (two-sigma) error
levels on our theoretical parameters:

Dm̂ ¼ �0:87
 10�9; De ¼ �4:0
 10�9: (97)

E. Specific models

As we discussed above, one expects that a string-theory
dilaton (or moduli) will have low-energy couplings to
matter of the general form dg � Kdc, dma

� dg � ðKa �
KÞdc, and de � dc, where dc is some common string-scale
dimensionless dilaton-coupling, where the enhancement
factors K, Ka are expected to be comparable and of order
40, and where de does not contain any significant enhance-
ment factor. Using the EötWash-LLR-derived constraints
given in the preceding section, we then conclude that the
string-scale dilaton-coupling dc is constrained to be
d2c & 10�9=ðKjK � Km̂jÞ � 10�12.
There are two possible attitudes towards this very strin-

gent constraint. One is to conclude that all the dilatonlike
scalar fields of string-theory that are massless at tree-level
must acquire, via loop effects, a large enough mass to make
them invisible in current EP experiments (i.e. m�1

� <

0:2 mm). A second possibility (suggested in [12]) consists
in assuming that loop effects (which depend on the vev of
the dilaton) modify the usual tree-level dilaton dependence
(/ expð�2’Þ) of the various terms entering the string-
scale Lagrangian into more complicated functions of ’,
say Bið’Þ, such that these coupling functions reach an
extremum at a special value, say ’� of ’. Indeed, under
this assumption, Damour and Polyakov [12] have shown
that the cosmological evolution of the Universe drives the
vev of ’ towards ’�, thereby ensuring that the string-scale
dilaton-coupling dc, which is proportional to @ lng

2
c=@’, is

naturally very small: ‘‘Least Coupling Principle’’ (see also
Refs. [37,38]). More precisely, [12] showed that, if the
extremum is located at a finite field value’�, cosmological

15Indeed, gravitational self-energy couples to the combination
�g ¼ 4ð�� 1Þ � ð	� 1Þ of post-Newtonian parameters [36].
However, this combination is theoretically predicted [14] to be
proportional to ð1� 	Þ=2 ’ �c:i: � d2g (see above). The fact that
the gravitational self-energy is a very small fraction of the total
mass then allows one to neglect the corresponding effect.
16Strictly speaking one should take into account the fact that the
EP signal involves slightly different values for the ‘‘external’’
�E, namely, the Earth versus the Sun. For simplicity, we use here
the (justified) approximation where both are close to the
composition-independent part d�g of dg.
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evolution would reduce an initial dilaton-coupling dinitc by a
factor typically17 of order Ft � 10�9. Taking this attracting
factor into account then suggests that the present, late-
cosmological-evolution dilaton-coupling coefficients are
of order

dg � dg � dma
� 40de � 4
 10�8dinitc : (98)

If we insert this result into the EP-violation deduced
from our results above, say

ð�Be � �TiÞ�Earth ’ 7
 10�3dgðdg � dm̂Þ (99)

we get a rough ‘‘prediction’’ for the level of EP-violation of
the order

ð�Be � �TiÞ�Earth � 10�17ðdinitc Þ2; (100)

where dinitc is expected to be of order unity. We note that
this result is compatible with the current experimental
tests of the EP, but that several planned improved EP
experiments [5–8] will be able to probe this level of EP-
violation.

In another version of this dilaton-cosmological-attractor
mechanism, the attractor point ’� is located at infinity in
field space (‘‘runaway dilaton’’ model [13]). This corre-
sponds to dilaton-dependent couplings of the form

Bið’Þ ¼ Ci þ bie
�’ þ � � � (101)

During the cosmological evolution, the dilaton runs to-
wards (the strong-coupling limit) ’ ¼ þ1, exponentially
suppressing its coupling to matter. Studying the effect of
this runaway mechanism during slow-roll inflation allowed
Ref. [13] to relate the present value of the composition-
independent dilaton-coupling �c:i: ’ dg to the amplitude


H � 5
 10�5 of density fluctuations generated during
inflation. This leads to

dg ’ �c:i: � 3:2
bF
cb�


4=ðnþ2Þ
H (102)

where n denotes the power of the inflaton � in the infla-
tionary potential, Vð�Þ / �n. For instance, in the case of
the simplest inflationary potential Vð�Þ ¼ 1

2m
2
��

2, i.e.

n ¼ 2, the above result leads to

d2g � 2:5
 10�8

�
bF
cb�

�
2
: (103)

In view of our present new results, Eq. (99), on the level of
EP-violation associated to such a composition-independent
coupling, this corresponds to

ð�Be � �TiÞ�Earth � 2
 10�10

�
bF
cb�

�
2
: (104)

This is in conflict with the current EP tests, except if one
assumes that the combination of dimensionless parameters
bF=ðcb�Þ (which was assumed in [13] to be of order unity)
happens to be smaller than about 1=30. In such a model,
one would expect to see EP violations just below the
currently tested level. Alternatively, one might interpret
the constraint from current EP tests as suggesting that the
(effective) power of the inflaton in the inflationary poten-
tial Vð�Þ is less than n ¼ 2. For instance, if n 	 0,
Eq. (102) implies d2g ’ 6
 10�17, corresponding to

�a=a� 4
 10�19.
Finally, a recent work [39] suggests the existence of

couplings of a light scalar which are quite different from
the usual string-motivated ones. In the model of Ref. [39]
the light scalar couples only to quark-mass terms, through
mixing with the Higgs. At tree-level, the couplings are

dmi ¼ A

�m2
H

(105)

where A is a very small mixing parameter and mH is the
mass of the Higgs boson. However, integrating out the
heavy ðt; b; cÞ quarks (à la [15,18]) induces gluonic
couplings

dg ¼ 2A

9�m2
H

: (106)

The constraint of this model can be then calculated to be�
A

�m2
H

�
2
< 4:0
 10�10: (107)

VIII. EXPERIMENTAL SENSITIVITIES

It can be useful to use a well-motivated parameterized
theoretical model as a guideline for comparing the signifi-
cance, and relative sensitivities, of different experiments.
For instance, the parametrized post-Newtonian framework
[40] played a useful role in comparing the theoretical
significance of various composition-independent tests of
relativistic gravity. Here, wewish to capitalize on the better
understanding, explained above, of the coupling of a ge-
neric dilatonlike field to nuclear-binding energy to propose
such parametrized frameworks for comparing different
composition-dependent tests of gravity. Our proposal is
intended as an update, or a specification, of previous
similar proposals (see, e.g. [12,17]). Actually, our proposal
is two-headed.
On the one hand, if we make minimal assumptions, and

essentially no approximations, we propose to parametrize
EP violations by means of the matter coupling (71), which
involves five parameters. One of them, dg (or more accu-

rately d�g ¼ h�Ai) measures the composition-independent

part of the matter coupling, and can, in principle, be
measured by composition-independent gravity tests. The
other four parameters, dm̂ � dg, d
m � dg, dme

� dg, de,

17We assume here that the curvature parameter � of the dilaton-
coupling function Bð’Þ is of order one. See [12] for the �
dependence of the total cosmological ‘‘attracting factor’’ Ftð�Þ.
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are associated with four different types of EP-violation
signals, associated to the four different ‘‘dilaton charges’’
Qm̂, Q
m, Qme

, Qe, defined in Eqs. (73)–(76).

On the other hand, we have pointed out that two direc-
tions of EP violations are likely to dominate the measured
signals. They correspond to the two charges Qm̂ and Qe,
i.e. to the two dilaton parameters dm̂ � dg and de. For

brevity we shall denote the first one as

dq � dm̂ � dg: (108)

It measures the dilaton-coupling to the ratio m̂=�3 of the
average light-quark-mass to the QCD scale. We recall that
the second one, de is associated to the ’ sensitivity of the
fine-structure constant � ¼ e2=ð4�Þ. In the same approxi-
mation that these charges dominate, we can simplify the
expression of the matter coupling �A and the correspond-
ing charges, see Eq. (85), and the equations following it.
The latter, simplified two-EP-parameter framework18 is
quite predictive, and could be useful as a guideline for
comparing and/or planning EP experiments. Let us briefly
indicate some consequences of our proposals.

A. Composition-independent constraints

The first useful result in the simplified ‘‘reference dila-
ton model’’ is the expected ratio between composition-
independent effects and composition-dependent ones. As
explained above the former are essentially measured by the
Eddington parameter19

1� 	 ’ 2d2g (109)

while the latter are given, say, by Eq. (99). Note that the
numerical value 7
 10�3 in the latter equation comes
from the Q0

m̂ charge difference between Be and Ti. We
can use instead the maximal difference of 10�2 corre-
sponding to Be and Pt. This yields the approximate link

�a

a
� 10�2

dq
dg

1� 	

2
: (110)

Note that, assuming dq � dg, this differs by 2 orders of

magnitude from the link �a=a� 10�4ð1� 	Þ=2 esti-
mated in [12] from considering as dominant the EM
coupling de instead of dq. This suggests that current EP

tests correspond to post-Newtonian tests at the level
ð1� 	Þ=2� 10�11, i.e. 6 orders of magnitude below the
current best post-Newtonian test, namely, the Cassini limit
Eq. (78). [Using the results derived above from combining
Eotwash and LLR data, one actually gets a constraint at the
level ð1� 	Þ=2� 10�9, where the loss of a factor
100 comes from the combination of effects explained
above.]

B. Test materials

Concerning the comparison among the sensitivities of
different EP experiments, we already gave above an ex-
ample of the use of our framework (comparison between
Eotwash and LLR). Let us also mention another illustra-
tive example. Note that each EP comparison of a pair of
materials, say ðB;CÞ, corresponds, within our simplified
framework, to looking for a signal of the form D �QBC,
where D is the two-dimensional vector of dilaton cou-
plings ðDm̂;DeÞ, and Q a two-dimensional vector of
dilaton-charge differences ðQ0

m̂; Q
0
eÞBC ¼ ðQ0

m̂; Q
0
eÞB �

ðQ0
m̂; Q

0
eÞC. For instance, the current best Eotwash com-

parison concerned Be and Ti, i.e. (using Table I) the
‘‘charge’’ vector QTi Be ¼ ð7:11; 1:55Þ 
 10�3. By con-
trast, the MICROSCOPE experiment plans to use a pair
Ti, Pt, which corresponds to the charge vector QPt Ti ¼
ð3:33; 2:04Þ 
 10�3. We see that the two choices are
nicely complementary in that the former (using lighter
elements) gives more weight to the m̂ component of the
EP-violation, while the latter (with heavier elements)
gives approximately equal weights to the m̂ and e
directions.

C. Atomic interferometry

Special mention should be given to the sensitivity of EP
experiments based on atomic-interferometer techniques.
For instance, Ref. [8] mentions the possibility of compar-
ing two isotopes of Rubidium: ð85Rb; 87RbÞ. In such a
case, we wish to warn the reader that one should not
blindly use the formulas that we have derived above,
especially the approximate ones for ðQ0

m̂; Q
0
eÞ. Indeed,

the approximations used to simplify the charges employed
the average link (82) between Z and A. This approxima-
tion is acceptable if one compares elements that are dis-
tant along the periodic table, but is definitely invalid for
isotopes of the same Z. Therefore, one should start from
our original, nonapproximated expressions for the
charges.
The use of our (‘‘exact’’) dilaton charges suggests that

an EP test comparing ð85Rb; 87RbÞ would correspond, in
the full four-dimensional space of ðm̂; 
m;me; eÞ, to a
charge vector equal to Q87Rb 85Rb ¼ ð�3:3; 3:4;�0:55;

�9:2Þ 
 10�5. Note that the components of this vector
are significantly smaller than those of the charge vectors
probed by the other experiments. The dominant direction is
along e. Note also that the 
m direction now plays a role as

18In all, this model contains three independent parameters: dg,
dq and de. If one could argue that the ’ sensitivity of �m̂ is much
smaller than that of ��3 one could even consider a much more
special one-parameter guideline model keeping only dg and
setting to zero the various mass couplings dma

as well as de.
In such a model dq ¼ �dg would be fixed in terms of dg.
However, the no-scale supergravity models (and their string
realizations) rather suggest that the dma

’s contain logarithmic
amplification factors which are comparable to the one expected
to be present in dg.
19Here dg should more accurately be replaced by some average
h�Ai � d�g ¼ dg þ cdq, with a coefficient c� 0:1 depending of
the average composition of the considered source bodies.
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significant as the m̂ one, because, besides the binding
energies, a crucial effect in comparing two isotopes is
evidently a change in the number of neutrons. This also
shows that such experiments are complementary to the
usual ones, in that they probe new directions in theory
space, though it comes at the cost of the overall sensitivity.

The atomic-interferometer proposal of [9] suggests the
comparison of 7Li and 133Cs atoms. In contrast to the
Rubidium experiment, these elements are well separated
in A, Z, and our simplified charges can be used. We find
that this comparison is quite sensitive to the dilaton cou-
plings with dilaton-charge vector QCs Li ¼ ð11:2; 3:02Þ 

10�3. While the experimental comparison of dissimilar
atoms may be more difficult than the use of related iso-
topes, the sensitivity to the dilaton couplings is much
increased.

Let us also make some further comments relevant for
comparing two isotopes which are very close in mass. Our
derivation assumed that the semiempirical mass formula
was an accurate representation of the binding energies.
However, this mass formula is an average, which does
not always accurately capture local fluctuations, and nota-
bly fluctuations linked to varying A for a fixed Z. In
addition, our derivation has neglected the pairing term

�
ap=A
1=2, as being subdominant. However, this term

might become very important if one were to compare
isotopes with mass numbers A differing by an odd integer.
Indeed, in that case 
 ¼ 1

2 ½ð�ÞN þ ð�ÞZ� changes by one

unit between the two isotopes, and therefore yields a full
contribution ap to their mass difference, and thereby also

to the dilaton sensitivity. Actually, we would suggest to try
to take advantage of this fact by using such odd-related
isotopes which are likely to have an enhanced sensitivity to
EP violations. [We are aware, however, that this proposal
poses both theoretical challenges (determining the ’ sen-
sitivity of ap), and experimental ones (as the two isotopes

will have a different Fermi/Bose statistics, which might
undermine the possibility of using accurate, Bose-Einstein-
Condensation-based, techniques).]

D. Other applications

Let us also mention that our framework can be straight-
forwardly applied to comparing (weak) equivalence-
principle tests to atomic-clock tests of the dependence of
coupling constants on the gravitational potential. The link
between these two types of tests has been discussed by
several authors [17,40–42]. Let us indicate how it is for-
mulated in our notation. The spacetime dependence of the
dilaton field is approximately of the form: ’ðx; tÞ ¼
’0ðtÞ þ ’locðx; tÞ, where ’0ðtÞ is the cosmological value
of ’, and where

’locðx; tÞ ¼ �X
E

�E

GmE

rE
’ ��c:i:Uðx; tÞ (111)

gives the influence of the local matter distribution, in terms
of the local gravitational potential U (U > 0). In the sec-
ond expression, we have used the approximation �E ’
�c:i: ¼ d�g. Combining this result with our parametrization

kað’Þ ¼ ð1þ da’Þkað0Þ of the ’ dependence of the vari-
ous constants ka ¼ m̂=�3, 
m=�3, me=�3, � ¼ e2=ð4�Þ,
we see that the local gravitational potential influences the
values of the constants ka measured, say, on the Earth,
according to

kloca ¼ ð1�DaUÞkað’0ðtÞÞ (112)

where the coefficients Da � da�
c:i: ¼ dad

�
g, i.e. Dm̂ ¼

d�gðdm̂ � dgÞ; . . . ; De ¼ d�gde are the same dilaton coeffi-

cients that entered our discussion above of the EP tests.
Then, to compute the effect of the seasonally varying U
on, say, the frequencies of atomic clocks, one needs to
know the sensitivity of these frequencies to variations in
the ka’s (see [43]). In particular, the De ¼ �4
 10�9

two-sigma bound derived above on De, combined with
the yearly variation �U ’ 3
 10�10 linked with the
Earth’s eccentricity, shows that EP tests constrain the
yearly variation of the fine-structure constant on the
Earth to be smaller than 1:2
 10�18 (two-sigma). This
is about 40 times smaller than the current best atomic-
clock experimental sensitivity to the variation of � [44].
Note, however, that clock-comparison experiments are
sensitive to different combinations of the parameters Da

than EP tests [41]. We shall not discuss here the cosmo-
logical aspects of the variation of constants, which are
more model-dependent. For instance, in the context of the
dilaton-runaway model, one can relate the present rate of
variation of the ‘‘constants’’ to the (square root of the) EP-
violation level, see Eq. (3.25) of [13].
Let us finally remark that it would be interesting to use

the recent progress (reported in [22,23] and here) about the
quark-mass dependence of nuclear-binding to try to derive
a well-justified estimate of the quark-mass dependence of
the crucial very low-energy neutron capture resonance
Er ’ 0:1 eV ¼ 10�7 MeV of 149Sm. Indeed, the analysis
of the Oklo data [45–47] shows that this resonance has not
changed by more than about 0.1 eV since the Oklo natural
fission reactor was in activity 2
 109 years ago. A naive
use of our results, based on our finding that the bulk
binding energy per nucleon, av, varies with m̂ as �av ’
�42� lnm̂=�3 MeV, suggests that Oklo data constrain the
fractional variation of m̂=�3 over 2
 109 years to the level
� lnm̂=�3 & 10�7=42� 2:4
 10�9. Such a limit would
be a very significant constraint on the possible cosmologi-
cal evolution of the dilaton. However, it is not clear
whether a detailed study of the specific (unstable) energy
level corresponding to Er will confirm this sensitivity to
m̂=�3.
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IX. CONCLUSIONS

We have provided a parametrized framework for the
study of the equivalence-principle20 in models with light,
dilatonlike scalar particles. Our general framework con-
tains five independent parameters, and should be appli-
cable to the low-energy limit of many models. The most
novel aspect of our work was to provide an estimate of the
effects of the dilaton-coupling to nuclear-binding energy.
We have found that these couplings induce, as leading
effect, equivalence-principle violations varying with the

mass number as A�1=3. The level of these EP violations
is expected to be at least comparable to (and, for lighter
elements, somewhat larger than) that associated to the
Coulomb energy.

We have also provided a simplified scalar model,
containing three parameters: one composition-inde-
pendent parameter, and two composition-dependent
ones. This model is expected to describe the dominant
effects of the most general 5-parameter framework. We
suggest to use it as a guideline for comparing and plan-
ning EP experiments. We used it to combine Eötvos and
Lunar Laser Ranging data so as to constrain its two
theoretical composition-dependent parameters. We found
that they are constrained at the 10�9 level. This plausibly
implies (in our model, and using some naturality assump-
tion) a corresponding limit on composition-independent
effects at about the same level, i.e. ð1� 	Þ=2 & 10�9,
which is 4 orders of magnitude below the best present
composition-independent gravitational tests (Cassini
experiment).

In the happy future situation of several nonzero mea-
surements of EP violations, one could check the consis-
tency of our simplified model, which is quite predictive. If
needed the other scalar couplings could readily be included
to make sense of subleading effects modifying the simple
predictions of this simplified model.

ACKNOWLEDGMENTS

J. F. D. thanks the IHES for hospitality both at the start of
this project and at its conclusion. He also acknowledges
support partially by the NSF Grant Nos. PHY- 055304
and PHY - 0855119, and in part by the Foundational
Questions Institute. We thank Ulf Meißner for a useful
correspondence.

APPENDIX: THE STRANGE QUARK-MASS

We are not able to provide a definitive calculation of
how equivalence-principle violations depend on the

strange quark couplings. This is an area where there is no
consensus and the motifs of the day change quickly. While
we cannot solve this issue, we will here argue that the
strange quark dependence could be about or within the
uncertainty that we are quoting.
When quarks are heavy, they can be integrated out with

the result simply going into a modification of the gluonic
coupling, dg. The u, d quarks are light, are directly in-

volved in nucleon couplings and are clearly active dynami-
cally in nucleon binding. The strange quark is intermediate
in mass. Nucleons do not explicitly contain strange quarks,
so their effects are secondary. Certainly they couple to
nucleons at some level through loop effects. Initial theo-
retical calculations suggested that these couplings could be
quite large. However, increasingly theoretical and experi-
mental developments are bounding these effects to be
relatively small.
Fortunately for equivalence-principle violations, the

leading manifestations of the strange quark-mass would
not have an effect in any case. For example, the much
debated contribution of the strange quark to the mass of
neutrons and protons [48] would not lead to the violation of
the equivalence-principle. This is because the effect is an
isospin singlet and contributes equally to the neutron and
proton, so that the total effect in an atomic state is propor-
tional to A. This leads to a constant contribution to �A

independent of A, and no violation of the equivalence-
principle. Note that the large effects suggested for strange
contributions to nucleon masses recently have been
bounded by lattice computations to be consistent with
zero [49]. In nuclear-binding, the leading A dependent
term does not violate the equivalence-principle, and it is
only the surface term that is relevant. Therefore the key
feature to be estimated is the strange quark contribution to
the surface binding energy.
In discussing the binding energy it is easy to be led

astray. For example early estimates used kaon loops in
chiral perturbation theory to conclude that there was a
very large effect [50]. However, it has become clear from
dispersive work, such as our own, that the �KK intermediate
state enters above the region of validity of chiral calcula-
tions [51]. There are analytic studies that show that the
reliable low-energy portions from such loops are very
small [52], and lattice studies have definitively shown
that the chiral loop effects are not strongly present at
such large masses [53].
The lightest intermediate states involving strangeness

that can couple to nucleons are that of a K �K intermedi-
ate state and also the vector ’ meson (an �ss bound state,
not to be confused with our notation for the dilaton). In
dispersive treatments, both of these start at 1 GeV. The
coupling of the ’ to nucleons is highly uncertain, and
depends more on the assumptions made in a given cal-
culation than in a unique piece of evidence in its favor.
Moreover it is highly constrained by recent experiments

20Here we have limited our considerations to the weak
equivalence-principle (tests of the universality of free fall).
However, our parametrized Lagrangian can also be used to study
the effect of dilaton couplings on other aspects of the EP: such
has clock-comparison experiments.
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[54] that show smaller than expected hidden strange
couplings in nucleons. If we use a estimate which we
find to be reasonable and which is within the constraints
of present experiments [55], the ’ effects are too small
to be significant.

However, K �K intermediate states can contribute to the
leading scalar interaction and may have a nontrivial
effect. We expect from most models of the nuclear
potential that most of the scalar strength comes from
below 1 GeV. The effect of M �M intermediate states must
decouple as the mass of the meson M gets large. If we
estimate generously that K �K intermediate states contrib-
utes 10–15% to the scalar strength, and we take a typical
form factor to account for the high mass threshold of the
form ð�2 þ 4m2

KÞ�1 (where � is some typical form

factor scale), we would estimate the strange quark-
mass dependence

ms

@�S

@ms

¼ m2
K

@�S

@m2
K

¼ ð0:10–0:15Þ 4m2
K

�2 þ 4m2
K

� 0:07–0:10 (A1)

using �2 ¼ m2
�. Comparison with Eq. (49) indicates that

this is comparable to the error bar that we assigned to
that calculation. If the K �K is positive as expected, a
contribution of this size could lead to a 20–30% increase

in the coefficient of the leading A�1=3 term in our final
results. This is clearly a crude estimate, but we do not
expect that it is grossly misleading.
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