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Recently we discussed a multimetric gravity theory containing several copies of standard model matter

each of which couples to its own metric tensor. This construction contained dark matter sectors interacting

repulsively with the visible matter sector and was shown to lead to cosmological late-time acceleration. In

order to test the theory with high-precision experiments within the solar system, we here construct a

simple extension of the parametrized post-Newtonian (PPN) formalism for multimetric gravitational

backgrounds. We show that a simplified version of this extended formalism allows the computation of a

subset of the PPN parameters from the linearized field equations. Applying the simplified formalism we

find that the PPN parameters of our theory do not agree with the observed values, but we are able to

improve the theory so that it becomes consistent with experiments of post-Newtonian gravity and still

features its promising cosmological properties.
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I. INTRODUCTION

In a recent article [1] we presented a multimetric gravity
theory containing N > 2 copies �1 . . .�N of standard
model matter and a corresponding number of metric ten-
sors g1 . . . gN . The action was of the type

S ¼ SG½g1; . . . ; gN� þ
XN
I¼1

SM½gI;�I�: (1)

This structure tells us that the interaction between the
different standard model copies with action SM is mediated
only by the coupling of the metrics in the gravitational
action SG. Hence particles contained in one standard model
sector interact with particles from a different sector
through an extremely small cross section involving the
squared Newton’s constant. In the astronomical context,
each type of matter appears dark to observers residing in a
different sector. In the Newtonian limit, the gravitational
interaction was constructed to be attractive within each
sector and repulsive of equal strength between different
sectors (which was shown in [2] not to be possible in the
bimetric case N ¼ 2). We derived a simple cosmological
model and could show that, due to the repulsion between
different types of matter, it naturally features an accelerat-
ing late-time expansion of the Universe.

Awide range of other alternative gravity theories has been
proposed in order to model the observed late-time cosmol-
ogy. These include modified Newtonian dynamics [3] which
is not a geometric theory; theories which in addition to a
metric contain scalar and vector fields to describe gravita-
tional backgrounds [4,5]; curvature corrections in metric

theories which may appear as full Riemann tensor correc-
tions as in [6], or as Ricci scalar corrections in fðRÞ theories
[7]; higher-dimensional models such as [8,9]; and structural
extensions such as nonsymmetric gravity theory [10] and
area metric gravity [11,12]. Of course all alternative theories
of gravity have to be tested against the data available from
solar system experiments. For the alternative theories
mentioned above this issue has been discussed, for example,
in [13–18].
It is the aim of this article to further test the predictions

of our multimetric theory by high-precision solar system
experiments. For this purpose we will extend the parame-
trized post-Newtonian (PPN) formalism to multimetric
gravity and then apply it to our theory. This elaborate
formalism was developed mainly by Nordtvedt [19] and
Will [20] to test single metric gravity theories; see [21] for
a review. It assigns to each gravity theory a set of ten
experimentally measurable quantities, the so-called PPN
parameters �, �, �, �1 . . .�3, �1 . . . �4. These parameters
appear as coefficients in a perturbative expansion of the
metric tensor and can be computed by a perturbative
solution of the equations of motion. The values of the
PPN parameters of a theory are closely linked to its physi-
cal properties. Most notably, they measure the nonlinearity
in the Newtonian superposition law for gravity, the spatial
curvature generated by matter sources, preferred frame
effects, and the failure of conservation of energy, momen-
tum, and angular momentum.
Most PPN parameters have been determined by a wide

range of high-precision experiments. Their values are fixed
within very narrow bounds at � ¼ � ¼ 1 while all other
parameters vanish [22]. This means that there is no experi-
mental evidence for preferred frame effects or a failure of
conservation of energy, momentum, or angular momen-
tum. In particular, the bounds are j�� 1j< 2:3� 10�5
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from Cassini tracking; j�� 1j< 3� 10�3 from helioseis-
mology; j�j< 10�3 from gravimeter data of the
Earth tides; j�1j< 10�4 from lunar laser ranging; j�2j<
4� 10�7 from the solar alignment with the ecliptic;
j�3j< 4� 10�20 from pulsar statistics; j�2j< 4� 10�5

from observations of the binary pulsar PSR 1913þ 16;
j�3j< 10�8 from lunar acceleration; j�1j< 2� 10�2 and
j�2j< 6� 10�3 from combinations of the other PPN mea-
surements. Therefore, theories for which the PPN parame-
ters take significantly different values are experimentally
excluded.

In this article we will show that these high-precision
tests can also be used to test multimetric gravity theories
where the gravitational field is described by several metric
tensors each of which governs the motion of one type of
matter and a corresponding class of observers. In Sec. II we
will construct a simple extension of the parametrized post-
Newtonian formalism to multimetric gravity. We consider
the physically relevant situation of sources formed from a
single type of matter for which we show that each multi-
metric gravity theory is characterized by an extended set of
post-Newtonian parameters, in complete analogy to the
standard PPN formalism. We will then show in Sec. III
that a subset of these PPN parameters can already be
obtained from the linearized field equations. In Sec. IV
we finally apply the linearized multimetric formalism to
our particular gravity model for the accelerating late uni-
verse [1] and explicitly compute its PPN parameters. We
find that these do not match the observed values, but we are
able to present an improved theory from which the correct
values are obtained while the cosmological results are
unchanged. We will conclude with a discussion in Sec. V.
The Appendix contains some important details of the
computation.

II. MULTIMETRIC EXTENSION OF
THE PPN FORMALISM

The PPN formalism was originally developed for single
metric gravity theories; see the review in [21]. In this
section we present a simple extension of this formalism
for multimetric gravity theories. This extension is con-
structed to describe the physical situation of the solar
system for which we will argue that two of the N metrics
suffice. These two metric tensors will be expressed in
terms of the PPN potentials and an extended set of PPN
parameters. Comparison of these with the standard PPN
parameters then enables tests of multimetric gravity by
high-precision data.

The class (1) of multimetric gravity theories we consider
is restricted by the following four assumptions which were
motivated in full detail in [1,2]:

(i) The field equations are obtained by variation with
respect to the metrics g1ab . . . g

N
ab, and so are a set of

symmetric two-tensor equations of the form Kab ¼
8�GNTab.

(ii) The geometry tensor Kab contains at most second
derivatives of the metric, which can be achieved by
a suitable choice of the gravitational action.

(iii) The field equations are symmetric with respect
to arbitrary permutations of the sectors ðgI;�IÞ,
which can be understood as a generalized
Copernican principle.

(iv) The vacuum solution is given by a set of flat metrics
gIab ¼ �ab. (Poincaré symmetry for all metrics

simultaneously implies gIab ¼ �I�ab for constants

�I that, invoking the Copernican principle for
the vacuum, should be equal and can be set to
�I ¼ 1.)

Cosmological constants are excluded because we are in-
terested in multimetric gravity theories in which the accel-
erating universe is modeled by a repulsive interaction
between different standard model copies, as we have
seen in [1].
Another consequence of the repulsion of matter from

different sectors is their separation as the Universe evolves.
Hence we may safely assume that the gravitational field in
regions like our solar system is dominated by a single type
of matter; we formulate:
(v) Regions exist where the gravitational field is

generated by matter sources from a single sector.

Combining this assumption with the symmetry assumption
(iii) guarantees the existence of solutions in which the
metric and the energy-momentum tensor corresponding
to the dominant matter source are distinct, while all other
metric tensors are equal and their energy-momentum
tensors vanish. We assume that this simplest solution is
actually realized, since, as observers in a distinct region,
we have no further detailed access to the physics of the
other sectors:
(vi) The metric tensors of all other sectors besides the

one distinguished by the dominant matter source
are equal.

In the following we will indicate all quantities within the
distinct sector I ¼ 1 by a superscript ‘‘þ,’’ and all quan-
tities within the other sectors by a superscript ‘‘�.’’ Hence
gþab ¼ g1ab and Tþ

ab ¼ T1
ab while g�ab ¼ g2ab ¼ . . . ¼ gNab

and T�
ab ¼ T2

ab ¼ . . . ¼ TN
ab ¼ 0. We will now extend the

standard single metric PPN formalism to this physical
situation.
The basic ingredient of the PPN formalism is an expan-

sion of the geometric background in orders of the velocity
of the source matter. Using assumption (iv) this is a weak
field approximation around the flat vacuum metric � in
Cartesian coordinates ðx0; x�Þ,

g�ab ¼ �ab þ h�ab ¼ �ab þ hð1Þ�ab þ hð2Þ�ab þ hð3Þ�ab þ hð4Þ�ab :

(2)
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Higher than fourth velocity orderOð4Þ is not considered. It
turns out that not all metric perturbations hðiÞ�ab �OðiÞ are
relevant to describe the motion of test bodies. Moreover,
certain components vanish due to Newtonian energy con-
servation or time reversal symmetry. We now only list the
relevant, nonvanishing components of the metric perturba-
tions. These are written in terms of the so-called PPN
potentials U, U��, V�, W�, �W , �1 . . . �4, A, B and

constant PPN parameters ��, ��, 	�, 
��, ��, ��,
��

1 . . .��
4 , �

�, � as

hð2Þ�00 ¼ 2��U; (3a)

hð2Þ��� ¼ 2��U��� þ 2	�U��; (3b)

hð3Þ�0� ¼ 
�þðV� þW�Þ þ 
��ðV� �W�Þ; (3c)

hð4Þ�00 ¼ �2��U2 � 2���W þ 2��
1 �1 þ 2��

2 �2

þ 2��
3 �3 þ 2��

4 �4 þ 2��Aþ 2�B: (3d)

The spacetime dependent PPN potentials are Poisson-like
integrals over the source matter energy density �, velocity
v�, internal energy ��, and pressure p. Because of the
virial theorem, the energy density is associated with a
velocity order ��Oð2Þ while one assigns ��, p�Oð4Þ.
The PPN potentials at second velocity order are the standard
Newtonian potential U and a tensor potential U��,

Uðx0; ~xÞ ¼
Z

d3x0
�ðx0; ~x0Þ
j ~x� ~x0j ;

U��ðx0; ~xÞ ¼
Z

d3x0
�ðx0; ~x0Þðx� � x0�Þðx� � x0�Þ

j ~x� ~x0j3 :

(4)

Similar integrals define the third-order vector potentials

V�ðx0; ~xÞ ¼
Z

d3x0
�ðx0; ~x0Þv�ðx0; ~x0Þ

j ~x� ~x0j ; (5a)

W�ðx0; ~xÞ ¼
Z

d3x0
�ðx0; ~x0Þv�ðx0; ~x0Þðx� � x0�Þðx� � x0�Þ

j ~x� ~x0j3
(5b)

and the fourth order scalar potentials �W , �1, �2, �3, �4,
A, B; see [21] for full detail.

The metric ansatz presented above fully reduces to the
PPN formalism in single metric theories. To see this, one
simply drops all superscripts ‘‘�.’’ Moreover, it is then
conventional to choose a gauge so that the parameters 	
and  vanish, thus removing the potentials U�� and B.

Also, one may choose � ¼ 1 by absorbing its value into
the definition of the gravitational constant. In the extended
PPN formalism discussed here we have the same amount of
freedom. However, gauge choices result from diffeomor-
phism invariance and affect all metrics simultaneously, and
also a rescaling of the gravitational constant in one sector

will affect the gravitational interaction between all sectors.
Hence only one of the two metrics g� can be simplified.
Since we wish to compare the multimetric PPN parame-

ters to experimental data, we turn our focus to observers
that reside within the distinct sector, i.e., to observers for
whom the dominating matter source is visible. These ob-
servers as well as their visible type of matter are affected
by the metric gþ only. Thus gþ corresponds to the single
metric g in the standard PPN formalism. We will therefore
choose a gauge in which hþ has the standard PPN form,
i.e., 	þ ¼ þ ¼ 0, and fix the gravitational constant so
that �þ ¼ 1. The remaining ten PPN parameters contained
in hþ are then identified with the PPN parameters known
from the single metric case by direct comparison. The
conversion between the standard PPN parameters used in
[21] and the notation we use in the metric ansatz (3) is
given by the relations

�þ ¼ �; �þ ¼ �; �þ ¼ �;

�þ
1 ¼ 1

2ð2þ 2�þ �3 þ �1 � 2�Þ;
�þ

2 ¼ 1þ 3�� 2�þ �2 þ �; �þ
3 ¼ 1þ �3;

�þ
4 ¼ 3�þ 3�4 � 2�; �þ ¼ 1

2ð2�� �1Þ;

þþ ¼ �1

4ð4þ 4�þ �1Þ;

þ� ¼ �1

4ð2þ 4�þ �1 � 2�2 þ 2�1 � 4�Þ:

(6)

With this identification we can convert the experimentally
measured values of the standard PPN parameters to our
notation and obtain

�þ ¼�þ ¼�þ
3 ¼ 1; �þ ¼�þ ¼ 0; �þ

1 ¼�þ
2 ¼ 2;

�þ
4 ¼ 3; 
þþ ¼�2; 
þ� ¼�3

2: (7)

As we already argued in the introduction, these values are
fixed by numerous experiments within very narrow bounds.
Gravity theories with significantly different PPN parameter
values are therefore experimentally excluded.
The values of the extended PPN parameters can now be

computed in complete analogy to the standard PPN formal-
ism. We will examine this procedure in the following
section. Conveniently, it will turn out that some of the
extended PPN parameters can already be obtained from
the linearized equations of motion.

III. LINEARIZED PPN FORMALISM

In the preceding section we have discussed an extension
of the PPN framework to multimetric gravity theories,
which allows tests of these theories by means of available
experimental data from solar system and astronomical
experiments. We have shown that, in addition to the pa-
rameters obtained from the standard PPN framework, we
obtain further parameters that characterize the influence of
matter sources from one sector on the metric tensors of the
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other sectors. In this section, we will show that a number of
the extended PPN parameters can be computed already
from the linearized equations of motion. This covers the
PPN velocity orders up toOð3Þwhile all terms ofOð4Þ and
higher are neglected. We will give a step-by-step recipe for
this calculation.

A. Geometry and matter content

The starting point for our computation is the most
general linearized field equations compatible with our
assumptions stated at the beginning of Sec. II. Using the
convention GN ¼ 1 for the normalization of Newton’s
constant, these equations read

K ab ¼ 8�Tab (8)

with the linearized geometry tensor

Kab ¼ P � @p@ðahbÞp þQ �hhab þ R � @a@bh
þM � @p@qhpq�ab þ N �hh�ab þOðh2Þ (9)

and constant parameter matrices P, Q, R, M, N. Our

assumptions pose two restrictions on these matrices.
First, the linearized equations of motion (8) are invariant
under a permutation of the sectors by assumption (iii).
Hence the parameter matrices will have the form

OIJ ¼ O� þ ðOþ �O�Þ�IJ (10)

with diagonal entries Oþ and off-diagonal entries O� for
O ¼ P, Q, R, M, N. This leaves us with a set of ten
parameters determined by the underlying (nonlinear) grav-
ity theory. Second, the equations of motion are tensor
equations by assumption (i), and so the linearized equa-
tions should be gauge invariant. Using the formalism of
gauge-invariant perturbation theory detailed in [2], one
finds the invariance conditions

ðPþ 2QÞ � 1 ¼ ðPþ 2RÞ � 1 ¼ ðMþ NÞ � 1 ¼ 0; (11)

where 1 ¼ ð1; . . . ; 1Þt and 0 ¼ ð0; . . . ; 0Þt denote
N-component vectors. Using (10), these conditions can
be written in the form

Pþ þ ðN � 1ÞP� þ 2Qþ þ 2ðN � 1ÞQ� ¼ 0; (12a)

Pþ þ ðN � 1ÞP� þ 2Rþ þ 2ðN � 1ÞR� ¼ 0; (12b)

Mþ þ ðN � 1ÞM� þ Nþ þ ðN � 1ÞN� ¼ 0: (12c)

These equations fix three of the ten parameters in the
parameter matrices so that the most general linearized
curvature tensor consistent with our assumptions is com-
pletely determined by a set of seven parameters.

Wewill now turn our attention from the geometry side to
the matter side of the equations of motion. Recall that,
according to assumption (v), we consider only solutions of
the field equations in which the gravitational field is gen-
erated by matter sources within a single sector, i.e., by a

single energy-momentum tensor Tþ, while all other
energy-momentum tensors T� must vanish. In order to
solve the linearized field Eq. (8), we need to expand Tþ
up to the required order of perturbation theory, i.e., to
velocity order Oð3Þ. We will use the ansatz

Tþ
00 ¼ �; Tþ

0� ¼ ��v�; Tþ
�� ¼ 0; (13)

corresponding to a perfect fluid of density ��Oð2Þ and
velocity v� �Oð1Þ.

B. Computation of the extended PPN parameters

We will now explicitly solve the equations of motion.
Omitting all terms in the PPN metric (3) corresponding to
perturbations of velocity order Oð4Þ we may use the
simplified ansatz

h�00 ¼ ��� 4 �; (14a)

h�0� ¼ 
�þXþ
� þ 
��X�

� ; (14b)

h��� ¼ 2	�@�@��� ð�� þ 	�Þ 4 ����: (14c)

These expressions are rewritten in terms of the so-called
superpotential

�ðx0; ~xÞ ¼ �
Z

d3x0�ðx0; ~x0Þj ~x� ~x0j (15)

using the relations

U ¼ �1
2 4 �; U�� ¼ @�@��� 1

2 4 ����: (16)

We have furthermore introduced the notation X�
� ¼ V� �

W� for the vector potentials. The advantage in using X�
�

instead of V� and W� results from the fact that X�
� ¼

@�@0� is a pure divergence and Xþ
� is a divergence-free

vector, @�Xþ
� ¼ 0. These relations follow from the

Newtonian continuity equation @0�þ @�ð�v�Þ ¼ 0 and
the definitions (5), and will be used repeatedly in the
following computation.
We begin by performing a ð1þ 3Þ-split of the equations

of motion (8). Using the energy-momentum tensor ansatz
(13) we obtain the equations

Kþ
00 ¼ 8��; K�

00 ¼ 0; (17a)

Kþ
0� ¼ �8��v�; K�

0� ¼ 0; (17b)

Kþ
�� ¼ 0; K�

�� ¼ 0: (17c)

In order to solve these equations, we expand the geometry
tensor Kab given in (9) using the PPN metric (14). In this
calculation we once again drop all terms of velocity order
Oð4Þ, taking care of the fact that time derivatives count as
@0 �Oð1Þ. Up to the required order Oð3Þ the geometry
tensor then takes the form

K�
00 ¼ c�1 44�; (18a)

K�
0� ¼ c�2 4 Xþ

� þ c�3 4 X�
� ; (18b)

K�
�� ¼ c�4 44���� þ c�5 4 @�@��; (18c)
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where the coefficients c�1 ; . . . ; c
�
5 are constants which de-

pend linearly both on the PPN parameters and the compo-
nents of the parameter matrices (10). For a detailed
expansion of these coefficients, see the Appendix.

We will now determine the coefficients c�1 ; . . . ; c�5 such

that the equations of motion are satisfied for arbitrary
matter distributions � and v�. First, we solve the scalar
Eqs. (17a). Using the relation

44� ¼ �24U ¼ 8��; (19)

one can see that these are solved if, and only if, the
corresponding coefficients take the values

cþ1 ¼ 1; c�1 ¼ 0: (20)

We continue with the tensor Eqs. (17c). Note that 44
���� is a pure trace term, while4@�@�� decomposes into

a pure trace and a traceless part,

4 @�@�� ¼ 44�� �þ 1
3 44����; (21)

using the traceless second derivative 4�� ¼ @�@� �
��� 4 =3. In order for the tensor equations to be satisfied,

both the trace and the traceless part, and thus the coeffi-
cients of both terms, must vanish,

c�4 ¼ c�5 ¼ 0: (22)

Taking a closer look at the expansion of the coefficients
displayed in the Appendix, one finds that the coefficients
c�1 , c�4 , c�5 only depend on the PPN parameters ��, ��,
	�. We therefore have obtained the six Eqs. (20) and (22)
for six of the PPN parameters. However, due to the gauge-
invariance conditions (12), these are linearly dependent. In
order to solve the equations, one needs to (partially) fix a
gauge by fixing the value of one of the parameters. The
standard PPN gauge corresponds to the simple choice
	þ ¼ 0.

We now turn our attention to the vector Eqs. (17b). The
equation forK�

0� is easily solved using the fact that both the

divergence-free and the total derivative part of the curva-
ture tensor, and thus both coefficients, must vanish,

c�2 ¼ c�3 ¼ 0: (23)

Finally, we consider the equation for Kþ
0� which yields

cþ2 4 Xþ
� þ cþ3 4 X�

� ¼ �8��v� ¼ 24 V�

¼ 4ðXþ
� þ X�

� Þ (24)

using the definition of V� in the second equality. The
equation above is now split into pure divergence and
divergence-free vector terms which decouple and have to
be solved independently. This results in

cþ2 ¼ cþ3 ¼ 1: (25)

Another close look at the newly obtained equations for
c�3 and the expansions given in the Appendix reveals that

all terms containing 
�� drop out due to the gauge-
invariance conditions (12). The equations for c�3 then

turn out to be linearly dependent on the equations we
have obtained from the scalar and tensor components of
the equations of motion, and thus they are solved identi-
cally. The remaining two equations for c�2 can finally be
used to solve for the PPN parameters 
�þ.
To summarize, the linearized field equations in our

multimetric PPN framework already are strong enough to
determine the eight extended PPN parameters ��, ��, 	�,

�þ. These parameters are the solutions of Eqs. (20), (22),
(23), and (25). Given any particular multimetric theory
consistent with our assumptions, one may use this result
as a quick test of solar system consistency, simply by
comparing the predicted PPN parameters with the experi-
mentally favored results (7). Before analyzing the particu-
lar theory proposed in [1], in the following section we
remark that a calculation of the remaining PPN parameters
in the extended multimetric formalism requires higher
order perturbation theory that also covers velocity orders
Oð4Þ. In practice this is a very lengthy calculation that we
do not wish to enter in this article, but it poses no difficulty
in principle.

IV. APPLICATION TO OUR REPULSIVE
GRAVITY MODEL

Wewill now determine the PPN parameters ��, ��, 	�,

�þ of the repulsive gravity model proposed in [1] by
applying the multimetric PPN formalism developed in
the previous sections. For this purpose we first derive the
linearized field equations and determine the parameter
matrices P, Q, R, M, N that appear in the linearized

curvature tensor (9). Second, we follow the steps detailed
in Sec. III B in order to compute the PPN parameters of our
theory explicitly. It will turn out that these do not agree
with the values obtained from experiments. But this prob-
lem can be solved, as we will finally show, by simple
correction terms that improve the action of our theory.
The calculated PPN parameters of the improved theory
are now consistent with experiment, and the theory fea-
tures the same accelerating late-time cosmology.

A. Linearized field equations

The action of our repulsive multimetric gravity model
[1] is of the form (1). The gravitational part of the action is
explicitly given by

SG½g1; . . . ; gN� ¼ 1

16�

Z
d4x

ffiffiffiffiffi
g0

p XN
I;J¼1

ðxþ y�IJÞgIijRJ
ij

(26)

with density g0 ¼
Q

N
I¼1ðgIÞ1=N, and the matter action is a

sum of standard model actions
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SM½gI;�I� ¼
Z

d4x
ffiffiffiffiffi
gI

q
LM½gI;�I�: (27)

In the case N ¼ 1when only a single metric is present, the
action becomes identical to the Einstein-Hilbert action
for an appropriate choice of the constant parameters x, y.
The field equations are obtained by variation and take the
form

KI
ab ¼ 8�TI

ab (28)

with the geometry tensor

KI
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g0=g

I
q �

� 1

2N
gIab

XN
J;K¼1

ðxþ y�JKÞgJijRK
ij

þ XN
J¼1

ðxþ y�IJÞRJ
ab � ð2�d

ðag
I
bÞði�

c
jÞ � gIab�

c
ði�

d
jÞ

� gIcdgIiðag
I
bÞjÞ

XN
J¼1

ðxþ y�IJÞð2gJpiSIJjpðc ~SIdÞ

þ 1

2
gJij ~SIc ~S

I
d þ

1

2
gJijrI

c
~SId þrI

cS
IJi

dpg
Jjp

þ SIJpcqS
IJi

dpg
Jjq þ SIJicqS

IJj
dpg

JpqÞ
�
; (29)

where the connection difference tensors are defined as

SIJijk ¼ �Ii
jk � �Ji

jk; SIJj ¼ SIJkjk;

~SJijk ¼
1

N

XN
I¼1

SIJijk;
~SJj ¼ ~SJkjk:

(30)

We now derive the linearized field equations using the
perturbative ansatz gIab ¼ �ab þ hIab. Note that the con-

nection differences SIJijk and the Ricci tensor RI
ij are of

first order in the metric perturbations hI, so any terms
containing products of two connection differences drop
out; covariant derivatives acting on connection differences
are replaced by ordinary partial derivatives; the metric
tensors gI are replaced by the flat metric � whenever
they appear in a product with a connection difference or
Ricci tensor. These handy rules significantly simplify the
computation and one finally obtains the linearized geome-
try tensor

KI
ab ¼

XN
J¼1

�
ð2x�ðNx�yÞ�IJÞ@p@ðahJbÞp

þ
�
�xþ1

2
ðNx�yÞ�IJ

�
hhJabþ

�
Nx

2
�IJ�x� y

2N

�

�@a@bh
Jþ

�
Nx

2
�IJ�x� y

2N

�
@p@qh

Jpq�ab

þ
�
xþ y

N
�Nxþy

2
�IJ

�
hhJ�ab

�
þOðh2Þ: (31)

Comparing this equation with the most general form of
the linearized geometry tensor (9) and writing the parame-
ter matrices in the form (10), we read off the parameter
values

Pþ ¼ ð2� NÞxþ y; P� ¼ 2x; (32a)

Qþ ¼ N � 2

2
x� y

2
; Q� ¼ �x; (32b)

Rþ ¼ N � 2

2
x� y

2N
; R� ¼ �x� y

2N
; (32c)

Mþ ¼ N � 2

2
x� y

2N
; M� ¼ �x� y

2N
; (32d)

Nþ ¼ 2� N

2
xþ 2� N

2N
y; N� ¼ xþ y

N
: (32e)

These values of course satisfy the gauge-invariance con-
ditions (12), since they result from a diffeomorphism-
invariant gravitational action.
Now we are in the position to follow the steps detailed in

Sec. III B to compute the PPN parameters of our theory.

B. PPN parameters

With the parameter values of the linearized theory
obtained in (32) we now compute the PPN parameters
��, ��, 	�, 
�þ of our repulsive gravity model defined by
(26) and (27). The procedure for this is based on solving
the equations of motion, for which we developed the
technology in Sec. III B. A summary of the necessary
steps is given at the end of that section. Choosing the
standard PPN gauge such that 	þ ¼ 0 yields the PPN
parameters

�þ ¼ 1

3N

�
3

Nxþ y
� 4N � 4

Nx� y

�
;

�� ¼ 1

3N

7Nxþ y

N2x2 � y2
;

�þ ¼ 1

3N

�
3

Nxþ y
� 2N � 2

Nx� y

�
;

�� ¼ 1

3N

�
3

Nxþ y
� N � 2

Nx� y
þ N

y

�
;

	þ ¼ 0;

	� ¼ 1

3Nx� 3y
� 1

3y
;


þþ ¼ ð2N � 4Þxþ 2y

N2x2 � y2
;


�þ ¼ � 4x

N2x2 � y2
: (33)

We now focus on the Newtonian limit of our theory.
Recall that we demanded in [1] a Newtonian limit where
the gravitational interaction within each sector is attractive,
while it is repulsive of equal strength between matter
belonging to different sectors. This limit corresponds to
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the PPN parameters �þ ¼ 1 and �� ¼ �1. These are
achieved for parameter values

x ¼ 2N � 1

6Nð2� NÞ ; y ¼ �2N þ 7

6ð2� NÞ : (34)

Note that this recovers the same values that can also be
obtained from a purely Newtonian calculation [1].
Substituting these values into (33) simplifies the results
for the PPN parameters to

�þ¼ 1; ��¼�1; �þ¼ 1

N
; ��¼ 3

2N�7
þ 1

N
þ1

2
;

	þ¼ 0; 	�¼ 1

7�2N
�3

2
; 
þþ¼�1� 1

N
;


�þ¼ 2� 1

N
: (35)

Comparison with the observed values �þ ¼ 1 and

þþ ¼ �2 displayed in (7) immediately shows that these
are satisfied only in the case N ¼ 1, i.e., when there is only
one metric and a corresponding copy of the standard
model, in which case our theory reduces to Einstein
gravity. This is a dissatisfactory result since our aim was
the construction of experimentally feasible gravity theories
for N > 1.

This result shows that our model requires modification
in order to match experimental bounds from solar system
experiments. In the following we will make such improve-
ments that adapt the theory to the observed values of the
PPN parameters.

C. Improved PPN consistent model

Since the PPN parameters calculated for our theory do
not match the observed values, it is natural to ask whether
the theory can be modified so to reproduce the correct
values. We will now show that this is indeed possible.

We will modify the action and then proceed in complete
analogy to the previous sections. First, we will compute the

field equations from a variation of the modified action.
Second, we will expand the metric around a flat solution
and derive the linearized field equations. Third, we will
read off the values of the parameter matrices and employ
the linearized multimetric PPN formalism constructed in
Sec. III B. We will only give a brief sketch of this calcu-
lation here.
We start from the gravitational action (26) and add the

following term which is consistent with our assumptions
(i)–(iv) of Sec. II that restrict the multimetric theories we
consider in this article:

~S G ¼ 1

16�

XN
I¼1

Z
d4x

ffiffiffiffiffi
g0

p
gIijðz~SIk ~SIkij þ u~SIi ~S

I
jÞ: (36)

This term contains two new constant parameters z, u that
will be determined by PPN consistency below. The above
modification is not the only possibility to achieve experi-
mental consistency of our model, as we will discuss in the
conclusion.
Here, we continue by computing the equations of motion

by variation. These take the form displayed in Eq. (28), but
the curvature tensor KI

ab in (29) attains a correction term
~KI
ab that is rather involved. We then compute the linearized

curvature tensor. In addition to the result obtained in (31)
this gives

~KI
ab ¼ z

2
�ab�

ij@k ~S
Ik
ij þ

2u� z

2
�ab�

ij@i ~S
I
j

þ z@ða ~SIbÞ þOðh2Þ

¼ X
J

�
� 1

N
þ �IJ

��
z

2
@a@bh

J þ z

2
@p@qh

Jpq�ab

þ z� u

2
hhJ�ab

�
þOðh2Þ: (37)

Next, we read off the modified parameter matrices P, Q,

R, M, N. Using the notation introduced in Sec. III A,

we obtain the following modified results as compared
to (32):

Pþ ¼ ð2� NÞxþ y; P� ¼ 2x; (38a)

Qþ ¼ N � 2

2
x� y

2
; Q� ¼ �x; (38b)

Rþ ¼ N � 2

2
x� y

2N
þ N � 1

2N
z; R� ¼ �x� y

2N
� z

2N
; (38c)

Mþ ¼ N � 2

2
x� y

2N
þ N � 1

2N
z; M� ¼ �x� y

2N
� z

2N
; (38d)

Nþ ¼ 2� N

2
xþ 2� N

2N
yþ N � 1

2N
ðz� uÞ; N� ¼ xþ y

N
� z� u

2N
: (38e)
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Finally, we follow the steps detailed in Sec/ III B to compute the PPN parameters��, ��, 	�,
�þ. In comparison to (33)
these take the modified values

�þ ¼ 1

3N

�
3

Nxþ y
� 4N � 4

Nx� y
� 2ðN � 1Þðu� 3zÞ

�

�
;

�� ¼ 1

3N

�
7Nxþ y

N2x2 � y2
þ 2ðu� 3zÞ

�

�
;

�þ ¼ 1

3N

�
3

Nxþ y
� 2N � 2

Nx� y
þ 2ðN � 1Þðu� 3zÞ

�

�
;

�� ¼ 1

3N

�
3

Nxþ y
� N � 2

Nx� y
þ N

y
þ ð4N � 2Þuþ ð6� 9NÞzþ 3Ny

�

�
;

	þ ¼ 0; 	� ¼ 1

3Nx� 3y
� 1

3y
� 4uþ 3ðy� 3zÞ

3�
;


þþ ¼ ð2N � 4Þxþ 2y

N2x2 � y2
; 
�þ ¼ � 4x

N2x2 � y2
: (39)

for � ¼ 3ðy2 þ z2Þ � 2Nxðu� 3zÞ þ 2uy. One can now
choose the parameters x, y, z, u so that not only the
Newtonian limit agrees with our repulsive gravity require-
ment �þ ¼ ��� ¼ 1, but also the observed PPN parame-
ter values �þ ¼ 1 and 
þþ ¼ �2 are obtained. These
results are achieved for parameter values

x ¼ 1

8� 4N
; y ¼ 4� N

8� 4N
;

z ¼ � 4� N

8� 4N
; u ¼ � 12� 3N

8� 4N
: (40)

The remaining PPN parameters then are determined to be
�� ¼ �1, 	� ¼ 0, and 
�þ ¼ 2.

Now that the PPN parameters of the improved model are
consistent as far as we can determine from the linearized
multimetric PPN formalism, one may ask whether the
remarkable cosmological features of the original theory
presented in [1], such as the accelerating late-time expan-
sion and the big bounce, are still present in the improved
version.

It can easily be seen that this is the case by noting that
the modification (36) of the action is quadratic in the
connection difference tensors SIJ. Consequently, the addi-
tional terms in the equations of motion caused by this
modification contain at least one connection difference
tensor. The remains of these are also seen in the linearized
term (37). For our simple cosmological model we assumed
that a cosmological version of the Copernican principle
holds in the sense that equal amounts of each type of matter
are distributed homogeneously in our Universe, and thus
we could argue that all metric tensors of the cosmological
solution should be equal at very early and very late times. It
then follows that the connection differences vanish and the

earlier obtained cosmological equations of motion are un-
changed under the modifications we presented in this
section.

V. CONCLUSION

This article continued our discussion of multimetric
gravity theories in which the gravitational field is described
by N metrics, and which contain a corresponding number
of standard model copies [1,2]. The motivation to study
these theories comes from the fact that they can be con-
structed so that the astronomy of N � 1 matter sectors
appears dark for any given observer, and (for N > 2) so
that different types of matter feature a mutual gravitational
repulsion in the Newtonian limit. In this way they may
naturally model cosmological effects such as late-time
acceleration.
From the particle theorist’s point of view it can be

regarded as a strength of our models that they do not
introduce matter fields of unknown masses, charges or
couplings. The nongravitational particle content of the
well-understood standard model is simply copied into
the different sectors. Interactions between the sectors are
mediated only through the coupling of the different met-
rics, as becomes clear from the action structure (1); the
relevant cross sections will involve the Newton’s constant
squared. Hence, direct experimental observation of the
other matter types will be extremely difficult.
To discuss the gravitational field content of our models,

we repeat an observation from [2]: whileN symmetric two-
tensors hIab appear on the linearized level, diffeomorphism

invariance merely implies a single gauge symmetry under
��h

I
ab ¼ 2@ða�bÞ for common gauge parameters �b. This

type of gauge symmetry is required for the definition of a
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massless particle of spin two [23]. Since every observer in
our theories can choose to relate the gauge symmetry to his
own metric field, we may interpret our theories as contain-
ing one graviton and further N � 1 symmetric two-tensor
fields that cannot be interpreted as spin two particles [23].

In this article we asked whether theories of this type are
consistent with data available from high-precision experi-
ments at the solar system level. A suitable framework to
test gravity theories based on a single metric exists, and is
known as the parametrized post-Newtonian formalism. In
this article we have constructed a simple extension of this
PPN formalism to multimetric gravity theories. Weworked
on the assumption that regions exist which are dominated
by matter belonging to a single standard model copy, and
where one may neglect the influence of matter from differ-
ent sectors on the gravitational field. This is a reasonable
assumption for repulsive gravity theories of our type
because different types of matter should separate as the
Universe evolves.

Our multimetric extension of the PPN formalism fea-
tures an additional set of PPN parameters describing the
mutual gravitational interaction of matter belonging to
different sectors. We have shown that a subset of these
parameters can be obtained already from the linearized
equations of motion. This yields a quick method of select-
ing consistent theories or discarding unphysical ones. We
have applied the linearized multimetric PPN formalism to
the particular gravity theory presented in [1]. We computed
the PPN parameters and found that these do not agree with
the observed values. We finally could present an improved
theory which now does agree with observations while still
featuring the same promising cosmological effects as the
original theory, most notably the accelerating late-time
expansion of the Universe.

It is worth pointing out that the particular improvement
(36) of our multimetric repulsive gravity model is not
unique. Two new parameters control the modification
terms and need to be determined by experimental consis-
tency requirements. Even within the class of quadratic
connection difference terms, one could discuss other ex-
amples of modification, with even more additional parame-
ters, that also yield correct PPN values without changing
the cosmological properties. The linearized multimetric
PPN formalism developed in this article does not well
distinguish theories of this type.

Hence it would be desirable to find and establish further
physical and mathematical principles in order to restrict the
possible terms in multimetric gravity actions. The most
obvious restriction one should pose is that the remaining
PPN parameters that cannot be obtained from the linear-
ized theory should also agree with the observed values. The
determination of these parameters would require a pertur-
bative expansion of the equations of motion up to quadratic
order in the metric perturbations which is very involved for
multimetric gravity theories, but should be carried out in

future work. One mathematical idea to restrict possible
gravitational actions could be to enlarge the symmetry
group. While we kept to a discrete exchange symmetry
with respect to arbitrary permutations of the sectors, one
could think of establishing a continuous symmetry group
that mixes the sectors. In any case, the search for further
principles behind multimetric gravity actions is still an
open question.
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APPENDIX: COEFFICIENTS OF THE
LINEARIZED PPN ANSATZ

In this appendix we display the detailed expression for
the coefficients c�1 ; . . . ; c

�
5 used in the expansion of the

geometry tensor given in Eq. (18). These can be computed
using the expression for the linearized geometry tensor (9)
and the linearized PPN metric ansatz (14):

cþ1 ¼ �ðNþ þQþÞ�þ � ðN � 1ÞðN� þQ�Þ��

þ ðMþ þ 3NþÞ�þ þ ðN � 1ÞðM� þ 3N�Þ��

� ðMþ � NþÞ	þ � ðN � 1ÞðM� � N�Þ	�; (A1)

c�1 ¼�ðN�þQ�Þ�þ�ðNþþQþþðN�2Þ
�ðN�þQ�ÞÞ��þðM�þ3N�Þ�þþðMþþ3Nþ

þðN�2ÞðM�þ3N�ÞÞ���ðM��N�Þ	þ
�ðMþ�NþþðN�2ÞðM��N�ÞÞ	�; (A2)

cþ2 ¼ Qþ
þþ þ ðN � 1ÞQ�
�þ; (A3)

c�2 ¼ Q�
þþ þ ðQþ þ ðN � 2ÞQ�Þ
�þ; (A4)

2cþ3 ¼ ðPþþ2RþÞ�þþðN�1ÞðP�þ2R�Þ��

�ðPþþ6RþÞ�þ�ðN�1ÞðP�þ6R�Þ��

þðPþ�2RþÞ	þþðN�1ÞðP��2R�Þ	�
þðPþþ2QþÞ
þ�þðN�1ÞðP�þ2Q�Þ
��; (A5)

2c�3 ¼ ðP� þ 2R�Þ�þ þ ðPþ þ 2Rþ þ ðN� 2Þ
� ðP� þ 2R�ÞÞ�� � ðP� þ 6R�Þ�þ

� ðPþ þ 6Rþ þ ðN� 2ÞðP� þ 6R�ÞÞ��

þ ðP� � 2R�Þ	þ þ ðPþ � 2Rþ þ ðN� 2Þ
� ðP� � 2R�ÞÞ	� þ ðP� þ 2Q�Þ
þ� þ ðPþ þ 2Qþ

þ ðN� 2ÞðP� þ 2Q�ÞÞ
��; (A6)
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cþ4 ¼ Nþ�þ þ ðN � 1ÞN��� � ðMþ þ 3Nþ þQþÞ�þ

� ðN � 1ÞðM� þ 3N� þQ�Þ�� þ ðMþ � Nþ

�QþÞ	þ þ ðN � 1ÞðM� � N� �Q�Þ	�; (A7)

c�4 ¼N��þ þ ðNþ þ ðN� 2ÞN�Þ�� � ðM� þ 3N�

þQ�Þ�þ � ðMþ þ 3Nþ þQþ þ ðN� 2ÞðM�

þ 3N� þQ�ÞÞ�� þ ðM� �N� �Q�Þ	þ
þ ðMþ �Nþ �Qþ þ ðN� 2ÞðM� �N� �Q�ÞÞ	�;

(A8)

cþ5 ¼ Rþ�þ þ ðN � 1ÞR��� � ðPþ þ 3RþÞ�þ

� ðN � 1ÞðP� þ 3R�Þ�� þ ðPþ þ 2Qþ � RþÞ	þ
þ ðN � 1ÞðP� þ 2Q� � R�Þ	�; (A9)

c�5 ¼ R��þ þ ðRþ þ ðN � 2ÞR�Þ�� � ðP� þ 3R�Þ�þ

� ðPþ þ 3Rþ þ ðN � 2ÞðP� þ 3R�ÞÞ��

þ ðP� þ 2Q� � R�Þ	þ þ ðPþ þ 2Qþ � Rþ

þ ðN � 2ÞðP� þ 2Q� � R�ÞÞ	�: (A10)
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