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Extended Green-Liouville asymptotics and vacuum polarization for lukewarm black holes
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We consider a quantum field on a lukewarm black hole spacetime. We introduce a new uniform
approximation to the radial equation, constructed using an extension of Green-Liouville asymptotics. We
then use this new approximation to construct the renormalized vacuum polarization in the Hartle-Hawking
vacuum. Previous calculations of the vacuum polarization rely on the WKB approximation to the solutions
of the radial equation; however, the nonuniformity of the WKB approximations obscures the results of
these calculations near both horizons. The use of our new approximation eliminates these obscurities,
enabling us to obtain explicitly finite and easily calculable values of the vacuum polarization on the two

horizons.
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I. INTRODUCTION

The properties of the quantum state in the exterior region
of a nonextremal static, asymptotically flat, spherically
symmetric black hole in thermal equilibrium at its
Hawking temperature is by now well understood [1-6].
However, fundamental new issues arise in the investigation
of spacetimes with multiple horizons having equal or un-
equal surface gravity/Hawking temperatures or indeed
multiple coincident horizons with zero Hawking tempera-
ture. Multiple horizons arise, for example, as cosmological
horizons in spacetimes with a nonzero cosmological con-
stant or as inner horizons in spacetimes with charge or spin.
In this paper we consider a scalar quantum field on the
exterior region of a Reissner-Nordstrom-de Sitter black
hole spacetime, where the event and cosmological horizon
have the same temperature, a so-called lukewarm black
hole [7].

One of the simplest measures of the quantum state of a
scalar field is the expectation value of the square of the
field, (¢?), the vacuum polarization, which is of direct
physical significance to the theory of spontaneous symme-
try breaking (see e.g., Ref.[8]). A central difficulty in
analyzing ($?) arises from ultraviolet divergences which
need to be renormalized to obtain a physically meaningful
quantity. In this paper we present a new approach to the
calculation of ($?),., for a quantum field on a lukewarm
black-hole spacetime in its Hartle-Hawking state repre-
senting the field in thermal equilibrium at its Hawking
temperature. (The calculation of renormalized expectation
value of the stress-energy tensor, (TM,)ren, will be pre-
sented elsewhere [9].) We note that once the renormalized
expectation values in a particular state have been calcu-
lated, the corresponding results in another state are easily
computed, as the difference between expectation values in
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two states does not require renormalization, as the ultra-
violet divergences are geometrical and state-independent.

Previous calculations of ($?),., for lukewarm black
holes [10] make use of the WKB approximation. This
method encounters significant difficulties near the horizons
of the black hole, as will be outlined in Sec. II. We
introduce a new uniform approximation, constructed using
an extension of Green-Liouville asymptotics due to Olver
[11], which overcomes these difficulties and enables us to
construct ($?),, for lukewarm black holes in a more
satisfactory manner.

Other approximations have been developed which are
uniform in / near the horizons [12]. While these approx-
imations can be used to prove the regularity of {($?),., on
the horizons of a lukewarm black hole [10], they suffer
from two major drawbacks. First, they fail to give exact
horizon values for {($?),., for all parameter sets. Second,
and perhaps most significantly, they cannot be used to
investigate the regularity of (T,“)ren on the black-hole
horizons. Our new approximation overcomes these short-
comings which, in this paper, will allow us to obtain
explicitly finite and easily calculable values of ($?),., on
the two horizons and in a future paper [9] will provide a
route for us to extend this analysis to (7', )ren-

Frolov et al. [13] have developed an approximation for
2D static black-hole spacetimes which is valid in the entire
exterior region. However, our approximation is constructed
in a systematic manner which affords us greater control
over the error of the approximation, a property which is
key for the extension of our analysis to (7', )ren-

This paper is organized as follows. In Sec. II we will
outline the existing results and the issues they encounter. In
Sec. III we introduce Olver’s extended Green-Liouville
(EGL) asymptotics and demonstrate its application to this
particular calculation. In Secs. IV, V, and VI we describe
the calculations needed for ($?).,, including a new
method for obtaining explicitly finite horizon values.
Section VII contains plots of our results. Finally our
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conclusions are presented in Sec. VIII. Throughout this
paper we use units in which 87G = h = ¢ = kg = 1.

II. PREVIOUS RESULTS

A. Construction of (&?);,

We will briefly outline the standard method used for the
calculation of ($?),.,; a more detailed description can be
found in Ref. [3]. We begin by considering a scalar field ¢
with mass m and coupling ¢ to the Ricci scalar R. The field
satisfies

(O—m?—éR)g = 0. (2.1)

We will perform our calculations on a static, spherically
symmetric background spacetime with line element:

1
ds®> = —f(r)dt* + f—( )dr2 + r2d6? + r’sin’0d ¢>.
r
2.2)

The spacetime will have a horizon at r = r, whenever
f(rg) =0 and in this case the surface gravity of that
horizon is given by ko = |f'(ry)|/2.

Following the standard procedure we Euclideanize
our spacetime, that is we perform a Wick rotation 7 — it,
Eq. (2.2) then becomes

1

ds* = f(r)dm® + 0

dr? + r2d6* + r’sin?0dp?. (2.3)

Assuming «, # 0, this space will have a conical singular-
ity whenever f(ry) = 0 which may be removed by making
7 periodic with period 277/k,. This periodicity in the
Euclidean section corresponds in quantum field theory on
the Lorentzian section to a thermal state with temperature
T = kK 0 / 21r.

The unrenormalized vacuum polarization can now be
written as the coincidence limit of the two-point Euclidean
Green’s function, which satisfies

54 /
(O, - m? — ERGy(x x) = =225
g(x)
so we have
<¢’2>unren = hranE(x’ xl)- (25)

We are taking our field to be in a Hartle-Hawking state,
corresponding to the Euclidean solution with the conical
singularity at r, removed, as such Gg(x, x’) takes the
form [3]
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T (o] ) o0
’ N — inky(r—1") 2] + 1
Gg(x, x) in E e I:Eo( )

n=-—oo

X P(cosy)Crypu(ro)gu(rs), (2.6)

where P; is the Legendre polynomial and cosy =
cosf cosf’ + sinf sinf’ cos(¢ — ¢’). The functions p,;
and ¢, satisfy the differential equation

B2S  (2f df)dS (nzxg n+1 )
el Y AP MCA i + +m*+ER)S=0,
dr? (r dr) dr f r? m+é

2.7

with appropriate boundary conditions, which will be
discussed in Sec. V. This equation cannot, in general, be
solved analytically and so p,; and ¢g,; have to be obtained
numerically. The normalization constant C,, is fixed by the
Wronskian condition

dq,
C11l[pnl —nl_ q

dr " dr 2f 28)

dpnl] _ 1
rrf

We could, of course, absorb this into the definition of the
functions but it is frequently convenient to normalize p,;
and g,,; by their behavior near different singular points of
Eq. (2.7).

The standard procedure to renormalize is to first regu-
larize by separating x and x/, choosing a temporal splitting
as it simplifies numerical calculations. Correspondingly we
setr=1r',0 =0, and ¢ = ¢’ and we define e = 7 — 7.
Inserting these conditions into Eq. (2.6) we have

T o0 ) 00
Gelx, x') = yp D om0 S 21+ 1)Cupu(r)qu(r).
n=—oo i=0

(2.9)

Because of the distributional nature of the sum, this ap-
proach carries with it a superficial divergence in the Green’s
function [Eq.(2.9)], manifested through the nonconver-
gence of the sum over / in Eq. (2.9). This divergence is
nonphysical and occurs even when the points are separated.
Fortunately, due to the high degree of symmetry here, it is
possible to resolve this issue by subtracting multiples of the
delta function (which vanish when the points are separated)
inside the sum, which renders the sum convergent. In
more general spacetimes, a more careful approach avoids
these superficial divergences [14]. In the present case, the
exact form of the subtraction term is well known and is
given by [3]
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Gl ) = 2 Z cos(noe) Z[(zz 1)

X Cnlpnl(r<)le(r>) B rf1/2:|

+ % Z[(2l + DCopoi(r<)qolr=) — f1/2]’

1=0
(2.10)

where for later convenience we have separated out the
n = 0 term. To renormalize this expression we subtract
the Christensen renormalization counterterms and then
take the limit € — 0. These terms are given by

1 1 1 e u?|ol
= ol -
(@i 8mio 1672 <m ¢ 6 n 2
m? 1 ooP
— + R ) 2.11
1672 96w P o @10

Here o is equal to one-half the square of the distance
between the separated points along the geodesic connecting
them, 0% = ¢°%, 7y is Euler’s constant and Raﬁ is the
Ricci tensor. For a massive scalar field the constant w is
conventionally set equal to m; however, for a massless
scalar field the constant w is arbitrary [3].

For temporal splitting we have

1
o= f2_

3 fe* + 0(e%),
1
4

96 2
f1'e + 0(eh),

(2.12)

t

1
o =—€e+ 7]“’263 + 0(64),

while 0 = 0% = 0. ($?)4;, then simplifies to

1 1 1 e u’fe’
st ——(m?+ €= —_—
47 fe 82 (m (f 6)R) m( 4 )

m2 f/2 f// f/
- + — - . 2.13
167> 1927%f 96m* 487°r ( )

(@Haiy =

We may now express Eq. (2.13) in terms of mode sums
using the following distributional identities, valid for small
€ and any k, > 0 [15],

é = K,? Z ncos(nkye) — —- + o(€*) — % In(ry*€?)
_yeosnkoe) L
_ Zl S+ 0. (2.14)

After subtracting Eq. (2.13) from Eq. (2.10) we may take
the limit € — O yielding the result [3]

(2.15)

<¢2>ren = <¢2>numeric + <¢2>analytic

with
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> Ko = [nKo 1 ) 1
<§D>numeric=—z—+ m- + f_gR

Sl f o 2nk
+ Z[(Zl + DCoipni(r)qei(r) — fl/z:”

z[@z + DCopuAgol) = )

(2.16)
1 2
1672 (m

(e e)mla)

m2 B f/2 f//

<¢2>analytic =

+ +
167 19272f 9672
/ 2
+ f2 + 0 2.17)
48mr 48w f

B. Previous calculations of (&%),

The sums over / and n contained in Eq. (2.16) converge
so slowly as to make their computation impractical. To
solve this problem one makes use of an approximation to
C1Pn1(1)q,:(r). The idea is that one subtracts this approxi-
mation inside the sum over /, which causes the sums over /
and n to converge rapidly. Then one performs the sum of
the approximation explicitly and adds this back onto the
rapidly convergent sum. Of course, this does not affect the
final answer as all one is doing is subtracting the approxi-
mation and then adding it back on again.

The standard approximation that is used is the WKB
approximation and, indeed, previous calculations for the
lukewarm case adopt this approach [10]. The WKB ap-
proximation, however, suffers from problems with uniform-
ity: the closer to the horizon one gets the higher / one
requires. Thus, if one considers regions bounded away
from the horizons of the spacetime under consideration
then the WKB approximation is useful; however, it fails
to capture the correct behavior as these horizons are ap-
proached. This nonuniformity is of particular importance
when one considers the case that both (®?),umeic and
(@%)anatytic diverge on the horizons. From inspection of Eqgs.
(2.16) and (2.17) and the definition of the surface gravity

one sees that this is the case whenever m?> + (f - %)R

is nonvanishing. It can be shown analytically that these
divergences do in fact cancel [10]; however, the numerical
cancellation of these two divergent quantities obscures
calculations near the horizons and reduces the accuracy
of the results obtained. Another consequence is that it is
impossible to find explicit values for ($2),., on the
horizons. In addition, it is far from obvious how to extend
the analytic results to derivatives of the field as required in
calculations of (7', )rep-

In Sec. IIT we will show how replacing the WKB ap-
proximation by the uniform EGL approximation eliminates
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these obscurities, enabling us to obtain explicitly finite and
easily calculable values of the vacuum polarization on the
two horizons.

III. EXTENDED GREEN-LIOUVILLE
ASYMPTOTICS

The fundamental problem that faces us is to obtain
suitable approximate solutions to a second order differen-
tial equation of the form

d*w

! 3.1

- (kzF(x) " G(x))w,
dx
with a large parameter k. The form of the approximate
solution of this equation depends on the zeros and singu-
larities of F and G in the region under consideration. In the
case where there are no zeros or singularities, Liouville
[16] and Green [17] independently developed a uniform
approximation to solutions of such an equation. This ap-
proximation is widely known in the physics literature as
the WKB approximation in recognition of the development
of the theory by Wentzel [18], Kramers [19], and Brillouin
[20]. This approximation remains valid under some loosen-
ing of these conditions on F and G; however, significant
reanalysis is needed in the case where the region under
consideration contains a point x, where F(x) has a simple
pole and G(x) has a double pole. This is precisely the case
which arises when the radial equation (2.7) is transformed
into the current form. The analysis to find uniform approx-
imations to differential equations which possess such tran-
sition points was developed by Olver and summarized in
his book [11]. We will now briefly outline this analysis
before demonstrating its application for the case under
consideration; a more detailed description can be found
in Chapter 12 of Ref. [11].

A. Background theory

We begin by considering solutions of equations of the
form

6572} = (K*F(x) + G(x))w,

(3.2)
in which k is a large parameter, and at x = x, say, F(x) has
a simple pole while (x — xy)’>G(x) is analytic. We first
transform our independent and dependent variables in the

following manner:
(dg)l /2
w=|— w.

é(d_f)z = 4F(), dx

dx
We assume, without loss of generality, that F(x) has the
same sign as x — x. Integration then yields

V2 = [X F'2(x"dx' (x = xo) )

(—&)/2 = [ S(CFO)2dY (x = x).

(3.3)
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These equations determine a continuous one-to-one corre-
spondence between the variables x and £. The transformed
differential equation is given by

&EwW (K
e (E + ¢(x)>w, (3.5)
where
~ . G 1 d*Fx)'*
lﬂ(x) - F(x) va(x)l/4 d§2 (3.6
Flx) = (Zf)z — 4 ().

If G(x) has a simple or double pole at x = x,, then #(x)
has the same kind of singularity at £ = 0. We denote the
value of & ¢(x) at ¢ =0 by 1(n® — 1), and rearrange
Eq. (3.5) in the form

aw (k2

AN
in which ¢ (x) = £ (x) — +(n* = 1)¢ " and is analytic at
& = 0. This equation has, for each value of k and each
nonnegative integer j, solutions W,; (k&) and
Wyj12(k, £), which are repeatedly differentiable in the
interval (0, B) and are given by

J
Waji11(k &) = €721, (kE'?) Z‘%
s=0

dér

MGt dl(x))W, (3.7)

j-1
+ %Iiz+1(k§1/2) Bzgsf) + €411k &),
s=0
(3.8a)
LA
W2j+l,2(k’ f) = fl/an(k‘fl/z) Z %
s=0
Jj—1
- %Kn+1(k§1/2) Z B;{gf) + €j412(k &),
s=0

(3.8b)

where [, and K,, are the modified nth order Bessel func-
tions of the first and second kind, respectively. The coef-
ficient Ao(£) is a constant which, without loss of generality,
we take to be 1 while the higher order coefficients A (&),
B,(¢) are determined by the recursion relations:

B.(6) = —AL(&) + ﬁ jo f{w(s’)As(w

()i

Agor(€) = nByé — EB)(E) + [ (&)B,(&)dE.

(3.9

The error terms €, (k, £) and €;; 4 ,(k, &) associated
with each solution satisfy the bounds
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62j+1,1(kJ f) | = Anfl/zln(kfl/z)
Vo,g(fl/sz)

K2+ ’
(3.10a)

X exp(% Vo,§(§1/230))

€2j+1,2(k’ f) | = Angl/an(kgl/z)

Ay
X exp<7 Vg,g(xo)(fl/zBo))

o Ve (6'7B)

PR , (3.10b)
d€rir1 1k, E) n+1
2']+(;; - 2¢ €411k, §)|
1/2
= fl/Zwl (k&V/?)
K ke T
A Vo, (£12B;
x em(f Vo,g(§1/2Bo)) 70’5551. 2, (3.100)
0612k, ) n+1
2]+3lé BEY: €12k ) |
= MK k) ex( 2 Vet €7780))
V 1/28_
X —f'f“‘og(é ) (3.10d)
K2
where "V, ,(f) is the variational operator defined by
b
Vo) =[] 70]dx @.11)

and
A, = {1.07 n=20

| R (3.12)

B. Application to black-hole spacetimes

It can be shown that Eq. (2.7) can be written in the form
of Eq. (3.2). Hence we can apply the above theory to find a
uniform approximation to either p,; or g,; of order j to
Eq. (2.7) by truncating the series equation (3.8a) or
Eq. (3.8b) at an appropriate j. In the spirit of Sec. IIT A
we perform the following transformation of variables

r—§= (fr: rl/zfdr’)2

where r denotes the location of the horizon. Equation (2.7)
then becomes

S— W= (&rf)Vs,

(3.13)

2w _
dé?

(kz n?—1 +@>W (3.14)

4648 é

with
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1
kK =11+1)+ (m2 + (g - E)R(ro))r(z)

2
+ n2<_R(rg)r0 + 2K0r0) + 1(1 —n?)

3
= (I +1)+N. (3.15)
and
B r’n’k>  rX(m® + ER(r))  f  3rf!
v(e) = ar " 4 16 16
2 212 2
rrorf_3 ol N

16  64f 16¢ 4¢ 4
It can be easily shown, using the expansions in
Appendix A, that (&) is O(§) as €= 0(=r— ry).
From Sec. III A we then have the following uniform jth
order approximations for p,; and g,;, respectively:

£(r)1/4 LAJE(r) | £
Pj(k, r) = (rzf)l/4 In(kf(r)l/z)szo k2s + k(r2f)l/4

' Bi(£(r)
Z k2x

><In+1<kf(”)l/2) + &j1,1(k E(r),

s=0
(3.17a)

£ AL €
Qj(k, r) ZWKn<k§(r)l/2)§) k2s _k(r2f)1/4

'S B,(é(r)
Z k2s

X Kn+1<k§(’”)l/2) + &1k &(r)),

s=0
(3.17b)

where € = €/(£r2f)"/*. It can be shown [11] that for fixed
r and large k

€41 = Ok, i=12 (3.18)

uniformly with respect to r € [rg, r; ], provided f does not
vanish in (ry, r, |. So we can see that the zeroth order EGL
approximation (j = 0) is an approximation to O(/~!) for
large 1, the first O(/~3), etc. Therefore for large /

CouPui(N)gu(r) = Po(r)Qo(r) = O(173),
Cnlpnl(r)qnl(r) - Pl(r)Ql(r) = 0(1_5)

A comparison plot between the exact solution and its
zeroth order EGL approximation PyQ, can be found in
Fig. 1. Inspection of Egs. (2.16) and (3.19b) shows that
subtracting the EGL approximation to the first order will
render the sum over / O(1/1*) making the sums converge
rapidly.

In our derivation of the EGL approximation in Sec. III A
we implicitly assumed that x, was the only singular point of
our differential equation in the region under consideration.
However for a black-hole spacetime with multiple horizons,
such as our lukewarm black-hole configuration, the radial

(3.19a)
(3.19b)
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equation will have a second singular point, at r;, say. (For
the lukewarm black hole, we will take r, to be the event
horizon of the black hole and r; to be the cosmological
horizon.) In this case, our original approximation fails to be
uniform as we approach r; and we need a second EGL
approximation based on an expansion around r;. The deri-
vation proceeds along the same lines as before yielding the
following approximations for p,; and ¢,,;, respectively:

5 &' LAE(r) &
e GO D e
%Ky (£EG)) 5B f D) e, 20),
s=0
(3.20a)
A E(r)'/4 LAJ(E(r) &
Qj(k; I") _W n(kf( )I/Z)E) EZS o kA(l’zf)l/‘l
1
X Ii1+l(]€§( )1/2>]ZB (g(r)) + 621+] 2<k f(r))
5=0
(3.20b)
where
=Il+1)+ (m + <§ — )R(rl)>r1
+ nz(R(gl) + 2K17’1> + §(1 —n?)
=Il+1)+N¢
= <f : dr’)2 (3.21)

and where As and B, satisfy the recursion relations equation
(3.9) with N replaced by N in the definition of . The same
large [ behavior applies to 51,2 as in the previous case.

We now have approximations P and Q to the functions
p. and q,,;, respectively, that are uniform in / over a closed
region including the event horizon but not inclusive of the
cosmological horizon and vice versa for P and 0. Our
approach, which will be discussed in more detail in Sec. IV,
then is to subtract and add on both approximations by using
a switching function to alternate between them.

IV. FORMAL CALCULATION OF (?),,

We now turn to the details of the calculation of ($?),.,
for lukewarm black holes. We will first briefly review the
key features of these spacetimes before describing the
details of our calculations.

A. Lukewarm black holes

Lukewarm black holes are a special class Riessner-
Nordstrom-de Sitter spacetimes with line element given
by Eq. (2.2) with

PHYSICAL REVIEW D 82, 084019 (2010)
2M 2 AP
M O AT
r r? 3
where M and Q are the mass and charge of the black hole,

respectively, and A is the (positive) cosmological constant,
with Q = M. The Ricci tensor is given by

(A— )gw M, V=TT
R =

" <A+ )gw nv=204ae

giving a constant Ricci scalar R = 4A. For 4M < 4/3/A
we have three distinct horizons, a black-hole event horizon
at r =ry,, an inner Cauchy horizon at r =r_, and a
cosmological horizon at r = r,., where

roo= %\/3/_/\<— +41+ 4MJA_/3), (4.32)

fn=1- 4.1

(4.2)

= %\/3//\(1 R AYE) IR
ro = %\/3//&(1 +41— 4M\/A/3). (4.3¢)

The 4th root of f is negative and hence nonphysical. The
Penrose diagram for this spacetime can be found in
Ref. [21].

The surface gravities of event and cosmological hori-
zons coincide and are given by

VA3 1 — aMVA /3. (4.4)

We shall confine attention to the region r € [ry, r.], which
has a regular Euclidean section with topology S* X §?
[21]. We will take our quantum field to be in a thermal
state at the natural temperature T = «/27r where we have
dropped the subscript for notational compactness.

Kp = K¢ =

B. Computational strategy

It is known that the divergence on both the event and
cosmological horizons for {$?),umeric 1S entirely contained
in the n = 0 mode [10], so the WKB approximation only
encounters the problems outlined in Sec. II B for this mode.
As the WKB mode is easier to work with than the EGL
approximation, our computational strategy is to use a
combination of both WKB and EGL approximations. We
make use of EGL for the n = 0 mode and WKB for all
other n modes. For (7A"W> the corresponding strategy re-
quires the use of the EGL approximation for the n = 0, 1
and 2 modes.

C. WKB approximation

We adopt the WKB approach of Casals et al. [22] which
we will now briefly outline. We begin by defining B8(r) by

B(r) = Cnlpnl(r)le(r)- (45)

Then B(r) satisfies the nonlinear differential equation

084019-6



EXTENDED GREEN-LIOUVILLE ASYMPTOTICS AND ...
d ,31 /2

d
rzfd ( 2f )—(772+X2),81/2+4B3/2:0’ (4.6)

where

x(r) = \/n2K2r4 + (l + %)zrzf,

M) = 3 /7+ (o + ERFP

4.7)

We are looking for a large / and/or large w approximation,
so we seek to express B(r) as an expansion in inverse
powers of x(r). To keep track of orders it is convenient
to replace y in Eq. (4.6) with y/€, where € is an expansion
parameter which we will finally set equal to 1 at the end of
the calculation. We then write

B(r) = €By(r) + €2B,(r) + ... (4.8)
To balance Eq. (4.6) to leading order we require
1
Bo(r) = ) (4.9)

Inserting this into Eq. (4.4) for 8 and solving formally
order by order in € we find a recursion relation for B,,(r).
On doing so we obtain the following expansion

2n

BN =Y

m=0

An,m(r)nzm
X2n+2m+ 1’

(4.10)

where a recursion relation for the A, ,(r) can be obtained
from rearrangement of the 3, (r) recursion relations [22]. It
can be seen from Eq. (4.10) that, for large y (or equiv-
alently large / or n if f # 0), 8, ~ x>"~'. So for fixed r
and large [ we have the same asymptotic behavior as the
EGL approximation. Hence if we consider the double sum

Y >0+ D] Cupuaal) — Bo(r) = 1(1) |

n=11=0
4.11)

then the summand is O(/~*) for large /. In addition, we see
that once the sum over [ is completed, the resulting sum-
mand is O(n~3). Therefore in order to compute the mode
sums in (@) umeric given by Eq. (2.16) it is sufficient to
subtract either the EGL or WKB approximations to the first
order.

D. Incorporating the approximations

We now wish to incorporate these approximations into
expressions for (@) umeric and (@ )anaiytic- We do this in the
following manner, which will be justified later on. We
write

PHYSICAL REVIEW D 82, 084019 (2010)

(& mumerie =73 nwl{an +%<m - (f é)R)
#3100 0(Capa) o)~ B10)
" Z[(21+ D(Bo(r) + £1) - i |l
+%Z(2l + 1)<C01P01(V)QO1(F)
=0
=800+ 710) =807+ 5:.0)
s 31 (S0 +809,0)),
=0
4.12)
<¢’2>analyﬁc = #S(r) i[(Zl + Dyo(r) = fll/z]
5380) 2[(21 )70 — fll /2]
( (e g()
2 11 / 2
* 121772 19§72f - 9£772 - 48];'21‘ - 4E;<7072f’
(4.13)

here S(r) is a switching function, S(r) = 1 — S(r), and %
denotes the EGL approximation valid on the cosmological
horizon. The form of S(r) used is irrelevant. The only
condition on it is that it has a value of 1 on the event
horizon and of 0 on the cosmological horizon. In this case
we found the form

S(r) = tanh(r” _ r)3’ (4.14)

r—ry

to be the most convenient.

The analytical sums of WKB approximation over / have
already been computed in Ref.[10] so we will omit the
details and just present the results

ST (s + 1) - ]

=0

__‘”_1(2
7 20\

where Jy(w, r) and J|(w, r) are integrals which can be
found in Ref. [10] and are easily evaluated numerically.

+ (f - é)R) + Jo(w, r) + J1(w, 1),
(4.15)
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‘We now turn our attention to the sum

S 1
S+ v - ]
S 1
=3[ e+ Aok kD) — ] @0
where
A(r) = < (4.17)
rf1/2 .

and we have, for convenience, defined ¢ = £!/2. We com-
pute this sum using the Watson-Sommerfield formula,
valid for any function analytic in the right-hand half plane:

gF(l) = /0 " F(A - %)d/\

e 2 ) 1

Applying this to Eq. (4.16) we can express the sum as a
sum of two integrals

10) = fo ”[zAA(r)Io(kAz)Ko(km - Tll/z]f“

1,(r) = RU‘” 4

o 1+ e2mA

4.19)
A(r)lo(kiAf)Ko(kiAf)dA:l

with

1 1

E. Evaluation of I(r)
Inspecting Eq. (4.20) we can see that 2kdk = 2Ad A and
so we can change /; to an integral over k as follows
dr 1
"
4.21)

1.0 = jk °°[2kA<r>zo<kz>Ko<kz> -

To compute this integral we first introduce a large k cutoff
k; and then we take the limit k; — oo after the integration is
performed. We have [23]

f 2kl (kv)Ko(kv)dk = kZ[zo(kv)Ko(kv)

+ 1, (kv)K, (kv)], (4.22)

and so Eq. (4.21) evaluates to

1) = tim [ 400 LKD) + 1 (ROK (K2)

A(k) Tk
- rfl/z]

. (4.23)
kll
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For large z, we have the expansion [23]

4n? — 1
_l’_

In(Z)Kn(Z) = lI:l - TZQ

0(z—4)]. (4.24)
2z
Using this together with Egs. (4.17) and (4.20) we see that
the upper limit contribution in Eq. (4.23) is O(k; ') and so
we arrive at the result

1) = —A(r)ka[lo(koz)Ko<ko§> " Il(konKl(ko;)]
(4.25)

with k§ = N + 1/12.

F. Evaluation of I,(r)

We now examine the second integral. First we note that
ki = (k — A*)1/? goes to zero at A = |k, hence we must
introduce cuts in the complex A-plane which we take to run
from A = —ky to —o0 and from A = ky to . So we
consider the contour of integration shown in Fig. 2. We
define I,,, I,, and I,. as the contributions from C,, C,,
and C,, respectively.

Considering I, first, we allow our variable to run from
0 to ky — €, also as the expression is real we can drop the
R symbol. Hence the integral becomes simply

ko—€ 4AdA
T2 = / I7A (A(r)lo(kiAf)Ko(kiAZ))- (4.26)
0 1+e
Co2p02902
300 EGL L
i I
2.5 r 1
i
20F
Lsf
. : . (r—=rn)
02 0.4 0.6 "
Event Cosmqlogical
Horizon Horizon

FIG. 1 (color online). A comparison plot between the exact
solution Cpppoqeo and its zeroth order EGL approximation
PyQq for a massive conformally coupled scalar field with
mass m on a lukewarm blackhole with M = Q = 0.1/ and A =
3/ ~2. The approximation can be seen to capture the behavior of
the event horizon while it breaks down near the cosmological
horizon.
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A
€
—
APPIIPI =
L] . S N PO T S >
CCL “\~ ": Cc
Cp """

FIG. 2. Contour of integration for I,.

I,, contains a divergence as we approach the event horizon,
ie., as { — 0. We choose to take this out of the integral
explicitly as follows

o—€ 4AdA
foa = /ok T+ 2 (A(”Io(ka)Ko(kms“) + Ay mg)

ko—e 4AdA
_Ahlngfo 15 27

with A, = A(r,) = 1/(kr3). Details of the expansions
used above can be found in Appendix A.

(4.27)

I,,, can easily be shown to be O(E ln(e)) and so does not

contribute.
Last we consider the integral /,.. We allow our variable
A to run from ky + € to co. In this region k;, is purely

imaginary, so we define k= ik;y and use the following
identity [23]:

Io(ix) Ko (ix) = —g(]o(x)Yo(x) + iJO(x)2> (4.28)

giving

o 27AdA
Le=-| =554
x jko 1+ &2

with k£ = 4/A> — k3. Proceeding along the lines of the I,
calculation yields the following expression for /,:

(N ok Yo (kE) (4.29)

Ay

Eln{
ko 4AdA
0 1+e 2mTA

L(r) =

(A(r)%(kmz)Ko(kMg) T A, lng)

© 4NN [ 7 .
' f T (- 3 A0IEYED + 4, ng)

(4.30)
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Finally we have the result

o0

M) = Y @1+ Dyl = 5]
=0 f
A, K 4AdA
="t |
pnet ) Treom

X <A(r)10(k,»,\§)K0(k,-,\§) + Ay hlf)

o 4AdA Alr)m A .
+ ﬁo 1+ eZ‘n’)\<_ 2 JO(ké’)YO(kZ) +Ah lng”)

- A(r)k%{lo(kog)Ko(kof + 11 (ko)) K, (kof)},
4.31)

and similarly for §(r) with ¢ and N replaced by land N,
respectively. It can now easily be shown, using the expan-
sions in Appendix A, that near the event horizon

K 1 1
Wr(r) = W(mz + (f — E)R) In(r — ;) + O(1)
(4.32)

which ensures (¢*),aytic finite on the event horizon. The

same analysis applied to I'(r) shows that (@ analytic 18 also
finite on the cosmological horizon. From this we can also
deduce that the contribution of the sums Y 7> (2/ + 1)y, (r)
and Y (21 + 1)9,(r) t0 (¢*)pumeric is finite on both the
event and cosmological horizons.

At this stage it is helpful to bring together the results of
this section so far giving

o9}

<¢72>numeric = 4% Z{Z[(Zl + 1)Cnlpnl(r)le(r)
T p=14=0
— Bo(r) - ﬁl(r)] + Jolw, ) + (o, r>}
g2 2| @1+ DCupolrIan(s)
— SN (yolr) + 71(7) = S(r)Fo(r) + w»]
o U D] SO0) + 800710 |
=0

(4.33)

3 (SOT() +8(NE M)

1 1 e ulf

e )

16772(’" (f 6) N4k,
N m2 B f/Z N fl/ N f/ N K02
167> 1927%f 96w 48w’r 487 f
(4.34)

<¢72>analytic =
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Both of which are now manifestly finite on the horizons.
Clearly (¢2>analyﬁc contains expressions that can only be
evaluated numerically, so the label “‘analytic’ here is used
for the purpose of comparison of our results with those of
existing methods [3,10].

The sums in (@2),umeric ar€ NOW amenable to numerical
computation, which will be discussed in the next section.

V. NUMERICAL CALCULATIONS

To perform the mode sums contained in {®2)umeric
we first need to find the modes themselves. We do this
by numerical integration of the radial equation (2.7). We
perform all of our numerical -calculations using
MATHEMATICA [24]. Previous calculations [2—-6] relied on
programming languages such as C, C + +, or Fortran. The
use of a higher level application greatly speeded up the
formulation of the code required to calculate the quantities
required to construct {$*),e,.

Turning our attention to calculating the modes, the radial
equation (2.7) has regular singular points at r = r,
and r = r.. We apply the standard Frobienus method, by
writing

St =Y. ai(r — ro)*e, (5.1)
i=0

to obtain the indicial equation & = *n/2. S is either p or
g, and r( denotes the singular point under consideration.
We chose our modes so that p,; is the solution regular on
the event horizon, divergent on the cosmological horizon
and vice versa for ¢,;. The standard procedure, when one is
dealing with an asymptotically flat spacetime, is to obtain
P by direct integration of Eq. (2.7) with initial conditions
given by the value of the series solution

Pu = . ai(ry — )2, (5.2)
i=0

atapoint r = r, near r = r; and then using the Wronskian
condition equation (2.8) to obtain ¢,;. However, in the case
under consideration we have a finite outer boundary (r =
r.), hence we can also solve directly for ¢,,; by integrating
Eq. (2.7) from a point outside the cosmological horizon
r = rk, with initial condition

ol = z bi(rc - rg)i+n/2_ (53)
i=0

The b; satisfy a seven-term recursion relation, given in
Appendix B. In order for our numerical integration to
retain a high degree of accuracy, we found it advantageous
to take our initial point away from the vicinity of the
horizon. We found that a point about (r, — r;,)/10 from
each horizon to be most convenient. It is known that a

series solution about a regular singular point of a differen-
tial equation has a radius of convergence of at least the

PHYSICAL REVIEW D 82, 084019 (2010)

distance to the next regular singular point [25]. Since the
nearest regular singular point to » = r, is the event hori-
zon, we see that the series equation (5.3) is valid Vr €
(7, r.]. This is not the case for the series, however, as the
nearest regular singular point is given by the Cauchy
horizon r = r;, and since |r, — r;|<< |r, — r,|/10 this
poses a problem. To get around this issue we define a
new Jaffe-like series solution [25] for p,;. We define a
new variable

r—ry
u=

(5.4)

.
r—ri

which pushes the Cauchy horizon out to infinity and en-
sures that the nearest regular singular point is r = r.. We
then have a new series solution for p,;

Pt = (= r)"2(1 = w)® Y cjul ™2, (5.5)

Jj=0

which is now valid Vr € [ry, r.). The coefficients c; are
determined by a seven-term recursion relation, given in
Appendix B.

We are now in a position to calculate the mode sums in
Eq. (4.12). The rapid convergence of the mode sums in
Eq. (4.12) rely on the cancellation of very large numbers.
Therefore, it is necssary to calculate the mode functions
with great accuracy. To ensure this we set our code to a
precision of 24 digits. As was predicted in Secs. III B and
IV Bthe sums over / and w are O(I™*) and O(w3),
respectively.

Finally we turn to the sum

S22l + 1)[S(r)yl + S'(r)i/l]. Since we know

a priori that this sum does not contribute to the divergence
on either horizon, and considering the technical difficulties
which would be involved in computing this sum analyti-
cally, we instead simply did it numerically. The NSum
algorithm in MATHEMATICA computes the sum analytically
up to a certain user-definable cutoff value of / and then uses
Richardson extrapolation to calculate the numerical tail of
the sum. With the optimum choice of the cutoff value, the
resulting sum had an error = .002%, more than sufficient
for our purposes.

VL (&*);en ON THE BLACK-HOLE HORIZONS

In this section, we introduce a new method of explicitly
calculating a value for ($?)., on both the event and
cosmological horizon. We will perform the calculation
on the event horizon; the method trivially generalizes to
the cosmological horizon. We calculate the terms corre-
sponding to (&) pumeric and () aparyiic for radial separation
In turn.
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A. <¢2>numeric
Up to this point we have only considered the case when
the points are separated in time. The final answer for
(®*)ren is, however, independent of the choice of point
separation. From Eq. (5.2) if we let r = r, we see that

. _ 2
P o, vanishes for n > 0 and so has a value aq = 1/4/r;k on

the horizon. Hence, separating in the radial direction and
placing one point on the horizon yields the result

< @2 >numeric =

z @1+ D i) - ARy kO |
(6.1)

where we recall from Eq. (4.17) that A(r) = ¢/ Jf.

To proceed any further we need an expression for g, (r).
We will show that the zeroth order EGL approximation
captures the required local behavior of gg;(r) needed to
calculate ($?),., on the event horizon. It does not, indeed
cannot, contain any global information. We find an expres-
sion for this global contribution, which needs to be eval-
uated numerically for the spacetime under consideration.
In the following we have been inspired by the method due
to Candelas [26] to express gg;(r) in terms of a local
analytical term plus a numerical global term which can
be extended to the case of a lukewarm black hole; however,
we present a variation of that method, which provides a
more natural way to extend to higher orders.

We begin by noting that gy (r) can be expanded in a
series solution about the event horizon as [27]

qo(r) = — 5 : > (1 + 2(": %))ln(f) + a;po(r)

+ 1[(2;1; + r—zh + (:}%))e] + O(€*In(e)), (6.2)

where V;, = I(I + 1) + r7(m* + £R) and «; depends only
onl, e =r—ry f, = f'(ry),and f}] = f"(r)).

Next we note that the singular zeroth order EGL ap-
proximation, Qy(r) = A(r)'/2K,(k{) satisfies

d d\ -
[5 ("Zf ;) - Vz(r)]Qo(r) =0 (6.3)
with
5oy L f P G 4 rf)
Vi(r) =k Ve 2t 6/ 2 . (6.4)

Applying the standard Frobenius theory [27] to Eq. (6.3)
we may find a series solution to Qy(r) about the event
horizon. This series is in agreement with Eq. (6.2) up to
O(€?1n(€)) up to a possible difference in the a; term.
Hence we may write

Qo(r) + Bipoi(r) + R(r), (6.5)

qoi(r) =

PHYSICAL REVIEW D 82, 084019 (2010)

where R,(r) denotes the remainder terms and near the event
horizon is O(€?In(¢€)) as € — 0. (Comparing our method
with that of Candelas [26] we see that R,(r) is equivalent to
the g term.) The constants B3; are determined by the re-
quirement that g,(r) is regular on the outer boundary and
are calculated in Appendix C.

It can also be shown that for [ = (r — r,) /2 the con-
tribution of the terms R;(r) + B;po;(r) cuts off exponen-
tially in /. Therefore we have an expression for the Green’s
function, valid when one of the points is on the horizon

Gplx, x) = Z(zz + 1)(Qo(r) + agB)) + O(eln(e)).

(6.6)

The convergence of the sum over [ of (21 + 1) 3, presents
no problem as it can be seen numerically that the S,
constants behave like ~* for large /.

Inspection of Eq. (6.6) leads us to conclude that while
the expansion equation (6.5) is of sufficient order to facili-
tate the calculation of ($?),.,, a higher-order approxima-
tion is required to capture the behavior needed for the
corresponding calculation of <f,“,)ren as it will involve
derivatives of the Green’s function.

Finally inserting the expression equation (6.5) into
Eq. (6.1) we find that on the event horizon

1 (o)
p? i« =53 21+ 1)B;. 6.7
<¢ >numerlc 8721’% ZZZO( )Bl ( )

B. <¢2>analytic
For radial point splitting, with o = 252,
radial geodesic separation

where s is the

<¢2>analylic = Z 21 + I)Al/z(r)K()(kg)
1=0

477'2s2
1 1 e u?lol
24+ (- )R)1 <7)
T 1672 <m (f 6) ) 2
m? 1
— R2P . 6.8
16772 967 Sa’p (6.8)

A great advantage of radial point splitting is that it
allows one to integrate the line element directly for s.
Sincet =1¢,0 = 0',and $ = &' the line element becomes
ds®> = dr*/f and hence

ro 1
dr’ 6.9

T (6.9)

For a Ricci-flat spacetime, one can perform this integral
exactly and hence obtain an expression for s everywhere
without recourse to approximation. For a general non-
Ricci-flat spacetime, this is not the case, but we can expand
the integrand in the near horizon limit. Integrating Eq. (6.9)
near the horizon we find (see Appendix A)
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fh
1672€

<¢’2>analytic = Z 21+ I)Al/z(r)KO(ké')
=0

1 5 1 e u’e
+ (- 2)R)
1672 ( (§ 6) )n( fh )
v
+ + + 1
167%  487°r, 0e) (6.10)

with € = r — rj, and f'(r,) = f},. To evaluate this quantity
we first express the € — 0 divergences in terms of infinite
sums over [, then we bring them inside the existing sum
over /, and finally we calculate the resulting convergent
sum. First, we transform the variable from r to 7 using

n= COSh[ (6.11)

f roodr ]
expanding this near the horizon and then reexpressing
($?)giy in terms of 7 gives
1 1 1
_ 24 (g2 R)
i —1) 167 (’” (f 6)

2y 2,200 _ /
x ln<e pir(n 1)) n R I
2 967>  487°r,

52y =
<§D >d1v 8

2

- L om-1)
1672 1T

We have [28]

(6.12)

[e e}

S @1+ DP,(1)Q)(n) = 771_

=0 1

(o]
Z 1

=)
In x> 1.
S+ Dx x—1

We can reexpress the latter, using the transformation

n>1,
(6.13)

x—Jn—1+1,as
i 1 T+
Zo(l + DT+ D 1“( Jn—1 )
1
——Eln(”r}—l)

+ 0((17 — 1)1/2). (6.14)
We incorporate these divergent sums into Eq. (6.10) to
give, on the horizon,

. o |
< 902 >analytlc lllm { Z

877' rh
x [ @I+ )
(1+ 1)(\/77 — 1+ 1)1
1/2
X (A ao(n)Ko(kCOSh_l(n)) - Qz(n))]} Ty
6.15)

PHYSICAL REVIEW D 82, 084019 (2010)
with

R i m? 1 ( ( 1) )
C, = - - + 2H(éE--)R
" 96m  a8arr, Tom2 16 \™ "¢ 7%

2V 22
X1 n\
“( 2 )

We now in turn write 7 in terms of € and denote the
resulting summand as F(/, €). Equation (6.15) then
becomes

(6.16)

leij(])l;ioF(l’ €) + C,. (6.17)
It is now appropriate to expand F(, €) as
F(l, €) = Fo(l) + Fi(x)\Je + AF(x;, e), (6.18)
where
Fol) = limF(, €)
— 1+ 1)[¢(1 +1) - ln(k)] + % 6.19)

Fixy) = lim—= 72
=i 7272
= xl(f 5 Kolax;) — ﬂK1(CUCz) + ﬁze_m/ﬁ),
X 'xl
(6.20)
AF(x, €) = F(I, €) — Fo(l) — Fy(x)Ve, (6.21)
with
, 2 ,2R
xl=(l+1/2)\/z; a = 4—7; |
Krh K rh
(6.22)

and ¢ is the polygamma function. Using the definition of a
Riemann integral we can write:

f Fi(x)dx = lim ZF(xl)(le —x)  (623)
0 X1

X417

where x,, is arbitrary point € [x;4, x;]. From the definition
of x we see that

[ ¥ F (x)dx = lim 3" Fy(x)e (6.24)
0 V=0
since x;, is arbitrary. Returning to Eq. (6.18) we now have

lim > Fle) =3 Fol) + f " Py (x)dx
= 1=0 0

+1lim > AF(x, €). (6.25)
V=0
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Since Fy(l) + F,(x)./€ are the first two terms in the
Taylor series in € of F(I, €) we see that AF(x, €) must be
of order € or higher, in other words

AF = €G(x;, €) (6.26)

for some G which has an € dependence of O(1) or higher.
Applying the Riemann sum argument here gives:

i AF(x, €) = /e f Gl e)dx.  (6.27)
=0 0

F(x, €), Fy(l), and F,(x) are all clearly integrable in x
and so G(x, €) is, by construction, also integrable. Hence
we can conclude that

limY F(Le) =3 Fol) + j “F(dx. (6.28)
013 =0 0

We have confirmed this result by a direct numerical calcu-
lation of 3 7° ) F(l, €) as € — 0.

The right-hand side of Eq. (6.28) can be calculated
analytically (see Appendix D for details) to give

1 rd (1 1
— | s+ is) +—
8772r§,[dx§(x’2 : ) 12

vt e )
+ 2+ k-
6t T axt\"2 "
T(x, 1+ i8)
—idln(——— )+N1—1 ]
i n(l“(x,%—ié) (1 = In(ur,)
R 1 m?

- + + , 6.29
967>  487r, 167 (6:29)

< ¢72 >ana1ytic =

x=-—1

on the event horizon. Here {(x,a) is the generalized
Riemann zeta function, I' is the Euler gamma function,

and § = /N + 1/12.

This method is trivially extended to the cosmological
horizon, yielding a similar expression to Eq. (6.29) with
the following replacements r, — r., 6 — 5, a— @&, and
B— ,é where

A [~ ’2 A ’2R
Kr¢ K™r¢

(6.30)

C. (@")ren

Combining Secs. VI A and VIBwe are in a position to
write down an expression for ($?),., which is valid on both
the event and cosmological horizons of a lukewarm black
hole, namely

PHYSICAL REVIEW D 82, 084019 (2010)
1 (o]
~2 —
<§D >ren - 8772r§ Z:ZO(ZI + 1)ﬁ§

1 r1 B2 d oy
Y (E R T
8m?r} [12 6a™  dx {(x 2! )

d [ 1
+ —{|(x 5 —id
dxg(XZ ! ) —

— s 1n<r(x’é i ’6/)) + N1 - ln(,uro))]

+

x=-—1

F(x,% —i8')
R(r)) | fa m’
- , 6.31
967>  487*r, 1677 ( )

with N' = N or N when r, = r,, or r., respectively, and
likewise for all other primed expressions.

VII. PLOTS OF RESULTS

We will now bring together the results from the previous
sections. For the plots of ($?),., we calculate the quantities
<¢2>numeric from Eq (433) and <¢2>analytic from Eq (434)
at 100 grid points between the two horizons and take the
value of ($?),., on the horizons to be given by Eq. (6.31).
For these calculations, unless otherwise stated, we express
the dimensionful quantities (Q, M, A, and r) in units of the
inverse of mass of the field 7/, which has dimension of
length. In Figs. 3 and 4 we plot {$?),., for two different sets
of parameters.

In Fig. 5 we plot the value of ($?),., on the cosmological
horizon of a lukewarm black hole for a massive, confor-
mally coupled, scalar field with mass m with the parameter
set M = Q = 0.1m as a function of A. As A — 0, the
surface gravity (and hence the temperature) also tends to
zero. In this limit, the cosmological horizon is pushed out
to infinity. One would imagine then that the value of {$?),e,

<¢2>analytic om0
<¢2>numeric -

<¢2>ren

M . (r—rp)
0.5 0.6 0.7 ﬁL
-0.01
Event Cosmological
Horizon Horizon

FIG. 3 (color online). Plot of {$?),., and it components for a
massive, conformally coupled, scalar field with mass m with the
parameter set M = Q = 0.1/1 and A = 37 2. It can be clearly
seen that <¢2>numeric’ <¢2>analytic’ and hence <¢72>ren are finite on
both horizons.
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<¢2>analytic eeoooeoe
<¢2>numeric _— = —

<¢2>7’en

1
m?

0.20

0.15

0.10

0.05

. (r—rp)

L 0.05 0.10 013 020 1
Event Cosmological
Horizon Horizon

FIG. 4 (color online). Plot of {$?),., and it components for a
massive, conformally coupled, scalar field with mass m with the
parameter set M = Q = 0.24/ and A = 3772, Here we are
near the extremal limit M = Q = 0.25s%. In this case we see that
<¢2>numeric dominates. Once more <¢2>numeric’ <¢2>ana1yliw and
hence ($?),., are clearly finite on both horizons.

on this horizon would be well approximated by the value
of ($?)ren in a de Sitter spacetime at a temperature set
by the black hole. The line element for de Sitter spacetime
can be written as [29]

a? 3 )
ds? = —[—dn2 + E (dx’)z], (7.1)
n i=1
where
,3
= — ot/ = ) 72
n ae ; «a A (7.2)

So for temporal splitting the Green’s function for this
configuration is given by [29]

<¢2>ren(DeSitte7')

<¢2>ren

m?2

-0.0005 -
-0.0010 (-

-0.0015

FIG. 5 (color online).

Plot of ($?),., for both the cosmological
horizon of a lukewarm black hole and for a de Sitter spacetime as
a function of the cosmological constant. As expected they appear
to be in agreement as A — 0.
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1 1
G(x, x') = m(z — 1/2) secTry -
F(% bnd-vais Anz/(4nn’)),
with
v = 2 —12(m*R™ " + §) (7.4)

and F is a hypergeometric function. It is now easily shown
that for a quantum field in a de Sitter spacetime at tem-
perature T = «/(277)

2
b s e -
(@ ren 167* 24m2a? 1672 " ¢ 6/) a?

X <zj/<% + V) + 1,[/(% — V) -1- ln(,uzaz)).
(7.5)

Finally we examine the validity of the large field mass
approximation to ($?),., obtained from the order m~? term
in the DeWitt-Schwinger expansion [30]:

“Temelalé o) ¥ a(e3)

1
+ %(Raﬁ'yéR P72 — RopR '8)],

<¢2>ren
(7.6)
where R,g,s is the Riemann tensor and R, is the Ricci

tensor. In a Reissner-Nordstrom-de Sitter spacetime this
becomes

1 1 1\2 1 1\2 1
~—— |=(é-2)R—(¢é—=)R+—
1672 m? [2 (5 6) 6 (5 5) 280

X ((52Q4 — 96MQr + 48M?*r2) /18 — §A>].

<¢2>ren

(1.7)

To compare this with our numerical results, we give all our

dimensionful quantities in units of L = 4/3/A. This allows
us to vary the mass of the field in our results. Our numerical
calculations then show that Eq. (7.7) is a reasonable ap-
proximation for, but only for, very large values of the field
mass m (m =~ 20L~! when M = Q = 0.1L). This is con-
sistent with the calculations of Anderson [2] for a Reissner-
Nordstrom spacetime.

VIII. CONCLUSIONS

In this paper we have considered a scalar quantum field
in a Hartle-Hawking state in a spacetime with two horizons
at equal temperatures. We introduced a new uniform
approximation to C,;p,;q,; and have used this approxima-
tion to calculate ($2),., on a lukewarm Reissner-
Nordstrom-de Sitter spacetime. The uniformity of this ap-
proximation allows us to calculate {$?),., on both the event
and cosmological horizon dealing always with finite quan-
tities. We have also shown that for small values of the
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cosmological constant, ($?),., on the cosmological
horizon approaches {®?),., for a de Sitter spacetime at
temperature T = «/27r.

While other uniform approximations [12] have been
used to prove the regularity of {$2),., on the black-hole
horizons [10], they fail to give explicit horizon values for
(®%)en- Also they cannot be used to investigate the regu-
larity of (T,,)en on the black-hole horizons. Our new
approximation overcomes these shortcomings which, as
we have just demonstrated, allows us to obtain explicitly
finite and easily calculable values of ($?),., on the two
horizons and provides a route for us to extend our consid-
eration to (T, )ren [9]-

Finally we note that throughout this project we been
able to perform all our numerical calculations using
MATHEMATICA [24]. This greatly expedites the code devel-
opment process and enables easy modification to other
spacetimes.
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APPENDIX A: NEAR HORIZON EXPANSIONS

In this Appendix we describe the near horizon expan-
sions needed for various calculations throughout this paper.
We begin with

/!
% €2 + 0(é),

f=foe+ (AD)

with ry denoting the position of the horizon, € = r — r
and f{, = f'(ry), etc. From Eq. (A1) we can deduce

roodr! 2
= = /2 +0 3/2
r € e’?),
£) ,[m r ()2 r%f(’)l/Z ()

(n _ 2
G RT

We also need to calculate expansions for the radial geode-
sic distance s from rg to r. First we have

(A2)

A(r) = + O(e).

7 1 3 f//
5= f0) = e e 4 0N,
0

f(/)3/2
(A3)
and integrating yields
2 11
s=—pelt—tnel+0ER). (A4
0 6fo

The combinations appearing in the Christensen subtraction
terms are then

PHYSICAL REVIEW D 82, 084019 (2010)

L _ S Jo 4 g

fr— 6 ,
47252 167%e 9672

/1 + 2 !

R*Bs,s5 = R'"s} = [— Woro +2/o) foe+ 0(62)]s3
27”0
/! + 2 !
__ (gro +2f3) + o). (A5)

2r0

APPENDIX B: RECURSION RELATIONS

In this Appendix we derive the recursion relations
needed for the initial conditions described in Sec. V. First
we rewrite Eq. (2.7) in the form

rzf%<r2f%)
- <n21<2 + r2f<l(l + 1)+ (m* + §R)r2))S = 0. (B1)

We define the following expansions
5 A
rf =5 e =00 =n)r=r)r=r)
8 .
22 = Alre = 1),
=2

d(r* U ‘
PN =SB

6
n?k? + rzf(l(l + 1)+ (m* + §R)r2) = Z Vi(r. = ry,
=0
(B2)

where Aj, B, and V; are easily determined. Then inserting
the series equation (5.3) into Eq. (B1) and we obtain
the following seven-term recursion relation for the
b; coefficients:

8
b, = —(Z(i 24 n/2 = )i+ 1+ n/2— DAbi i

j=3

7
j=2
6
Z ijl—j)/Gl(l’ n),
=1

J

(B3)

with  G,(Ln) = (i + n/2)((i +n/2— 1A, + B, — V0>

and we normalize by taking by = 1//kr2.

We now turn to calculating the recursion relation needed
to determine the coefficients in our Jaffe-like solution for
P We first change the variable in Eq. (2.7)tox = r — r;.
We then perform the following transformation:
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X—u= "/2(1 — u)%Y(u),

(B4)

T and U(x) —
x

where x;, = r, — r;. Equation (2.7) then takes the form:

uF(u)%(uF(u)diu(l - u)6Y(u))

—= Vi () (1 — u)*Y (u) = 0, (B5)
where
Pl = (= )l =0 = (72— )5 - 12
(B6)
and

n?k2(1 — u)?( x 4
Vln(u) = 2 (1 _h u + I",-)

Xh

2 Xh 2
+ uF )| I(I + 1) + (m* + £R) = i
(B7)
with x,, and x, denoting the position of the corresponding

horizons in the variable x.
We now try a series solution of the form

Y(u) = cu™2, (B8)
i=0
We define the following expansions:
8 A~
(wF)*(1 — u)® = ZAjuj
;
(uF)—(uF)(l —u)® —12(1 — u)’(uF)?* = ZB
j=1
6
30(uF)*(1 — u)* — 6(uF)—(uF)(1 —uf = Z
6 A
Vi) (1 =) = 3 Vi, (BY)

j=0

where the coefficients A j» Bjs C’j, and V ; are easily deter-
mined. Inserting the above expansions into Eq. (BS), we
obtain the following seven-term recurrence relation for the
series coefficients c;:
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8
¢; = _<Z(i —j+n/2+2)Gi—j+n/2+ 1)Ajci—j+2
i

7
j=2

6 6

. Z Cieinj = Z V,;Ci—j)/éi(n, ) (B10)
J=1 j=1

with Gy, n) = (i + n/2)((i + n/2 = DAy + B,) = Vs,

and we normalize by taking ¢y = 1/4/«72.

APPENDIX C: CALCULATION OF g,

To calculate the constants ; we make use of the
Wronskian of Eq. (2.7)

1
2 f
We will calculate 3, for the cosmological horizon, B ;5 the
calculation for the event horizon follows identical lines.

Dividing the Wronskian by ¢,(r)? and integrating yields an
integral representation for p;(7)

r dar'
pi(r) = Clz(r)fr W

with r, being the location of the inner boundary.
Near the cosmological horizon we have a series solution

for q,(r)

G = a+ br. — 1) + 0(<rc - >)

P = i) S p) = =5 (€D

(C2)

(C3)

where a = 1/+/kr? and the b, are constants. Hence we can
rewrite Eq. (C2) in the form

P = a0 '2f<r')<ql<1r'>2 ?)
QI(V)

C4
T -

Now the first integral converges as r — r,. while the second
integral can be computed exactly as

dr 1 1
[rzf = e In(r — ry) + 2 In(r — r;)

1 1
5 In(r —r,) — P In(r,

n'n chc

+ —r) =1(r).

(C5)

Inspection of this expression reveals that we pick up a
divergence when either of the endpoints of integration
coincides with a horizon. This gives us the divergence we
want on the cosmological horizon. However, we also pick
up an unwanted divergence at r, = ry,; this divergence is
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not real as it is canceled by a similar divergence in the first
integral. To show this cancellation explicitly we integrate
Eq. (C4) by parts to obtain

[0 ] i [9]

L0 2,
q,(r>2+frh )

(Co)

where we have used 1(r)/q*(r) — 0 as r — r,,.
‘We may now obtain an asymptotic expansion for p;(r) as
r — r, using Eq. (C4):

1 r. 2 (r'
pil) = 9 ay — — n(r,
V2 Jnoqi(r') 24/ kr?
1 1
2 _ _
+ Krcl:Khr%, In(r, — ry) + 2K,»r,2 In(r, — r;)

1
+-—— In(r, —
2K,17

r,,)] 4 0<(rc ~ PIn(r, - r)).
(€7

Alternatively, we may expand the cosmological horizon
equivalent of relation Eq. (6.5)

po(r) = Po(r) + Bigu(r) + R,(r), (C8)
about r = r, to obtain [28]
p,(r) = ! ( In(k) + = 1n(2Kr2) - ln(rc -7
K12
—y+ Bz) + 0((rc —r)In(r, — r)). (C9)

Comparison of Eqgs. (C7) and (C9) provides us with an
expression for the [3; which is amenable to numerical
calculation:

B - [ < 2q)(r')

1
3( 7 I(rdr' + kr [ 2 In(r, — rp)
J’_

Khh

5 In(re —r) + ——= In(r, — rn)]

il n'n

A 1
+In(k) + y — 3 In(2k72). (C10)

APPENDIX D: CALCULATIONS
NEEDED FOR ($2)ypaiytic

Here we present the details of the calculation of
>0 Fo(l) and [§ Fi(x)dx with Fy and F; defined by
Eqgs. (6.19) and (6.20).
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First we consider the sum, that is

[e e}

Z{(Zl + 1)[— In(k) + (I + 1)] + L} (D1)

=0 [+1

It is convenient to introduce a large / cutoff L, evaluate
each individual sum separately, and show that the terms in
the individual sums which are divergent as L — oo cancel,
leaving a finite analytic remainder. We start by considering
the sum

L
> (@21 + 1) In(k). (D2)
1=0

To do this we begin by writing k> as

1 1
2=((1+= +'5)(< +7)—'6), D
k ((l 2) i [ 5 i (D3)

where 8 = 4/1/12 + N, then we can rewrite the sum

Eq. (D2) as
e is) (1) - 9)]

S+ PR
(D4)

=0

We now consider {(z, L + 1 + q) — {(z, q), where { is
the generalized Riemann zeta function. We can reexpress
this in the form [28]

1
,;(L+1+q+k)z

=Z
=L+1
L 1

L
= — = — Z e~ 2In(g+k)
(g +k)° =0

1
_kgo(cﬂk)z
ad 1
(q+k')z_,§(q+k)z

0

(D5)
Differentiating with respect to z gives:

d L
d—Z(Z(z,L +1+q —{( q)) =Y (g + k) In(g + k)

k=0
(D6)
and so setting z = —1 we have
d
o (YRR R G
d z=—1
L
=Y (g +k)In(g + k), (D7)
k=0

while setting z = 0 gives

diz(g(z,L +1+¢q) (2 q))

= i In(g + k).
k=0

(D8)

z=0
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Combining Egs. (D7) and (D8), and using the identity [28]

diig(x; o - 1n(r(5)) —%ln(Zﬂ') (D9)
yields the result
Z(ZI + 1) In(k)
= %(g(x, il + % + 6) - {(x,% + ié)
+ {(x,L +%— i5) - {(x,% - iB)) -
i i) e )} o

To evaluate the second term in Eq. (D1) we consider

L
@ =1 g+ 12 (D11)
=0

Multiplying out gives

L L
Z w(l + 1)22(Z+1) _ Z l//(l + I)ZZZ
=0 =0

(1) + (L + 1)z2L+D,

= (w0 - i+ ) -

(D12)

Now we have the identities [28]

and ¢(1)=—y. (DI3)

UETIE

Inserting these into Eq. (D12) and rearranging gives

L
z l//(l+ 1)ZZI+1
=0

=1
(D14)

Now we expand the right-hand side about z = 1 and sim-
plify to give

(L+1)— 1[2(1//(L+2)—1>—<(L+1)

QL+ D)L+ 2)>(z )+ O((z - 1)2)], (DI5)

so differentiating this expression with respect to z and then
setting z = 1 we find

S+ D+ 1) = L DL+ 2)
=0

+ (L +1)*y(L+2). (DI16)

z 2AL+Y) L+lzzl
=———|y+yL+2)2LTD -3 |
Z2_1[7 Y(L+2)z > l]
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The final sum may be performed immediately [28]
iL=N(7+ 1/1(n+2)). (D17)
=l

Combining Eqgs. (D10), (D16), and (D17) gives the result

i d({(xL-i-z—i-zb‘)

Fefnes3-1)

—%(L—l— DL +2)+((L+1)*+N)

x=-—1

(L +3+ i6))
I'(L +3 - id)

e (e(wyrio)+i(xg i)

~an( ) -

X (L +2) + i51n<

x=-—1

. (D18)

We now consider the limit as L — oo; for large z [31]

L 1, 1
~2lnz — -2 — =21
L 5% Inz 4z 5¢nz

d
g {(x, 2)

1 1
+—1Inz +—+ 0(z7Y),

D1
12 12 (D19)

Inl'(z) = (Z - %) Inz —z — % In(27) + 0(z™"), (D20)

1 1
=Inz -z ' ==z 4+ 07).

¥ () 2 12

(D21)
Using Egs. (D19)-(D21) and the definition of & is
straightforward to show that in the limit as L — oo the
L-dependent terms in Eq. (D18) tend to N + 1/12.

Now examining the integral term, we have [23,28]

/ * F () dx = [— 6B—1< (@) + ¥ ~ Kola
0

o

where FEi is the exponential integral function. Each term
decays exponentially in x as x — oo [28]. At the lower limit
each term diverges but by expanding about x = 0 [28], we
see that the combination yields a finite limit as x — 0
giving

+N Ei( - (D22)

~ 2
f F,(x) = % — Nlog(+/2). (D23)
0 o
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