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The Einstein’s gravity theory can be formulated as an SLð2; CÞ gauge theory in terms of spinor

notations. In this paper, we consider a noncommutative space with the Poisson structure and construct an

SLð2; CÞ formulation of gravity on such a space. Using the covariant coordinate technique, we build a

gauge invariant action in which, according to the Seiberg-Witten map, the physical degrees of freedom are

expressed in terms of their commutative counterparts up to the first order in noncommutative parameters.
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I. INTRODUCTION

In recent years, the idea of noncommutative spacetimes
has attracted much attention although it was proposed by
Synder [1] as early as in 1947 in order to remove the
divergence in quantum field theories. It has been argued
that at a very small scale, say the Planck length, coordi-
nates of spacetimes cannot be measured at any accuracy
[2], i.e., the measurement should satisfy a set of uncertainty
relations that can be well realized within the context of
noncommutative sapcetimes. Starting from string theory,
Seiberg and Witten [3] suggested that the D-brane dynam-
ics with a B-field background can be described by some
noncommutative field theory. Recently, the idea of non-
commutative spacetimes has penetrated into various fields
in physics. The research on the construction of quantum
field theories on noncommutative spacetimes is fruitful
(for reviews, see Ref. [4]) and it is remarkable to note
that noncommutative quantum field theories can be applied
to the study related to strong background fields, such as the
quantum Hall effect (for a review, see Ref. [5]).

It is interesting to study gravity on noncommutative
spacetimes. Actually, the noncommutative formulation
of gravity has been considered [6] to be a necessity for
quantization of gravity. The main obstacle for this formu-
lation is on dealing with the general coordinate invariance.
Recently, there have been some approaches proposed
for solving this problem. In Ref. [7], a deformation of
Einstein’s gravity is constructed based on gauging the
noncommutative SOð4; 1Þ de Sitter group and then con-
tracting it to ISOð3; 1Þ in terms of the Seiberg-Witten map
[3]. Another effort [8] also from the point of view of the
Seiberg-Witten map is made to build the SOð3; 1Þ non-
commutative formulation of gravity. In Refs. [9,10],
noncommutative gravity models are established by the
reduction of the constrained Uð2; 2Þ to SOð3; 1Þ.
Moreover, the theory of gravity can also be expressed in
a GLð2; CÞ formulation with complex vierbeins [11].
Within the framework of the gauge theory of gravity, the

authors of Ref. [12] have given a noncommutative formu-
lation of gravity based on a class of restricted diffeomor-
phism symmetries that preserves the noncommutative
algebra. On the other hand, Wess and collaborators [13]
have proposed a gravitational theory considering a twisted
diffeomorphism algebra from a purely geometrical point
of view.
The formulations of noncommutative gravity mentioned

above are established in the canonical noncommutative
spacetime in which coordinates x̂� satisfy the following
commutation relations,

½x̂�; x̂�� ¼ i���; (1)

where ��� is an antisymmetric constant tensor and its
elements are called noncommutative parameters. The
noncommutativity can be realized in the ordinary space-
time with the replacement of the ordinary product by the
star-product between functions. It is reasonable to consider
a more general noncommutative spacetime where non-
commutative parameters are coordinate-dependent. For
the most general noncommutative parameters ���ðx̂Þ, the
star product between functions may become nonassocia-
tive, which gives rise to quite complicated problems.
Fortunately, there exists a class of noncommutative mani-
folds on which the star product between functions is asso-
ciative, like the Poisson manifold. In the present paper, we
focus our attention on such a manifold. There are already
someworks that deal with gravity on coordinate-dependent
noncommutative spacetimes. In Ref. [14], the theory of
gravity is constructed based on the work of Ref. [12] on a
noncommutative spacetime with the Lie algebraic struc-
ture, which is in fact a special case of the Poisson manifold.
In terms of the twisted differential geometry, another the-
ory of gravity is proposed [15] which is invariant under
diffeomorphism as well as under aGLð2; CÞ ?-gauge trans-
formation on a general noncommutative spacetime. We
prefer to carry out our analysis in the framework of the
SLð2; CÞ formulation [11,16]. The advantage of this
formulation lies in a tetrad formalism where the tetrad
transforms covariantly under gauge transformations so
that we can construct a gauge invariant action in a natural
way. As a gauge theory, it enables one to use the machinery
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of noncommutative gauge theories elaborately developed
in the literature [17–20]. In terms of the covariant coordi-

nate technique [17], a rank-two tensor R̂�� is constructed
at first. Because of the coordinate-dependence of ���ðx̂Þ,
it is not straightforward to write the covariantly trans-

formed curvature tensor R̂�� through the relation R̂�� ¼
������R̂�� as was done in the canonical noncommutative

spacetime. To this end, a modified function �̂�� (see

Eq. (25) and (26)) is introduced in order for the gauge field
strength to transform covariantly. As a result, the action

can be constructed in terms of the curvature tensor R̂�� and

the vierbein ê�. Furthermore, the Seiberg-Witten map [3]

in our case is derived for noncommutative physical quan-
tities up to the first order in the coordinate-dependent
noncommutative parameters; we can therefore express
the noncommutative theory in terms of ordinary physical
quantities completely.

The paper is organized as follows. In the next section,
we give a brief introduction to the SLð2; CÞ formulation of
gravity on the ordinary spacetime. In the first subsection of
Sec. III, the formulation is extended to a noncommutative
space with the Poisson structure, and a gauge invariant
action is thus constructed. In the second subsection, the
Seiberg-Witten map of the noncommutative formulation is
derived up to the first order in the coordinate-dependent
noncommutative parameters. The last section is devoted to
the conclusion. As to notations, we use the Latin letters,
a; b; � � � ¼ 0, 1, 2, 3, to denote Lorentz indices and the
Greek letters, �; �; � � � ¼ 0, 1, 2, 3, spacetime indices.

II. A BRIEF INTRODUCTION TO SLð2; CÞ
FORMULATION OF GRAVITY

Before discussing its noncommutative formulation, let
us recall briefly the SLð2; CÞ formulation of gravity
[11,16,21] on the ordinary spacetime.

We have to introduce some physical quantities in order
to construct the action of gravity. At first, the SLð2; CÞ
gauge field ! is introduced as

! ¼ 1

2
!�

ab�abdx
� ¼ !�dx

�; (2)

where �ab ¼ � i
4 ½�a; �b� are SLð2; CÞ generators and �a

are Dirac gamma matrices satisfying the anticommutation
relations f�a; �bg ¼ 2�ab. Then the curvature tensor is
given in terms of ! from its definition,

R � 1

4
R��

ab�abdx
� ^ dx� ¼ d!� i! ^!: (3)

In addition, the vierbein e is introduced as follows,

e ¼ ea��adx
� ¼ e�dx

�: (4)

Under the SLð2; CÞ transformation,! and e transform as

e ! �e��1; (5)

! ! �!��1 þ i�d��1; (6)

where the transformation parameter � ¼
expði 12 �ab�abÞ � expði�Þ. In infinitesimal forms,

Eq. (5) and (6) can be written as

��e ¼ i½�; e�; (7)

��! ¼ d�þ i½�; !�: (8)

Using Eq. (3) and (6), one can show that the curvature
tensor R transforms covariantly under the SLð2; CÞ gauge
transformation,

R ! �R��1; (9)

where its infinitesimal form is

��R ¼ i½�; R�: (10)

Now it is straightforward to write an SLð2; CÞ invariant
action

S ¼
Z
M
Trððc0 þ c1�5Þe ^ e ^ Rþ c2�5e ^ e ^ e ^ eÞ;

¼
Z
M
d4x	��
�Trððc0 þ c1�5Þe�e�R
�

þ c2�5e�e�e
e�Þ; (11)

where �5 ¼ i�0�1�2�3, c0, c1, and c2 are arbitrary con-
stants. Integrating out ! and endowing appropriate values
for c0, c1, and c2 in Eq. (11), one can obtain the Einstein-
Hilbert action plus a cosmological constant.
In the next section, we generalize this formulation of

gravity to a noncommutative space with the Poisson struc-
ture. For the sake of convenience, we do not write actions
in forms but in components.

III. SLð2; CÞ GRAVITY ON
NONCOMMUTATIVE SPACE

Consider a noncommutative spacetime whose coordi-
nates satisfy the following commutation relations

½x̂�; x̂�� ¼ i���ðx̂Þ; (12)

where the coordinate-dependent ���ðx̂Þ is a Poisson bivec-
tor1 and it can be used to define a Poisson bracket on the
manifold,

ffðxÞ; gðxÞgPoisson � ���ðxÞ@�fðxÞ@�gðxÞ; (13)

where fðxÞ and gðxÞ are arbitrary functions on the mani-
fold. The Jacobi identity of the Poisson bracket imposes
the following conditions on the bivector ���ðxÞ,

1In the sense of the star product [see Eq. (15)], the algebraic
relations of the noncommutative spacetime can be written as
½x�; x��? ¼ i���ðxÞ. Thus, we can also utilize ���ðxÞ to denote a
Poisson bivector.
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��
ðxÞ@
���ðxÞ þ ��
ðxÞ@
���ðxÞ
þ ��
ðxÞ@
���ðxÞ ¼ 0: (14)

Suppose that the bivector ���ðxÞ is nondegenerate; there-
fore, we can define its inverse ���ðxÞ as: �����
 ¼ ��


 .

With the Jacobi identity Eq. (14), we can show that the
twoform � ¼ 1

2 ���dx
� ^ dx� is closed (d� ¼ 0) and

then the manifold is symplectic. In this paper, we shall
consider only the case in which the manifold is symplectic.

According to Kontsevich’s deformation [22], there
exists an associative star product to a given Poisson bivec-
tor ���ðxÞ, and it can be written as the following symmetric
form up to the first order in ���ðxÞ,

fðxÞ?gðxÞ ¼ fðxÞgðxÞ þ i

2
���ðxÞ@�fðxÞ@�gðxÞ þOð�2Þ:

(15)

Note that it is not unique for higher order terms. In order to
avoid this ambiguity, we shall restrict our discussion only
to the first order in ���ðxÞ.

In the following subsections, we construct the SLð2; CÞ
gravity on the spacetime with the structure Eq. (12) and
derive the Seiberg-Witten map of the noncommutative
gravity up to the first order in ���ðxÞ.

A. Construction of noncommutative gravity

Let us follow the covariant coordinate approach pro-

posed in Ref. [17]. The covariant coordinates X̂� ¼ x� þ
B̂� are defined by the gauge transformation property2

��̂ðX̂� ? �̂Þ ¼ i�̂ ? ðX̂� ? �̂Þ; (16)

where �̂ is the transformation parameter and �̂ is a matter
field with the gauge transformation

��̂�̂ ¼ i�̂ ? �̂: (17)

This requires that the field B̂� should transform as

��̂B̂
� ¼ i½�̂; x��? þ i½�̂; B̂��? ¼ ���@��̂þ i½�̂; B̂��?;

(18)

and the covariant coordinates as

��̂X̂
� ¼ i½�̂; X̂��?: (19)

The noncommutative spin-connection !̂� is given by

[14,17]

!̂ � ¼ ���B̂
�; (20)

where ��� is the inverse of �
��: ����

�
 ¼ �


�. Because of

the coordinate-dependence of the noncommutative struc-

ture depicted by ���, it is not possible to find the trans-
formation of !̂� in a closed form, but one can obtain it

correct up to any order required in the noncommutative
parameter. To the first order in �, we have

��̂!̂� ¼ @��̂þ i½�̂; !̂�� � 1

2
���f@��̂; @�!̂�g

� 1

2
����

��@��
��f@��̂; !̂�g; (21)

where f�; �g stands for an anticommutator.
Using the covariant coordinates, we can define a rank-

two tensor

R̂ �� � �ið½X̂�; X̂��? � i���ðX̂ÞÞ; (22)

and using Eq. (19), we find it transforms as follows,

��̂R̂
�� ¼ i½�̂; R̂���?: (23)

Now it is time to look for the relation between the rank-two

tensor R̂�� and the gauge field strength R̂��. In the case of

canonical noncommutative spaces where � is constant, the

relation is trivial: R̂�� ¼ ��
���R̂
�. But in our case,

� is coordinate-dependent; we should modify the relation

and make sure the gauge field strength R̂�� transforms

covariantly,

��̂R̂�� ¼ i½�̂; R̂���?: (24)

Suppose that there exists a function �̂��ðX̂Þ which ensures

that R̂�� with the definition

R̂ �� � �̂�� ? �̂�� ? R̂�� (25)

satisfies the transformation property Eq. (24). This requires

that �̂��ðX̂Þ should transform as

��̂�̂��ðX̂Þ ¼ i½�̂; �̂���?: (26)

In the next subsection, we can see the function

�̂��ðX̂Þ indeed exists, and we shall give its expansion

expression.
As in the commutative case, we introduce the noncom-

mutative analogue of vierbeins ê� with the gauge

transformation

��̂ê� ¼ i½�̂; ê��?: (27)

Now it is straightforward for us to write a gauge invari-
ant action by using Eqs. (24) and (27),

S ¼
Z

d4xðdet���Þ�ð1=2Þ	��
� Trððc0 þ c1�5Þê�
? ê� ? R̂
� þ c2�5ê� ? ê� ? ê
 ? ê�Þ: (28)

2Coordinates are suppressed from subsection III A to the end
of this paper for the sake of simplicity.
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Here, the volume form on the symplectic manifold, i.e.,

ðdet���Þ�ð1=2Þd4x, appears naturally with which the fol-
lowing trace property of the integral is satisfied to any
order in ���,3

Z
d4xðdet���Þ�ð1=2Þ Trðf ? gÞ

¼
Z

d4xðdet���Þ�ð1=2Þ Trðg ? fÞ: (29)

It is obvious that the action Eq. (28) is indeed gauge
invariant because we can verify

��̂S ¼
Z

d4xðdet���Þ�ð1=2Þ	��
� Trði½�̂; ðc0 þ c1�5Þê�
? ê� ? R̂
� þ c2�5ê� ? ê� ? ê
 ? ê��?Þ ¼ 0; (30)

where Eq. (29) has been used.
In the next subsection, we connect the noncommutative

theory with its commutative counterpart using the
so-called ‘‘Seiberg-Witten map.’’

B. Seiberg-Witten map to the first order

A general gauge group with an algebra G does not
close on noncommutative spacetimes with the exception
to unitary groups. For consistency, the algebra G should be
enlarged to its universal enveloping algebra UðGÞ [18].

First, let us take a close look at the infinitesimal gauge
transformation of the spin-connection !̂ in Eq. (21) where
both commutators and anticommutators appear for the case
of noncommutative spacetimes. Second, note that the com-

mutator ½�̂; ê�? in the infinitesimal gauge transformation
of vierbeins in Eq. (27) can be written as

½�̂; ê�? ¼ 1

4
f�̂ab; êcg?½�ab; �c� þ 1

4
½�̂ab; êc�?f�ab; �cg:

(31)

Using the identities of the Dirac gamma matrices,

½�ab; �c� ¼ ið�ac�b � �bc�aÞ; (32)

f�ab; �cg ¼ �	abc
d�5�d; (33)

f�ab; �cdg ¼ 1

2
ði	abcd�5 þ �ac�bd � �ad�bcÞ; (34)

we can see that SLð2; CÞ does not close on noncommuta-
tive spacetimes and it should be enlarged to a bigger gauge
group including the additional generators 1 and �5, i.e.,
SLð2; CÞ is enlarged to GLð2; CÞ, and that the vierbeins

should be extended to include the additional generator
�5�a. Thus, the GLð2; CÞ spin-connection !̂� and gauge

parameter �̂ can be decomposed as

!̂ � ¼ 1

2
!̂ð0Þab

� �ab þ âð1Þ� þ ib̂ð1Þ�5�5;

�̂ ¼ 1

2
�̂ð0Þab�ab þ �̂ð1Þ þ i�̂ð1Þ

5 �5;

(35)

and the vierbein can be generalized to be

ê � ¼ êð0Þa� �a þ êð1Þa�5 �5�a: (36)

As a result, additional degrees of freedom appear in the
noncommutative case. However, there exists a map,
the Seiberg-Witten map [3], which relates noncommutative

degrees of freedom !̂�, ê�, and �̂ to their commutative

counterparts !�, e�, and �. For the transformation

parameter �̂ and the field B̂�, the map has been derived
[20] up to the first order in ���,

�̂ ¼ �þ 1

4
���f@��; !�g; (37)

B̂ � ¼ ���!� � 1

4
�
�f!
; @�ð���!�Þ þ ���R��g; (38)

where R�� � @�!� � @�!� � i½!�;!�� is the curvature
tensor for the spin connection !�.

The function �̂��ðX̂Þ is calculated to the zeroth order in

��� [20],

�̂ �� ¼ ��� þ �
�@
���!� þOð���Þ; (39)

and this is sufficient to compute the curvature tensor R̂��

up to the first order in ��� according to Eq. (25). Using
Eq. (20) and (38), we can obtain the map between !̂� and

!� up to the first order in ���,

!̂� ¼ !� � 1

4
���f!�; @�!� þ R��g

� 1

4
����

��@��
��f!�;!�g; (40)

where the components take the forms,

!̂ ð0Þab
� ¼ !�

ab; (41)

âð1Þ� ¼ � 1

16
���!�

ab

�
@�!�

cd þ 1

2
R��

cd

�
�ac�bd

� 1

16
����

��@��
��!�

ab!�
cd�ac�bd; (42)

b̂ð1Þ�5 ¼ � 1

32
���!�

ab

�
@�!�

cd þ 1

2
R��

cd

�
	abcd

� 1

32
����

��@��
��!�

ab!�
cd	abcd: (43)

3If there exists a function �ðxÞ satisfying the relation
@�ð����Þ ¼ 0, then we have the trace property of the integral
[20,23]:

R
d4x�ðxÞðfðxÞ ? gðxÞÞ ¼ R

d4x�ðxÞðgðxÞ ? fðxÞÞ. For
a symplectic manifold, there exists [24,25] a natural choice for
the function �ðxÞ which satisfies the above requirement: � ¼
ðdet���Þ�ð1=2Þ. Moreover, this is also shown in Ref. [26] from a
different point of view.
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The Seiberg-Witten map for the vierbein ê� is

ê � þ ��̂ê� ¼ ê�ðeþ ��e;!þ ��!Þ: (44)

Thus, the solution to the above equation up to the first order
in ��� can be obtained,

ê � ¼ e� � 1

2
���

�
!�; @�e� þ i

2
½e�;!��

�
; (45)

whose components have the forms,

ê ð0Þa
� ¼ ea�; (46)

ê ð1Þa
�5 ¼ 1

4
���!�

eb

�
@�e

c
� � 1

2
!�

cde�d

�
	ebc

a: (47)

Note that Eq. (45) can be verified straightforwardly when it
is substituted into Eq. (44).
Considering the definition Eq. (22) and (20), we get the

following expression of R̂��,

R̂�� ¼ ������ð@�!̂� � @�!̂� � i½!̂�; !̂��Þ þ 1

2
���������f@�!̂�; @�!̂�g þ 1

2
���@��

�����f@�!̂�; !̂�g

þ 1

2
@��

��������f!̂�; @�!̂�g þ 1

2
@��

��@��
�����f!̂�; !̂�g þ ���@��

��!̂� þ ��� � ���ðX̂Þ: (48)

In terms of the Taylor expansion of X̂ðxþ B̂Þ, the last three terms of the above equation are simplified as

���@��
��!̂� þ ��� � ���ðX̂Þ ¼ 1

2
������@�@��

��!̂�!̂�; (49)

which contains higher order derivatives of ���ðxÞ. When ���ðxÞ is a linear function of x, i.e., the noncommutativity is of
the Lie algebraic structure, Eq. (49) vanishes.

In accordance with the Seiberg-Witten map [Eq. (40)], the noncommutative curvature tensor R̂�� in Eq. (48) can be
expressed in term of the commutative spin-connection !�,

R̂�� ¼ ������R�� þ 1

2
���������fR��; R��g � 1

4
���������f!�; ð@� þD�ÞR��g þ 1

2
���@��

�����fR��;!�g

þ 1

2
@��

��������fR��;!�g þ 1

4
������@�@��

��f!�;!�g; (50)

where D�R�� � @�R�� � i½!�; R���. With the relation between R̂�� and R̂�� [see Eq. (25)] and the expression of �̂��

[see Eq. (39)], we obtain R̂
�,

R̂
� ¼ R
� þ 1

2
���fR
�; R��g � 1

4
���f!�; ð@� þD�ÞR
�g � 1

2
���@��

�����½R
�;!�� � 1

2
�
�@��

�����½R��;!��

þ i

2
���@��
�@��

��R�� þ i

2
���@����@��

��R�
 þ i

2
������@��
�@�R�� þ i

2
������@����@�R�


þ i

2
���@��
�@�����

�����R�� þ 1

4
�
�����

�����@�@��
��f!�;!�g; (51)

which can also be decomposed by its components as follows:

R̂ 
� ¼ 1

4
R̂ð0Þab

� �ab þ 1

2
R̂ð1Þ

� þ i

2
R̂ð1Þ

�5�5: (52)

Therefore, the components take the forms,

R̂ð0Þab

� ¼ R
�

ab þ i���@��
�����R
�

ad!�
cb�dc þ i�
�@��

�����R��
ad!�

cb�dc þ i

2
���@��
�@��

��R��
ab

þ i

2
���@����@��

��R�

ab þ i

2
������@��
�@�R��

ab þ i

2
������@����@�R�


ab

þ i

2
���@��
�@�����

�����R��
ab; (53)
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R̂ð1Þ

�¼ 1

16
���R
�

abR��
cd�ac�bd

�1

8
���!�

abð@�R
�
cdþ!�

ecR
�
fd�efÞ�ac�bd

þ1

8
�
�����

�����@�@��
��!�

ab!�
cd�ac�bd; (54)

R̂ð1Þ

�5¼

1

32
���R
�

abR��
cd	abcd

� 1

16
���!�

abð@�R
�
cdþ!�

ecR
�
fd�efÞ	abcd

þ 1

16
�
�����

�����@�@��
��!�

ab!�
cd	abcd; (55)

where the following identity has been used in the deriva-
tion of the above equations,

½�ab; �cd� ¼ ið�ac�bd � �bc�ad � �ad�bc þ �bd�acÞ:
(56)

In terms of the above expression of R̂
� and the vierbein
Eq. (45), the action Eq. (28) is thus expressed by the spin-
connection !� and vierbein e� completely,

S ¼
Z

d4xðdet���Þ�ð1=2Þ	��
�

�
ðc0�ac�bd þ c1	abcdÞ

�
�
ea�e

b
�R̂

ð0Þcd

� þ i

2
���@�ðea�eb�Þ@�R
�

cd

�

þ c2ðea�eb�ec
ed�	abcd � 2iea�e
b
�e

c

ê

ð1Þd
�5 �ac�bdÞ

�
; (57)

where R̂ð0Þcd

� can be simplified as the following form in

terms of the symmetries of indices,

R̂ð0Þab

� ¼ R
�

ab þ 2i���@��
�����R
�

ad!�
cb�dc

þ i���@��
�@��
��R��

ab

þ i������@��
�@�R��
ab: (58)

Incidentally, the identities below have been used in the
calculation of Eq. (57),

Tr ð�a�bÞ ¼ 4�ab; (59)

Tr ð�a�b�5Þ ¼ 0; (60)

Tr ð�a�b�c�dÞ ¼ 4ð�ab�cd � �ac�bd þ �ad�bcÞ; (61)

Tr ð�a�b�c�d�5Þ ¼ �4i	abcd: (62)

IV. CONCLUSION

In this paper, a model of gravity based on the SLð2; CÞ
group is constructed on a noncommutative space with the
Poisson structure. In order to have a covariantly trans-

formed curvature tensor, a modified function �̂�� is intro-

duced. Here, different from the approach utilized in [20]
where a kind of covariant coordinates is defined, we use

�̂�� to lower the indices of the rank-two tensor R̂��

straightforwardly. Therefore, the gauge invariant action is
obtained naturally. By using the Seiberg-Witten map, we
can express the noncommutative physical quantities in
terms of their commutative counterparts, and then the
action is completely dependent on the commutative quan-
tities e and !.
It is noted [12,14,27] that the first order correction in

actions vanishes. It is interesting to point out that in our
case the first order correction to the Einstein-Hilbert term
in action Eq. (57) is a total derivative and thus equals
o zero when ��� being constant, which agrees with the
result in Refs. [12,27]. However, for a general noncommu-
tativity parameter, it is evident in our case that the first
order correction [see Eq. (57)] does not vanish. The reason
lies probably in the different approaches utilized in
Refs. [12,14,27] and in the present paper. In the former
approach, which is based on the Poincare gauge theory, the
vierbein is required to be real. This requirement leads to a
gauge noninvariant action although it preserves the volume
from violation of diffeomorphism in the action. In the
latter approach, a ?-gauge invariant action is proposed,
and it is thus inevitable to introduce a complex vierbein ê�
(see Ref. [11] for the canonical noncommutative case). As
a result, the vanishing first order correction claimed in
Refs. [12,14,27] remains in doubt as to whether it happens
to other noncommutative gravity models built in a different
way from that of Refs. [12,14,27], such as to our case.
As a further consideration, we may integrate out !� in

Eq. (57) and therefore write the action only in the vierbein.
However, it is quite a challenge to solve the equation of
motion for !�. Moreover, it might be worthwhile to apply

our method to other formulations of noncommutative
gravity.
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