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We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating

spheres of matter, to study the evolution of dissipative and electrically charged distributions in general

relativity. The numerical implementation of our approach leads to a solver which is globally second-order

convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for

the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion

approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-

Nordström exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion

limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something

about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational

collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic

time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redis-

tributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer

hydrodynamic time scale.
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I. INTRODUCTION

Despite their apparent simplicity, 1þ 1 models of the
fluid dynamics of compact objects in numerical relativity
can include realistic transport mechanisms and equations
of state. Renewed interest on electric charge in stars has
driven the numerical integration of the Einstein-Maxwell
(EM) system. Current integrators of the EM system are in
comoving coordinates [1], and seem to be limited to
one-dimensional numerical solvers [2,3] of the May and
White family [4,5]. Because of the obvious interest in
three-dimensional situations, it is desirable to use non-
comoving coordinates. Numerical simulations to explore
the relevance of electric charge in the process of dissipative
and anisotropic (viscous) gravitational collapse are desir-
able as well.

The numerical solution of Einstein equations in 3þ 1
dimensions is an essential tool for the investigation of
strong field scenarios of astrophysical interest (see [6] and
references therein). Numerical relativity has led to the
discovery of critical phenomena in gravitational collapse
[7], allowed the study of binary black holes and neutron
stars [8–11], and the development of relativistic hydrody-
namics solvers [12], among other major achievements.
The main limitation currently faced by realistic models
in numerical relativity is the computational demand in

three-dimensional evolution [13]. Computationally less in-
tensive one-dimensional models still remain an interesting
alternative and help narrow the search in the parameter
space for general solvers. These simplified systems provide
a necessary test bed to study the phenomena expected in
fully realistic three-dimensional configurations.
In this paper, we study a self-gravitating spherical dis-

tribution of charged matter containing a dissipative fluid.
We use noncomoving coordinates and follow the method
reported in [14]. Herrera et al. realized that this method
was equivalent to going one step further from the quasi-
static regime, and consequently has been named the post-
quasistatic approximation (PQSA) after [15].
The essence of the PQSA was first proposed in [16]

using radiative Bondi coordinates and it has been exten-
sively used by Herrera and collaborators [17–22]. In the
context of charged distributions of matter the original
method was used as well [23–25]. The approach is based
on the introduction of a set of conveniently defined
‘‘effective’’ variables, which are the effective pressure
and energy density, and a heuristic ansatz on the latter
[14]. By quasistatic approximation (QSA) we mean that
the effective variables coincide with the corresponding
physical variables (pressure and energy density). In Bondi
coordinates the notion of QSA is not evident: the system
goes directly from static to postquasistatic evolution.
In an adiabatic and slow evolution we can catch-up that
phase, clearly seen in noncomoving coordinates; this
can be achieved using Schwarzschild coordinates [15].
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If the configuration is leaving equilibrium, the PQSA
description seems to be enough and can be used as a test
bed in numerical relativity [26]. Its systematic use of local
Minkowskian and comoving observers, named Bondians,
was used to reveal a central equation of state in adiabatic
scenarios [27], and to couple matter with radiation [28].

In self-gravitating systems the electric charge is believed
to be constrained by the fact that the resulting electric field
should not exceed the critical field for pair creation,
1016V cm�1 [29]. This restriction in the critical field has
been questioned [30–33] and does not apply to phases of
intense dynamical activity with time scales of the order of
(or even smaller than) the hydrostatic time scale, and for
which the QSA [34] is clearly not reliable as in the collapse
of very massive stars or the quick collapse phase preceding
neutron star formation (see [35] and references therein).
Electric charge has been also studied mostly under static
conditions [35–38]. Of recent interest are charged quasi-
black holes [39] and the electric charge’s extension to
quasispherical realization [40]. Distributions electrically
charged can be considered in practice as anisotropic
[41,42]. Authors combine anisotropy and electric charge
[35,43,44] but not as a single entity by means of an
equation of state.

The electric field has been postulated to be very high in
strange stars with quark matter [45,46], although other
authors suggest that strange stars would not need a large
electrical field [47]. The effects of dissipation, in both
limiting cases of radiative transport, within the context of
the QSA, have been studied in [48]. Using this approxi-
mation is very sensible because the hydrostatic time scale
is very small, compared with stellar lifetimes, for many
phases of the life of a star. It is of the order of 27 minutes
for the sun, 4.5 seconds for a white dwarf, and 104 seconds
for a neutron star of one solar mass and 10 km radius
[49,50]. However, such an approximation does not apply
to the very dynamic phases mentioned before. In those
cases it is mandatory to take into account terms which
describe departure from equilibrium, i.e., a full dynamic
description has to be used [51].

In this paper we consider that the electric charge
can be seen as anisotropy [41], but not any anisotropy, as
we shall see. For certain density ranges, locally anisotropic
pressure can be physically justified in self-gravitating sys-
tems, since different kinds of physical phenomena may
take place, giving rise to local anisotropy and in turn
relaxing the upper limits imposed on the maximum value
of the surface gravitational potential [52]. The influence of
local anisotropy in general relativity has been studied
mostly under static conditions (see [53] and references
therein; [54]). Herrera et al. [55] have reported a general
study for spherically symmetric dissipative anisotropic
fluids with emphasis on the relationship among the Weyl
tensor, the shear tensor, the anisotropy of the pressure, and
the density inhomogeneity.

On the other hand, it is well known that different
energy-momentum tensors can lead to the same spacetime
[56–60]. For instance, viscosity can be considered as a
special case of anisotropy [61]. Here we illustrate this
idea for the Einstein-Maxwell system under spherical
symmetry. To accomplish that program we use the total
energy characterization as in [29,62]. The electric energy
(or pressure) contributes to the fluid in a such way that the
electrically charged perfect fluid is equivalent to an aniso-
tropic fluid under certain conditions.
Massive stars evolve emitting massless particles

(photons and/or neutrinos). Neutrino emission seems to
be the only plausible mechanism to carry away the bulk
of binding energy of a collapsing star, leading to a black
hole or neutron star [63]. It seems clear that the free-
streaming process is associated with the initial stages of
the collapse, while the diffusion approximation becomes
valid toward the final stages. Observation from supernova
1987A indicates that the regime of radiation transport
prevailing during the emission process is closer to the
diffusion approximation than to the free streaming [64].
Heat flow is usually considered as proportional to the
gradient of temperature. This assumption is very sensible
because the mean free path of particles responsible for
the propagation of energy in stellar interiors is very small
as compared with the typical length of the object [34].
Although some transport equations in the relaxation

time approximation have been proposed (see for instance
[65] and references therein), the evolution of temperature
profiles in the context of general relativity remains an
unsolved problem. Therefore, we avoid stating any explicit
evolution equation for heat flow in this investigation.
Recently, some progress has been achieved by Herrera
and collaborators on the study of dissipation via an appro-
priate causal procedure (see for example [55,66–68]). In
the present investigation we obtain the zeroth order level of
approximation for heat flow profiles, which will serve as
the basis of a future investigation which includes dissipa-
tion in a realistic way using the Müller-Israel-Stewart
theory [69–72]. We already see an important advantage
using the PQSA studying configurations with anisotropy
(induced by shear viscosity), streaming-out and heat flow
processes in spherical collapse: an observer using radiating
coordinates to study heat flow misses some important
details.
The paper is organized as follows. In Sec. II we write

the field equations for Bondian observers to show how
the electric charge induces anisotropy, matching with the
exterior Reissner-Nordström-Vaidya solution, and write
the surface equation, following the PQSA protocol [15,73].
In Sec. III we present a summary of the numerical methods
employed. In Sec. IV we show local and global tests of
numerical convergence and illustrate the PQSA integration
procedure with two nonadiabatic charged models. In
Sec. V we conclude with some remarks.
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II. THE EINSTEIN-MAXWELL SYSTEM

A. Field equations for Bondian observers

To write the Einstein field equations we use the line
element in Schwarzschild-like coordinates

ds2 ¼ e�dt2 � e�dr2 � r2ðd�2 þ sin2�d�2Þ; (1)

where � ¼ �ðt; rÞ and � ¼ �ðt; rÞ, with ðt; r; �; �Þ �
ð0; 1; 2; 3Þ. In order to get physical input we introduce the
Minkowski coordinates ð�; x; y; zÞ by [74]

d� ¼ e�=2dt; dx ¼ e�=2dr; dy ¼ rd�;

dz ¼ r sin�d�:
(2)

In these expressions � and � are constants, because they
have only local values. Next we assume that, for an
observer moving relative to these coordinates with velocity
! in the radial direction, the space contains a nonstatic
distribution of matter which is spherically symmetric and
consists of charged fluid of energy density �, pressure p,
electric energy density �e, radiation energy flux q diffusing
in the radial direction, and unpolarized radiation of energy
density �. Thus, the energy-momentum tensor is

T�� ¼ ð�þ pÞu�u� � pg�� þ �l�l� þ q�u�

þ q�u� þ E��; (3)

where u	, l	, q	 are the 4-velocity, the 4-null vector,
and the heat flux 4-vector, respectively, which satisfy
u	u	 ¼ 1, q	u

	 ¼ 0, l	l	 ¼ 0, and E�� is the electro-

magnetic energy-momentum tensor

E�� ¼ 


4

�
F�

�F�� þ 1

4
g��F��F

��

�
; (4)

where F�� is the Maxwell field tensor, which satisfies the

Maxwell equations

F½��;�� ¼ 0 (5)

and

ð ffiffiffiffiffiffiffi�g
p

F��Þ;� ¼ 4

ffiffiffiffiffiffiffi�g

p
J�; (6)

where the semicolon (;) and the comma (,) represent
covariant derivative and partial differentiation with respect
to the indicated coordinate, respectively; J� ¼ �u� is
electric current 4-vector, and � the electric conductivity.
Because of the spherical symmetry, only the radial electric
field Ftr ¼ �Frt is nonzero. On the other hand, the inho-
mogeneous Maxwell equations become

s;r ¼ 4
r2Jteð1=2Þð�þ�Þ (7)

and

s;t ¼ �4
r2Jreð1=2Þð�þ�Þ; (8)

where Jt and Jr are the temporal and radial components of
the current 4-vector, respectively. The function sðt; rÞ is

naturally interpreted as the charge within the radius r

at the time t. We define the function sðt; rÞ by Ftr ¼
se�ð�þ�Þ=2=r2, with

sðt; rÞ ¼
Z

4
r2Jte�ð�þ�Þ=2dr: (9)

The conservation of charge inside a sphere comoving
with the fluid is expressed as

u	s;	 ¼ 0: (10)

We can write the conservation equation in a more suitable
form for numerical purposes

s;t þ dr

dt
s;r ¼ 0; (11)

where the velocity of matter in the Schwarzschild
coordinates is

dr

dt
¼ !eð���Þ=2: (12)

The contravariant components of the 4-velocity, the heat
flux 4-vector, and the null outgoing vector are

u� ¼ e��=2

ð1�!2Þ1=2 
�
t þ !e��=2

ð1�!2Þ1=2 
�
r ; (13)

q� ¼ !e��=2q

ð1�!2Þ1=2 
�
t þ e��=2q

ð1�!2Þ1=2 
�
r ; (14)

and

l� ¼ e��=2
�
t þ e��=2

�
r : (15)

We write the field equations for the Einstein-Maxwell
system in relativistic units (G ¼ c ¼ 1) as follows:

�þ p!2

1�!2
þ 2!q

1�!2
þ 1þ!

1�!
�þ s2

8
r4

¼ 1

8
r

�
1

r
� e��

�
1

r
� �;r

��
; (16)

pþ �!2

1�!2
þ 2!q

1�!2
þ 1þ!

1�!
�� s2

8
r4

¼ 1

8
r

�
e��

�
1

r
þ �;r

�
� 1

r

�
; (17)

pþ s2

8
r4
¼ 1

32


�
e��

�
2�;rrþ�2

;r ��;r�;r þ 2

r
ð�;r ��;rÞ

�

� e��½2�;tt þ�;tð�;t ��;tÞ�
�
; (18)

and
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!

1�!2 ðpþ �Þ þ ð1þ!2Þ
1�!2

qþ 1þ!

1�!
�

¼ � �;t

8
r
e�ð1=2Þð�þ�Þ: (19)

B. Anisotropy induced by electric charge

To write the field equations in a form equivalent to an
anisotropic fluid, we introduce

e�� ¼ 1� 2�=r; (20)

where

�ðt; rÞ ¼ mðt; rÞ � s2

2r
; (21)

m being the total mass [29,62]. Thus the field equations
(16)–(19) read

~� ¼ �;r

4
r2
; (22)

~p ¼ 1

8
r

�
�;r

�
1� 2�

r

�
� 2�

r2

�
; (23)

pt ¼ ðr� 2�Þ
16
r

�
�;rr þ �2

;r

2
þ �;r

r
�

�
�;r þ 2

r

� ð�;r ��=rÞ
ðr� 2�Þ

�

� e��

8
ðr� 2�Þ
�
�;tt þ 3�2

;t

ðr� 2�Þ �
�;t�;t

2

�
; (24)

and

S ¼ � �;t

4
r
ð1� 2�=rÞ1=2e�ð1=2Þ�; (25)

where the conservative variables are

~� ¼ �̂þ pr!
2

1�!2
þ 2!q

1�!2
þ �

1þ!

1�!
; (26)

S ¼ !

1�!2
ðpr þ �̂Þ þ 1þ!2

1�!2
qþ �

1þ!

1�!
; (27)

and the flux variable

~p ¼ pr � �̂!2

1�!2
þ 2!q

1�!2
þ �

1þ!

1�!
; (28)

as in the standard Arnowitt-Deser-Misner (ADM) 3þ 1
formulation. Within the PQSA ~� and ~p are referred to as
effective density and effective pressure, respectively.

Equations (22)–(25) are formally the same as for an
anisotropic fluid, with �̂ ¼ �þ �e, pr ¼ p� �e, pt ¼
pþ �e, and the electric energy density �e ¼ E2=8
,
where E ¼ s=r2 is the local electric field intensity. If we
define the degree of local anisotropy induced by charge as
� ¼ pt � pr ¼ 2�e, the electric charge determines such a
degree at any point.

From (22)–(25) we easily obtain

d�

dt
¼ �4
r2

�
dr

dt
pr þ ½qþ �ð1þ!Þ�

� ð1� 2�=rÞ1=2e�=2
�
: (29)

This equation, known as the momentum constraint in the
ADM 3þ 1 formulation, expresses the power across any
moving spherical shell.
It can be shown that

~p ;r þ ð~�þ ~pÞð4
r3 ~pþ�Þ
rðr� 2�Þ þ 2

r
ð~p� ptÞ

¼ e��

4
rðr� 2�Þ
�
�;tt þ 3�2

;t

r� 2�
��;t�;t

2

�
: (30)

This equation is the same as for an anisotropic fluid [75]
and is a generalization of the hydrostatic support equation,
that is, the Tolman-Oppenheimer-Volkoff (TOV) equation.
Equation (30) is equivalent to the equation of motion for
the fluid in conservative form in the standard ADM 3þ 1
formulation [26]. Equation (30) leads to the third equation at
the surface (see next section). This last equation is com-
pletely general within spherical symmetry.
To close this subsection we have to mention that we

assume the following equation of state (EOS) [76] for
nonadiabatic modeling and only as initial-boundary datum:

pt � pr ¼ Cð~pþ ~�Þð4
r3 ~pþ�Þ
ðr� 2�Þ ; (31)

where C is a constant.

C. Junction conditions

We describe the exterior spacetime by the Reissner-
Nordström-Vaidya metric

ds2þ ¼
�
1� 2MðuÞ

r
þ ‘2

r2

�
du2

þ 2dudr� r2ðd�2 þ sin2�d�2Þ; (32)

whereMðuÞ is the total mass and ‘ the total charge, and u
is the retarded time. The exterior and interior solutions are
separated by the surface r ¼ aðtÞ. In order to match both
regions on this surface we use the Darmois junction con-
ditions. Demanding the continuity of the first fundamental
form, we obtain

e��a ¼ 1� 2M
a

þ ‘2

a2
; (33)

sa ¼ ‘; (34)

maðuÞ ¼ M; (35)

and

�a ¼ ��a: (36)
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The subscript a indicates that the quantity is evaluated at
the surface. In this work, we will use the continuity of the
independent components of the energy-momentum flow,
instead of the second fundamental form, which have been
shown to be equivalent [34] and it is simpler to apply to the
present case. This last condition guarantees the absence of
singular behaviors on the surface. It is easy to check that

pa ¼ qa; (37)

which expresses the continuity of the radial pressure across
the boundary of the distribution r ¼ aðtÞ.

D. Surface equations

Following the protocol sketched in [15] we write the
surface equations evaluating (12), (29), and (30) at
the surface of the distribution. The first and second surface
equations read

da

dt
¼ !a

�
1� 2�a

a

�
; (38)

d�a

dt
¼ �Lþ ‘2

2a2
da

dt
; (39)

with

L � ½Qþ Eð1þ!aÞ�
�
1� 2�a

a

�
; (40)

where E ¼ 4
a2�a and Q ¼ 4
a2qa.
We need a third surface equation to specify the dynamics

completely for any set of initial conditions and a given
luminosity profile LðtÞ. For this purpose we can use the
field equation (18) or the conservation equation (30)
written in terms of the effective variables, which is clearly
model dependent.

III. NUMERICAL METHODS

Once the surface equations are integrated using a
standard method, as Runge-Kutta of fourth order (RK4),
we have to integrate the conservation equation (11) to
obtain all the physical variables inside the source. Thus
the conservation equation

s;t ¼ � dr

dt
s;r (41)

is a wavelike equation that can be integrated numerically
using the Lax method (with the appropriate Courant-
Friedrichs-Levy [CFL] condition). The evolution of the
conservation equation is restricted by the surface evolution
and is implemented as follows:

snþ1
j ¼ 1

2
ðsnjþ1 þ snj�1Þ �

t

2r

�
dr

dt

�
n

j
ðsnjþ1 � snj�1Þ: (42)

The superscript n indicates the hypersurface t ¼ nt and
the subscript j the spatial position for a comoving observer

at r ¼ jr. In order to integrate the conservation equation
we need to specify a boundary-initial condition.
The PQSA is a seminumerical method where the radial

dependence is determined from a static interior solution
and kept the same during the evolution. The problem is
typically reduced to a system of ordinary differential equa-
tions (ODEs) at the surface of the distribution of matter.
This system is integrated in time using the RK4 method.
Therefore we can calculate exactly any physical variable at
the interior. In our specific case, for the Einstein-Maxwell
system, the approach requires additionally the integration
of the conservation of the electric charge [Eq. (41)] using
the Lax method [Eq. (42)]. The conservation equation is an
evolution equation constrained by the system of ODEs at
the surface. Thus, the numerical convergence of the whole
algorithm must be of second-order accuracy.
The implemented algorithm at the surface (basically that

of RK4) for the specific models was verified with satisfac-
tion from a physical point of view and within a reasonable
numerical error (see Sec. IVA). If the numerical solution
for the electric charge function is stable and globally con-
vergent to second order, as shown in Sec. IVB, the problem
surely is well-posed [77].

IV. TESTING AND MODELING

To illustrate the method let us consider a Schwarzschild-
like model. Following the protocol for the PQSA [15,73]
the interior solution has the effective density

~� ¼ fðtÞ; (43)

where f is an arbitrary function of time. The expression for
~p is

~pþ 1
3 ~�

~pþ ~�
¼

�
1� 8


3
~�r2

�
h=2

kðtÞ; (44)

where k is a function of t to be defined from the boundary
condition (37), which now reads, in terms of the effective
variables, as

~p a¼ ~�a!
2
aþðqaþ�aÞð1þ!aÞ2�ð1þ!2

aÞ ‘2

8
a4
: (45)

Thus, (44) and (45) give

~� ¼ 3�a

4
a3
; (46)

~p ¼ ~�

3

�
�Sð1� 2�a=aÞh=2 � 3c S�

c S�� �Sð1� 2�a=aÞh=2
�
; (47)

with

� ¼
�
1� 2�a

a
ðr=aÞ2

�
h=2

;

where h ¼ 1� 2C
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�S ¼ 6ð!2
a þ 1Þ�a

a
þ 2ðQþ EÞð1þ!aÞ2

� ð1þ!2
aÞ ‘

2

a2
; (48)

and

c S ¼ 2ð3!2
a þ 1Þ�a

a
þ 2ðQþ EÞð1þ!aÞ2

� ð1þ!2
aÞ ‘

2

a2
: (49)

Using (22) and (23) it is easy to obtain expressions for �
and �:

� ¼ �aðr=aÞ3; (50)

e� ¼
�
a½�Sð1� 2�a=aÞh=2 � c S��

4�a

�
2=h

; (51)

which correspond to the Hamiltonian constraint and to the
polar slicing condition in the ADM 3þ 1 formulation,

respectively. It is necessary to specify one function of t
and the initial data.
We choose LðtÞ to be a Gaussian

L ¼ L0e
�ðt�t0Þ2=�2

(52)

with L0 ¼ Mr=
ffiffiffiffiffiffiffiffi
�


p
, which corresponds to a pulse radiat-

ing away a fraction of the initial mass Mr. It is easy to
construct the initial profile for the charge function. From
(31) evaluated at the surface we obtain hð‘Þ (see Fig. 1).
Figure 2 displays the charge function s for the following set
of initial conditions:

að0Þ ¼ 5; mað0Þ ¼ 1; !að0Þ ¼ �10�3; (53)

with ‘ ¼ 0:5, which corresponds to h ¼ 0:8966.

A. Model I

In the diffusion limit (� ¼ 0) we choose t0 ¼ 1:0 and
� ¼ 0:01, Mr ¼ 10�2. We tested that the algorithm is
correct at the surface (that is, locally) by verifying that
the pressure is equal to the given Gaussian pulse with an
accuracy of about 10�19. This allows us at least to be
confident about the implemented algorithm at the surface.
However, as a double-check, from a strictly numerical
point of view, we show in Table I a proper convergence
test to fourth order of the RK algorithm at the surface. For
this test we use the gravitational potential at the surface as
the required norm,N ¼ �a=a. Thus, it can be shown that
the rate of convergence is

n ¼ log2
N c �N m

N m �N f

; (54)

where N c, N m, and N f are values of N for a coarse,

medium, and fine time step �t, respectively (scaling as
4:2:1 [78,79]). This corresponds to a local convergence test
for the RK4, giving a convergence rate n � 4, as expected.
For the initial setting corresponding to Fig. 2 the interior

does not evolve because the velocity becomes a complex
value. However, we can display for analysis the initial
set of physical variables in Figs. 3–6. Under these condi-
tions the surface evolves without anomalies as shown in
Figs. 7–9. We have looked for an electrically charged
initial configuration for which all regions evolve; we found
one with a total electric charge � 10�6.
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FIG. 1. Anisotropic parameter h as a function of the total
electric charge ‘, calculated using (31) evaluated at the surface
for the Schwarzschild-like model. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3.

TABLE I. Proper convergence of the surface gravitational
potential; the expected value for n is 4.

t N c �N m (10�10) N m �N f (10�12) n

1.0 �0:022 �0:142 3.964

1.5 �0:573 �3:586 3.998

2.0 �1:148 �7:180 3.999
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FIG. 2. Initial profile of the charge function s, calculated using
(31) for the Schwarzschild-like model. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:5, which
corresponds to h ¼ 0:8966.
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FIG. 5. Initial profile of the matter velocity dr=dt (multiplied
by 103) for the Schwarzschild-like model I. The initial condi-
tions are að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with
‘ ¼ 0:5, which corresponds to h ¼ 0:8966.
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FIG. 6. Initial profile of the heat flow q (multiplied by 106)
for the Schwarzschild-like model I. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:5, which
corresponds to h ¼ 0:8966.
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FIG. 4. Initial profile of the radial pressure p (multiplied by
104) for the Schwarzschild-like model I. The initial conditions
are að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:5,
which corresponds to h ¼ 0:8966.
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at the surface for the Schwarzschild-like model I. The initial
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‘ ¼ 0:5, which corresponds to h ¼ 0:8966.
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like model I. The initial conditions are að0Þ ¼ 5:0, mað0Þ ¼ 1:0,
!að0Þ ¼ �10�3, with‘ ¼ 0:5, which corresponds toh ¼ 0:8966.
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B. Model II

Let us consider now a Schwarzschild-like model in
the streaming-out limit (q ¼ 0). We choose t0 ¼ 5:0 and
� ¼ 0:25, Mr ¼ 10�1. We tested again that the algorithm
is correct at the surface by verifying that the pressure is
equal to zero with an accuracy of about 10�19. For this
model we show the global rate of proper convergence in
Table II. For that purpose we construct the following norm
with the electric charge function s:

N ¼
Z a

0
s2dr: (55)

For instance, we choose grids of 10, 20, and 40 nodes, and
a RK4 time step of 10�8 in a proportion of 4:2:1, respec-
tively. To reach the same monitoring time the CFL time
step has to be t ¼ Kr, where K is a constant of order
of 1, in proportion 4:2:1 as well. Consequently, the number
of RK4 time steps required to apply the formula (54)
is in proportion 1:4:16. The global convergence test
(RK4þ Lax ) gives a rate of n � 2, as expected.

The initial setting shown in Fig. 2 is valid for this model
too, but with ‘ ¼ 0:2 (corresponding to h ¼ 0:8966). A
larger total electric charge does not allow an interior evo-
lution because unphysical values develop. Figures 10–16
show these results. The collapse is unavoidable after emit-
ting an energy equivalent to 10% of the initial mass, which
decreases the energy density (the contrary occurs in the
diffusion limit [80]). The electric charge is redistributed
in the whole body. Note that the electric charge on each
comoving shell starts moving until it reaches a stationary
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FIG. 9. Evolution of the matter velocity dr=dt at the surface
for the Schwarzschild-like model I. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:5, which
corresponds to h ¼ 0:8966.

TABLE II. Proper convergence of the norm (55); the expected
value for n is 2.

t (10�7) N c (10�3) N m (10�3) N f (10�3) n

0 3.5423 3.5322 3.5297 2.0152

1 5.1726 5.1564 5.1524 2.0398
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FIG. 10. Evolution of radius a for the Schwarzschild-like
model II. The initial conditions are að0Þ ¼ 5:0, mað0Þ ¼ 1:0,
!að0Þ ¼ �10�3, with h ¼ 0:98 and h ¼ 1 corresponding to
‘ ¼ 0:222 and ‘ ¼ 0, respectively.
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FIG. 11. Evolution of the energy density � (multiplied by 103)
for the Schwarzschild-like model II. The initial conditions are
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corresponds to h ¼ 0:9839.
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state while the whole distribution collapses. Observe how
the gradient of charge decreases and becomes linear with
the advance of time.

V. CONCLUDING REMARKS

We consider the evolution of a self-gravitating spherical
distribution of charged matter containing a dissipative
fluid. The use of the PQSAwith noncomoving coordinates
allows us to study electrically charged fluid spheres in the
diffusion and the streaming-out limits as they just depart
from equilibrium. From this point of view, the PQSA can
also be seen as a nonlinear perturbative method to test
the stability of solutions in equilibrium. We have shown
that our seminumerical implementation is globally second-
order convergent.

Our results indicate that the dissipative transport
mechanisms and the equation of state chosen to treat
electric charge as anisotropy are crucial for the outcome
of gravitational collapse. We want to stress: (i) the
straightforward manner in which we connected anisotropy
with electric charge using an EOS; (ii) how the EOS is
used in practice as an initial-boundary condition; and
(iii) that departing from the same static solutions we
find very different evolutions. Increasing the amount of
total charge ‘ results in lower values of the anisotropy
parameter h, approaching zero. The zero limit is not
reached because the system breaks down for some limit
value of the total electric charge. When the transport
mechanism is diffusive, it was not possible to establish
why the system can be set initially but not evolved, except
at the surface. From the results, the field equations seem to
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FIG. 13. Evolution of the matter velocity dr=dt for the
Schwarzschild-like model II. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:2, which
corresponds to h ¼ 0:9839.
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for the Schwarzschild-like model II. The initial conditions are
að0Þ ¼ 5:0, mað0Þ ¼ 1:0, !að0Þ ¼ �10�3, with ‘ ¼ 0:2, which
corresponds to h ¼ 0:9839.
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be imposing restrictions within the context of diffusion
and electric charge (or anisotropy) and permit only bub-
bles of charged matter. Otherwise the electric charge (or
anisotropy) has to be very small. In the streaming-out
limit the situation is quite different, as is expected. The
interior is evolved for a total charge that is 200 000 times
that of the maximum charge permitted in the diffusion
limit. Coupling of matter with radiation is not strong
enough to prevent the collapse and the system efficiently
radiates a large quantity of mass. The system clearly
departs equilibrium and collapses. Electric charge contrib-
utes to the collapse in the same way that anisotropy with
tangential pressure greater than radial pressure favors the
collapse [73], irrespective of the transport mechanism. In
any case electric charge has to be huge to change the fate
of the gravitational collapse. The electric charge is redis-
tributed in a such way that its gradient decreases toward
the surface and becomes unexpectedly linear and station-
ary, with the advance of time. There is a critical total
electric charge (or anisotropy parameter) for which the
system evolves constrained by the Einstein-Maxwell
system of field equations.

Beyond the models we want to stress some features
about our framework. First, the luminosity profiles are
given as Gaussian but they can be provided from observa-
tional data. To keep physical variables on appropriate
values in the diffusion approximation, the pulse has to be
narrow in comparison, while the streaming-out limit allows
for a wider pulse. Second, the EOS used in this work is
not essential. Another EOS as initial-boundary data should
fit well, understanding that it represents anisotropic
matter. Third, from the observational point of view, tem-
perature profiles are desirable as input data, but they are not

available in the PQSA method when electric charge is
taken into account.
We considered the dissipation by viscosity and heat flow

separately [73,80], in order to isolate similar effects with
different mechanisms. In this work we considered heat flow/
streaming out and anisotropy induced by electric charge,
pointing to the most realistic numerical modeling in this
area [35]. The results constitute a definite first cut to more
general situations using the PQSA, including dissipation,
anisotropy, electric charge, heat flow, viscosity, radiation
flux, superficial tension, temperature profiles and study of
their influence on the gravitational collapse. Numerical
issues aside, the inclusion of superficial tension [81] to-
gether with a highly compressed Fermi gas [15], and more
realistic thermal processes [68], is of current interest in
astrophysics [35]. Cooling times of smooth or crusty sur-
faces may be the way to differentiate strange stars from
neutron stars [47]. The PQSA can be used to model these
situations. This investigation is an essential part of a long-
term project which tries to incorporate the Müller-Israel-
Stewart theory for dissipation and deviations from spherical
symmetry, especially when considering electrically charged
distributions. Besides being interesting in their own right,
we believe that spherically symmetric fluid models are
useful as a test bed for more general solvers in numerical
relativity [27,28]. A general three-dimensional code must
also be able to reproduce situations closer to equilibrium.
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[78] N. T. Bishop, R. Gómez, S. Husa, L. Lehner, and J.

Winicour, Phys. Rev. D 68, 084015 (2003).
[79] W. Barreto, A. Da Silva, R. Gómez, L. Lehner, L. Rosales,
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[81] L. Herrera, J. Jiménez, M. Esculpi, and J. Ibáñez,
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