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The state-space pair correlation functions and the notion of stability of extremal and nonextremal black

holes in string theory and M theory are considered from the viewpoint of thermodynamic Ruppeiner

geometry. We have explicitly analyzed the state-space configurations for (i) the two- and three-charge

extremal black holes, (ii) the four- and six-charge nonextremal black branes, which both arise from the

string theory solutions. An extension is considered for the D6-D4-D2-D0 multicentered black branes,

fractional small black branes, and two-charge rotating fuzzy rings in the setup of Mathur’s fuzzball

configurations. The state-space pair correlations and the nature of stabilities have been investigated for

three-charged bubbling black-brane foams, and thereby the M-theory solutions are brought into the

present consideration. Novel aspects of the state-space interactions have been envisaged from the coarse

graining counting entropy of underlying conformal field theory microstates.
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I. INTRODUCTION

State-space configurations involving thermodynamics of
extremal and nonextremal black branes in string theory
[1–8] andM theory [9–12] possess rich intrinsic geometric
structures [13–16]. The present article thus focuses atten-
tion on thermodynamic perspectives of black branes and
thereby explicates the nature of the concerned state-space
pair correlations and associated stability of the solutions
containing large number of branes and antibranes. Besides
several general notions which have earlier been analyzed in
condensed matter physics [17–21], we shall here consider
specific string theory and M-theory configurations thus
mentioned with few thermodynamic parameters and ana-
lyze possible state-space pair correlation functions and
their scaling relations. Basically, the investigation which
we shall follow here entails certain intriguing features of
underlying statistical fluctuations which can be defined in
terms of thermodynamic parameters. Given the definite
covariant state-space description of a consistent macro-
scopic black-brane solution, we shall expose (i) for what
conditions the considered configuration is stable, (ii) how
its state-space correlation functions scale in terms of
the chosen thermodynamic parameters. In this process,
we shall also enlist the complete set of nontrivial relative
state-space correlation functions of the configurations con-
sidered in [15,16]. It may further be envisaged in this
direction that similar considerations indeed remain valid
for the other black holes in general relativity [22–25],
attractor black holes [26–31] and Legendre transformed
finite parameter chemical configurations [32,33], quantum
field theory, and QCD backgrounds [34].

On other hand, the state-space configurations of four-
dimensional N ¼ 2 black holes can be characterized by
electric and magnetic charges qJ and pI which arise from
usual flux integrals of the field strength tensors and their
Poincaré duals. In such cases, the near horizon geometry of
an extremal black hole turns out to be an AdS2 � S2

manifold which describes the Bertotti-Robinson vacuum
associated with the black hole. The area of the black hole
horizon A and thus the macroscopic entropy [26–29] is
given as Smacro ¼ �jZ1j2. Such attractor solutions and
their critical properties have further been explored from
an effective potential defined in N ¼ 2, D ¼ 4 super-
gravities coupled to nV abelian vector multiplets for an
asymptotically flat extremal black holes describing
(2nV þ 2)-dyonic charges and nV number of complex sca-
lar fields which parameterize a nV dimensional special
Kähler manifold [30,35–37]. The statistical entropy of
the supersymmetric charge black holes coming from
counting the degeneracy of bound states has been exam-
ined against the macroscopic Wald entropy [38–40] which
further agrees term by term with the higher derivative
supergravity corrections, as well [8]. In order to study the
respective cases of nonextremal black branes of such black
holes, one may add some total mass or corresponding
antibranes to the chosen extremal black-brane configura-
tion, and thereby a possible specific computation of the
black-brane entropy can either be performed in the macro-
scopic setup, or in the associated microscopic considera-
tions. Furthermore, the investigation of [41,42] shows a
match between the Smicro and Smacro for the nonextremal
configurations carrying definite brane and antibrane
charges.
There have been various extremal black holes

[2,3,8,43,44] and nonextremal black-brane space-times
[41], multicentered black-brane configurations [45,46],
small black holes with fractional branes [5–8], fuzzy rings
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in Mathur’s fuzzballs, as well as the subensemble theoretic
setup [47–50] for which the notion of state-space geometry
has been introduced in [15,16]. Similar properties have
further been explored for the three-charge bubbling
black-brane solutions in M theory as well [51]. We shall
thus systematically present the status of lower dimensional
black hole thermodynamic configurations from the view-
point of an intrinsic Riemannian geometry. In this connec-
tion, the microscopic perspectives of black branes have
been analyzed in [4,52], and their thermodynamic geo-
metry whose basics have been motivated in [19,53] has
recently been investigated [15,16]. We shall show that
similar phenomena may further be explored to exhibit
how state-space local correlations scale and under what
conditions a chosen black-brane solution corresponds to a
stable state-space configuration. In this case, it has been
possible to outline that there is an explicit correspondence
between the parameters of the microscopic spectrum and
macroscopic properties of a class of extremal [43,44] and
associated nonextremal black-brane systems [54]. It has
there after been pointed out that there should exist definite
microscopic origins of underlying statistical and thermo-
dynamic interactions among the microstates of black-brane
configurations which give rise to an intrinsic Riemannian
geometry. In turn, we apperceive from [1] that such notions
may in turn be investigated from the perspective of statis-
tical fluctuations which arise from the coarse graining
entropy of chosen configuration.

The state-space geometry thus defined introduces, in
particular, that the thermodynamic interactions considered
as the function of charges, angular momenta, and mass of a
given black-brane configuration may be characterized
by an ensemble of equilibrium microstates of underlying
microscopic configurations. Furthermore, it has been ob-
served in all such cases that there exists a clear mechanism
on the black-brane side that describes the notion of inter-
actions on the state-space which turns out to be a regular
intrinsic Riemannian manifold or vice versa. In fact, one
may therefore exhibit well-defined intrinsic thermo-
dynamic geometries associated to each other via conformal
transformations. The physical observations thus found are
consistent with the existing picture of the microscopic
conformal field theory (CFT) [54–57] that the microscopic
entropy Smicro counts the states of the black-brane configu-
ration in a field theory description dual to the gravitational
description. In fact, such a conventional understanding of
the entropy is based on coarse graining over a large number
of microstates [48,58], and thus it turns out to be a crucial
ingredient in realizing equilibrium macroscopic thermo-
dynamic geometry. It has been shown [15–17,53] that the
components of the state-space metric tensor defined as
Hessian matrix of the entropy signify state-space pair
correlation functions, and the associated state-space curva-
ture scalar implies the nature of the global correlation
volume of the underlying statistical system. Such intrinsic

geometric local and global correlations have initially been
studied for the thermodynamic configurations of general
relativity black holes [22–25], and thereafter they have
been brought into focus to the string theory or M-theory
black holes [14,59]. Furthermore, the state-space inter-
actions generically remain finite and nonzero when small
thermal fluctuations in the canonical ensemble are taken
into account [13].
As mentioned above, we shall analyze the intrinsic

geometric relative correlations and the notion of stability
for a large class of extremal as well as nonextremal black
hole configurations at an attractor fixed point solution. The
study of chosen thermodynamic systems has rather been
already intimated in [15,16], and in this paper our specific
goal shall thereby be to explicate their further state-space
properties for large charge rotating and nonrotating black-
brane configurations. A similar application has indeed
been performed for the spherical and nonspherical horizon
M-theory configurations, see for details [60,61]. Moreover,
it has been demonstrated that various state-space geometric
notions turn out to be well-defined, even at zero tempera-
ture [59]. Interestingly, such geometric studies in connec-
tion with attractor fixed point(s) are expected to give
further motivations for analyzing a large class of extremal
and nonextremal black-brane configurations under Planck
length corrections [62] or that of the higher derivative
stringy �0 corrections [38–40,59] being incorporated via
definite Sen entropy functions [63–71] which are obtained
over an underlying supergravity effective action for a given
moduli space configuration. These notions shall however
be left for future investigation.
The present article is organized as follows. The first

Sec. I motivates the study of state-space configurations
of the string theory and M-theory black-brane solutions.
In either of the subsequent state-space configurations, we
shall analyze scaling properties of the state-space pair
correlation functions, possible positivity of heat capacities,
and nontrivial state-space stabilities. In Sec. II, we have
introduced very briefly what is the black-brane thermody-
namic geometry, based on the consideration of large num-
ber of equilibrium microstates. In Sec. III, we provide the
state-space properties for the two- and three-charge ex-
tremal black holes and four- and six-charge nonextremal
black holes. We consider the two-chargeD1-D5 solution as
an excited string carrying n1 number of winding modes and
np number of momentum modes. In fact, we demonstrate

that the nature of state-space correlations has a similar
pattern for the three-charge extremal black holes.
Subsequently, we analyze the state-space geometry for
the nonextremal black branes corresponding to three-
charge D1-D5-P extremal solutions with the addition of
an antibrane charge. Furthermore, we show explicitly that
similar conclusions hold for the six charge nonextremal
black branes as well. In Sec. IV, we focus on the state-space
correlations of multicentered D6-D4-D2-D0 configurations
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and thereby expose the respective cases for the single
center and double center four-charge solutions. In Sec. V,
we demonstrate state-space correlation properties for the
two-cluster, three-cluster, and then arbitrary finite-cluster
D0-brane fractionations in the D0-D4 black branes. In
Sec. VI, we explicate that similar state-space geometric
notions hold for three-parameter fuzzy rings introduced in
the setup of Mathur’s fuzzball solutions. In Sec. VII, we
extend our state-space analysis to the three-charge bub-
bling black-brane solutions in M theory. Finally, Sec. VIII
contains some concluding issues and the other implications
of the state-space geometry of string theory and M-theory
black-brane solutions for a future study.

II. STATE-SPACE GEOMETRY

The present section provides a brief introduction to
the Ruppeiner’s thermodynamic state-space geometry
[13,17,25]. In this framework, the state-space metric tensor
is defined as the negative Hessian matrix of the black hole
entropy Sð ~xÞ. In general, the components of the metric
tensor are thus expressed as

gij :¼ � @2Sð ~xÞ
@xj@xi

: (1)

In the above setup, a state-space covariant vector ~x 2 Mn

is considered as the collection of the electric charges,
magnetic and angular momenta ðqi; pi; JiÞ of the black
hole. We shall show that the state-space geometry thus
defined takes an account of the thermodynamic interactions
and possible phase transitions. It is worth mentioning that
such an interaction for a non-Bogomol’nyi-Prasad-
Sommerfeld (BPS) black hole can in principle be consid-
ered as the function of the charges, angular momenta, and
mass of the black hole. On the other hand, the microscopic
viewpoint of the state-space geometry may be considered
by introducing fluctuations over the ensemble of equilib-
rium microstates which characterize the underlying statis-
tical configurations. This is left as an open problem for the
future investigation. To illustrate the consideration of state-
space geometry, let us explicate the case of two-parameter
black-brane configurations. To be concrete, let the parame-
ters be electric charge q and themagnetic chargep, then the
components of the Ruppeiner metric tensor are given by

gqq¼�@2S

@q2
; gqp¼� @2S

@q@p
; gpp¼�@2S

@p2
: (2)

In this case, the components of the state-space metric
tensor are associated to the respective statistical pair
correlation functions. It is worth mentioning that the coor-
dinates on the state-spacemanifold are the parameters of the
microscopic boundary conformal field theory which is dual
the black hole space-time solution. This is because the
underlying state-space metric tensor comprises of the
Gaussian fluctuations of the entropy which is the function
of the parameters of the black hole configuration. For a

given black hole solution, the local stability of the under-
lying statistical system requires both the principle minors to
be positive. In this concern, the diagonal components of
the state-space metric tensor fgxaxa j xa ¼ ðq; pÞg signify
the heat capacities of the system, and thus we require them
to be remain positive definite

gxixi > 0; i ¼ q; p : (3)

In the case of extremal black-brane configurations, we
have pointed out that the ratio of diagonal space-state
correlations varies as the inverse square of the chosen
parameters, while the off diagonal components vary as
the inverse of the chosen parameters. We further discuss
the significance of this observation for the nonextremal
black-brane configurations and find the similar conclusion
that the state-space correlations extenuate as the chosen
parameters are increased. In both the extremal and nonex-
tremal configurations, we subsequently demonstrate that
the notion of scaling property suggests that the brane-brane
pair correlations, which find an asymmetric nature in com-
parison with the other state-space pair correlations, weaken
relatively faster and relatively swiftly come into an equi-
librium statistical configuration.
From the perspective of intrinsic Riemannian geometry,

the stability properties of these black branes are thus
divulged from the positivity of principle minors of the
space-state metric tensor. For the Gaussian fluctuations
over the two-charge equilibrium statistical configurations,
the existence of positive definite volume form on the state-
space manifold ðM2ðRÞ; gÞ imposes such a stability condi-
tion. In particular, the above configuration is said to be
stable if the determinant of the state-space metric tensor

kgk ¼ SqqSpp � S2qp (4)

remains positive. For the two-charge configurations, the
geometric quantities corresponding to the chosen state-
space elucidates typical features of the Gaussian fluctua-
tions about an ensemble of equilibrium brane microstates.
Subsequently, we can further calculate the Christoffel con-
nection �ijk, Riemann curvature tensor Rijkl, Ricci tensor

Rij, and Ricci scalar R for the chosen state-space manifold.

From the viewpoint of state-space geometry, the intrinsic
scalar curvature, as a global invariant, accompanies infor-
mation of the correlation volume of the underlying statis-
tical systems. In this case, the scalar curvature R is
explicitly given by

R¼1

2
ðSqqSpp�S2qpÞ�2ðSppSqqqSqppþSqpSqqpSqpp

þSqqSqqpSppp�SqpSqqqSppp�SqqS
2
qpp�SppS

2
qqpÞ :
(5)

Under these premises, the zero scalar curvature indicates
that the information on the event horizon of the black hole
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fluctuates independent of each other, while a divergent
scalar curvature signifies a sort of phase transition indicat-
ing an ensemble of highly correlated pixels of information
on the horizon. Ruppeiner has further interpreted that the
assumption ‘‘that all the statistical degrees of freedom of a
black hole live on the black hole event horizon’’ indicates
that the state-space scalar curvature signifies the average
number of correlated Planck areas on the event horizon of
the black hole [17]. This picture takes an account of the
proposal that the area of the event horizon is an integral
multiple of the Planck area [57] and Mathur’s fuzzballs
[58]. For the case of two-parameter state-space configura-
tion, the state-space scalar curvature and curvature tensor
are related as

Rðq; pÞ ¼ 2

kgkRqpqp : (6)

The state-space scalar curvature thus defined explicates
the nature of long range global correlation and phase
transitions. In this sense, Ruppenier has introduced an
ensemble of micostates corresponding to the black hole,
and these states are statistically (i) interacting, if the under-
lying state-space configuration has a nonzero scalar curva-
ture and (ii) noninteracting, if the scalar curvature vanishes
identically. Incrementally, one may note that the configu-
rations under present analysis are effectively attractive or
repulsive and weakly interacting in general, while they are
stable only if at least one of the parameter, viz., the electric
charges, magnetic charges, and angular momenta remains
fixed. It is worth mentioning that the finding of a statistical
mechanical models with the like behavior could yield a
further insight into the microscopic properties of the string
theory black hole.

The state-space analysis could provide a set of physical
indications encoded in the state-space quantities, e.g., sca-
lar curvature and higher state-space invariants. For given
black-brane solutions, the state-space analysis involves an
ensemble or subensemble equilibrium microstates forming
the statistical basis for the Gaussian fluctuations. With this
introduction to the thermodynamic state-space geometry of
black-brane solutions, we shall proceed to systematically
analyze the underlying geometric structures. This paper
considers a case by case study of the intrinsic geometric
properties of various possible black holes and black branes.
The subsequent analysis is devoted to the state-space geo-
metric implications arising from the theory of extremal and
nonextremal black branes in string theory, multicentered
black-brane configurations, fractionation of the electric
branes, fuzzy rings in Mathur’s subensemble theory, and
the bubbling black-brane solutions in M theory.

III. BLACK HOLES IN STRING THEORY

In this section, we analyze the nontrivial state-space
interactions among various parameters of the black-brane

configurations. To illustrate the basic idea of state-space
geometry of string theory black holes, we shall explore the
consideration for the two- and three-charge extremal con-
figurations and subsequently for the four- and six-charge
nonextremal configurations. The notions of the rela-
tive correlations and associated stabilities are determined
from the perspective state-space investigation.

A. Two-charge extremal configurations

In this subsection, we consider the case of the two-
charge extremal D1-D5 configurations. It turns out that
the state-space geometry of such configurations may be
analyzed in terms of the winding modes and the momen-
tum modes of an excited string carrying n1 number of
winding modes and np number of momentum modes. To

be concrete, we consider the state-space geometry arising
from an extremal black hole whose microstates are char-
acterized by the momentum and winding numbers. The
microscopic entropy formula [2,3,43,44] obtained from
large charge degeneracy of states reduces to

Smicro ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1np

q
(7)

Macroscopically, the entropy of such two-charged black
holes may be computed by considering the electric-
magnetic charges on the D4- and D0-branes, with
ascertained compactifications to obtain M3;1 black hole

space-time. There certainly exist higher derivative correc-
tions in string theory, like for instance the R2 corrections or
R4 corrections to the standard Einstein action, and thus
these corrections make the horizon area nonzero, as the
horizon of vanishing Bekenstein-Hawking entropy black
holes is being stretched by such higher derivative �0
corrections. The computation of the corresponding macro-
scopic entropy is usually accomplished by assuming
spherically symmetric Ansatz for the noncompact spatial
directions [4]. On the other hand, the microscopic entropy
may be evaluated by considering an ensemble of weakly
interacting D-branes [72]. One indeed finds for n4 number
of D4-branes and n0 number of D0-branes that both
entropies do match with

Smicro ¼ 2�
ffiffiffiffiffiffiffiffiffiffi
n0n4

p ¼ Smacro (8)

First of all, an immediate goal would be to understand
state-space geometric notions associated with the leading
order two-charge black-brane solutions, which we shall
thus consider via an analysis of the state-space configura-
tions of either an excited string or that of the D0, D4 black
holes. The analysis follows directly by computing the
Hessian matrix of the entropy with respect to concerned
extensive thermodynamic variables of the either configu-
rations. It is worth mentioning that the respective entropy
can simply be defined as a function of the winding and
momentum charges of the string or that of the two-charge
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D0, D4 black branes. Such configurations are uniquely
related to each other and have the same expressions for
their entropy. Thus, we focus our attention on the two-
charge D0-D4 configurations.

From the given expression of the entropy of the two-
chargeD0 -D4 configuration, we observe that the statistical
pair correlations may easily be accounted for by simple
geometric descriptions, being expressed in terms of the
brane numbers connoting an ensemble of microstates of
the D0 -D4 black hole solutions. Furthermore, it is not
difficult to see that the components of the state-space
metric tensor describing equilibrium statistical pair corre-
lations may be computed from the negative Hessian matrix
of the entropy. As an easy result, we deduce for all allowed
values of the parameters of the two-charge D0 -D4 black
holes that the components of the underlying state-space
metric tensor1 are given as

gn0n0 ¼
�

2n0

ffiffiffiffiffi
n4
n0

s
; gn0n4 ¼ ��

2

1ffiffiffiffiffiffiffiffiffiffi
n0n4

p ;

gn4n4 ¼
�

2n4

ffiffiffiffiffi
n0
n4

s (9)

It is thus evident that the principle components of the
state-space metric tensor fgnini ji ¼ 0; 4g essentially signify
a set of definite heat capacities (or the related compressibi-
lities) whose positivity in turn apprises that the D0-D4

black-brane solutions comply with an underlying equili-
brium statistical configuration. In particular, it is further
clear for an arbitrary number ofD0- andD4-branes that the
associated state-space metric constraints as the diagonal
pair correlation functions remain positive definite, viz., we
have

gnini > 0 8 i 2 f0; 4g j ni > 0 (10)

The case of finitely many D0-D4-branes indeed agrees
with an expectation that the nondiagonal component gn0n4
of the state-space metric tensor, respectively, finds some
nonzero negative value. Furthermore, we visualize from
the definition of state-space metric tensor that the ratios of
principle components of Gaussian statistical pair correla-
tions vary as the inverse square of the concerned brane
charges, while that of the off diagonal correlations modu-
late only inversely. Interestingly from just designated state-
space pair correlations of these two-charge black hole
configurations, it follows for distinct i, j 2 f0; 4g that the
following expressions define a possible set of admissible
scaling relations:

gii
gjj

¼
�
nj
ni

�
2
;

gij
gii

¼ � ni
nj

(11)

In order to determine the global properties of fluctuating
two-charge D0-D4 extremal configurations, we need to
determine stabilities along each intrinsic direction, each
intrinsic plane, and intrinsic hyper plane, if any, as well as
on the full intrinsic state-space manifold. Nevertheless, we
notice that the underlying state-space manifold in the
present case is just an ordinary intrinsic surface, and thus
the set of stability criteria on various possible state-space
configurations could simply be determined by the two
possible principle minors, viz., p1 and p2. For all n0 and
n4, we find that the first minor constraint p1 > 0 directly
follows from the positivity of the first component of the
metric tensor

p1 ¼ �

2n0

ffiffiffiffiffi
n4
n0

s
(12)

Moreover, the minor constraint p2 > 0 becomes the
positivity of the determinant of the metric tensor which
nevertheless vanishes identically for all allowed values of
the n0 and n4. In this case, we explicitly see that the minor
constraint is not fulfilled, viz., the minor p2 :¼ gðn0; n4Þ
takes the null value, and thus the leading order considera-
tion of degeneracy of the states of large charge D0-D4

extremal black branes or excited strings with n1 number
of winding and np number of momenta finds a degenerate

intrinsic state-space configuration.

B. Three charge extremal configurations

To have a test of a higher charge black hole state-space
configuration, we may add n5 number of D5-branes to the
above excited string configuration. Then, it turns out that
the leading order entropy of three-charge extremal black
hole may be obtained from the two derivative level
Einstein-Hilbert action. It is well-known [1] that the en-
tropy of extremal D1-D5 solutions arising from Einstein-
Hilbert action is proportional to the area of the horizon and
the corresponding microscopic entropy may as well be
counted by considering an ensemble of weakly interacting
D-branes. It turns out that the two entropies match and they
take the following form:

Smicro ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p ¼ Smacro (13)

The state-space geometry describing the correlations
between the equilibrium microstates of the three charged
rotating extremal D1-D5 black holes resulting from the
degeneracy of the microstates may easily be computed as
before from the Hessian matrix of the entropy with respect
to the number of D1-, D5-branes and the Kaluza-Klein
momentum, viz, n1, n5, and np. We then see that the

components of state-space metric tensor are given by

1In the present and subsequent sections, we shall invariably
use for a given set of brane and antibrane charges and angular
momenta Xa ¼ ðX1; X2; � � � ; XkÞ 2 Mk that the tensor notations
gXiXj

and gij signify the same intrinsic state-space object.
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gn1n1 ¼
�

2n1

ffiffiffiffiffiffiffiffiffiffiffi
n5np
n1

s
; gn1n5 ¼ ��

2

ffiffiffiffiffiffiffiffiffiffi
np
n1n5

s

gn1np ¼ ��

2

ffiffiffiffiffiffiffiffiffiffiffi
n5

n1np

s
; gn5n5 ¼

�

2n5

ffiffiffiffiffiffiffiffiffiffiffi
n1np
n5

s

gn5np ¼ ��

2

ffiffiffiffiffiffiffiffiffiffiffi
n1

n5np

s
; gnpnp ¼ �

2np

ffiffiffiffiffiffiffiffiffiffi
n1n5
np

s
:

(14)

The statistical pair correlations thus ascertained could in
turn be accounted for by simple microscopic descriptions
being expressed in terms of the number of D1-D5-branes
and Kaluza-Klein momentum connoting an ensemble of
microstates of the extremal black hole configuration.
Furthermore, it is evident that the principle components
of the pair correlation functions remain positive definite for
all the allowed values of concerned three parameters of the
black holes. As a result, we thus easily observe that
the concerned state-space metric constraints are satisfied
with

gnini > 0 8 i 2 f1; 5; pg j ni > 0 : (15)

We thus see in this case that the principle components of
state-space metric tensor fgnini ; gnpnp ji ¼ 1; 5g essentially
signify a set of definite heat capacities (or related com-
pressibilities) whose positivity demonstrates that the
three-charge D1-D5-P black holes comply with the under-
lying locally stable equilibrium statistical configuration.
Furthermore, we suspect that an addition of Kaluza-Klein
momentum charge does not alter the conclusion of excited
string system that the D1-D5-P configuration with finitely
many D1-D5-branes and momentum excitations agrees
with the naive expectation that respective nondiagonal
components, viz., gij and gip of the state-space metric

tensor can find some nonpositive values.
Interestingly, the ratios of the principle components of

metric tensor describing Gaussian statistical pair correla-
tions vary as inverse square of the brane numbers and
momentum charge, while that of the off diagonal rations
of the state-space correlations modulate only inversely. It
further follows from the above expressions that we may
explicitly visualize for distinct i, j 2 f1; 5g, and p that the
list of relative correlation functions thus described is con-
sisting of the following scaling properties

gii
gjj

¼
�
nj
ni

�
2
;

gii
gpp

¼
�
np
ni

�
2
;

gii
gij

¼ �
�
nj
ni

�

gii
gip

¼ �
�
np
ni

�
;

gip
gjp

¼
�
nj
ni

�
;

gii
gjp

¼ �
�
njnp

n2i

�

gip
gpp

¼ �
�
np
ni

�
;

gij
gip

¼
�
np
nj

�
;

gij
gpp

¼ �
�
n2p
ninj

�
:

(16)

Along with the positivity of principle components of
state-space metric tensor, we need to demand, in order to
accomplish the local stability of associated system, that all
the principle minors should be positive definite. It is never-
theless not difficult to compute the principle minors of the
Hessian matrix of the entropy of three-charge D1-D5-P
extremal black holes. In fact, after some manipulations one
encounters that the local stability conditions along the
principle line and that of the respective two-dimensional
surface of the concerned state-space manifold be simply
measured by the following equations

p1 ¼ �

2n1

ffiffiffiffiffiffiffiffiffiffiffi
n5np
n1

s
; p2 ¼ � �2

4n1n
2
5np

ðn2pn1 þ n35Þ

(17)

For the physically allowed values of brane numbers and
momentum charge of the D1-D5-P extremal black holes,
we thus notice that the minor constraint p2ðn1; n5; npÞ> 0

never gets satisfied for any real positive physical parame-
ters. In particular, we may easily suspect that the nature of
state-space geometry for the three-charge D1-D5-P ex-
tremal black holes is that these solutions are stable along
the line on state-space but have planar instabilities. It is
easy to stipulate that our conclusion holds for an arbitrary
number of D1-D5-branes and Kaluza-Klein momentum.
In the viewpoint of the simplest two-charge extremal

solutions, it tuns out that the local stability on the entire
equilibrium phase-space configurations of the D1-D5-P
extremal black holes may clearly be determined by com-
puting the determinant of the underlying state-space met-
ric tensor. As in the previous example, it is easy to observe
that the state-space metric tensor is a nondegenerate and
everywhere regular function of the brane charges n1 and
n5 and Kaluza-Klein momentum charge np. In particular,

we find under the present consideration that the determi-
nant of the metric tensor as the highest principle minor
p3 :¼ g of the Hessian matrix of the entropy takes a
simple form

kgk ¼ � 1

2
�3ðn1n5npÞ�1=2 (18)

Moreover, we observe that the determinant of the metric
tensor does not take a positive definite, well-defined form,
and thus there is no positive definite globally well-defined
volume form on the state-space manifold ðM3; gÞ of the
concerned three-charge D1-D5-P extremal system. In turn,
the nonzero value of the determinant of state-space metric
tensor gðn1; n5; npÞ indicates that the extremal D1-D5-P

solution may decay into some other degenerate vacuum
state configurations procuring the same corresponding en-
tropy or microscopic degeneracy of states. Here, we further
notice, independent of the microscopic type-II string
description or heterotic string description, that the three-
charge D1-D5-P black holes, when considered as a bound
state of the D1-D5-brane microstates and Kaluza-Klein
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excitations, do not correspond to an intrinsically stable
statistical configuration. It is worth mentioning, as intro-
duced in [15,59] in order to divulge phase transitions and
related global state-space properties, that this statistical
system remains everywhere regular as long as the number
of brane and the Kaluza-Klein momentum charge take
finite values.

In the next two sections, we shall deal with the state-
space geometry of nonextremal black branes in string
theory with two/three charges and two/three anticharges
of leading order entropy configurations. After defining
state-space metric tensor, we shall analyze scaling proper-
ties of possible state-space pair correlation functions and
stability requirements for the chosen nonextremal black-
brane solution.

C. Four-charge nonextremal configurations

The present subsection examines the state-space con-
figuration of nonextremal black holes and extends our
intrinsic geometric assessments for the D1-D5 black holes
having nonzero momenta along the clockwise and anti-
clockwise directions of the Kaluza-Klein compactification
circle S1. For the purpose of critical ratifications, we shall
focus our attention on the state-space geometry arising
from the entropy of nonextremal black holes, which one
can simply achieve just by adding corresponding anti-
branes to the chosen extremal black-brane solution. It
follows precisely that we shall first consider the simplest
example of such systems, viz., a string having a large
amount of winding andD5-brane charges: n1, n5 with extra
energy, which in the microscopic description creates an
equal amount of momenta running in opposite directions of
the S1. In this case, the entropy has been calculated from
both the microscopic and macroscopic perspective [41]
and matches for given total mass and brane charges. In
particular, it has been shown in [41] that the either of the
above entropies satisfy

Smicro ¼ 2�
ffiffiffiffiffiffiffiffiffiffi
n1n5

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ ¼ Smacro (19)

We may then analyze the state-space covariant metric
tensor defined as a negative Hessian matrix of entropy with
respect to the number of D1-, D5-branes fni j i ¼ 1; 5g and
opposite Kaluza-Klein momentum charges fnp; �npg.2 The
associate components of the state-space metric tensor and
stability parameters are thus easy to compute for the non-
extremal D1-D5 black holes. In fact, a direct computation
finds that the components of the metric tensor take the
following expression:

gn1n1 ¼
�

2

ffiffiffiffiffi
n5
n31

s
ð ffiffiffiffiffiffi

np
p þ

ffiffiffiffiffiffi
�np

q
Þ; gn1n5 ¼� �

2
ffiffiffiffiffiffiffiffiffiffi
n1n5

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ

gn1np ¼��

2

ffiffiffiffiffiffiffiffiffiffiffi
n5

n1np

s
; gn1 �np ¼��

2

ffiffiffiffiffiffiffiffiffiffiffi
n5

n1 �np

s

gn5n5 ¼
�

2

ffiffiffiffiffi
n1
n35

s
ð ffiffiffiffiffiffi

np
p þ

ffiffiffiffiffiffi
�np

q
Þ; gn5np ¼��

2

ffiffiffiffiffiffiffiffiffiffiffi
n1

n5np

s

gn5 �np ¼��

2

ffiffiffiffiffiffiffiffiffiffiffi
n1

n5 �np

s
; gnpnp ¼

�

2

ffiffiffiffiffiffiffiffiffiffi
n1n5
n3p

s

gnp �np ¼0; gnpnp ¼
�

2

ffiffiffiffiffiffiffiffiffiffi
n1n5
�n3p

s
: (20)

It is clear that there exists an intriguing intrinsic geo-
metric enumeration which describes the possible nature of
statistical pair correlations. The present framework affirms
in turn that the concerned state-space pair fluctuations
determined in terms of the brane and antibrane numbers
(or brane charges) of theD1-D5-P nonextremal black holes
demonstrate definite expected behavior of the underlying
heat capacities. Hitherto, we see apparently that the prin-
ciple components of statistical pair correlations remain
positive definite quantities for all admissible values of
underlying configuration parameters of the black branes.
It may easily be observed that the following state-space
metric constraints are satisfied:

gnini > 0 8 i ¼ 1; 5; gnana > 0 8 a ¼ p; �p :

(21)

We thus physically note that the principle components of
the state-space metric tensor fgnini ; gnana ji ¼ 1; 5; a ¼
p; �pg signify a set of heat capacities (or the associated
compressibilities) whose positivity exhibits that the under-
lying black hole system is in local equilibrium statistical
configuration of the branes and antibranes. The present
analysis thus complies with the fact that the positivity of
gnana obliges that the dual conformal field theory living on

the boundary must be associated with a nonvanishing value
of the momentum charges associated with large integers
np, �np defining the degeneracy of microscopic conformal

field theory.
It follows from the above expressions of the components

of state-space metric tensor that the ratios of principle
components of statistical pair correlations vary as the
inverse square of the brane numbers, while one finds in
specific limit of leading order entropy that the off diagonal
correlations vary only inversely. Interestingly, we may as a
sequel visualize for the distinct i, j 2 f1; 5g, and k, l 2
fp; �pg describing four-charge nonextremal D1-D5-P- �P
black holes that the statistical pair correlations thus pro-
claimed consists of the following set of scaling relations

2In this section, the notations �np and n �p shall imply the same
Kaluza-Klein momentum charges which are in opposite direc-
tion of the np momentum charge and flow along the S1.
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gii
gjj

¼
�
nj
ni

�
2
;

gii
gkk

¼ nk
n2i

ffiffiffiffiffi
nk

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ;

gii
gij

¼ � nj
ni

gii
gik

¼ �
ffiffiffiffiffi
nk

p
ni

ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ;

gik
gjk

¼ nj
ni

;
gii
gjk

¼ � nj

n2i

ffiffiffiffiffi
nk

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ

gik
gkk

¼ � nk
ni

;
gij
gik

¼
ffiffiffiffiffi
nk

p
nj

ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ;

gij
gkk

¼ � nk
ninj

ffiffiffiffiffi
nk

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ :

(22)

We further see that the list of other relative correlation
functions concerning the nonextremal D1-D5-P- �P black
holes is

gik
gil

¼
ffiffiffiffiffi
nl
nk

s
;

gik
gjl

¼ nj
ni

ffiffiffiffiffi
nl
nk

s
;

gkl
gij

¼ 0

gkl
gii

¼ 0;
gkk
gll

¼
�
nl
nk

�
3=2

;
gkl
gkk

¼ 0 : (23)

To investigate the entire set of geometric properties of
fluctuating nonextremal D1-D5 configurations, we need to
determine stability along each intrinsic direction, each
intrinsic plane, as well as on the full intrinsic state-space
manifold. Here, we may adroitly compute the principle
minors from the Hessian matrix of the associated entropy
concerning the four-charge string theory nonextremal
black hole solution carrying D1, D5 charges and left and
right Kaluza-Klein momenta. In fact, a simple manipula-
tion discovers that the set of local stability criteria on
various possible surfaces and hyper-surfaces of the under-
lying state-space configuration is, respectively, determined
by the following set of equations:

p0 ¼ 1; p1 ¼ �

2

ffiffiffiffiffi
n5
n31

s
ð ffiffiffiffiffiffi

np
p þ

ffiffiffiffiffiffi
�np

q
Þ p2¼ 0;

p3 ¼ � 1

2np

�3ffiffiffiffiffiffiffiffiffiffi
n1n5

p ð ffiffiffiffiffiffi
np

p þ
ffiffiffiffiffiffi
�np

q
Þ : (24)

For all physically admissible values of the brane and
antibrane charges (or concerned brane numbers) of the
nonextremal D1-D5 black holes, we can thus easily ascer-
tain that the minor constraint, viz., p2ðni; np; �npÞ ¼ 0 ex-

hibits that the two-dimensional state-space configurations
are not stable for any value of the brane numbers and
assigned Kaluza-Klein momenta. Similarly, the positivity
of p1ðni; np; �npÞ for arbitrary number of branes shows that

the underlying fluctuating configurations are locally stable
because of the linewise positive definiteness.

The constraint p3ðni; np; �npÞ> 0 respectively imposes

the condition that the system may never attain stability
on three-dimensional subconfigurations for all given posi-
tive Kaluza-Klein momenta and given positive ni’s. In

particular, these constraints enable us to investigate the
potential nature of the state-space geometric stability for
leading order nonextremal D1-D5 black branes. We thus
observe that the presence of planar and hyper-planar in-
stabilities exist for the spherical horizon nonextremal
D1-D5 solutions. We expect altogether in the viewpoint
of subleading higher derivative contributions in the entropy
that the involved systems demand some restriction on the
allowed value of the Kaluza-Klein momenta and number of
branes and antibranes.
Moreover, it is not difficult to enquire the complete local

stability of the full state-space configuration of nonextremal
D1-D5 black branes, and in fact it may simply be acclaimed
by computing the determinant of the state-space metric
tensor. Nevertheless, it is possible to enumerate a compact
formula for the determinant of the metric tensor. For the
different allowed values of brane numbers, viz., fn1; n5g
and Kaluza-Klein momenta fnp; �npg, one apparently dis-

covers from concerned intrinsic geometric analysis that the
nonextremal D1-D5 system admits the following expres-
sion for the determinant of the state-space metric tensor

gðn1; n5; np; �npÞ ¼ � 1

4

�4

ðnp �npÞ3=2
ð ffiffiffiffiffiffi

np
p þ

ffiffiffiffiffiffi
�np

q
Þ2 : (25)

Furthermore, we may exhibit that the nature of the
statistical interactions and the other global properties of
the D1-D5 nonextremal configurations are indeed not
really perplexing to anatomize. In this regard, one com-
putes certain global invariants of the state-space manifold
ðM4; gÞ which in the present case can easily be determined
in terms of the parameters of underlying brane configura-
tions. Here, we may work in the large charge limit in which
the asymptotic expansion of the entropy of nonextremal
D1-D5 system is valid. In particular, we notice that the
state-space scalar curvature as indicated in [15,16] generi-
cally remains nonvanishing for all finite values of the brane
charges and Kaluza-Klein momenta. Thus for physically
acceptable parameters, the large charge nonextremal
D1-D5 black branes having nonvanishing scalar curvature
function on their state-space manifold ðM4; gÞ imply an
almost everywhere weakly interacting statistical basis.

D. Six-charge nonextremal configurations

In this subsection, we shall consider the state-space
configuration for the six-parameter nonextremal string
theory black holes and focus our attention to analyze
concerned state-space pair correlation functions and
present stability analysis in detail. In order to do so, we
extrapolate the expression of the entropy of the four-charge
nonextremal D1-D5 solution to a nonlarge charge domain,
where we are no longer close to an ensemble of super-
symmetric states. It is known that the leading order entropy
[73], which includes all such special extremal and near-
extremal cases, can be written as a function of charges fnig
and anticharges fmig to be
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Sðn1; m1; n2; m2; n3; m3Þ :¼ 2�ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þð ffiffiffiffiffi
n2

p

þ ffiffiffiffiffiffi
m2

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ (26)

Incidentally, we notice from the simple brane and anti-
brane description that there exists an interesting state-space
interpretation which covariantly describes various statisti-
cal pair correlation formulae arising from corresponding
microscopic entropy of the aforementioned (non) super-
symmetric (non) extremal black-brane configurations.
Furthermore, we see for given charges i, j 2 A1 :¼
fn1; m1g; k, l 2 A2 :¼ fn2; m2g; and m, n 2 A3 :¼
fn3; m3g that the intrinsic state-space pair correlations
turn out to be in precise accordance with the underlying

macroscopic attractor configurations being disclosed in the
special leading order limit of the nonextremal solutions.
It is again not difficult to explore the state-space geome-

try of equilibrium microstates of the six-charge anticharge
nonextremal black holes inD ¼ 4 arising from the entropy
expression emerging from the consideration of Einstein-
Hilbert action. As stated earlier, the state-space Ruppeiner
metric is defined by negative Hessian matrix of the non-
extremal Bekenstein-Hawking entropy with respect to the
extensive variables. These variables in this case are in turn
the conserved charges-anticharges carried by the non-
extremal black hole. Explicitly, we find that the compo-
nents of covariant state-space metric tensor over generic
nonlarge charge domains are

gn1n1 ¼
�

2n3=21

ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ; gn1m1
¼ 0 gn1n2 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffi
n1n2

p ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ;

gn1m2
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
n1m2

p ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ gn1n3 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffi
n1n3

p ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ; gn1m3
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
n1m3

p ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ

gm1m1
¼ �

2m3=2
1

ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ; gm1n2 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
m1n2

p ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ

gm1m2
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ; gm1n3 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
m1n3

p ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ gm1m3
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ;

gn2n2 ¼
�

2n3=22

ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ gn2m2
¼ 0; gn2n3 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffi
n2n3

p ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ

gn2m3
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
n2m3

p ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ; gm2m2
¼ �

2m3=2
2

ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ

gm2n3 ¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffi
m2n3

p ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ; gm2m3
¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffiffi
m2m3

p ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ

gn3n3 ¼
�

2n3=23

ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ; gn3m3
¼ 0 gm3m3

¼ �

2m3=2
3

ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ :

(27)

In the entropy representation, we thus see for the non-
vanishing entropy that the Hessian matrix of entropy illus-
trates the nature of possible Gaussian state-space
correlations between the set of space-time parameters,
which in this case are nothing but the charges on the brane
and antibranes, if nonextremality is violated in general.
Substantially, we articulate for given nonzero values of
large charges and anti charges fni; m1 j i ¼ 1; 2; 3g that
the nonvanishing principle component of underlying in-
trinsic state-space metric tensor are positive definite quan-
tities. It is in fact not difficult to see for distinct i, j,
k 2 f1; 2; 3g that the components involving brane-brane
state-space correlations gnini and antibrane-antibrane
state-space correlations gmimi

satisfy

gnini > 0 8 finite ni; i ¼ 1; 2; 3

gmimi
> 0 8 finitemi; i ¼ 1; 2; 3 :

(28)

Furthermore, it has been observed that the ratios of
diagonal components vary inversely with a multiple of a
well-defined factor in the underlying parameters which
change under the Gaussian fluctuations, whereas the ratios
involving off diagonal components in effect uniquely in-
versely vary in the parameters of the chosen set Ai of
equilibrium black-brane configurations. This suggests
that the diagonal components weaken in relatively con-
trolled fashion into an equilibrium, in contrast with the off
diagonal components which vary over the domain of asso-
ciated parameters defining theD1-D5-P- nonextremal non-
large charge configurations. Importantly, we can easily
substantiate for the distinct ni; mi j i 2 f1; 2; 3g describing
six-charge string theory black holes that the relative pair
correlation functions have three types of relative correla-
tion functions. In particular, we firstly see for i, j 2
fn1; m1g, and k, l 2 fn2; m2g that the relative correlation
functions satisfy the following list of scaling relations
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gii
gjj

¼
�
j

i

�
3=2

;
gii
gkk

¼
�
k

i

�
3=2

� ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p
ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p
�
;

gij
gii

¼ 0
gii
gik

¼ �
ffiffi
k

p
i ð

ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ; gik
gjk

¼
ffiffi
j
i

q
;

gii
gjk

¼ �
ffiffiffiffiffi
jk

p
i3=2

ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ gkk
gik

¼ �
ffiffi
i

p
k
ð ffiffiffiffiffi

n2
p þ ffiffiffiffiffiffi

m2

p Þ;
gij
gik

¼ 0;
gij
gkk

¼ 0 : (29)

The other concerned relative correlation functions
are

gik
gil

¼
ffiffiffi
l

k

s
;

gik
gjl

¼
ffiffiffiffiffi
jl

ik

s
;

gij
gkl

¼ n:d:

gkl
gii

¼ 0;
gkk
gll

¼
�
l

k

�
3=2

;
gkl
gkk

¼ 0 : (30)

For k, l 2 fn2; m2g, and m, n 2 fn3; m3g, we have
gkk
gmm

¼
�
m

k

�
3=2

� ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p
ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p
�
;

gkl
gkk

¼0;

gkk
gkm

¼�
ffiffiffiffi
m

p
k

ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ gkm
glm

¼
ffiffiffi
l

k

s
;

gkk
glm

¼�
ffiffiffiffiffiffi
lm

p

k3=2
ð ffiffiffiffiffi

n3
p þ ffiffiffiffiffiffi

m3

p Þ; gmm

gkm
¼�

ffiffiffi
k

p
m

ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ
gkl
gkm

¼0;
gkl
gmm

¼0 : (31)

The other concerned relative correlation functions are

gkm
gkn

¼
ffiffiffiffi
n

m

r
;

gkm
gln

¼
ffiffiffiffiffiffiffi
ln

km

s
;

gkl
gmn

¼ n:d:

gmn

gkk
¼ 0;

gmm

gnn
¼

�
n

m

�
3=2

;
gmn

gmm

¼ 0 :

(32)

While for i, j 2 fn1; m1g, and m, n 2 fn3; m3g, we have
gii
gmm

¼
�
m

i

�
3=2

� ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p
ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p
�
;

gij
gii

¼ 0;

gii
gim

¼�
ffiffiffiffi
m

p
i

ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ gim
gjm

¼
ffiffiffi
j

i

s
;

gii
gjm

¼�
ffiffiffiffiffiffi
jm

p
i3=2

ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ; gmm

gim
¼�

ffiffi
i

p
m
ð ffiffiffiffiffi

n1
p þ ffiffiffiffiffiffi

m1

p Þ

gij
gim

¼ 0;
gij
gmm

¼ 0;
gim
gin

¼
ffiffiffiffi
n

m

r

gim
gjn

¼
ffiffiffiffiffiffi
jn

im

s
;

gij
gmn

¼ n:d:;
gmn

gii
¼ 0;

gmn

gmm

¼ 0 : (33)

For given i, j 2 A1 :¼ fn1; m1g; k, l 2 A2 :¼ fn2; m2gg;
and m, n 2 A3 :¼ fn3; m3g; we thus see by utilizing
gn1m1

¼ 0, gn2m2
¼ 0, and gn3m3

¼ 0 that there are seven

nontrivial relative correlation functions for each set Ai,
where i ¼ 1, 2, 3, and one nontrivial ratio in each chosen
family Ai. It is worth mentioning that the scaling relations
remain similar to those obtained in the previous case,
except when (i) the number of relative correlation func-
tions has been increased, and (ii) the set of cross ratios,
viz., fgijgkl

; gklgmn
;
gij
gmn

g being zero in the previous case becomes

ill-defined for the six-charge state-space configuration.
Inspecting a specific pair of distinct charge sets Ai and
Aj, one finds in this case that there are thus 24 types of

nontrivial relative correlation functions.
Specifically, we see for three-brane and three-antibrane

solutions that the ratios involving diagonal components in
the numerator with nondiagonal components in the de-
nominator vanish identically 8i; j; k 2 fn1; m1; n2; m2;
n3; m3g. Alternatively, we thereby appraise in this case
that the set of principle components denominator ratios
computed from above state-space metric tensor reduce to

gij
gkk

¼ 0 8 i; j; k 2 fn1; m1; n2; m2; n3; m3g : (34)

In particular, for given i, j 2 A1 :¼ fn1; m1g; k, l 2
A2 :¼ fn2; m2gg; and m, n 2 A3 :¼ fn3; m3g, we confirm
the above fact by utilizing gn1m1

¼ 0, gn2m2
¼ 0, and

gn3m3
¼ 0 that there are a total of 15 types of trivial relative

correlation functions. It is not difficult to see there are five
such trivial ratios in each chosen family fAi j i ¼ 1; 2; 3g. It
is worth mentioning for each set Ai that the trivial ratios
reduce to the scaling relations which are nevertheless
similar to those realized in the previous case, except for
the fact that the number of relative correlation functions
has been ill-defined. Inspecting a pair of distinct charge
sets Ai and Aj, one finds in this case that there is a unique

kind of ill-defined relative correlation, and thus there are in
total three types of divergent relative correlation functions.
As noticed in the previous configuration, it is not diffi-

cult to analyze the local stability for the higher charged
string theory nonextremal black holes as well. In particular,
one can easily determine the principle minors associated
with the state-space metric tensor and thus we argue that all
the principle minors must be positive definite. However, it
may not be the case for all the black holes that they are
stabile in all the dimensions of the state-space manifold. In
this case, we have computed the principle minors from the
Hessian matrix of associated entropy concerning the three-
charge and three-anticharged black holes and observe that
some of them are indeed nonpositive. In fact, we discover
that the local stability criteria on the lower dimensional
hyper-surfaces and two-dimensional surface of underlying
state-space manifold are, respectively, given by the follow-
ing relations:
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p1 ¼ �

2n3=21

ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ

p2 ¼ 1

4

�2

ðn1m1Þ3=2
ð ffiffiffiffiffi

n2
p þ ffiffiffiffiffiffi

m2

p Þ2ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ2

p3 ¼ 1

8

�3

ðn1m1n2Þ3=2
ffiffiffiffiffiffi
m2

p ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ3ð ffiffiffiffiffi
n2

p þ ffiffiffiffiffiffi
m2

p Þ

� ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ
p4 ¼ 0 : (35)

For the physically admitted values of associated charges
and anticharges of the nonextremal string theory black
holes, we thus ascertain that the minor constraint, viz.,
p2 > 0 inhibits the domain of assigned brane antibrane
charges, so that it must be a positive definite real number,
while the constraint p3 > 0 imposes that the charges must,
respectively, satisfy desired state-space minor conditions.
In particular, these constraints enables us to investigate
the nature of the state-space geometry of string theory
black holes. We have further observed that the presence
of planar and hyper-planar instabilities exist for the non-
extremal black holes. It is worth mentioning that the
p4ðni;miÞ ¼ 0 exhibits that the four-dimensional state-
space configurations are not stable for any value of the
brane and antibrane numbers. This altogether demands
definite restriction on the allowed value of the parameters.

Similarly we find that the principle minor p5 remains
nonvanishing for all values of charges on the constituent
brane and antibranes. The generic expression of the minor
p5 may further be easily computed from the general minor
formula [60]. An explicit calculation specifically finds that
the hyper-surface minor p5 takes a fairly nontrivial value in
general. However, the simplest values of the brane and
antibrane charges that they be identical implies that the
minor p5 reduces to the specific value of

p5ðkÞ ¼ �64
�5

k5=2
: (36)

Thus for the identical values of the brane antibrane
charges, the minor p5 < 0, respectively, implies that the
nonextremal black hole solutions under consideration
are not stable over the possible choice of the state-space
configurations. In order to obtain the highest minor p6,
we in general need to compute the determinant of the
metric tensor, which finally reduces to a function of the
brane and antibrane charges. Moreover, it is not difficult
to demonstrate the global stability on the full state-space
configuration, which may in fact be carried forward by
computing determinant of the state-space metric tensor.
In this case, one observes that the exact expression of
the determinant of the intrinsic state-space metric tensor
is

kgk ¼ ��6

16
ðn1m1n2m2n3m3Þ�3=2ð ffiffiffiffiffi

n2
p þ ffiffiffiffiffiffi

m2

p Þ2ð ffiffiffiffiffi
n3

p þ ffiffiffiffiffiffi
m3

p Þ3ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffiffi
m1

p Þ3ðn2 ffiffiffiffiffiffiffiffiffiffiffi
m1n3

p þ n2
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m1m2n3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m1m2m3

p þm2

ffiffiffiffiffiffiffiffiffiffiffi
m1n3

p þm2

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p þ n2
ffiffiffiffiffiffiffiffiffiffi
n1n3

p þ n2
ffiffiffiffiffiffiffiffiffiffiffi
n1m3

p

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2m2n3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2m2m3

p þm2

ffiffiffiffiffiffiffiffiffiffi
n1n3

p þm2

ffiffiffiffiffiffiffiffiffiffiffi
n1m3

p Þ ; (37)

which in turn never vanishes for a domain of given nonzero brane antibrane charges, except for the following state-space
extreme values of the charges, when the brane and antibrane charges ni, mi belong to

B :¼ fðn1; n2; n3; m1; m2; m3Þ j n2 ffiffiffiffiffiffiffiffiffiffiffi
m1n3

p þ n2
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m1m2n3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m1m2m3

p þm2

ffiffiffiffiffiffiffiffiffiffiffi
m1n3

p

þm2

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p þ n2
ffiffiffiffiffiffiffiffiffiffi
n1n3

p þ n2
ffiffiffiffiffiffiffiffiffiffiffi
n1m3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2m2n3

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2m2m3

p þm2

ffiffiffiffiffiffiffiffiffiffi
n1n3

p þm2

ffiffiffiffiffiffiffiffiffiffiffi
n1m3

p ¼ 0g : (38)

We may further note that the entire state-space configura-
tion remains positive definite for potential value of the ni,
mi. We thus observe that the underlying state-space ge-
ometry of six-charge nonextremal string theory configura-
tions are well in compliance, and in turn they generically
correspond to a nondegenerate fluctuating statistical ba-
sis as an intrinsic Riemannian manifold N :¼ M6 n B.
Furthermore, we see that the components of the covariant
Riemann tensors may become zero for definite values of
the charges on branes and antibranes. In addition, the Ricci
scalar curvature diverges at the same set of points on state-
space manifold ðM6; gÞ as that of the roots of the determi-
nant of metric tensor, viz., the points defined by the set B.

There exists an akin single higher degree polynomial
equation on which we precisely find that the Ricci scalar

curvature becomes null, and exactly to these points defin-
ing the state-space configuration of the underlying (ex-
tremal or near-extremal or general) nonlarge charge
black hole system, it corresponds to a noninteracting sta-
tistical system. Here, the state-space manifold ðM6; gÞ is
curvature free. A systematic calculation further shows that
the general expression for the Ricci scalar is quite
involved, and even for equal brane charges n1 :¼ n;
n2 :¼ n; n3 :¼ n and equal antibrane charges m1 :¼ m;
m2 :¼ m; m3 :¼ m the result does not sufficiently sim-
plify. Nevertheless, we find for the identical large values of
brane and antibrane charges n :¼ k and m :¼ k [15,16]
that there exists an attractive state-space configuration for
which the expression of corresponding curvature scalar
reduces to a particularly small negative value of
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RðkÞ ¼ � 15

16

1

�k3=2
: (39)

IV. MULTI-CENTERED D6D4D2D0

BLACK BRANES

The present section explores the state-space manifold
containing both single-centered black-brane solutions and
multicentered black-brane configurations, viz., we shall
study the state-space geometry whose co-ordinates are
defined in terms of four charges of the D6D4D2D0 black-
brane configurations. Here, we shall explicitly present the
analysis of the state-space correlations arising from the
entropy of stationary single-centered systems as well as
that of the double centered black hole molecule configura-
tions. Such multicentered black hole configurations have
recently been examined by the so called pin-sized D-brane
systems [45,46] and thus we intend to realize underlying
state-space geometry arising from the counting entropy of
the number of microstates of zoo of entropically dominant

multicentered black-brane configurations along with usual
single-centered black holes.
It has been shown [45,46] in suitable parameter regimes

that the multicentered entropy dominates the single-
centered entropy in the uniform large charge limit.
Following [15,16], we shall here investigate the state-space
geometric implication for the single center and two centers
of the multicentered D6D4D2D0 systems. In this connec-
tion, we may consider a charge � ¼ P

i�i obtained by
wrapping the D4-, D2-, and D0-branes around various
cycles of a compact space X, and the concerned charges
are scaled as � ! ��, and then there exists a two-centered
brane solution with horizon entropy scaling as �3, while
that of the single-centered entropy simply scales as �2.
More properly as analyzed in [45,46], let us consider the
type-IIA string theory compactified on a product of three
two-tori X :¼ T2

1 � T2
2 � T2

3 . Then, the entropy as a func-

tion of the charge � corresponding to p0D6-branes on X, p
D4-branes on ðT2

1 � T2
2Þ þ ðT2

2 � T2
3Þ þ ðT2

3 � T2
1Þ, q

D2-branes on ðT2
1 þ T2

2 þ T2
3Þ and q0D0-branes is given by

Sð�Þ :¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2

q
: (40)

The state-apace geometry constructed out of the equilibrium state of the four-chargedD6D4D2D0 black branes resulting
from the entropy may thus be easily computed as earlier from the negative Hessian matrix of the entropy with respect to the
D6-, D4-, D2-, D0-brane charges �i :¼ ðp�

i ; q�;iÞ, which in effect form the co-ordinates of the intrinsic state-space

manifold. Explicitly, we find that the components of the covariant metric tensor are given as

gp0p0 ¼ �4�
�3p2q2q02 þ 3pq4q0� q6 þ p3q03

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gp0p ¼ 6�
�p3q02qþ 2p2q0q3 þ p2q03p0� pq5 � 2pq2p0q02 þ p0q4q0

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gp0q ¼ �12�
2p3q2q0þ p2qq02p0� 2pq3q0p0� q4p2 þ q5p0� p4q02

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gp0q0 ¼ ��
�6p4qq0þ 3p2q2q0p0� 9pqq02p02 þ 5q3p3 � 6q4p0pþ 6q3p02q0þ 6p0q02p3 þ p03q03

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gpp ¼ �12�
p4q02 � p3q2q0� 3p2qq02p0þ 4pq3q0p0� p02q02q2 þ p02q03p� q5p0

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2 :gpq

¼ 3�
2p4qq0� 2p0q02p3 þ 3p2q2q0p0� 3q3p3 þ 2q4p0p� pqq02p02 � 2q3p02q0þ ðp0q0Þ3

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gpq0 ¼ �12�
p5q0� 2p3q0p0q� p4q2 þ 2p2q3p0þ pq2p02q0� p02q4

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gqq ¼ �12�
4p3q0p0q� p2q3p0� p2q02p02 � 3pq2p02q0þ p02q4 � p5q0þ p03qq02

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gqq0 ¼ 6�
�p5qþ 2p3q2p0� 2p2qp02q0þ p0p4q0� p02q3pþ p03q2q0

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

gq0q0 ¼ �4�
�p6 þ 3p4p0q� 3p02p2q2 þ p03q3

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � ðp0q0Þ2Þ3=2

(41)
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In order to simplify the presentation, we shall define Xa ¼
ðp0; p; q; q0Þ and subsequently use the following set of
notations 1 $ p0, 2 $ p, 3 $ q, 4 $ q0. Employing ei-
ther of the above notations, we observe from the definition
that the ascertained statistical pair correlations may in turn
be accounted by simple microscopic descriptions, which
can be expressed in terms of the brane charges connoting
an ensemble of microstates of the multicentered black hole
configuration. Furthermore, it is in fact evident that the
principle components of statistical pair correlations are
positive definite for all allowed values of the concerned
parameters of the D6-D4-D2-D0 black holes. As a result,
we can easily see that the concerned state-space metric
constraints are defined by

giiðXaÞ> 0 8 i 2 f1; 2; 3; 4g j mii < 0 : (42)

The principle components of state-space metric tensor
fgiiðXaÞji ¼ 1; 2; 3; 4g essentially signify a set of definite
heat capacities (or the related compressibility) whose pos-
itivity apprises that the black-brane solution complies an
underlying local equilibrium statistical configuration. It is
intriguing to note that the positivity of the components gii
requires that the brane charges of associated multicentered
D6-D4-D2-D0 black holes should satisfy the above con-
straints. This is indeed admissible because of the fact that
the brane configuration divulges physically stable system
for all values of the brane charges satisfying Eq. (42) with

m11 :¼ �3p2q2q02 þ 3pq4q0� q6 þ p3q03

m22 :¼ p4q02 � p3q2q0� 3p2qq02p0þ 4pq3q0p0� p02q02q2 þ p02q03p� q5p0

m33 :¼ 4p3q0p0q� p2q3p0� p2q02p02 � 3pq2p02q0þ p02q4 � p5q0þ p03qq02

m44 :¼ �p6 þ 3p4p0q� 3p02p2q2 þ p03q3 :

(43)

From the above expressions of metric tensor, we visualize that the ratios of the principle components of statistical pair
correlations vary as definite functions of the asymptotic charges; while those of the off diagonal correlations modulate
slightly differently. Interestingly, it follows for the distinct i, j, k, l 2 f1; 2; 3; 4g that the admissible statistical pair
correlations thus connoted are consisting of diverse scaling properties. The set of nontrivial relative correlations signifying
possible scaling relations of the state-space correlations may nicely be depicted by

Cr ¼
�
g11
g12

;
g11
g13

;
g11
g14

;
g11
g22

;
g11
g23

;
g11
g24

;
g11
g33

;
g11
g34

;
g11
g44

;
g12
g13

;
g12
g14

;
g12
g22

;
g12
g23

;
g12
g24

;
g12
g33

;
g12
g34

;
g12
g44

;
g13
g14

;
g13
g22

;
g13
g23

;
g13
g24

;
g13
g33

;

g13
g34

;
g13
g44

;
g14
g22

;
g14
g23

;
g14
g24

;
g14
g33

;
g14
g34

;
g14
g44

;
g22
g23

;
g22
g24

;
g22
g33

;
g22
g34

;
g22
g44

;
g23
g24

;
g23
g33

;
g23
g34

;
g23
g44

;
g24
g33

;
g24
g34

;
g24
g44

;
g33
g34

;
g33
g44

;
g34
g44

�
(44)

The local stability condition of the underlying statistical configuration under the Gaussian fluctuations requires that all
the principle components of the fluctuations should be positive definite, i.e. for a given set of state-space variables �i :¼
ðp�

i ; q�;iÞ one must demand that fgiið�iÞ> 0;8i ¼ 1; 2g. In particular, it is important to note that this condition is not

sufficient to insure the global stability of the chosen multicentered configuration and thus one may only accomplish certain
local equilibrium statistical configurations. It is however worth mentioning that the complete stability condition requires
that all the principle components of the Gaussian fluctuations should be positive definite and the other components of the
fluctuations should vanish. In order to ensure this condition, we can observe that all the principle components and all the
principle minors of the metric tensor must be strictly positive definite. This implies that the global stability condition
constrains the allowed domain of the parameters of black hole configurations, which are interestingly expressed by the
following set of simultaneous equations:

p1 ¼ �4�
ð�3p2q2q02 þ 3pq4q0� q6 þ q03p3Þ

ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � p02q02Þ3=2

p2 ¼ �12�2 ðq04p4 � 4q2q03p3 þ 6q4q02p2 � 4q6q0pþ q8Þ
ð4p3q0� 3p2q2 � 6p0pqq0þ 4p0q3 þ p02q02Þ2

p3 ¼ �36�3 ð�3p2q2q02 þ 3pq4q0� q6 þ q03p3Þ
ð�4p3q0þ 3p2q2 þ 6p0pqq0� 4p0q3 � p02q02Þ3=2 :

(45)
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In this case, we thus observe that the parameters p, q, q0,
and p0 of the solution remain (i) real in the domain in
which the entropy Sð�Þ remains a real valued function and
(ii) positive when the following constraints are simulta-
neously satisfied:

3p2q2q02 � 3pq4q0þ q6 � q03p3 > 0

q04p4 � 4q2q03p3 þ 6q4q02p2 � 4q6q0pþ q8 < 0 :

(46)

It is worth mentioning that the hyper-surface minor con-
straints, up to the scaling of 9�2, turn out to be the same as
the minor constraint p1 > 0. Thus, the condition p3 > 0
does not introduce extra constraint towards the ensemble
stability of the D6-D4-D2-D0 black holes.

In addition, it is evident that the local stability of the full
state-space configuration can likewise be determined by
computing the determinant of the metric tensor of con-
cerned state-space geometry. Here, we may easily compute
a compact formula for the determinant of the metric tensor
as the function of various possible values of brane charges.
In particular, our intrinsic geometric analysis assigns the
following constant expression to the determinant of the
metric tensor

kgk ¼ 9�4 : (47)

As the determinant of basic state-space metric tensor
is a constant and positive quantity in the viewpoints of
large charge consideration, one acquires a nonvanishing
central charge of corresponding D6-D4-D2-D0 CFT con-
figurations [45,46]. Our analysis herewith discovers that
there exists a nondegenerate state-space geometry for the
leading multicentered configurations. Furthermore, it is
worth noting that the determinant of the metric tensor
takes a positive definite form, which in turn shows that
there is a positive definite volume form on the concerned
state-space manifold ðM4; gÞ of the multicentered
D6-D4-D2-D0 black-brane configurations at the leading
order contributions.

Intelligibly, the positivity further follows from the fact
that the responsible equilibrium entropy tends to its maxi-
mum value, while the same culmination may not remain
valid on the chosen planes or hyper planes of the entire
state-space manifolds of the single-centered and doubly-
centered configurations. It is thus envisaged for either the
single or double center descriptions or the dual CFT des-
criptions that the multicentered black branes do correspond
to intrinsically stable statistical configurations. Thus, it is
indeed plausible that the underlying ensemble of CFT mi-
crostates upon subleading higher derivative corrections
lives in the same basis of D6-D4-D2-D0-brane charges.

A. State-space correlations of the single
center configurations

For the charges, p0 :¼ 0; p :¼ 6�; q :¼ 0; q0 :¼
�12�, describing the single center configurations consid-
ered in [45,46], we see that the above state-space correla-
tion functions reduce to the following values:

g11 ¼ �
ffiffiffi
2

p
; g13 ¼ 3

2
�

ffiffiffi
2

p ¼ �g22

g24 ¼ 3

4
�

ffiffiffi
2

p ¼ �g33; g44 ¼ 1

8
�

ffiffiffi
2

p

g12 ¼ 0 ¼ g14 ¼ g23 ¼ g34 :

(48)

Following the previously acclaimed notations, we ob-
serve that the statistical pair correlations being accounted
by simple state-space characterization can be expressed in
terms of the brane charges. Furthermore, an easy analysis
finds that all the principle components of the statistical pair
correlations are positive definite for chosen value of
parameters of the single center black holes. In particular,
we see for p0 :¼ 0; p :¼ 6�; q :¼ 0; q0 :¼ �12� that
the concerned state-space metric constraints can for all �
be depicted as

giiðXaÞ>0 8 i¼1; 3gjjðXaÞ<0 8 j¼2;4 : (49)

The principle components of state-space metric tensor
fgiiji ¼ 1; 2; 3; 4g signifying a set of heat capacities (or the
related compressibility) do not all find positive values.
Here, a violation of the positivity of heat capacity apprises
that the corresponding single center black-brane solution
corresponds to a locally unstable statistical configuration
over the Gaussian fluctuations. It is thus important to
mention that the positivity of principle components does
not hold for the above set of brane charges associated with
the single-centered D6D4D2D0 black branes.
In analyzing the other state-space constraints, we see

that the relative correlations defined as cijkl :¼ gij=gkl
reduce to the three sets of constant values, viz., finite,
zero, and infinite. First, following the proclaimed proce-
dure, we find that there are only 15 nonvanishing finite
ratios defining the relative state-space correlation functions
for the single center configuration

c1113 ¼ 2

3
¼ �c1122; c1124 ¼ 4

3
¼ �c1133c1144 ¼ 8;

c1322 ¼ �1 ¼ c2433 c1324 ¼ 2 ¼ �c1333;

c2233 ¼ 2 ¼ �c2224 c1344 ¼ 12 ¼ �c2244;

c2444 ¼ 6 ¼ �c3344 : (50)

Furthermore, an observation finds that the set of vanish-
ing ratios of relative correlation functions is

C0
R
:¼ fc1213; c1224; c1222; c1224; c1233; c1244; c1422; c1424;
c1433; c1444; c2324; c2333; c2344; c3444g ¼ f0g : (51)

STEFANO BELLUCCI AND BHUPENDRA NATH TIWARI PHYSICAL REVIEW D 82, 084008 (2010)

084008-14



In the Eq. (51), the symbol C0
R indicates the set of

vanishing state-space relative correlations, i.e., all the ele-
ments of the set C0

R are identically zero. On the other hand,
we notice for p0 :¼ 0; p :¼ 6�; q :¼ 0; q0 :¼ �12� that
there exist limiting ill-defined relative correlations. In par-
ticular, the concerned ratios get numeric exception, and
they receive a division by zero when approaching the
single-centered configuration. Thus, the characterization
of the relative state-space pair correlation may be accom-
plished by the set

C1
R
:¼fc1112;c1114;c1123;c1134;c1223;c1234;c1314;c1323;
c1334;c1423;c1434;c2223;c2234;c2334;c2434;c3334g¼f1g :

(52)

In the Eq. (52), the set C1
R indicates a set of infinite state-

space relative correlations, i.e., all the elements of the set
C1
R are infinite.

State-space stability of single center
D6-D4-D2-D0 configurations

Furthermore, we see that the entropy corresponding to

single center specification takes a constant value Sð� ¼
�ð0; 6; 0;�12ÞÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10368

p
�2. Whilst it is interesting to

note that the possible stability of internal configurations
under the Gaussian fluctuations is reduced to the positivity
of

p1 ¼
ffiffiffi
2

p
�; p2 ¼ �3�2; p3 ¼ 9

ffiffiffi
2

p
�3 : (53)

We thus find for the chosen values of brane charges
which physically describe single center systems that the
statistical configurations have definite stability and in-
stability characteristics. In particular, positivity of
p1ð0; 6�; 0;�12�Þ shows that the underlying brane con-
figurations are locally stable on an intrinsic state-space
line. Nevertheless, we observe for the chosen value of
brane charges that the two-dimensional surfaces of the
single center state-space configurations are not stable.
This has in turn been easily ascertained via the fact that
the associated surface minor constraint is not satisfied.
Specifically, it turns out for chosen set of charge

ð0; 6�; 0;�12�Þ that the system exhibits a negative
surface minor, viz., we have p2ð0; 6�; 0;�12�Þ< 0.
Similarly, one may however notice that the system turns
out to be stable on three-dimensional hyper-surfaces
against the single center configurations. The argument
follows directly from the fact that the hyper-surface minor
p3ð0; 6�; 0;�12�Þ picks up a positive definite value.
More generally, it is interesting to note that the general

expression of the determinant of the metric tensor defined
as g ¼ 9�4 remains constant for the entire domain of brane
parameters. In addition, we find for all nonzero entropy
solutions that the state-space scalar curvature signifying
global correlation volume of an underlying statistical sys-
tem has no divergence. As expected further from [15,16]
the leading order entropy solutions defining the single
solutions confirm for all admissible values of brane charges
that their state-space correlation volume varies as an
inverse function of the single center brane entropy ari-
sing from the degeneracy of equilibrium statistical
configurations.

B. State-space correlations of the
two-center configurations

In this subsection, we shall explicitly present the state-
space geometry of D6-D4-D2-D0 black holes in string
theory carrying a set of respective D-brane charges. We
notice that these solutions carry different state-space pair
correlations. For given�, this follows from the fact that the
two-center black holes in general have particular correla-
tions which are neither the same for both of the centers, nor
the same as that of the single center counterparts. We
nevertheless find that the global state-space correlations
which characterize stability of the vacuum string theory
configurations of either center do not change for the choice
of brane charges considered in [45,46].

1. State-space correlations at the first center

For the value of brane charges p0 :¼ 1; p :¼ 3�; q :¼
6�2; and q0 :¼ �6� defining first center of the two-center
D6-D4-D2-D0 configurations, we have the following com-
ponents of the state-space metric tensor

g11 ¼ 108��3 6�
2 þ 12�4 þ 8�6 þ 1

ð3�4 � 1Þ3=2 ; g12 ¼ �54��2 7�
2 þ 16�4 þ 12�6 þ 1

ð3�4 � 1Þ3=2

g13 ¼ 54��3 4�
2 þ 4�4 þ 1

ð3�4 � 1Þ3=2 ; g14 ¼ ��
18�4 þ 27�6 � 1

ð3�4 � 1Þ3=2 g22 ¼ 18��
13�2 þ 30�4 þ 24�6 þ 2

ð3�4 � 1Þ3=2 ;

g23 ¼ �3�
42�4 þ 12�2 þ 45�6 þ 1

ð3�4 � 1Þ3=2 g24 ¼ 9��3 1þ 2�2

ð3�4 � 1Þ3=2 ; g33 ¼ 3��
2þ 9�2 þ 12�4

ð3�4 � 1Þ3=2

g34 ¼ � 3

2
��2 1þ 3�2

ð3�4 � 1Þ3=2 ; g44 ¼ 1

2
��3 1

ð3�4 � 1Þ3=2 :

(54)
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Simplifying subsequent notations by defining cijkl :¼
gij=gkl, we then see at the first of the two-centers
D6-D4-D2-D0 that the relative state-space correlations de-
scribing concerned statistical system are physically sound
in nature. We in this case see that it is not difficult to
compute the cijkl. Nevertheless, the exact expression for
the set of cijkl is quite involved and thus we relegate it to
Appendix A 1.

2. State-space correlations at the second center

The value of charges p0 :¼ �1; p :¼ 3�; q :¼ �6�2;
and q0 :¼ �6� defines the second center of the two-
center configurations for which we have the following
limiting values of the state-space pair correlation
functions

g11 ¼ 108��3 6�
2 þ 12�4 þ 8�6 þ 1

ð3�4 � 1Þ3=2 ; g12 ¼ 54��2 7�
2 þ 16�4 þ 12�6 þ 1

ð3�4 � 1Þ3=2

g13 ¼ 54��3 4�
2 þ 4�4 þ 1

ð3�4 � 1Þ3=2 ; g14 ¼ �
18�4 þ 27�6 � 1

ð3�4 � 1Þ3=2 g22 ¼ 18��
13�2 þ 30�4 þ 24�6 þ 2

ð3�4 � 1Þ3=2 ;

g23 ¼ 3�
42�4 þ 12�2 þ 45�6 þ 1

ð3�4 � 1Þ3=2 g24 ¼ 9��3 1þ 2�2

ð3�4 � 1Þ3=2 ; g33 ¼ 3��
2þ 9�2 þ 12�4

ð3�4 � 1Þ3=2

g34 ¼ 3

2
��2 1þ 3�2

ð3�4 � 1Þ3=2 ; g44 ¼ 1

2
��3 1

ð3�4 � 1Þ3=2 :

(55)

Employing the previously defined notations, it is similarly
seen that the relative correlations cijkl :¼ gij=gkl of the
state-space configuration concerning second center of the
D6-D4-D2-D0 system simplify to the one which has been
presented in Appendix A 2.

3. State-space stability of double center
D6-D4-D2-D0 configurations

We shall now consider state-space stability for the two-
center black-brane configurations and analyze the related
positivity properties of their underlying statistical pair
correlation functions and correlation volumes for the ba-
sins of D6-D4-D2-D0 configurations. At the first and
second centers of the two-center D6-D4-D2-D0 con-
figurations, we find in turn that the mentioned statistical
pair correlations can be simply accounted by a common
factor of the charges �i. These notions further receive
support from microscopic descriptions, viz., an ensemble
of microstates of the multicentered black hole configura-
tions could effectively be expressed in terms of� as such a
basis, which is simply connoted via the invariant brane
charges f�ig.

As indicated by Denef and Moore in [45,46], the two-
centered bound state configurations arise with charge
centers �1 ¼ ð1; 3�; 6�2;�6�Þ and �2 ¼ ð�1; 3�;
�6�2;�6�Þ. Thus, we focus our attention for these
charge centers and analyze their state-space quantities as
the function of �. It is apparent for some given � that
the entropies at either of the two centers �1, �2 match, and,
in particular, we find that the double center entropy varies
as

Sð�1Þ ¼ Sð�2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108�6 � 36�2

p
��3 : (56)

For given charge centers �1 and �2, we may, apart from
definite scaling in �, appreciate over an equilibrium sta-
tistical basis that either of the state-space pair correlation
functions as defined in the Eqs. (54) and (55) can be
realized as an even function of the parameter �.
Similarly, one can contemplate the possible nature of the
pair correlation functions over the jump of one center to the
other. In turn for chosen �1 and �2, we find that the above
two-centerD6-D4-D2-D0 configurations form two types of
state-space pair correlation functions. In particular, we see
from the Eqs. (54) and (55) that the two proclaimed set of
pair correlations are

Cð1Þ
ij ð�Þ :¼ fgijð�1Þ ¼ gijð�2Þ; ði; jÞ

2 fð1; 1Þ; ð1; 3Þ; ð2; 2Þ; ð2; 4Þ; ð3; 3Þ; ð3; 4Þ; ð4; 4Þgg
Cð2Þ
ij ð�Þ :¼ fgijð�1Þ ¼ �gijð�2Þ; ði; jÞ

2 fð1; 2Þ; ð1; 4Þ; ð2; 3Þgg : (57)

It has explicitly been seen for nonvanishing � that the

state-space pair correlations belonging to Cð1Þ remain the
same for both the centers, while the pair correlations

belonging to the set Cð2Þ change their signature. The
present analysis implies that the principle components of
the metric tensor defining equilibrium statistical pair
correlations are positive definite for all allowed values of
the parameter �. In fact, the � being the single parameter
for both the first and second centers of the two-center
D6-D4-D2-D0 black branes describes potential sta-
bility and state-space correlation properties of the
D6-D4-D2-D0 multicenter configurations. As a result, we
see for all � and for either of the two centers, viz., �1 and
�2 that the respective state-space metric constraints satisfy
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giiðXaÞ> 0 8 i 2 f1; 2; 3; 4g : (58)

Furthermore, it is intriguing to note that the double
center black hole configurations arising with two different
charge vectors have the same set of principle minors. In
particular, we find that both the first center carrying
charges p0 :¼ 1; p :¼ 3�; q :¼ 6�2; q0 :¼ �6� and
the second center carrying charges p0 :¼ �1; p :¼ 3�;
q :¼ �6�2; q0 :¼ �6� have the same principle minors

p1 ¼ 108�j�j3
�
6�2 þ 12�4 þ 8�6 þ 1

ð3�4 � 1Þ3=2
�

p2 ¼ �972�2j�j4
�
1þ 8�2 þ 24�4 þ 32�6 þ 16�8

ð3�4 � 1Þ�2

�

p3 ¼ 972�3j�j3
�
6�2 þ 12�4 þ 8�6 þ 1

ð3�4 � 1Þ�3=2

�
: (59)

Although a state-space singularity can exist in general.
However, in the above case, this happens precisely for
the set of charges for which entropy of the black brane
vanishes. Specifically, the singularity occurs when the
scaling parameter � satisfies 3�4 ¼ 1. Finally, it interest-
ing to note in general that the determinant of the metric
tensor remains positive, implying a well-defined state-
space manifold ðM4; gÞ. In addition, we find that the
corresponding state-space scalar curvature signifying
global correlation properties of the underlying statistical
system has no divergence for all nonzero entropy solutions.
As expected, this confirms for all admissible values of
brane charges that the correlation volume of both the single
center solution and double center solutions modulates as
inverse function of the entropy associate with chosen basin
of the D6-D4-D2-D0 multicentered black brane con-
figurations.

V. FRACTIONATION OF BRANES:
D0-D4 BLACK HOLES

The present configurations in this section, as an eluci-
dation of the state-space geometry of small black holes in
string theory, carry a set of electric charges and a magnetic
charge. We notice that the state-space geometry of these
solutions is natural to analyze in the type-II string theory
description. In particular, it is known that these black holes
in general may carry a finite number of clusters parameters,
viz., electric charges and magnetic charge which character-
ize the vacuum string theory configurations made out of
D0-branes and D4-branes [5–8]. Furthermore, the general
details of [4,74–77] have been noteworthy towards some of
our subsequent considerations.

In order to make contact of state-space geometry with
definite microscopic perspective, let us consider the chiral
primaries of SUð1; 1 j 2ÞZ. Then, the associated supersym-
metric ground states of N ¼ 4 supersymmetric quantum
mechanics [52] furnish an understanding of the micro-
scopics of small black holes and concerned electric brane

fractionations. In this consideration, we may easily see that
there are 24p bosonic chiral primaries with total D0-brane
charge N in the background with fixed magneticD4 charge
p. Then, the degeneracy involved with the counting of
microstates arises from the combinatorics of total N num-
ber of the D0-brane charge splitting into k-small clusters
with ni number of D0-branes on each cluster such that the
sum

P
k
i¼1 ni ¼ N corresponds to the wrapped D2-branes

residing on any of the 24p bosonic chiral primary states.
Here, the counting is done with the degeneracy dN of states
having level function N in the (1þ 1) CFT with 24p
bosons, and thus one renders with the celebrated leading
order microscopic entropy formula

S ¼ lndN ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

nip

vuut : (60)

Below, we shall sequentially compute the components of
state-space covariant metric tensor, which are defined as
the negative Hessian matrix with respect to given k-electric
charges fnigki¼1 onD0-branes and the magnetic charge p on
D4-branes, and thereby divulge the state-space notion of
metric positivity, relative correlations as well as planar and
hyper-planar stability for the finite cluster small black-
brane configurations. Note that the properties of single
cluster configurations are already considered in the very
beginning of the present investigation.
An illustration of the basic idea of state-space geometry

of these particular black holes remains the same as that of
the excited string carrying n1 number of windingmodes and
np number of momentum modes. As we have first consid-

ered the case of simplest two-charge extremal configura-
tions, it turns out once again that the state-space geometry
of single cluster configurations can be analyzed in terms of
the net electric charges replacing the winding modes and
net magnetic charge replacing the momentum modes of an
excited string. In the next subsection, we shall first consider
the two-cluster configuration and analyze respective
state-space scaling relations and stability properties.

A. Two electric charge fractionation

In order to find the general pattern of state-space geo-
metric objects of brane fractionated small black holes, we
shall in this subsection explain the state-space geometry for
some potential values by restricting the number of electric
clusters in which the total N number of D0-brane charge
splits into specific finite partitions. In particular, we shall
first explore the case for k ¼ 2 for which the entropy with
two clusters takes the form

S ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn1 þ n2Þ

q
: (61)

In this case, there are two sets of charges carried by the
small black holes which can form co-ordinate charts on the
underlying state-space configuration. We shall take the first
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set of state-space variables to be the fractionated D0-brane
numbers fn1; n2g which are simply proportional to the
available fraction of the electric charges present in respec-
tive clusters, while the other state-space variable is the
number ofD4-branes which is represented by the magnetic
charge p. We then find that the components of state-space
metric tensor arising from the Hessian of entropy ofD0-D4

black holes are

gpp ¼ �

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p

s
gpn1 ¼ gpn2 ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðn1 þ n2Þ
p

gn1n1 ¼ gn1n2 ¼ gn2n2 ¼
�

ðn1 þ n2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

n1 þ n2

s
: (62)

For i, j 2 fn1; n2g, and p, we observe that the statistical
pair correlations just accounted may in turn be simply
ascertained by microscopic descriptions which are being
expressed in terms of large integers (or associated brane
charges) of the D0-D4 small black-brane solutions connot-
ing an ensemble of microstates. Furthermore, it is evident
for the small black-brane configurations that the principle
components of the statistical pair correlations are positive
definite for allowed values of the concerned parameters of
small black-brane solution. As a result, we can easily see
for all admissible sets of n1, n2, and p that the components
of state-space metric tensor as given above comply

gppðn1;n2;pÞ>0; gniniðn1;n2;pÞ>0 8 i¼1;2 : (63)

The principle components of state-space metric tensor
fgnini ; gppji ¼ 1; 2g in effect signify a set of positive defi-

nite heat capacities (or the related compressibilities) of the
two-cluster configurations. In fact, the positivity constraint
apprises that theD0-D4 black branes comply an underlying
local equilibrium statistical configuration. Furthermore, it
is intriguing to note that the nondiagonal component gninj
also takes a positive value, viz., we have

gn1n2 > 0 8 ðn1; n2; pÞ : (64)

This shows that the correlations between the associated
number of D0-branes in (1þ 1) CFT (or the charges in
dual description) remain positive in the limit of large
electric charges. This is clearly perceptible because of
the fact that the leading order fractionated small black-
brane configuration becomes unphysical for these values of
the brane parameters.

Interestingly, it follows that the ratios of the principle
components of statistical pair correlations involving elec-
tric charges or one electric charge in either correlations are
identical, whereas the ratios involving both the electric and
magnetic charges vary as inverse square of the connoted
charges, while the ratios involving the off diagonal pair
correlations modulate only inversely. From the above
expressions, it is not difficult to visualize, for the distinct
i, j 2 fn1; n2g, and the magnetic charge p, that the

admissible statistical pair correlations as described above
obey the following scaling properties:

gii
gjj

¼ gii
gij

¼ gip
gjp

¼ 1
gii
gip

¼ gii
gjp

¼ gip
gpp

¼ gij
gip

¼ �
�

p

n1 þ n2

�
gii
gpp

¼ gij
gpp

¼
�

p

n1 þ n2

�
2
: (65)

Apart from the positivity of principle components of
state-space metric tensor, one demands, in order to accom-
plish the locally stable statistical configuration, that all
associated principle minors of the configuration should
be positive definite. It is furthermore not difficult to com-
pute the list of the principle minors, viz., fp1; p2g from the
Hessian matrix of the associated entropy of fractional
D0-D4 black branes. In fact, after some simple manipula-
tions, one encounters that the concerned stability
conditions at a point along one dimensional lines and the
two-dimensional surfaces of state-space manifold are, res-
pectively, measured by

p0 ¼ 1; p1 ¼ �

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p

s
; p2 ¼ 0 : (66)

For all physically allowed values of invariant electric-
magnetic charges of the D0-D4 black holes, one thus
stipulates that the minor constraint p1 > 0 obliges that
the domain of ascribed magnetic charge must, respectively,
take positive values, while the surface constraint p2 ¼ 0
implies that there are no electric-magnetic charges such
that the p2 remains a positive real number, and thus the
two-dimensional subconfigurations of leading orderD0-D4

black holes are not stable. In effect, we can further inspect
the complete nature of state-space configuration for the
D0-D4 black branes with electric fractionations that the
entire stabilities of the system do not hold for any value of
electric and magnetic charges. This follows from the non-
existence of a positive definite value of the determinant of
the metric tensor. In particular, we see easily for all i, j 2
fn1; n2g, and p that the determinant of the state-space
metric tensor finds vanishing value. In two-cluster fractio-
nations, the leading order D0-D4 system is unstable over
the Gaussian statistical fluctuations.

B. Three electric charge fractionation

We focus our attention on an extension of state-space
analysis for larger number of electric cluster for the D0-D4

black-brane configurations. The exploration begins by con-
sidering three clusters of D0-branes, and single cluster of
D4 magnetic brane for the spherical horizon four-
dimensional small black hole solutions. What follows
here is that the magnetic charge is quantized in terms of
the number D4-branes, while that of the electric charges
render as the number of brane present in the chosen cluster
of configurations. More precisely, the underlying electric
and magnetic charges take large integer values in terms of
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the net number of constituent D0- and D4-branes. In turn,
one arrives at the simple quantization condition that the
existing charges may be inscribed as fractionated brane
configuration. Such space-time solutions appear quite natu-
rally in the string theory, see for example [4,74–77]. In this
case, one finds from the general entropy expression that the
three cluster entropy of D0-D4 black branes is given to be

S ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn1 þ n2 þ n3Þ

q
: (67)

Thus, the intrinsic Riemannian geometry as the equilib-
rium state-space configuration may immediately be intro-
duced as earlier from the negative Hessian matrix of the
entropy of three electric charges and one magnetic charge
extremal small black holes with D0-brane fractionations.
We find that the components of the state-space metric
tensor are easily obtained with respect to the underlying
electric charges fn1; n2; n3g and the magnetic charge p as

gpp ¼ �

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2 þ n3

p

s

gpn1 ¼ gpn2 ¼ gpn3 ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn1 þ n2 þ n3Þ

p
gn1n1 ¼ gn1n2 ¼ gn1n3 ¼ gn2n2 ¼ gn2n3 ¼ gn3n3

¼ �

ðn1 þ n2 þ n3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

n1 þ n2 þ n3

s
:

(68)

For all i, j 2 fn1; n2; n3g, and p, we notice that the
similar set of positivity conditions and state-space scaling
relations are followed as that of the two electric charge
fractionation. Hitherto, we see apparently that the principle
components of state-space pair correlations remain positive
definite quantities for all admissible values of underlying
electric-magnetic charges of the black-brane configuration.
It is easy to observe for given n1, n2, n3, and p that the
following state-space metric constraints are satisfied

gppðn1; n2; n3; pÞ> 0;

gniniðn1; n2; n3; pÞ> 0 8 i ¼ 1; 2; 3 :
(69)

Physically, one may thus note that the principle compo-
nents of state-space metric tensor fgii; gppji ¼ n1; n2; n3g
signify a set of heat capacities (or the associated compres-
sibilities) whose positivity exhibits that the underlying
D0-D4 small black-brane system is in the locally equilib-
rium statistical configurations. Our analysis further com-
plies that the positivity of gpp obliges that the associated

dual conformal field theory living on the boundary must
prevail a nonvanishing value of the magnetic charge defin-
ing an associated degeneracy of a large number of confor-
mal field theory microstates. It is worth mentioning for
given i, j 2 fn1; n2; n3g, and p that the inter cluster state-
space correlation functions are again nontrivial in nature.
In particular, we see in this case that the nondiagonal

components gninj of the metric tensor take definite positive

values

gninjðn1; n2; n3; pÞ> 0 8 i � j 2 f1; 2; 3g : (70)

We may notice further that the ratio of principle com-
ponents of state-space pair correlations form three different
sets of relations, and specifically we find in a chosen cluster
that they remain the same, vary as the inverse of the
involved electric-magnetic charges, and the others vary
as inverse square of the involved parameters. It is in fact
not difficult to inspect for nonidentical i, j, k 2 f1; 2; 3g,
and p that the state-space pair correlations are consisting of
the following type of scaling relations

gij
gjj

¼ gii
gjj

¼ gik
gii

¼ gik
gjj

¼ gik
gij

¼ gip
gjp

¼ 1

gii
gip

¼ gij
gjp

¼ gij
gkp

¼ gii
gjp

¼ gip
gpp

¼ �
�

p

n1 þ n2 þ n3

�

gii
gpp

¼ gij
gpp

¼
�

p

n1 þ n2 þ n3

�
2
: (71)

An investigation of definite global properties of three
electric clustered D0-D4 black-brane configurations deter-
mines certain stability considerations along each direction,
each plane, and each hyper plane, as well as on the entire
intrinsic state-space manifold. Specifically, we can deter-
mine whether the underlying D0-D4 configuration is
locally stable on state-space planes and hyper planes, and
thus one needs to compute corresponding principle minors
of negative Hessian matrix of the D0-D4 black hole en-
tropy. In this case, we may easily appraise, for all physi-
cally likely values of magnetic charge and electric charges,
that the possible principle minors computed from the above
state-space metric tensor are

p0 ¼ 1; p1 ¼ �

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2 þ n3

p

s
;

pi ¼ 0; i ¼ 2; 3 : (72)

In the entropy representation, it could thus be seen that
the principle minors defined by

p2ðn1; n2; n3; pÞ :¼ g11g22 � g212

p3ðn1; n2; n3; pÞ :¼ gn1n1ðgn2n2gn3n3 � g2n2n3Þ
� gn1n2ðgn1n2gn3n3 � gn1n3gn2n3Þ
þ gn1n3ðgn1n2gn2n3 � gn1n3gn2n2Þ

(73)

vanish identically for all admissible values of the electric
charges n1, n2, n3, and magnetic charge p. In turn,
one can easily observe that the vanishing condition
pi>1ðn1; n2; n3; pÞ ¼ 0 signifying the state-space configu-
rations corresponding to the three clusters of electric
D0-branes indicates that the statistical system remains
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unstable over possible surfaces and hyper-surfaces.
Furthermore, we indeed find for the entire system that the
positivity of finalminor is just the positivity condition of the
determinant of the metric tensor. Then, an easy inspection
observes further that the determinant of the metric tensor
vanishes as well for all three clusters of electric charges and
magnetic charge fn1; n2; n3; pg, which form co-ordinates on
its state-space configuration.

C. Multi electric charge fractionation

Now, we shall consider the state-space configuration for
the most general case of brane fractionation in the finite
cluster of D0-D4 small black branes and present our analy-
sis from the viewpoints of associated microscopic entropy
obtained for k clusters. It turns out that the involved
entropy can be defined via an appropriate degeneracy
formula and the concerned expression reduces to the en-
tropy as ascribed in Eq. (60).

The state-space geometry describing the local pair cor-
relations between the equilibrium microstates of multiclus-
tered charged extremal D0-D4 black holes resulting from
degeneracy of microstates may then be computed as earlier
from the Hessian matrix of Eq. (60) with respect to the
parameters, viz., theD0 electric charges fn1; n2; . . . nkg and
the D4 magnetic charge p. At this juncture, we obtain that
the components of underlying state-space covariant metric
tensor are generically given by

gpp ¼ �

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k
i¼1 ni
p

s
gpni ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðPk
i¼1 niÞ

q

gninj ¼
�

ðPk
i¼1 niÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pP

k
i¼1 ni

s
; 8 i; j ¼ 1; 2; . . . ; k :

(74)

For finite number of parameters of the D0-D4 black-
brane configurations, viz., the electric charges i, j, k, l 2
fn1; n2; . . . nkg, and the magnetic charge p, we observe that
the specific inspections observed in previous subsections
for the two- and three-cluster systems hold as well. In
effect, it is evident in general that the principle components
of equilibrium statistical pair correlations are positive defi-
nite for all allowed values of concerned parameters of the
D0-D4 small black branes in each of the electric clusters.
As an immediate result, one finds from the present analysis
that the concerned state-space metric constraints are
satisfied with

gnini > 0 8 i ¼ 1; 2; . . . ; k

gpp > 0 8 ðn1; n2; . . . ; nk; pÞ :
(75)

Interestingly, it is worth mentioning that our geometric
expressions arising from the entropy of small black holes
indicate that some of the brane charges can be safely turned
off, say ni ¼ 0, while having a well-defined state-space
geometry. However, it is unfeasible to have an intrinsic

state-space configuration of small black holes with no elec-
tric charge or no magnetic charge, say ni ¼ 08 i or p ¼ 0,
since the objects inside the square root of the statistical
entropy vanish, and thus the argued small black hole con-
figurations with vanishing number of either D0-branes or
D4-branes are no more well-defined state-state configura-
tions. The case of finitely many electric branes indeed
agrees with our expectation that the nondiagonal compo-
nents gninj find their respective positive values

gninj > 0 8 ðn1; n2; . . . ; nk; pÞ : (76)

Under the present considerations, we thus observe for
given fraction of the electric charges i � j � k � l 2
fn1; n2; . . . ; nkg and the magnetic charge p that the relative
state-space pair correlation functions form the same scaling
qualifications as in the case of three clusters of D0 electric
branes dealt with in Eq. (71), except for the fact that now
the sum in the denominator runs over f1; 2; � � � ; kg.
Furthermore, one may now easily see for the D0-D4 con-
figurations involving four or higher clusters of D0-branes
that there exists an extra identical scaling relation

gij
gkl

¼ 1 : (77)

We thus see for the most general leading order brane
fractionation in D0-D4 system that there are in total 14
types of relative correlation functions at the chosen state-
space basis. It is worth mentioning that an appraisal of
exhaustive state-space stability constraints demands that
all the associated principle minors must be positive defi-
nite, as the positivity of principle components of metric
tensor defines the local linear stability in the neighborhood
of the chosen local co-ordinate chart on an underlying
ðMkþ1; gÞ describing concerned state-space manifold of
finite clustered D0-D4 solutions.
Specifically for i, j 2 fn1; n2; . . . nkg, and p, we find that

there are no extra types of planar and hyper-planar stabil-
ities as that of the relative state-space correlation functions
other than the linearly stable multiclustered D0-D4 small
black-brane system. It is rather easy to divulge the physical
picture of the solution set, and in fact after some simplifi-
cations one discovers that the planar stability criteria on
the two-dimensional surfaces and hyper-planar stability
criteria on the three or higher dimensional surfaces of the
state-space manifold may simply be rendered from the
definition of the state-space geometry.
Intriguingly, it is not difficult to compute from the con-

sideration of the Hessian matrix of k-clustered D0-D4

black-brane leading order entropy solutions that the list of
nonzero principle minors remains the same as that of the
two- or three-clustered configurations. In addition, as in
the case of two and three clusters of electric charges, we
observe for general k electric charge configurations that
the set of all possible principle minors fpiðn1; n2; . . .
nk; pÞj8i > 1g remains zero on the state-space manifold
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ðMkþ1; gÞ as well as on respective lower dimensional asso-
ciated systems of multiclustered D0-D4 black branes.

It is worth mentioning, in particular, that the local
stability of full small black-brane state-space configuration
is determined by computing the determinant of concerned
state-space metric tensor. Herewith, we may in principle as
well compute a compact formula for the determinant of the
metric tensor, and, indispensably, our intrinsic state-space
geometric analysis arising from the leading order entropy
consideration demonstrates that the determinant of the
metric tensor does not find a nonvanishing value for any
admissible finite electric clusters of theD0-D4 black-brane
configurations.

In the next section, we shall consider implications of
state-space geometry arising from the fuzzball solutions
and explicate the nature of scaling properties of possible
state-space pair correlation functions and stability require-
ments of the fuzzy ring solutions in the setup of Mathur’s
fuzzball consideration [49].

VI. THE FUZZBALL SOLUTIONS: FUZZY RINGS

The viewpoints of the Mathur’s fuzzball solutions [58]
are considered in this section. To be specific, we shall
analyze concerned aspects of state-space geometry for
the most exhaustively studied two-charge extremal black
branes having electric-magnetic charges ðQ;PÞ and an
angular momentum J. We shall focus, in particular, on
the analysis of the state-space observations in terms of
concerned parameters of the fuzzball solution and thereby
shed light on the state-space quantities from Mathur’s
recent proposal to find an ensemble of microstates, which
form an equilibrium statistical basis, over which we shall
define the associated thermodynamic intrinsic state-space
geometry.

It is worth mentioning in the fuzzball picture that one
can construct the classical space-time geometry with defi-
nite horizon topology when many of the quanta of the
underlying three-parameter D1-D5-P CFT lie in the same
mode. Nevertheless, it turns out in general that the generic
states will not have all the quanta placed in a few modes, so
the throat of concerned black hole space-times ends in a
very quantum fuzzball, see for the introduction of the
fuzzball solutions [47–49].

It is however interesting to note in the fuzzball picture
that the actual microstates of such black branes do not have
an event horizon. Rather, it is the area of the boundary of
the fuzzy region where microstates start differing from
each other that satisfies a Bekenstein-Hawking type rela-
tion and thereby defines an entropy inside the chosen
boundary. Moreover, it turns out, according to the string
theory picture, that the different microstates are ‘‘capped
off’’ before reaching the end of an infinite throat, and thus
they give rise to different near horizon space-time geome-
tries. In particular, the average throat behaves as the inverse
of the average radius of the fuzzballs. Thus the Bekenstein-

Hawking entropy [47–49] has been obtained from the area
of such a stretched horizon whose state-space interpreta-
tion may be obtained from the coarse graining statistical
entropy

SðQ;P; JÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QP� J

p
: (78)

The associated state-space geometry of the rotating
two-charge fuzzy ring system can then be constructed
out of the parameters which characterize the microstates
of the black brane. In particular, we can perform an
investigation either in terms of the D1-brane electric
charge Q and D5-brane magnetic charge P or correspond-
ingly the n1 number of D1-branes and n5 number of
D5-branes. Then, the dimension of the state-space mani-
fold is equal to the number of actual parameters which
define the fuzzy black ring solution. We shall then study
the state-space configurations whose co-ordinates deal
with the charges or number of constituent branes. In
particular, we shall consider the electric-magnetic charges
ðQ;PÞ and angular momentum J that define co-ordinates
on the concerned state-space manifold of the two-charge
fuzzy black ring solution.
The state-apace geometry constructed out of the equi-

librium state of the rotating two-charged extremal black
ring resulting from the entropy can now easily be com-
puted as before from the negative Hessian matrix of the
entropy with respect to the charges and angular momen-
tum. Note that an understanding of the state-apace geome-
try based on the stretched horizon requires the classical
time scale limit of the fuzzball. This is because the size of
the fuzzball is made by the generic states, such that its
surface area to the leading order satisfies a Bekenstein-
Hawking type relation with the entropy of the fuzzball,
whose boundary surface becomes like a horizon only over
classical time scales. We may therefore see that the com-
ponents of the metric tensor are explicitly given as

gPP ¼ 1

4
CQ2ðPQ� JÞ�3=2;

gPQ ¼ � 1

4
CðPQ� 2JÞðPQ� JÞ�3=2

gPJ ¼ � 1

4
CQðPQ� JÞ�3=2;

gQQ ¼ 1

4
CP2ðPQ� JÞ�3=2

gQJ ¼ � 1

4
CPðPQ� JÞ�3=2;

gJJ ¼ 1

4
CðPQ� JÞ�3=2 :

(79)

From the simple D-brane description, we observe that
there exists an interesting brane interpretation which de-
scribes the state-space correlation formulae arising from
the corresponding microscopic entropy of the aforemen-
tioned two-charge rotating D1-D5 solutions. Furthermore,
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the state-space correlations turn out to be in precise accor-
dance with an associated attractor configuration being dis-
closed in the limiting special Bekenstein-Hawking
solution. In the entropy representation, it has then been
noticed that the Hessian matrix of the entropy illustrates
the basic nature of possible state-space correlations be-
tween the set of extensive variables, which in this case
are nothing more than the D1- and D5-brane charges and
angular momentum. As mentioned before, we can articu-
late in this case as well that, for all nonzero admissible
values of P, Q, J, the principle components of the intrinsic
state-space metric tensor satisfy

gPP > 0; gQQ > 0; gJJ > 0 : (80)

Substantially, the principle components of the state-
space metric tensor signify heat capacities or the associated
compressibility, whose positivity indicates that the under-
lying statistical system is in a local equilibrium, consisting
of the D1- and D5-brane configurations. Furthermore, we
perceive that the ratio of possible diagonal components
varies as the inverse square which weakens faster, and thus
relatively quickly comes into an equilibrium configuration,
than those involving the off diagonal components varying
inversely in the involved parameters. Incidentally, the ra-
tios of nondiagonal components varying inversely remain
comparable for a longer domain with respect to the pa-
rameters varying under the Gaussian fluctuations. We have,
in particular, inspected 8i � j 2 fP;Qg and J that the
relative pair correlation functions satisfy the following
scaling relations:

gii
gjj

¼
�
j
i

�
2
; gii

gJJ
¼ j2;

gij
gii

¼ � 1
j2
ðPQ� 2JÞ

gii
giJ

¼ �j;
giJ
gjJ

¼ j

i
;

gii
gjJ

¼ � j2

i

giJ
gJJ

¼ �j;

gij
giJ

¼ 1

j
ðPQ� 2JÞ; gij

gJJ
¼ �ðPQ� 2JÞ : (81)

An investigation of definite global properties of two-
charged fuzzball configurations determines certain stabi-
lity approximations along each direction, each plane, each
hyper plane, and on the entire intrinsic state-space mani-
fold. In this case, as we intend to determine whether the
underlying fuzzball configuration is locally stable on state-
space planes and hyper planes, we are thus required to
compute corresponding principle minors of the negative
Hessian matrix of the entropy. Specifically, we may easily
appraise, for all physically likely values of the brane charge
and angular momentum, that the possible principle minors
computed from the above state-space metric tensor are
nonzero definite functions of the electric-magnetic charges
fP;Qg and the angular momentum J. We in effect see, for
all admissible parameters describing the three-parameter
fuzzball solutions, that the list of concerned state-space
stability functions is

p1¼1

4
CQ2ðPQ�JÞ�3=2; p2¼1

4
C2JðPQ�JÞ�2 : (82)

In the Eq. (82), we thus notice that the cases J > 0 and J <
0 are different solutions. In the present case, these regimes
describe the two different ergo branches and occur as per
definition of the fuzzy ring entropy Eq. (78). The minor
constraints on p1, p2 imply that the two-charge fuzzball
solutions under consideration are stable over the lines,
planes of the state-space configuration, for all values of
the D1-, D5-brane charges, and any positive value of the
angular momentum. As we have shown in the previous
examples, the determinant of the metric tensor thus defined
is nonzero for nonzero brane charges and angular momen-
tum. In fact, it is easy to observe that the determinant of the
metric tensor reduces to

kgk ¼ � 1

16
C3ðPQ� JÞ�5=2 : (83)

Similarly, the constraint p3 :¼ gðQ;P; JÞ< 0 results in
an interpretation that this configuration is globally un-
stable over the full intrinsic state-space configurations.
This is also intelligible from the fact that the responsible
equilibrium entropy tends to its maximum value, while
the same culmination does not remain valid over the entire
state-space manifold. It may in turn be envisaged in the
D1-D5-P description that the fuzzball black rings do not
correspond to intrinsically stable statistical basis, when all
the configuration parameters fluctuate. Thus, it is very
probable that the underlying ensemble of chosen CFT
microstates upon subleading higher derivative correc-
tions may smoothly move into more stable brane
configurations.
Finally, in order to elucidate the universal nature of the

statistical interactions and the other properties concerning
fuzzball rotating black rings, one needs to determine defi-
nite global state-space geometric invariant quantities on
their intrinsic state-space manifold. Indeed, we notice that
the indicated simplest invariant is achieved just by comput-
ing the state-space scalar curvature, which, as explained in
[15,16], can be obtained in a straightforward fashion by
applying the standard method of our intrinsic geometry. In
the large charge limit, in which the asymptotic expansion
of the entropy of the two-charge rotating ring solution is
valid, we notice, in particular, that the state-space scalar
curvature can rather be expressed as an inverse function of
the entropy.
An exact analysis in turn finds that the constant of

proportionality between the state-space scalar curvature
and the entropy is negative, and thus we find the fuzzy
ring to be an attractive statistical configuration, see for
related interpretations [15,16]. Most importantly, it turns
out, in the limit when the fuzzy ring is viewed in the
perspective of many fuzzballs, that the present analysis
relies on the corrected averaged horizon configuration.
Finally, it is worth mentioning that the statistical systems
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of theD1-D5-P fuzzy rings find an intriguing conclusion in
the Gaussian approximations, and, consequently, the
present description vindicates physically sound contain-
ments that the state-space configuration of fuzzy rings is
nondegenerate, curved, and an everywhere regular intrinsic
Riemannian manifold ðM3; gÞ.

VII. BUBBLING BLACK-BRANE SOLUTIONS:
BLACK-BRANE FOAMS

In this section, we finally analyze the state-space ge-
ometry of an ensemble of equilibrium microstates charac-
terizing three charge foamed black-brane configurations in
M theory [51]. These supergravity bubbling solutions natu-
rally appear in the string theory and M theory, see for
concerned details [51,78–80]. The study of bubbled
space-time geometries and axis-symmetric merger solu-
tions then turns out to be interesting for further investiga-
tion from the viewpoints of our state-space geometry. We
shall here show that the possible characterization of the
state-space geometry has herewith been accomplished in
terms of the parameters describing an ensemble of micro-
states for the three-charge black-brane foam solutions [81].

A. A Toy model: Single Gibbons-Hawking center

The state-space geometry arising from entropy of the
foam configurations having single Gibbons-Hawking (GH)
center can be divulged by considering the M-theory back-
ground [51] compactified on T6. In the large N limit, one
then finds a set of flux parameters which may be written in
terms of brane charges. It is worth remarking that the
associated topological entropy is independent of the num-
ber and charges on the Gibbons-Hawking base points. The
origin of such an entropy lies solely in the possible number
of choices of positive quantized fluxes on topologically
nontrivial cycles.

Indeed, it turns out that these cycles satisfy definite
constraints, viz one finds, in particular, that the super-
gravity and worldvolume descriptions have the same rela-
tion between the brane parameters, which determined the
entropy of the bubbled black-brane foam, see for instance
[51]. Note that an understanding of the state-apace geo-
metry based on the bubbling black branes requires the
knowledge of the Bekenstein-Hawking entropy, which
could be obtained from the area of the horizon of the
chosen solution. A microscopic interpretation may then
be offered as the coarse graining of the concerned combi-
natorial entropy of the foam.

In order to describe the state-space geometry of the
single center Gibbons-Hawking configuration, we shall,
in particular, consider a set of flux parameters fk1i ; k2i ; k3i g
to be positive half integers [51]. Then, the topological
entropy coming from the leading order contributions of
the fluxes fk1i g, where the index i defines the positions of
the Gibbons-Hawking base points, has been written as

SðQ1; Q2; Q3Þ :¼ �

3

ffiffiffi
6

p �
Q2Q3

Q1

�
1=4

: (84)

As proclaimed in the previous subsections, we notice in
this case as well, that the state-apace geometry describing
the nature of equilibrium brane microstates can be con-
structed out of the three charges of the bubbled black-brane
foams. The covariant metric tensor, as invoked earlier, can
immediately be computed from the negative Hessian ma-
trix of the foam entropy resulting from the underlying
statistical configuration. Thus, the brane charges, viz.,
fQ1; Q2; Q3g form the co-ordinate charts for the state-space
manifold of our interest. Thus, with respect to the brane
parameters, we may describe the typical intrinsic geomet-
ric features of the bubbled black-brane foams having single
GH-center. In fact, we notice that the components of the
covariant metric tensor can easily be presented to be

gQ1Q1
¼ � 5�

ffiffiffi
6

p
48Q2

1

�
Q2Q3

Q1

�
1=4

;

gQ1Q2
¼ �

ffiffiffi
6

p
Q3

48Q2
1

�
Q1

Q2Q3

�
3=4

gQ1Q3
¼ �

ffiffiffi
6

p
Q2

48Q2
1

�
Q1

Q2Q3

�
3=4

;

gQ2Q2
¼ �

ffiffiffi
6

p
16

�
Q3

Q1

�
2
�

Q1

Q2Q3

�
7=4

gQ2Q3
¼ � �

ffiffiffi
6

p
48Q1

�
Q1

Q2Q3

�
3=4

;

gQ3Q3
¼ �

ffiffiffi
6

p
16

�
Q2

Q1

�
2
�

Q1

Q2Q3

�
7=4

:

(85)

One thus appreciates, for all i, j, k 2 f1; 2; 3g describing
the single GH-center bubbling brane configuration, that the
state-space geometry materializing from the leading order
Bekenstein-Hawking entropy of the toroidally compacti-
fied M-theory configuration admits remarkably simple
expressions in terms of physical charges. It may again be
expected that the microscopic preliminaries would plausi-
bly be suggested via the Cardy formula or the associated
general Hardy-Ramanujan formula. As enumerated in ear-
lier sections, we nevertheless stress, for all nonzero values
of the brane charges Q1, Q2, Q3, that the principle compo-
nents of the concerned state-space metric tensor satisfy

gQ1Q1
< 0; gQ2Q2

> 0; gQ3Q3
> 0 : (86)

The present analysis physically proclaims that the prin-
ciple components of the state-space metric tensor signify
heat capacities or the relevant compressibilities, whose
positivity connotes that the underlying statistical system
is in locally stable equilibrium configurations of an en-
semble of dual CFT microstates. Moreover, it is rather
instructive to note that the behavior of the brane-brane
statistical pair correlation defined as gQ1Q1

is asymmetric,
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in contrast to the other existing diagonal correlations. In
fact, one can understand it by arguing that an increment of
the Q1-brane charge reduces the entropy, and thus it cor-
responds to locally unstable state-space interactions, in
contrast with the brane-brane self-interactions involving
either Q2 or Q3 charges.

Furthermore, it has been substantiated that the ratio of
diagonal components varies as the inverse square of the
invariant parameters, which vary under the Gaussian fluc-
tuations, whereas the ratios involving off diagonal compo-
nents vary only inversely with the chosen charges. In
particular, we see for i, j, k 2 fQ1; Q2; Q3g describing
the single GH-center configuration that the possible rela-
tive state-space correlation functions are defined as

CBB :¼
�
gij
gjj

;
gii
gjj

;
gik
gii

;
gik
gjj

;
gik
gij

�
: (87)

This suggests that the diagonal components weaken
faster, and hence relatively quickly come into an equilib-
rium, than the off diagonal components, which remain
comparable for the longer domain of the parameters defin-
ing the single GH-center bubbling configurations. An ex-
plicit observation shows that the relative pair correlation
functions satisfy a simple set of scaling relations. In par-
ticular, we can easily observe, for given distinct i, j, k 2
fQ1; Q2; Q3g, that the possible relative state-space correla-
tion functions for the single GH-center find the following
values:

CS
BB ¼

�
g13
g22

;
g12
g13

;
g12
g22

;
g22
g33

;
g23
g22

�

¼
�
1

3

Q2
2

Q1Q3

;
Q3

Q2

;
1

3

Q2

Q1

;

�
Q3

Q2

�
2
;� 1

3

Q2

Q3

�
: (88)

As noticed in the previous configurations, it is not diffi-
cult to analyze the local stability for the bubbling black
holes as well. In particular, one can determine the principle
minors associated with the state-space metric tensor and
thereby demand that all the principle minors must be
positive definite. In this case, we may adroitly compute
the principle minors from the Hessian matrix of the asso-
ciated entropy concerning the three-charge bubbling black
holes. From the Eq. (73), we find that the local stability
criteria on the two-dimensional surfaces and the three-
dimensional hyper-surfaces of the underlying state-space
manifold are, respectively, given by the following rela-
tions:

p1 ¼ � 5
ffiffiffi
6

p
�

48
Q1�9=4Q21=4Q31=4;

p2 ¼ ��2

24
Q1�5=2Q2�3=2Q31=2 :

(89)

For all physically admitted values of brane charges of
the bubbling black holes, we may thus easily ascertain that
the minor constraint, viz., p1ðQiÞ> 0 inhibits the domain

of assigned charges, that two of them must be positive, and
the third one has to be a be negative real number, while the
constraint p2ðQiÞ> 0 imposes that the brane charges must,
respectively, satisfy the above definite brane charge con-
ditions. In particular, these constraints enable us to inves-
tigate the nature of the state-space geometry of M-theory
bubbling black holes. We thus observe that the presence of
planar and hyper-planar instabilities exist for the bubbling
black holes, which together impose a restriction on the
allowed values of the brane charges.
As stated earlier, we find in this case that the determinant

of the state-space geometry describing correlations be-
tween two chosen microstates of the bubbled black-brane
foams may be characterized in terms of the extensive brane
charges of the single GH-center solution. Employing the
state-space consideration of the negative Hessian matrix of
the foam entropy, with respect to the brane charges
fQ1; Q2; Q3g, we find that the determinant of the metric
tensor is given by

kgk ¼ � �3
ffiffiffi
6

p
384Q4

1

�
Q1

Q2Q3

��5=4
: (90)

Furthermore, for equal values of the charges Q1 :¼ Q,
Q2 :¼ Q, and Q3 :¼ Q, it is easy to see that the principle

minor p1 :¼ g11 reduces to p1 ¼ � 5
ffiffi
6

p
�

48 Q�7=4, while the

surface minor p2 :¼ g11g22 � g212 shows further that the
two-dimensional state-space configurations of underlying
single GH-center solutions are unstable. In particular, we
find an explicit expression for equal values of charges, i.e.

that the surface minor is given by p2ðQÞ ¼ � �2

24 Q
�7=2.

As expected, we see for equal value of brane charges,
viz., Qi ¼ Q that the toy model single GH bubble black-
brane solution remains unstable over an entire fluctuating
statistical configuration. This follows from the fact that the
determinant of the metric tensor, as being the highest

principle minor p3, reduces to gðQÞ ¼ � �3
ffiffi
6

p
384 Q�21=4.

Interestingly, it is noteworthy from the general expres-
sion of the determinant of the metric tensor, and in addition
that of the state-space scalar curvature signifying a global
correlation volume of the underlying statistical system, that
the single GH-center bubbled systems are unstable and find
an attractive statistical nature for a given nonzero entropy
solution. Finally, for all admissible values of brane charges,
we come up with the fact that the state-space scalar curva-
ture, signifying global correlation length of an underlying
statistical system, confirms no divergence, and, in turn, it
varies as an inverse function of the entropy of the chosen
single center GH-center bubbled configurations.

B. Black-brane foams

In this subsection, we shall consider the state-space
geometry of the most general three-center GH solutions,
which may exhaustively be contemplated by three brane
charges of the bubbled black-brane configurations. The
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co-ordinate chart of the underlying intrinsic state-space
manifold naturally emerge from the parameters of equilib-
riummicrostates of chosen bubbling supergravity solutions
[82–85]. It turns out from the details of brane parameters
that one may easily ascribe the state-space definitions to
the central charge contributions associated with the rotat-
ing black branes in Minkowski space as well. In effect, our
attention shall therefore be focused on possible U-dual
configurations and describe a promising analysis in the
viewpoints of [86–89].

Here, our very purpose will thus be to exploit the state-
space meanings of symmetric factors of brane charges
arising from an elementary conformal field theory living
on the boundary. As we have encountered the state-space
geometry of the single GH-center bubbled black branes in
the previous subsection, in this subsection we shall analyze
the state-space fluctuations for unrestricted 3-charge
bubbled black-brane foam solutions [51]. Thereby, we
shall examine the general nature of concerned state-space
configurations over leading order symmetric charge con-
tributions into the topological entropy of the three-charged
bubbled black-brane foams, characterized by the charges
Q1, Q2, and Q3. It turns out by considering appropriate

factors coming from the partitioning of concerned flux
parameters, viz., fk1i ; k2i ; k3i g that the involved topological
entropy may be defined by the following formula:

SðQ1; Q2; Q3Þ :¼ 2�ffiffiffi
6

p
��
Q2Q3

Q1

�
1=4 þ

�
Q1Q2

Q3

�
1=4

þ
�
Q1Q3

Q2

�
1=4

�
: (91)

It is again not difficult to explore the state-space geome-
try of the equilibrium microstates of the three-charge
bubbled black-brane foams arising from the entropy ex-
pression, which concerns just the Einstein-Hilbert action.
As stated earlier, the Ruppeiner metric on the state-space
manifold is given by the negative Hessian matrix of the
ring entropy with respect to the thermodynamic variables.
The state-space variables in this case are the conserved
brane charges, which in turn are proportional to the fluxes
carried by the constituent branes. Explicitly, we find in this
case that the components of covariant state-space metric
tensor are
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It follows from the above expressions that the statistical pair
correlations thus described can in turn be accounted for by a
simple geometric description, expressed in terms of the
brane charges connoting an ensemble of fluxes, for the
general three GH centered bubbling black-brane configura-
tions. Furthermore, we observe that the principle compo-
nents of the underlying state-space configuration are positive
definite for all allowed values of the bubbling parameters of
the multicenter GH solution. In particular, it is evident for
functions fiiðQ1; Q2; Q3Þ, as defined in Eq. (94), that the
state-space metric constraints defining the positivity of
concerned diagonal pair correlation functions are

gQiQi
ðQ1; Q2; Q3Þ> 0 8 i 2 f1; 2; 3g j fii < 0 : (93)

Essentially, the principle components of the state-
space metric tensor fgQiQi

ji ¼ 1; 2; 3g signify a set of

definite heat capacities (or the related compressibilities),
whose positivity for a range of involved charges, as
presented below, apprises that the bubbled black holes
comply with an underlying locally stable equilibrium
statistical configuration along each direction. It is intri-
guing to note that the positivity of gQiQi

holds, even if

some of the brane charges of the associated brane
charges become zero. This is clearly perceptible because
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of the fact that the brane configuration remains physical
and locally stable for all brane charges ðQ1; Q2; Q3Þ,

such that the following relations defining Eq. (93) are
satisfied:
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ffiffiffi
6

p
48Q2

1

�
Q2Q3

Q1

�
1=4 �

ffiffiffi
6

p
16Q1

�
Q2

Q3Q1

�
1=4 �

ffiffiffi
6

p
16Q1

�
Q3

Q2Q1

�
1=4

f22ðQ1; Q2; Q3Þ :¼ 5
ffiffiffi
6

p
48Q2

2

�
Q1Q3

Q2

�
1=4 �

ffiffiffi
6

p
16Q2

�
Q3

Q1Q2

�
1=4 �

ffiffiffi
6

p
16Q2

�
Q1

Q3Q2

�
1=4

f33ðQ1; Q2; Q3Þ :¼ 5
ffiffiffi
6

p
48Q2

3

�
Q1Q2

Q3

�
1=4 �

ffiffiffi
6

p
16Q3

�
Q2

Q1Q3

�
1=4 �

ffiffiffi
6

p
16Q3

�
Q1

Q2Q3

�
1=4

:

(94)

Interestingly, it is immediately observed that the ratio of
the associated components of statistical pair correlations
vary as a definite sum and are symmetric factors of
concerned brane charges, whereas we see that there is
no very direct scaling relations, as in the case of the single
GH-center bubbling brane configurations. Nevertheless,
we notice, for the distinct i, j, k 2 f1; 2; 3g, that the
number of statistical pair correlations, thus described,
remains the same. Moreover, we find for the multiple
GH-center black-brane foam configuration that the same
type of relative correlation set is followed, except that the
relative correlation functions now take realistic values
over the parameters of given flux partitions. It is worth
noting that the precise scaling properties are easily vi-
sualized, just by considering the set CBB of the possible

ratios, consisting of the components of the state-space
metric tensor of the three-charge bubbling black-brane
configurations.
Although there exists the positivity of the principle

components of state-space metric tensor, nevertheless, in
order to accomplish local state-space stability, one needs to
further demand that all associated principle minors should
be positive definite. It is rather easy to obtain the principle
minors of the Hessian matrix of the entropy associated with
multiple GH-center black-brane foams. In fact, one finds,
after standard algebraic manipulations, that the local
stability conditions on the one dimensional line, two-
dimensional surfaces, and three-dimensional hyper-
surfaces on the state-space manifold are, respectively,
measured by the following expressions:
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An investigation of definite global properties of the
general bubbled black-brane foam configurations deter-
mines certain stability approximations along each direc-
tion, each plane, and each hyper plane, as well as on the
entire intrinsic state-space manifold. Specifically, we
need to determine whether the underlying three GH-
center foam configuration can be locally stable on
state-space planes and hyper planes, and thus one is
required to just compute the corresponding principle
minors of the negative Hessian matrix of the foam
entropy. Moreover, one finds that the principle minor
p1 remains positive for all ðQ1; Q2; Q3Þ, such that the
function ~p1ðQ1; Q2; Q3Þ satisfies

~p 1ðQ1; Q2; Q3Þ :¼ 5Q3=2
1 Q2

2Q
2
3 � 3Q2

1Q
3=2
2 Q2

3

� 3Q2
1Q

2
2Q

3=2
3 < 0 : (96)

It is further intriguing to mention, from the viewpoint of
our present consideration, that the principle minor p2 :¼
g11g22 � g212 reduces to positive values for a domain of
brane charges. In particular, we see, for given values of
admissible brane charges, that the state-space stability
on two-dimensional surfaces is ensured, provided the func-
tion
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finds a definite negative value for a set of given brane
charges ðQ1; Q2; Q3Þ. Alternatively, the linear and planar
stabilities require that the given foam configurations be
scarcely populated, and thus the net brane charges are

STEFANO BELLUCCI AND BHUPENDRA NATH TIWARI PHYSICAL REVIEW D 82, 084008 (2010)

084008-26



effectively bounded by some maximum brane charges.
Moreover, it is not difficult to investigate the global
stability on the full state-space configuration, which
may in fact be easily carried out by computing the de-
terminant of the state-space metric tensor. In this case, we
observe that the determinant of the intrinsic state-space
metric tensor is a well behaved function of brane charges.
From the definition of the highest principle minor, viz.,
p3ðQ1; Q2; Q3Þ :¼ kgk, it is in fact not difficult to com-
pute that the determinant of the metric tensor reads

kgk ¼ ��3
ffiffiffi
6

p
384

ðQ1Q2Q3Þ�13=4~gðQ1; Q2; Q3Þ; (98)

where the factor ~gðQ1; Q2; Q3Þ is defined by
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More explicitly, we see for equal values of brane charges
Qi :¼ Q that the principle minors and the determinant of
the metric tensor being defined as the highest principle
minor, viz., p3 :¼ gðQÞ reduce to the following set of
values:

p1ðQÞ¼
ffiffiffi
6

p
�

48
Q�7=4; p2ðQÞ¼0; gðQÞ¼0 : (100)

Thus, the minor constraint p1 > 0 implies that the three
GH-center foam configurations under consideration
are stable over the lines of the state-space manifold.
However, the vanishing of higher minor constraints, viz.,
fpi ¼ 0 j i ¼ 2; 3g implies that the system is not stable
over the planes and the hyper planes of underlying state-
space configurations for any positive values of the brane
charges. In particular, the constraint g ¼ 0 results in an
interpretation that the equal charge foam is unstable over
the entire three-dimensional manifold describing the full
intrinsic state-space configuration. In the limit of the equal
charges Qi ¼ Q, we have shown that the state-space Ricci
scalar curvature of the black-brane foam diverges. This is
because the determinant of the state-space metric tensor
vanishes identically for Qi ¼ Q.

VIII. CONCLUSION AND DISCUSSION

We have analyzed state-space pair correlation functions
and the notion of stability for the extremal and nonextremal
black holes in string theory and M theory. Our considera-

tion is from the viewpoints of thermodynamic state-space
geometry. We find, from the intrinsic Riemannian geome-
try, that the stability of these black branes have been
divulged from the positivity of principle minors of the
space-state metric tensor. We have explicitly analyzed the
state-space configurations for (i) the two- and three-charge
extremal black holes, (ii) the four- and six-charge nonex-
tremal black branes.
The former arises from the string theory solutions con-

taining large number of branes, while the latter accounts
for both the branes and antibranes. The numbers of branes
and antibranes offer a set of parameters to define an intrin-
sic state-space geometry. An extension of the state-space
geometry is analyzed for the D6-D4-D2-D0 multicentered
black branes, small black holes with fractional electric
branes, and two-charge rotating fuzzy rings in the setup
of Mathur’s fuzzball configurations. The state-space pair
correlations and the potential nature of stabilities are
thereby investigated for the three-charged bubbling black-
brane foams. The state-space configuration finds further
support from the consideration of [14–16,59], and thus the
nature of state-space geometry of rotating and nonrotating
charged black branes in string theory and M theory have,
respectively, been examined.
In either of the black-brane configurations, it has been

shown that there exists an intriguing property of relative
space-state correlations, namely, that the ratio of diagonal
components varies as the inverse square of the chosen
parameters, while the off diagonal components vary as
the inverse of the chosen parameters. Similarly, for the
corresponding nonextremal configurations, we find that
the ratio of diagonal components weakens faster then for
the other, off diagonal components. Our analysis thus
suggests that the brane-brane statistical pair correlation
functions, which find an asymmetric nature in comparison
with the other relative pair correlations, weaken relatively
faster, and thus they swiftly come into an equilibrium
statistical configuration. In both configurations, the under-
lying microscopic notion of the state-space interactions
arises from coarse graining of the counting entropy over
large numbers of CFT microstates of the considered black
branes.
We have analyzed the state-space configurations arising

from fluctuating spherical horizon string theory and
M-theory black-brane solutions. In effect, the present
paper has exemplified our theory held at the outset for
diverse string theory extremal and nonextremal black-
brane solutions, multicentered black-brane configurations,
fuzzy rings, and single and multi Gibbons-Hawking center
bubbling black-brane foams. It is instructive to note in
this perspective that state-space investigations of string
theory and M-theory black-brane configurations are based
on an understanding of the microscopic entropy of various
black branes, in which the present consideration requires
the coarse graining phenomenon of a large number of
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degenerate CFT microstates, defining an equilibrium
statistical basis for the chosen black-brane system. The
present analysis, thus, offers a direct method to uncover
statistical properties of fluctuating black-brane con-
figurations.

An exploration finds that the crucial ingredient in ana-
lyzing the state-space manifold of black-brane configura-
tions depends on the parameters carried by the space-time
solution or that of an underlying microscopic conformal
field theory. An illustration of the state-space geometry of
these black branes includes the case of extremal and non-
extremal configurations, which in both of the proclaimed
configurations demonstrates that the stability constraints,
arising from the state-space pair correlation functions, in
effect determine the potential nature of the local and global
correlations. It is worth mentioning that the components of
a state-space metric tensor are the two-point statistical
correlation functions. In general, these correlations are
intertwined in the fluctuation of the parameters of the
associated boundary CFT.

This is because the required parameters of black-brane
configurations, which describe the microstates of the dual
conformal field theory living on the boundary, may in
principle be determined via an application of the AdS/
CFT correspondence. Consequently, our intrinsic geomet-
ric formalism thus described deals with an ensemble of
degenerate CFT ground states, which at small constant
positive temperature form an equilibrium vacuum configu-
ration, over which we have defined the Gaussian statistical
fluctuations. It is interesting to note that the quadratic
nature of Gaussian statistical fluctuations, about an equi-
librium statistical configuration, determines the metric
tensor of associated state-space manifolds. In both cases,
our explicit computation shows, over a definite domain of
black-brane parameters, that the principle components of
state-space metric tensors are positive, while the nonident-
ical off diagonal ones may be or may not be positive. It has
nonetheless been explicitly observed, for the case of finite
electric clusters of D0-D4 state-space configurations, that
some of ratios involving off diagonal components of metric
tensor are also positive.

Interestingly, the related correlations weaken as the
concerned parameters are increased. In particular, we
find an accordance for two-charge extremal black holes
or an excited string with two state-space variables, viz.,
brane numbers or brane charges and Kaluza-Klein momen-
tum or three-chargeD1-D5-P extremal solutions having n1
number of D1-branes, n5 number of D5-branes, np number

of Kaluza-Klein momentum. Then, we find for a pair of
distinct state-space variables fXi; Xjg that the state-space

pair correlations of both such extremal configurations
scale as

gii
gjj

¼
�
Xj

Xi

�
2
;

gij
gii

¼ � Xi

Xj

: (101)

Furthermore, the particular behavior of generic
statistical pair correlation functions, characterizing
state-space configurations of four- and six-charge non-
extremal black holes in string theory, satisfies inverse
like scaling properties, with integer or half-integer
exponents. It may thus be envisaged that the generic
state-state correlations of string theory and M-theory
black holes, with or without rotation, decrease as an
increment is introduced in the parameters of the con-
cerned solution.
In order to appreciate definite global properties of the

concerned systems, we have explained in this article that
one is required to determine the nature of stabilities along
each direction, each plane, and each hyper plane, as well as
on all the intrinsic state-space configurations. Our analysis
has in effect demonstrated that the determinant of the
metric tensor is negative definite as well for the configu-
rations having large numbers of branes and/ or antibrane. It
has however been known from the Ruppeiner geometry
that only the classical fluctuations having definite thermal
origin deal with the probability distribution, which has a
positive definite invariant intrinsic Riemannian metric
tensor over an equilibrium statistical configuration. This
signals that the system becomes highly quantum in nature
when all the parameters fluctuate. In fact, our state-space
construction, for the string theory and M-theory black
holes dealing with the parameters of microscopic CFTs,
illustrates that the local stabilities, degeneracy, and global
signature of a state-space manifold can as well be inde-
finite, and in effect these notions are sensitive to the
location chosen in the moduli space geometry of the black
branes.
Importantly, the sign of principle minors and deter-

minant of the state-space metric tensor implies whether
the chosen black-brane solution is thermodynamically
stable or not. In contrast, the vacuum phase transitions
may rather be characterized via the scalar curvature of
the concerned state-space configuration. The present
investigation thus serves as a prelude to the state-space
geometry of an arbitrary parameter black-brane configu-
ration in string theory and M theory. Moreover, it has
been explicated that the explored examples have an
interesting set up of intrinsic state-space geometric
characterizations, which are based on the general nature
of the quadratic Gaussian fluctuations of the chosen
black brane’s statistical configuration. In this concern,
we find, in general, that these configurations are cate-
gorized as
(1) The underlying subconfigurations turn out to be

well-defined over possible domains whenever there
exists a respective set of nonzero state-space prin-
ciple minors.

(2) The underlying full configuration turns out to be
everywhere well-defined whenever there exists a
nonzero state-space determinant.

STEFANO BELLUCCI AND BHUPENDRA NATH TIWARI PHYSICAL REVIEW D 82, 084008 (2010)

084008-28



(3) The underlying configuration corresponds to an in-
teracting statistical system whenever there exists a
nonzero state-space scalar curvature.

The main line of thought, which has been followed
here, has first been to develop an intrinsic Riemannian
geometric conception of the underlying state-space
geometry, arising from leading order statistical interac-
tions, which exist among various CFT microstates of
(rotating) black-brane configurations in string theory
and M theory. The perspective notions indicate that
novel scaling aspects of the state-space pair correlation
and state-space stability, in effect, arise from the nega-
tive Hessian matrix of the coarse graining entropy, de-
fined over an ensemble of a large number of brane
microstates, characterizing the considered black-brane
attractor configurations. Intimately, we have investigated
whether the associated state-space geometries are non-
degenerate and possess nonvanishing scalar curvature,
implying an interacting statistical basis for these configu-
rations, like the one above. For instance, we have de-
scribed the state-space configuration of the multicentered
D6-D4-D2-D0 solutions. In particular, we have presented
the complete list of the corresponding related state-space
correlation functions. Thus, the present investigation uni-
fies the thermodynamic properties of extremal and non-
extremal solutions in the string theory and M theory.
Moreover, a good test for the thermodynamic stability of
the underlying configurations is to calculate the signs of
the principle minors of the Ruppeiner metric and check
if all of them are positive. Interestingly, we find that the
behavior of statistical pair correlations between equilib-
rium microstates is governed by a set of consistent
parameters defining underlying CFT vacuum configura-
tions, and, then, the same has been anticipated to remain
valid for the other associated intrinsic geometric quanti-
ties on the concerned state-space manifold as well. In
this context, the state-space investigation of the other
string theory and M-theory black hole or black-brane
configurations has been further considered in the
Refs. [59–61].

Finally, the higher order �0 corrections, when taken into
account in the underlying effective theory, are envisaged to
offer diverse well-defined state-space configurations.
Generically, the �0-corrected state-space configurations
are at least expected to be nondegenerate, rather than an
ill-defined intrinsic Riemannian geometry arising from the
leading order entropy configuration. Such a notion has
been offered for entropy solutions in the two-charge
D0-D4 black holes or in an excited string to leading order.
Similar motivations along these directions have been ob-
tained in previous state-space investigations [14–16,59].
Herewith, we have contemplated that the state-space ge-
ometry of black branes in string theory and M theory
would ascribe definite well-defined, nondegenerate and
curved intrinsic Riemannian manifolds, whose pair

correlation functions scale as inverse functions of the
parameters.
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APPENDIX

In this appendix, we provide explicit forms of the
state-space relative correlation functions at the first and
second centers of the multicentered D6D4D2D0 black
holes describing the family of the four-charged configu-
rations. Our analysis illustrates that the physical prop-
erties of the specific state-space correlations may
exactly be exploited in general. The definite behavior
of state-space correlations, as accounted in the con-
cerned section, suggests that the various intriguing
single center and multicenter state-space examples of
black-brane solutions include the nice feature that they
do have definite stability properties, except for the fact
that the determinant may be nonpositive definite in
some cases. As mentioned in the main sections, these
D6D4D2D0 configurations are generically well-defined
and indicate an interacting statistical basis. We discover
here that their state-space geometries indicate the pos-
sible nature of general two-center equilibrium thermo-
dynamic configurations. Significantly, we notice from
the very definition of the intrinsic metric tensor that
the related state-space correlations may be analyzed as
follows.

1. State-space relative correlations at the first center

Here, we shall explicitly provide the exact expres-
sions for the four-parameter multicentered solutions at
the first center of the double centered black holes. It
turns out that the functional nature of a large number of
branes, within a small neighborhood of statistical fluc-
tuations, introduced in an equilibrium ensemble of
brane configurations, may precisely be divulged.
Surprisingly, we can expose in this framework that the
related state-space correlations at the first center with
charges p0 :¼ 1; p :¼ 3�; q :¼ 6�2; and q0 :¼ �6�
take an exact and simple set of expressions
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6�2 þ 12�4 þ 8�6 þ 1

4�2 þ 4�4 þ 1

c1114 ¼ �108
6�2 þ 12�4 þ 8�6 þ 1

18�4 þ 27�6 � 1
; c1122 ¼ 6�2 6�2 þ 12�4 þ 8�6 þ 1

13�2 þ 30�4 þ 2þ 24�6

c1123 ¼ �36�3 6�2 þ 12�4 þ 8�6 þ 1

42�4 þ 12�2 þ 45�6 þ 1
; c1124 ¼ 12

6�2 þ 12�4 þ 8�6 þ 1

1þ 2�2

c1133 ¼ 36�2 6�
2 þ 12�4 þ 8�6 þ 1

2þ 9�2 þ 12�4
; c1134 ¼ �72�

6�2 þ 12�4 þ 8�6 þ 1

1þ 3�2

c1144 ¼ 1296�2 þ 2592�4 þ 1728�6 þ 216; c1213 ¼ � 7�2 þ 16�4 þ 1þ 12�6

�ð4�2 þ 1þ 4�4Þ
c1222 ¼ �3�

7�2 þ 16�4 þ 1þ 12�6

13�2 þ 30�4 þ 2þ 24�6
; c1223 ¼ 18�2 7�2 þ 16�4 þ 1þ 12�6

42�4 þ 12�2 þ 45�6 þ 1

c1224 ¼ �6
7�2 þ 16�4 þ 1þ 12�6

�ð1þ 2�2Þ ; c1233 ¼ �18�
7�2 þ 16�4 þ 1þ 12�6

9�2 þ 12�4 þ 2

c1234 ¼ 36
7�2 þ 16�4 þ 1þ 12�6

3�2 þ 1
; c1244 ¼ �108

7�2 þ 16�4 þ 1þ 12�6

�

c1314 ¼ �54�3 4�2 þ 1þ 4�4

18�4 þ 27�6 � 1
; c1322 ¼ 3�2 4�2 þ 1þ 4�4

13�2 þ 30�4 þ 2þ 24�6

c1323 ¼ �18�3 4�2 þ 1þ 4�4

42�4 þ 12�2 þ 45�6 þ 1
; c1324 ¼ 6

4�2 þ 1þ 4�4

1þ 2�2
c1333 ¼ 18�2 4�2 þ 1þ 4�4

9�2 þ 12�4 þ 2
;

c1334 ¼ �36�
4�2 þ 1þ 4�4

1þ 3�2
c1344 ¼ 432�2 þ 108þ 432�4; c1422 ¼ � 1

18�

18�4 þ 27�6 � 1

13�2 þ 30�4 þ 2þ 24�6

c1423 ¼ 1

3

18�4 þ 27�6 � 1

42�4 þ 12�2 þ 45�6 þ 1
; c1424 ¼ � 1

9�3

18�4 þ 27�6 � 1

1þ 2�2
c1433 ¼ � 1

3�

18�4 þ 27�6 � 1

9�2 þ 12�4 þ 2
;

c1434 ¼ 2

3�2

18�4 þ 27�6 � 1

1þ 3�2
c1444 ¼ � 2

�3
ð18�4 þ 27�6 � 1Þ; c2223 ¼ �6�

13�2 þ 30�4 þ 24�6 þ 2

42�4 þ 12�2 þ 45�6 þ 1

c2224 ¼ 2

�2

13�2 þ 30�4 þ 24�6 þ 2

1þ 2�2
; c2233 ¼ 6

13�2 þ 30�4 þ 24�6 þ 2

9�2 þ 12�4 þ 2

c2234 ¼ �12
13�2 þ 30�4 þ 24�6 þ 2

�ð1þ 3�2Þ ; c2244 ¼ 36
13�2 þ 30�4 þ 24�6 þ 2

�2

c2324 ¼ � 1

3�3

42�4 þ 12�2 þ 45�6 þ 1

1þ 2�2
; c2333 ¼ � 1

�

42�4 þ 12�2 þ 45�6 þ 1

9�2 þ 12�4 þ 2

c2334 ¼ 2

�2

42�4 þ 12�2 þ 45�6 þ 1

1þ 3�2
; c2344 ¼ � 6

�2
ð42�4 þ 12�2 þ 45�6 þ 1Þ

c2433 ¼ 3�2 1þ 2�2

9�2 þ 12�4 þ 2
; c2434 ¼ �6�

1þ 2�2

1þ 3�2
c2444 ¼ 18þ 36�2;

c3334 ¼ � 2

�

9�2 þ 12�4 þ 2

3�2 þ 1
c3344 ¼ 6

�2
ð9�2 þ 12�4 þ 2Þ; c3444 ¼ � 3

�
ð3�2 þ 1Þ : (A1)

2. State-space relative correlations at the second center

As stated earlier, the state-space metric, in the multicentered and single black-brane configurations, is given by the
negative Hessian matrix of the concerned entropy. Here, the charges on the branes, in a given configuration, are respected
to be extensive variables. In this case, we find that the four distinct large charges characterize the intrinsic state-space
correlation functions. In fact, our computation shows that the exact set of correlations at the second center are given by
employing the previously defined notations. We have similarly presented, for the second center of the D6-D4-D2-D0

system, that the relative state-space correlations simplify

STEFANO BELLUCCI AND BHUPENDRA NATH TIWARI PHYSICAL REVIEW D 82, 084008 (2010)

084008-30



c1112 ¼ �2
6�2 þ 12�4 þ 8�6 þ 1

7�2 þ 16�4 þ 12�6 þ 1
; c1113 ¼ 2

6�2 þ 12�4 þ 8�6 þ 1

4�2 þ 4�4 þ 1

c1114 ¼ 108�3 6�
2 þ 12�4 þ 8�6 þ 1

18�4 þ 27�6 � 1
; c1122 ¼ 6�2 6�2 þ 12�4 þ 8�6 þ 1

13�2 þ 30�4 þ 2þ 24�6

c1123 ¼ 36�3 6�2 þ 12�4 þ 8�6 þ 1

42�4 þ 12�2 þ 45�6 þ 1
; c1124 ¼ 12

6�2 þ 12�4 þ 8�6 þ 1

1þ 2�2

c1133 ¼ 36�2 6�
2 þ 12�4 þ 8�6 þ 1

2þ 9�2 þ 12�4
; c1134 ¼ �72�

6�2 þ 12�4 þ 8�6 þ 1

1þ 3�2

c1144 ¼ 1296�2 þ 2592�4 þ 1728�6 þ 216; c1213 ¼ � 7�2 þ 16�4 þ 1þ 12�6

�ð4�2 þ 1þ 4�4Þ
c1222 ¼ �3�

7�2 þ 16�4 þ 1þ 12�6

13�4 þ 12�2 þ 45�6 þ 1
; c1223 ¼ �18�2 7�2 þ 16�4 þ 1þ 12�6

42�2 þ 12�2 þ 45�6 þ 1

c1224 ¼ �6
7�2 þ 16�4 þ 1þ 12�6

�ð1þ 2�2Þ ; c1233 ¼ �18�
7�2 þ 16�4 þ 1þ 12�6

9�2 þ 12�4 þ 2

c1234 ¼ 36
7�2 þ 16�4 þ 1þ 12�6

3�2 þ 1
; c1244 ¼ �108

7�2 þ 16�4 þ 1þ 12�6

�
c1314 ¼ 54�3 4�2 þ 1þ 4�4

18�4 þ 27�6 � 1
;

c1322 ¼ 3�2 4�2 þ 1þ 4�4

13�2 þ 30�4 þ 2þ 24�6
c1323 ¼ 18�3 4�2 þ 1þ 4�4

42�4 þ 12�2 þ 45�6 þ 1
; c1324 ¼ 6

4�2 þ 1þ 4�4

1þ 2�2

c1333 ¼ 18�2 4�2 þ 1þ 4�4

9�2 þ 12�4 þ 2
; c1334 ¼ �36�

4�2 þ 1þ 4�4

1þ 3�2
c1344 ¼ 432�2 þ 108þ 432�4;

c1422 ¼ 1

18�

18�4 þ 27�6 � 1

13�2 þ 30�4 þ 2þ 24�6
c1423 ¼ 1

3

18�4 þ 27�6 � 1

42�4 þ 12�2 þ 45�6 þ 1
; c1424 ¼ 1

9�3

18�4 þ 27�6 � 1

1þ 2�2

c1433 ¼ 1

3�

18�4 þ 27�6 � 1

9�2 þ 12�4 þ 2
; c1434 ¼ � 2

3�2

18�4 þ 27�6 � 1

1þ 3�2
c1444 ¼ 2

�3
ð18�4 þ 27�6 � 1Þ;

c2223 ¼ 6�
13�2 þ 30�4 þ 24�6 þ 2

42�4 þ 12�2 þ 45�6 þ 1
c2224 ¼ 2

�2

13�2 þ 30�4 þ 24�6 þ 2

1þ 2�2
; c2233 ¼ 6

13�2 þ 30�4 þ 24�6 þ 2

9�2 þ 12�4 þ 2

c2234 ¼ �12
13�2 þ 30�4 þ 24�6 þ 2

�ð1þ 3�2Þ ; c2244 ¼ 36
13�2 þ 30�4 þ 24�6 þ 2

�2

c2324 ¼ 1

3�3

42�4 þ 12�2 þ 45�6 þ 1

1þ 2�2
; c2333 ¼ 1

�

42�4 þ 12�2 þ 45�6 þ 1

9�2 þ 12�4 þ 2

c2334 ¼ � 2

�2

42�4 þ 12�2 þ 45�6 þ 1

1þ 3�2
; c2344 ¼ 6

�2
ð42�4 þ 12�2 þ 45�6 þ 1Þ

c2433 ¼ 3�2 1þ 2�2

9�2 þ 12�4 þ 2
; c2434 ¼ �6�

1þ 2�2

1þ 3�2
c2444 ¼ 18þ 36�2; c3334 ¼ � 2

�

9�2 þ 12�4 þ 2

3�2 þ 1

c3344 ¼ 6

�2
ð9�2 þ 12�4 þ 2Þ; c3444 ¼ � 3

�
ð3�2 þ 1Þ : (A2)
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