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We assume that the early universe is homogeneous, anisotropic, and is dominated by the mutually

Bogomol’nyi-Prasad-Sommerfeld 220550 intersecting branes of M theory. The spatial directions are all

taken to be toroidal. Using analytical and numerical methods, we study the evolution of such an universe.

We find that, asymptotically, three spatial directions expand to infinity and the remaining spatial directions

reach stabilized values. Any stabilized values can be obtained by a fine-tuning of initial brane densities.

We give a physical description of the stabilization mechanism. Also, from the perspective of four-

dimensional spacetime, the effective four-dimensional Newton’s constant G4 is now time varying. Its time

dependence will follow from explicit solutions. We find in the present case that, asymptotically, G4

exhibits characteristic log periodic oscillations.
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I. INTRODUCTION

In the early universe, temperatures and densities reach
Planckian scales. Its description then requires a quantum
theory of gravity. A promising candidate for such a theory
is string/M theory. When the temperatures and densities
reach string/M theory scales, the appropriate description is
expected to be given in terms of highly energetic and
highly interacting string/M theory excitations [1–8].1 In
this context, one of us has proposed in an earlier work an
entropic principle according to which the final spacetime
configuration that emerges from such high temperature
string/M theory phase is the one that has maximum entropy
for a given energy. This principle implies, under certain
assumptions, that the number of large spacetime dimen-
sions is 3þ 1 [8].

High densities and high temperatures also arise near
black hole singularities. Therefore, it is reasonable to
expect that the string/M theory configurations which de-
scribe such regions of black holes will describe the early
universe also.

Consider the case of black holes. Various properties of a
class of black holes have been successfully described using
mutually Bogomol’nyi-Prasad-Sommerfeld (BPS) inter-
secting configurations of string/M theory branes.2 Black

hole entropies are calculated from counting excitations of
such configurations, and Hawking radiation is calculated
from interactions between them.
In the extremal limit, such brane configurations consist

of only branes and no antibranes. In the near extremal
limit, they consist of a small number of antibranes also.
It is the interaction between branes and antibranes which
gives rise to Hawking radiation. String theory calculations
are tractable and match those of Bekenstein and Hawking
in the extremal and near extremal limits. But they are not
tractable in the far extremal limit where the numbers of
branes and antibranes are comparable. However, even in
the far extremal limit, black hole dynamics is expected to
be described by mutually BPS intersecting brane configu-
rations where they now consist of branes, antibranes, and
other excitations living on them, all at nonzero temperature
and in dynamical equilibrium with each other [10–19]. For
the sake of brevity, we will refer to such far extremal
configurations also as brane configurations even though
they may now consist of branes and antibranes, left moving
and right moving waves, and other excitations.
The entropy S of N stacks of mutually BPS intersecting

brane configurations, in the limit where S � 1, is expected
to be given by

S�Y
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI þ �nI

p �EN=2 (1)

where nI and �nI, I ¼ 1; � � � ; N, denote the numbers of
branes and antibranes of Ith type, E is the total energy,
and the second expression applies for the charge neutral
case where nI ¼ �nI for all I. The proof for this expression
is given by comparing it in various limits with the entropy
of the corresponding black holes [10,11], see also [12–21].
For N � 4 and when other calculable factors omitted here
are restored, this expression matches that for the corre-
sponding black holes in the extremal and near extremal
limit and, in the models based on that of Danielsson et al
[12], matches up to a numerical factor in the far extremal
limit [10–21] also. However, no such proof exists for
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1Only string theory is considered in these references. But their

arguments can be extended for M theory also leading to similar
conclusions.

2Mutually BPS intersecting configurations means, for ex-
ample, that in M theory two stacks of 2 branes intersect at a
point; two stacks of 5 branes intersect along three common
spatial directions; a stack of 2 branes intersect a stack of 5
branes along one common spatial direction; waves, if present,
will be along a common intersection direction; and each stack of
branes is smeared uniformly along the other brane directions.
See [9] for more details and for other such string/M theory
configurations.
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N > 4 since no analogous object, black hole or otherwise,
is known whose entropy is / E� with �> 2.

Note that, in the limit of large E, the entropy SðEÞ is� E
for radiation in a finite volume and is �E for strings in the
Hagedorn regime. In comparison, the entropy given in (1) is
much larger when N > 2. This is because the branes in the
mutually BPS intersecting brane configurations form bound
states, become fractional, and support very low energy
excitations which lead to a large entropy. Thus, for a given
energy, such brane configurations are highly entropic.

Another novel consequence of fractional branes is the
following. According to the ‘‘fuzz ball’’ picture for black
holes [22], the fractional branes arising from the bound
states formed by intersecting brane configurations have
nontrivial transverse spatial extensions due to quantum
dynamics. The size of their transverse extent is of the order
of the Schwarzschild radius of the black holes. Therefore,
essentially, the region inside the ‘‘horizon’’ of the black hole
is not empty but is filled with a fuzz ball whose fuzz arises
from the quantum dynamics of fractional strings/branes.

Chowdhury and Mathur have recently extended the fuzz
ball picture to the early universe [20,21]. They have argued
that the early universe is filled with fractional branes aris-
ing from the bound states of the intersecting brane con-
figurations, and that the brane configurations with highest
N are entropically favorable, see Eq. (1).

However, as mentioned below Eq. (1) and noted also in
[20,21], the entropy expression in (1) is proved in various
limits for N � 4 only and no proof exists for N > 4. Also,
we are not certain of the existence of any system whose
entropy SðEÞ is parametrically larger than E2 for large E.
See related discussions in [23,24]. Therefore, in the follow-
ing wewill assume thatN � 4. Then, a homogeneous early
universe in string/M theory may be taken to be dominated
by the maximum entropic N ¼ 4 brane configurations
distributed uniformly in the common transverse space.

Such N ¼ 4 mutually BPS intersecting brane configu-
rations in the early universe may then provide a concrete
realization of the entropic principle proposed earlier by one
of us to determine the number (3þ 1) of large spacetime
dimensions [8]. Indeed, in further works [23–25], using M
theory symmetries and certain natural assumptions, we
have shown that these configurations lead to three spatial
directions expanding and the remaining seven spatial di-
rections stabilizing to constant sizes.

In this paper, we assume that the early universe in M
theory is homogeneous and anisotropic and that it is domi-
nated by N ¼ 4 mutually BPS intersecting brane configu-
rations.3 In this context, it is natural to assume that all
spatial directions are on equal footing to begin with.
Therefore we assume that the ten-dimensional space is

toroidal. We then present a thorough analysis of the evo-
lution of such a universe.
The corresponding energy momentum tensor TAB has

been calculated in [20] under certain assumptions.
However, general relations among the components of
TAB may be obtained [24] using U duality symmetries of
M theory which are, therefore, valid more generally.4 We
show in this paper that these U duality relations alone
imply, under a technical assumption, that the N ¼ 4 mu-
tually BPS intersecting brane configurations with identical
numbers of branes and antibranes will asymptotically lead
to an effective (3þ 1)—dimensional expanding universe.
In order to proceed further, and to obtain the details of

the evolution, we make further assumptions about TAB. We
then analyze the evolution equations in D dimensions in
general, and then specialize to the 11-dimensional case of
interest here.
We are unable to solve explicitly the relevant equations.

However, applying the general analysis mentioned above,
we describe the qualitative features of the evolution of the
N ¼ 4 brane configuration. In the asymptotic limit, three
spatial directions expand as in the standard FRW universe
and the remaining seven spatial directions reach constant,
stabilized values. These values depend on the initial con-
ditions and can be obtained numerically. Also, we find that
any stabilized values may be obtained, but this requires a
fine-tuning of the initial brane densities.
Using the analysis given here, we present a physical

description of the mechanism of stabilization of the seven
brane directions. The stabilization is due, in essence, to the
relations among the components of TAB which follow from
U duality symmetries, and to each of the brane directions in
the N ¼ 4 configuration being wrapped by, and being
transverse to, just the right number and kind of branes.
This mechanism is very different from the ones proposed in
string theory or in brane gas models [28–31] to obtain large
3þ 1—dimensional spacetime. (See Sec. 1A below also.)
In the asymptotic limit, the 11-dimensional universe

being studied here can also be considered from the per-
spective of four-dimensional spacetime. One then obtains
an effective four-dimensional Newton’s constant G4 which
is now time varying. Its precise time dependence will
follow from explicit solutions of the 11-dimensional evo-
lution equations.
We find that, in the case of N ¼ 4 brane configuration,

G4 has a characteristic asymptotic time dependence: the
fractional deviation �G4 of G4 from its asymptotic value
exhibits log periodic oscillations given by

�G4 / 1

t�
Sinð!lntþ�Þ: (2)

The proportionality constant and the phase angle �
depend on initial conditions and matching details of the

3There is an enormous amount of work on the study of early
universe in string/M theory. For a small, nonexhaustive, sample
of such works, see [26–38].

4Such U duality relations are present in the case of black holes
also. We point them out in Appendix A.
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asymptotics, but the exponents� and! depend only on the
configuration parameters. Such log periodic oscillations
seem to be ubiquitous and occur in a variety of physical
systems [39–41]. But, to our knowledge, this is the first
time it appears in a cosmological context. One expects
such a behavior to leave some novel imprint in the late
time universe, but its implications are not clear to us.

Since we are unable to solve the evolution equations
explicitly, we analyze them using numerical methods. We
present the results of the numerical analysis of the evolu-
tion. We illustrate the typical evolution of the scale factors
showing stabilization and the log periodic oscillations
mentioned above. By way of illustration, we choose a few
sets of initial values and present the resulting values for the
sizes of the stabilized directions and ratios of the string/M
theory scales to the effective four-dimensional scale.

We also discuss critically the implications of our assump-
tions. As we will explain, many important dynamical ques-
tions must be answered before one understands how our
known (3þ 1)—dimensional universe may emerge fromM
theory. Until these questions are answered and our assump-
tions justified, our assumptions are to be regarded conser-
vatively as amounting to a choice of initial conditions which
are fine tuned and may not arise naturally.

The organization of this paper is as follows. In Sec. II,
we describe the U duality symmetries of M theory and their
consequences, and present our ansatzes for the energy
momentum tensor TAB and for the equations of state. In
Sec. III, we present a general analysis of D-dimensional
evolution equations. In Sec. IV, we specialize to the 11-
dimensional case of N ¼ 4 intersecting brane configura-
tions and describe the various results mentioned above. In
Sec. V, we discuss the stabilized values of the brane
directions, their ranges, and the necessity of fine-tuning.
In Sec. VI, we present the four-dimensional perspective
and the time variations of G4. In Sec. VII, we present the
results of numerical analysis. In Sec. VIII, we conclude by
presenting a brief summary, a few comments on the as-
sumptions made, and by mentioning a few issues which
may be studied further. In Appendix A, we highlight the
points related to U duality symmetries in the black hole
case. In Appendices B, C, and D, we present certain results
required in the text of the paper.

A. Intersecting brane vs brane gas models

In this subsection, we note that the branes and antibranes
in the mutually BPS intersecting brane configurations con-
sidered here and in [20–25] are different from those in the
string/brane gas models [28–31] in many important as-
pects. These differences are explained in detail in Sec. 2.6
of [20] and Sec. 6 of [21]. Briefly, the differences are the
following.

(1) In brane gas models, the branes can intersect each
other arbitrarily. In the brane configurations here,
the intersections must follow specific rules.

Consequently, U duality symmetries of M theory
imply certain relations among the components of
the energy momentum tensor TAB which turn out to
be crucial elements in our case [23,24].

(2) The branes in brane gas models support excitations
on their surfaces and, at high energies, have S� E
where S is the entropy and E the energy. Here, the
intersecting branes form bound states, become frac-
tional, support very low energy excitations and,

hence, are highly entropic. At high energies, S�
EN=2 which, forN > 2, vastly exceeds the entropy in
brane gas models. Such intersecting brane configu-
rations are, therefore, the entropically favorable
ones.

(3) In brane gas models, the branes are assumed to
annihilate if they intersect each other. Here, the
intersections are necessary for formation of bound
states, and thereby of fractional branes leading to
high entropic excitations. Also, the intersecting con-
figurations here consist of branes, antibranes, and
the large number of low-energy excitations living on
them. All these constituents are at nonzero tempera-
ture and in dynamical equilibrium with each other
[10–19]. The excitations are long-lived and non-
interacting to the leading order, hence the branes
and antibranes here are metastable and do not im-
mediately annihilate.

Note that, in string/M theory description, the Hawking
evaporation of black holes is due to the annihilation of
branes and antibranes. Also, large black holes consist of
stacks of large numbers of branes and antibranes, and have
a long lifetime. This implies that such stacks of branes and
antibranes do not immediately annihilate and have a long
lifetime. Hence, we assume that the mutually BPS inter-
secting brane configurations describing the early universe
also consists of stacks of large numbers of branes and
antibranes having a long lifetime and, in particular, that
the brane antibrane annihilation effects are negligible
during the evolution of the universe at least until the
brane directions are stabilized resulting in an effective
(3þ 1)—dimensional universe.

II. U DUALITY SYMMETRIES
AND EQUATIONS OF STATE

In this paper, we assume that the early universe in M
theory is homogeneous and anisotropic and that it is domi-
nated by N ¼ 4 mutually BPS intersecting brane configu-
rations. To be specific, we consider 220550 configurations.5

5In our notation, 220550 denotes two stacks each of 2 branes
and 5 branes, all intersecting each other in a mutually BPS
configuration. Similarly for other configurations, e.g. 550500W
denotes three stacks of 5 branes intersecting in a mutually BPS
configuration with a wave along the common intersection
direction.
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We study the consequent evolution of such an universe
dictated by a (10þ 1)—dimensional effective action
given, in the standard notation, by

S11 ¼ 1

16�G11

Z
d11x

ffiffiffiffiffiffiffi�g
p

Rþ Sbr (3)

where Sbr is the action for the fields corresponding to the
branes. The corresponding equations of motion are given,
in the standard notation and in units where 8�G11 ¼ 1, by6

RAB � 1

2
gABR ¼ TAB;

X
A

rAT
A
B ¼ 0 (4)

where A ¼ ð0; iÞ with i ¼ 1; 2; � � � ; 10 and TAB is the en-
ergy momentum tensor corresponding to the action Sbr.

For black hole case, TAB is obtained from the action for
higher form gauge fields. With a suitable ansatz for the
metric, equations of motion (4) are solved to obtain black
hole solutions. For cosmological case, TAB is often deter-
mined using equations of state of the dominant constituent
of the universe. Such equations of state may be obtained if
the underlying physics is known; or, one may assume a
general ansatz for them and proceed.7

TAB for intersecting branes in the early universe has been
calculated in [20] assuming that the branes and antibranes
in the intersecting brane configurations are noninteracting
and that their numbers are all equal, i.e. nI ¼ �nI for I ¼
1; 2; � � � ; N and n1 ¼ � � � ¼ nN . However, general rela-
tions among the components of TAB may be obtained
[24] using U duality symmetries of M theory, involving
chains of dimensional reduction and uplifting and T and S
dualities of string theory, using which 2 branes and 5
branes or 220550 and 550500W configurations can be inter-
changed. Such relations are valid more generally, for ex-
ample, even when nI and �nI are all different.

These general relations on the equations of state are
sufficient to show, under a technical assumption, that the
N ¼ 4 mutually BPS intersecting brane configurations
with identical numbers of branes and antibranes, i.e. with
n1 ¼ � � � ¼ n4 and �n1 ¼ � � � ¼ �n4, will asymptotically
lead to an effective (3þ 1)—dimensional expanding uni-
verse. To obtain the details of the evolution, however, we
need further assumptions and an ansatz of the type p ¼ w�
[24,25].

We now present the details. Let the line element ds be
given by

ds2 ¼ �dt2 þX
i

e2�
iðdxiÞ2 (5)

where e�
i
are scale factors and, due to homogeneity, �i are

functions of the physical time t only. (Parametrizing the

scale factors as e�
i
turns out to be convenient for our

purposes.) It then follows that TAB depends on t only and
that it is of the form

TA
B ¼ diagð��; piÞ: (6)

We assume that � > 0. From Eqs. (4) one now obtains

�2
t �

X
i

ð�i
tÞ2 ¼ 2� (7)

�i
tt þ�t�

i
t ¼ pi þ 1

9

�
��X

j

pj

�
(8)

�t þ ��t þ
X
i

pi�
i
t ¼ 0 (9)

where � ¼ P
i�

i and the subscripts t denote time deriva-
tives. Note, from Eq. (7), that �t cannot vanish. Hence, if
�t > 0 at an initial time t0 then it follows that e

� increases
monotonically for t > t0. We assume the evolution to be
such that e� ! 1 eventually.
In the context of early universe in M theory, it is natural

to assume that all spatial directions are on equal footing to
begin with. Therefore we assume that the ten-dimensional
space is toroidal. Further, we assume that the early universe
is homogeneous and is dominated by the 220550 configu-
ration where, with no loss of generality, we take two stacks
each of 2 branes and 5 branes to be along ðx1; x2Þ, ðx3; x4Þ,
ðx1; x3; x5; x6; x7Þ, and ðx2; x4; x5; x6; x7Þ directions, respec-
tively, and take these intersecting branes to be distributed
uniformly along the common transverse space directions
ðx8; x9; x10Þ. Note that the total brane charges must vanish,
i.e. nI ¼ �nI for all I, since the common transverse space is
compact. We denote this 220550 configuration as ð12; 34;
13567; 24567Þ. The meaning of this notation is clear and,
below, such a notation will be used to denote other con-
figurations also.

A. U duality relations

We now describe the relations which follow from U
duality symmetries, involving chains of dimensional re-
duction and uplifting and T and S dualities of string theory.
See [24] for more details. Let #k and "k denote dimensional
reduction and uplifting along kth direction between M
theory and type IIA string theory, Ti denote T duality along
ith direction in type IIA and IIB string theories, and S
denote S duality in type IIB string theory. Then U dualities
of the type "j TiSTi #j interchange i and j directions, and U
dualities of the type "k TiTj #k transform one mutually BPS

N intersecting brane configuration to another.

6In the following, the convention of summing over repeated
indices is not always applicable. Hence, we will always write the
summation indices explicitly. Unless indicated otherwise, the
indices A;B; � � � run from 0 to 10, the indices i; j; � � � from 1 to
10, and the indices I; J; � � � from 1 to N.

7This is similar to the FRW case. Equation of state p ¼ �
3 for

radiation, or p ¼ 0 for pressureless dust, may be obtained from
the physics of radiation or of massive particles; or, one may
assume a general ansatz p ¼ w� and proceed.
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For example, the U duality "5 T3T4 #5 transforms a 2
brane configuration (12) to the 5 brane configuration
(12345). Similarly, the U duality "5 T1T2 #5 transforms
the 220550 configuration (12,34, 13567, 24567) to the
W550500 configuration (5, 12345, 23567, 14567); whereas

"6 T4T5 #6 transforms it to the ~50205~2 configuration (12456,
35, 13467, 27).

The U dualities transform the corresponding gravita-
tional fields also. In the case of metric of the form given
in Eq. (5), the U duality "k TiTj #k transforms the �is in the

scale factors to �0is given by

�0i¼�j�2�; �0j¼�i�2�; �0k¼�k�2�

�0l¼�lþ�; l� i;j;k; �¼�iþ�jþ�k

3
:

(10)

Consider the 2 brane configuration (12) with scale fac-

tors e�
i
and the 5 brane configuration (12345) with scale

factors e�
0i
. By inspection, or by using U dualities

"j TiSTi #j for appropriate ði; jÞ, these scale factors may

be expected to obey the ‘‘obvious’’ symmetries:

2: �1 ¼ �2; �3 ¼ � � � ¼ �10 (11)

5: �01 ¼ � � � ¼ �05; �06 ¼ � � � ¼ �010: (12)

Now, these two configurations are related by the U duality
"5 T3T4 #5 . Hence the corresponding �is and �0is must
obey the relations of the type given in (10). Combined
with the obvious symmetry relations above, it is straight-
forward to show that

�k þ 2�? ¼ 2�0k þ �0? ¼ 0 (13)

where the superscripts k and ? denote spatial directions
along and transverse to the branes, respectively.

Similarly, the obvious symmetry relations for the 220550
configuration (12, 34, 13567, 24567) are

22 0550: �5 ¼ �6 ¼ �7; �8 ¼ �9 ¼ �10: (14)

Proceeding as in the case of 2 and 5 branes above, and
using the U duality "5 T1T2 #5 which relates the 220550 and
W550500 configurations, one obtains two more relations
given by [24]

�1 þ �4 þ �5 ¼ �2 þ �3 þ �5 ¼ 0: (15)

In general, for an N intersecting brane configuration, the
U duality symmetries will lead to 10� N relations among
the �is, leaving only N of them independent. These rela-
tions are of the form

P
ici�

i ¼ 0 where ci are constants.
Clearly, such a relation can be violated by constant scaling
of xi coordinates. Hence, we interpret it as implying a
relation among the components of TAB. In view of
Eq. (8), we interpret a U duality relation

P
ici�

i ¼ 0 as
implying that

X
i

cif
i ¼ 0; fi ¼ pi þ 1

9

�
��X

j

pj

�
: (16)

Substituting Eq. (16) in Eq. (8), it follows upon an inte-
gration that X

i

ci�
i
t ¼ ce�� (17)

where c is an integration constant. If
P

ici�
i
t ¼ 0 initially at

t ¼ t0 then c ¼ 0. In such cases then
P

ici�
i
t ¼ 0 for all t

and, hence,
P

ici�
i ¼ v where v is another integration

constant.
In general

P
ici�

i
t � 0 initially at t ¼ t0 and, hence,

c � 0. Let the evolution be such that e� � t� ! 1 in the
limit t ! 1. Then it follows from Eq. (17) that

P
ici�

i
t ! 0

in this limit. If, furthermore, �> 1 then Eq. (17) also givesX
i

ci�
i ¼ vþOðt1��Þ ! v (18)

where v is an integration constant. If � � 1 then
P

ici�
i is

a function of t. We will see later that, in the solutions we
obtain with further assumptions, � turns out to be >1 for
N > 1.
Note that, as can be seen from the above steps, the U

duality relations follow as long as the directions involved
in the U duality operations are isometry directions. Since
none of the common transverse directions are involved in
obtaining the relations above, it follows that they are
valid even if the common transverse directions are not
compact. Thus the U duality relations are applicable in
such cases also.
Similarly, the time dependence of �is played no role in

obtaining the U duality relations here. Hence, these rela-
tions may be expected to arise for the black hole case also.
They indeed arise as we point out in Appendix A.

B. A general result

We now consider a general result for the 220550 configu-
ration that follows from the U duality relations alone [24].
The �is for this configuration obey the relations given in
Eqs. (14) and (15). Note that a suitable U duality, for
example "6 T4T5 #6 , can transform 2 branes and 5 branes
into each other. Hence, we will refer to two types of branes
as being identical if they have identical numbers of branes
and antibranes, i.e. Ith type is identical to Jth type if
nI ¼ nJ and �nI ¼ �nJ.
Consider the case when 2 and 20 branes in the 220550

configurations are identical. This will enhance the obvious
symmetry relations. It is easy to see that we now have one
more independent relation �1 ¼ �3. If, instead, 5 and 50
branes are identical, then the extra independent relation is
�1 ¼ �2. Similarly, if 2 and 50 branes are identical then,
after a few steps involving U duality "6 T4T5 #6 which
interchanges 2 and 50 branes, it follows that the extra
independent relation is �2 ¼ �5.
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Now if all the four types of branes in the 220550
configuration are identical, i.e. if n1 ¼ � � � ¼ n4 and
�n1 ¼ � � � ¼ �n4, then, we have three extra independent
relations

�1 ¼ �2 ¼ �3 ¼ �5: (19)

Combined with Eqs. (14) and (15), we get �1 ¼ � � � ¼
�7 ¼ 0 which is to be interpreted as f1 ¼ � � � ¼ f7 ¼ 0,
see Eq. (16). Hence, as described earlier, it follows for i ¼
1; � � � ; 7 that if �i

t ¼ 0 initially at t ¼ t0 then �i
t ¼ 0 and

�i ¼ vi for all t where vi are constants. Or, if e� � t� !
1 in the limit t ! 1 with �> 1, it then follows for i ¼
1; � � � ; 7 that �i

t ! 0 and �i ! vi in this limit. Obtaining
the values of the asymptotic constants vi, however, re-
quires knowing the details of evolution. It also follows

similarly that e�
i � e�=3 ! 1 for i ¼ 8, 9, 10. It is

straightforward to show that same results are obtained for
the equivalent 550500W configuration also.

Thus, assuming either that �1
t ¼ � � � ¼ �7

t ¼ 0 initially
at t ¼ t0 or that e� � t� ! 1 in the limit t ! 1 with
�> 1, we obtain that theN ¼ 4mutually BPS intersecting
brane configurations with identical numbers of branes and
antibranes, i.e. with n1 ¼ � � � ¼ n4 and �n1 ¼ � � � ¼ �n4,
will asymptotically lead to an effective (3þ 1)—
dimensional expanding universe with the remaining seven
spatial directions reaching constant sizes. This result fol-
lows as a consequence of U duality symmetries alone,
which imply relations of the type given in Eq. (16) among
the components of the energy momentum tensor TAB. This
result is otherwise independent of the details of the equa-
tions of state, and also of the ansatzes for TAB we make in
the following in order to proceed further.

C. Ansatz for TAB

The dynamics underlying the general result given above
may be understood in more detail, and the asymptotic
constants vi can be obtained, if an explicit solution for
the evolution is available. In the following, we will make a
few assumptions which enable us to obtain such details.

Consider now the case of 2 branes or 5 branes only. From
the U duality relations given by Eqs. (11)–(13) and (16), it
follows easily that pk ¼ ��þ 2p? where pk is the pres-
sure along the brane directions and p? is the pressure along
the transverse directions. For the case of waves, one ob-
tains pk ¼ �. We write these U duality relations for the

N ¼ 1 configurations in the form

pk ¼ zð�� p?Þ þ p? (20)

where z ¼ �1 for 2 and 5 branes and¼ þ1 for waves. (A
similar relation may be obtained in the black hole case
also, see Appendix A.) In general, �, pk, and p? are

functions of the numbers n and �n of branes and antibranes,
satisfying the U duality relations (20). If n ¼ �n then pk
and p? may be thought of as functions of � satisfying
Eq. (20) [24].

Consider now the mutually BPS N intersecting brane
configuration. In the black hole case, it turns out that the
energy momentum tensors TA

BðIÞ of the Ith type of branes

are mutually noninteracting and separately conserved
[42–51]. That is,

TA
B ¼ X

I

TA
BðIÞ ;

X
A

rAT
A
BðIÞ ¼ 0: (21)

We assume that this is the case in the context of the
early universe also where TA

B ¼ diagð��; piÞ, TA
BðIÞ ¼

diagð��I; piIÞ, �I > 0, and ð�I; piIÞ satisfy the U duality
relations in (20) for all I. Eqs. (21) now give

� ¼ X
I

�I; pi ¼
X
I

piI (22)

ð�IÞt þ �I�t þ
X
i

piI�
i
t ¼ 0: (23)

We have verified explicitly for a variety of mutually BPSN
intersecting brane configurations that Eqs. (20) and (22)
are sufficient to satisfy all the relations of the typeP

icif
i ¼ 0 implied by U duality symmetries. See [24]

for more details.
To solve the evolution Eqs. (7), (8), (22), and (23), we

need the functions �I, pkI, and p?I. To proceed further, we

assume that nI ¼ �nI for all I. This is necessary if, as is the
case here, the common transverse directions are compact
and hence the net charges must vanish. Then pkI and p?I

may be thought of as functions of �I satisfying Eq. (20).
It is natural to expect that p?Ið�IÞ is the same function

for waves, 2 branes, and 5 branes since they can all be
transformed into each other by U duality operations which
do not involve the transverse directions. We assume that
this is the case. We further assume that this function p?ð�Þ
is given by

p? ¼ ð1� uÞ� (24)

where u is a constant. Such a parametrization of the
equation of state, instead of the usual one p ¼ w�, leads
to elegant expressions as will become clear in the follow-
ing, see [32,33] also. The results of [20] correspond to the
case where u ¼ 1. Here, we assume only that 0< u< 2.
The constant u is arbitrary otherwise.
It now follows that piI in Eq. (22) are of the form piI ¼

ð1� uIi Þ�I and that the constants uIi can be obtained in
terms of u using Eqs. (20) and (24). Thus, for 2 branes, 5
branes, and waves, we have u? ¼ u, uk ¼ ð1� zÞu, and
hence

2: ui ¼ ð2; 2; 1; 1; 1; 1; 1; 1; 1; 1Þu
5: ui ¼ ð2; 2; 2; 2; 2; 1; 1; 1; 1; 1Þu
W: ui ¼ ð0; 1; 1; 1; 1; 1; 1; 1; 1; 1Þu

(25)

where the I superscripts have been omitted since N ¼ 1.
Similarly, uIi for the 22

0550 configuration are given by
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2: u1i ¼ ð2; 2; 1; 1; 1; 1; 1; 1; 1; 1Þu
20: u2i ¼ ð1; 1; 2; 2; 1; 1; 1; 1; 1; 1Þu
5: u3i ¼ ð2; 1; 2; 1; 2; 2; 2; 1; 1; 1Þu
50: u4i ¼ ð1; 2; 1; 2; 2; 2; 2; 1; 1; 1Þu:

(26)

This completes our ansatz for the energy momentum tensor
TAB for the intersecting brane configurations in the early
universe.

III. GENERAL ANALYSIS:
EVOLUTION EQUATIONS

The evolution of the universe can now be analyzed. In
this section, we first present the analysis in a general form
which is applicable to a D-dimensional homogeneous,
anisotropic universe. We specialize to the intersecting
brane configurations in the next section.

The D-dimensional line element ds is given by Eq. (5),
now with i ¼ 1; 2; � � � ; D� 1. The total energy momen-
tum tensor TAB of the dominant constituents of the universe
is given by Eq. (6). The equations of motion for the
evolution of the universe is given, in units where
8�GD ¼ 1, by Eqs. (7)–(9) with 9 in Eq. (8) now replaced
by D� 2. Defining

Gij ¼ 1� �ij; Gij ¼ 1

D� 2
� �ij; (27)

the Eqs. (7) and (8), with 9 replaced by D� 2, may be
written compactly asX

i;j

Gij�
i
t�

j
t ¼ 2� (28)

�i
tt þ�t�

i
t ¼

X
j

Gijð�� pjÞ (29)

where i; j; � � � run from 1 to D� 1.
Let the universe be dominated by N types of mutually

noninteracting and separately conserved matter labeled by
I ¼ 1; � � � ; N. Then the corresponding energy momentum
tensors TABðIÞ and their components �I and piI satisfy

Eqs. (21)–(23).
Further, let the equations of state be given by piI ¼ ð1�

uIi Þ�I where u
I
i are constants. Eqs. (23), (28), and (29) may

now be simplified and cast in various useful forms as
follow.

Using piI ¼ ð1� uIi Þ�I, Eq. (23) can be integrated to
give

�I ¼ el
I�2�; lI ¼ X

i

uIi�
i þ lI0 (30)

where lI0 are integration constants. Further using Eqs. (22)

and (30), Eqs. (28) and (29) becomeX
i;j

Gij�
i
t�

j
t ¼ 2

X
J

el
J�2� (31)

�i
tt þ�t�

i
t ¼

X
J

uiJel
J�2� (32)

where uiJ ¼ P
jG

ijuJj . Let the initial conditions at an initial

time t0 be given, with no loss of generality, by

ð�i; �i
t; l

I; lIt ; �IÞt¼t0 ¼ ð0; ki; lI0; KI; �I0Þ (33)

where

�I0 ¼ el
I
0 ; KI ¼X

i

uIi k
i;

X
i;j

Gijk
ikj ¼ 2

X
J

el
J
0 : (34)

Eqs. (31) and (32) may now be solved for the D� 1
variables �i with the above initial conditions. Or, instead,
these equations may be manipulated so that one needs to
solve for N variables lI only, see Eqs. (35), (39), (42), and
(44), below. We now perform these manipulations.
First define a variable �ðtÞ as follows:

d� ¼ e��dt; �ðt0Þ ¼ 0: (35)

Then, for �iðtÞ or equivalently �ið�ðtÞÞ, we have
�i
t ¼ e���i

�; �i
tt þ�t�

i
t ¼ e�2��i

�� (36)

where the subscripts � denote �-derivatives. Note that the
initial values at �ðt0Þ ¼ 0 remain unchanged since � ¼ 0,
and hence �i

t ¼ �i
� at t ¼ t0. Eqs. (31) and (32) now

become X
i;j

Gij�
i
��

j
� ¼ 2

X
J

el
J

(37)

�i
�� ¼

X
J

uiJel
J
: (38)

Also, from lI ¼ P
iu

I
i�

i þ lI0, it follows that

lI�� ¼
X
J

GIJel
J

(39)

where

G IJ ¼ X
i

uIiu
iJ ¼ X

i;j

GijuIiu
J
j : (40)

We assume that GIJ exists such that
P

JGIJGJK ¼ �K
I , i.e.

that the matrix G formed by GIJ is invertible.8 Then, from
Eq. (39), we have X

J

GIJl
J
�� ¼ el

I
: (41)

Substituting this expression for el
I
into Eq. (38), then

integrating it twice and incorporating the initial conditions
given in Eq. (33), we get

�i ¼ X
I

uiIðlI � lI0Þ þ Li�; uiI ¼
X
j;J

GIJG
ijuJj (42)

8This is not always the case. For example, uIi ¼ uI for all i in
the isotropic case. Then GIJ / uIuJ and G is not invertible. This
is not a problem: it just means that the set of variables lI can be
reduced to a smaller independent set; one then proceeds with the
smaller set.
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where Li are integration constants. It follows from �i
�ð0Þ

that Li are related to initial values ki and KI by ki ¼P
Iu

i
IK

I þ Li. Using this expression for ki in the relation
KI ¼ P

iu
I
i k

i, or substituting the expression for �i given in
Eq. (42) into the Eq. (30) for lI, leads to the following N
constraints on Li:X

i

uIiL
i ¼ 0; I ¼ 1; 2; � � � ; N: (43)

Now, using Eqs. (42) and (43), Eq. (37) may be written in
terms of lI as follows:

X
I;J

GIJl
I
�l

J
�¼2

�
EþX

I

el
I

�
; 2E¼�X

i;j

GijL
iLj: (44)

One may now solve Eqs. (39) and (44) for N variables
lIð�Þ. Then �ið�Þ are obtained from Eq. (42) and tð�Þ from
Eq. (35). Inverting tð�Þ then gives �ðtÞ, and thereby �iðtÞ.

A. N ¼ 1 case

Consider the N ¼ 1 case. Note that we are still consid-
ering the general D-dimensional universe, not the 11-
dimensional one. We assume here that G11 ¼ G > 0.
Now, as shown in Appendix B, it follows in general that
if

P
iuiL

i ¼ 0 and
P

i;jG
ijuiuj > 0 then E � 0 and E

vanishes if and only if Li all vanish. Since
P

iu
1
i L

i ¼ 0,
see Eq. (43), and we assume that G11 ¼ P

i;jG
iju1i u

1
j > 0,

we have E � 0. We further assume that E> 0, equiva-
lently that Lis do not all vanish.

Omitting the I labels, Eqs. (39) and (44) for lð�Þ become

l�� ¼ Gel; ðl�Þ2 ¼ 2GðEþ elÞ: (45)

The initial values are l0 ¼ lð0Þ and K ¼ l�ð0Þ obeying
K2 ¼ 2GðEþ el0Þ. We take K > 0with no loss of general-
ity. Then the solution for lð�Þ is given by

el ¼ E

Sinh2�ð�1 � �Þ (46)

where

2�2 ¼ GE;

Sinh2��1 ¼ Ee�l0 ;

K ¼ 2�Coth��1:

(47)

The sign of � is immaterial but, just to be definite, we take
it to be positive. The sign of �1 is same as that of K, hence
�1 > 0. Also, �ið�Þ and tð�Þ may now be obtained but are
not needed here for our purposes.

Note that el ! 4Ee2�ð���1Þ and vanishes in the limit
� ! �1, whereas el ! 2

G ð�1 � �Þ�2 and diverges in the

limit � ! �1. The value of �1 depends on the initial values
l0 andK, or equivalently E, as given in Eqs. (47). It is finite
and can be evaluated exactly. However, if el0 � E then �1
may be approximated in a way that will be useful later on.

From the exact solution given above, we have
Sinh2��1 ¼ Ee�l0 and K ¼ 2�Coth��1. In the limit
el0 � E, we then have e2��1 ’ 4Ee�l0 and K ’ 2�. It,
therefore, follows that

�1 ’ 1

K
ðlnE� l0 þ ln4Þ: (48)

In the limit el0 � E, the evolution of lð�Þ may also be
thought of as follows. Consider E to be fixed and el0 to be
very small so that el0 � E. It then follows from Eqs. (45)

that, at initial times, l�� is very small and that l� ’ffiffiffiffiffiffiffiffiffiffi
2GE

p ¼ 2� is independent of el. Hence, lð�Þ evolves as
if there is no ‘‘force,’’ i.e. lð�Þ ’ l0 þ K� where K ¼
l�ð0Þ> 0 is the initial ‘‘velocity.’’ Once el becomes of
OðEÞ then it affects l�. But, from then on, el evolves
quickly and diverges soon after.
This suggests that one may well approximate �1 by the

time �a required for l, which starts from l0 with a velocity
K and evolves freely with no force, to reach lnE—namely,
to reach a value where el ¼ el0þK�a ¼ E. In other words, if
el0 � E then

�1 ’ �a ¼ 1

K
ðlnE� l0Þ: (49)

A comparison with Eq. (48) shows that the exact �1 which
follows from solving the evolution equations is indeed well
approximated by �a in Eq. (49) in the limit el0 � E. Note
that �a is calculated using only the initial values, requiring
no knowledge of the exact solution.

B. N > 1 case

When N > 1, the equations of motion can be solved if
GIJ are of certain form [32–38]. For example, if GIJ / �IJ

then the solutions are similar to those in the N ¼ 1 case
described above. For general forms of GIJ, we are unable
to obtain explicit solutions. Nevertheless, the general evo-
lution can still be analyzed if one assumes suitable asymp-

totic forms for the scale factors e�
i
.

It follows from Eqs. (27) and (28) that�t cannot vanish.
With no loss of generality, let �t > 0 initially at t ¼ t0.
Then e� decreases monotonically for t < t0, equivalently
� < 0, and increases monotonically for t > t0, equivalently
� > 0. Further features of the evolution depend on the
structure of GIJ and uIi . In the cases of interest here, it

turns out that e� and also all el
I
vanish in the limit � !

�1, and diverge in the limit � ! �1 where �1 is finite.
We assume such a behavior and analyze the asymptotic
solutions.

1. Asymptotic evolution: e� ! 0

We assume that ðe�; elI Þ ! 0 in the limit � ! �1.
Then, Eqs. (38) and (39) can be solved since their right-

hand sides depend only on el
I
s which now vanish. Hence,

in the limit � ! �1, we write
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el
I ¼ e~c

I� ¼ t
~bI ; e�

i ¼ e~c
i� ¼ t

~bi (50)

which are valid up to multiplicative constants and where

ð~cI; ~ci; ~bI; ~biÞ are constants. Also, the equalities in the
asymptotic expressions here and in the following are valid
only up to the leading order. Equation (42) now implies
that ~ci ¼ P

Iu
i
I~c

I þ Li. Also, e� ¼ e~c� where ~c ¼ P
i~c

i.
Then it follows from Eq. (35) that t� e~c�. Hence,

~b I ¼ ~cI

~c
; ~bi ¼ ~ci

~c
;

X
i

~bi ¼ 1: (51)

Furthermore, Eq. (37) implies that ðPi
~biÞ2 �P

ið~biÞ2 ¼ 0.
Thus the evolution is of Kasner type in the limit � ! �1.
The constants ~cIs in Eqs. (50) must be such that the

resulting
P

i
~bi ¼ P

ið~biÞ2 ¼ 1, but are otherwise arbitrary.
In an actual evolution, however, ~cIs can be determined in
terms of the initial values lI0 and KI with no arbitrariness,

but this requires complete solution for lIð�Þ.

2. Asymptotic evolution: e� ! 1
We assume that e� ! 1 in the limit � ! �1 where �1

is finite. Whether this limit is reached at a finite or infinite
physical time t depends on the values of uIi , see below.
�ð�Þ may be obtained in terms of lIð�Þ using Eq. (42).

Hence, in the limit e� ! 1, some or all of the el
I
s diverge.

Consider the following ansatz in the limit � ! �1:

el
I ¼ ec

I ð�1 � �Þ�2	I
; e�

i ¼ ec
ið�1 � �Þ�2	i

; (52)

where cI and 	I are constants, and some or all of the 	Is

must be>0 so that some or all of the el
I
s diverge. Equation

(42) now implies that

	i ¼ X
I

uiI	
I; ci ¼ X

I

uiIðcI � lI0Þ þ Li�1: (53)

Also, e� ¼ ecð�1 � �Þ�2	 where c ¼ P
ic

i and
	 ¼ P

i	
i. For the ansatz in Eqs. (52) to be consistent, it

is necessary that 	 > 0 so that e� ! 1 in the limit � !
�1. Now tð�Þ follows from Eq. (35) and is given by

t� ts ¼ 1

2	� 1
ecð�1 � �Þ�ð2	�1Þ; 	 ¼ X

i;I

uiI	
I

(54)

where ts is a finite constant. If 2	 < 1 then t ! ts which
means that e� ! 1 at a finite physical time ts. If 2	 > 1
then t ! 1 in the limit e� ! 1. Which case is realized,
i.e. whether 2	 < 1 or >1, depends on the values of uIi .

Using Eq. (54), the asymptotic behavior of el
I
and e�

i

can be obtained in terms of t. For example, let 2	 > 1 and

el
I ¼ eb

Iþ2bt�
I
; e�

i ¼ eb
i
t�

i
; e� ¼ ebt� (55)

in the limit t ! 1. It then follows that

�I ¼ 2	I

2	� 1
; �i ¼ 2	i

2	� 1
; � ¼ 2	

2	� 1
:

(56)

Note that, in this case, we have e� � t� in the limit t ! 1
with �> 1. See the discussion below Eq. (16) for the
relevance of this feature.
To obtain the values of 	I, and thereby 	i, in Eq. (52),

consider Eq. (41) from which it follows that

2
X
J

GIJ	
J ¼ ec

I ð�1 � �Þ2ð1�	IÞ: (57)

The left-hand side in the above equation is a constant but
the right-hand side depends on �. This is consistent if
	I ¼ 1 in which case the right-hand side becomes a posi-
tive constant, or if 	I < 1 in which case the right-hand
side vanishes in the limit � ! �1. Thus, there are two
possibilities:

ðiÞ 	I ¼ 1 ) 2
X
J

GIJ	
J ¼ ec

I
> 0 (58)

ðiiÞ 	I � 1 ) X
J

GIJ	
J ¼ 0; 	I < 1: (59)

For a given GIJ, the possible consistent solutions for

ð	I; ec
I Þ are to be obtained as follows. Assume that some

I’s are of type (i) and the remaining ones are of type (ii).

Then solve Eqs. (58) and (59) for ec
I
in type (i) and for 	I

in type (ii). Such a solution is consistent if the resulting

ðecI ; 	IÞ satisfy ecI > 0 for Is in type (i) and 	I < 1 for Is in
type (ii). Also, some or all of the 	Is must be >0 as
required in Eq. (52). (It is further necessary that the result-
ing 	 > 0 so that e� ! 1, but calculating 	 requires uIi .)
Consider an example, which will be useful later, where

GIJ and GIJ are given by

G IJ ¼ aðb� �IJÞ; GIJ ¼ 1

a

�
b

Nb� 1
� �IJ

�
(60)

with a > 0 and Nb> 1. It is then easy to show that the
only possibility is the one given in (i). Also

P
JGIJ ¼

1
aðNb�1Þ > 0, and thus 	I ¼ 1 for all I is a consistent solu-

tion as required by Eq. (58). In the N ¼ 1 case, we get
G11 ¼ G ¼ aðb� 1Þ> 0, and el in the limit � ! �1 ob-
tained as described above agrees with that obtained from
the explicit solution, see below Eq. (47).

Thus ec
I
and 	I, and thereby 	i ¼ P

Iu
i
I	

I and 	 ¼P
i;Iu

i
I	

I, are all determined ultimately by uIi . The con-

stants ci are given by Eq. (53) and they depend on uIi , on
the initial values lI0 and L

i, and also on �1. But determining

�1, and hence determining ci when Li do not all vanish,
requires complete solution for lIð�Þ.
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C. Deviations from el
I ! 1 asymptotics

We consider the deviations of lIð�Þ from its asymptotic
behavior given in Eq. (52), which will turn out to be of
interest. Let the deviations sIð�Þ for I ¼ 1; 2; � � � ; N be
defined, in the limit � ! �1, by

el
I ¼ ec

I ð�1 � �Þ�2	I
es

Ið�Þ (61)

where cI and 	I are determined as described earlier. For
the purpose of illustration, and also for later use, we now
assume that all the Is are of type (i), namely, that 	I ¼ 1

and ec
I ¼ 2

P
JGIJ > 0 for all I. It then follows straight-

forwardly from Eq. (39) that

ð�1 � �Þ2sI�� ¼ 2
X
K;L

GIKGKLðesK � 1Þ: (62)

Consider the example of GIJ given in Eq. (60). ThenP
JGIJ ¼ 1

aðNb�1Þ and, for any 
K, one has

X
K;L

GIKGKL

K ¼ � 1

Nb� 1

�

I � b

X
K


K

�
: (63)

In Eq. (62),
K ¼ 2ðesK � 1Þ. It now follows easily that, up
to the leading order in fsKg, the difference sI � sJ obeys
the equation

ð�1 � �Þ2ðsI � sJÞ�� þ 2

Nb� 1
ðsI � sJÞ ¼ 0: (64)

The solutions to these equations are of the form

ðsI�sJÞ�ð�1��Þð1=2Þð1	
ffiffiffi
�

p Þ; �¼1� 8

Nb�1
: (65)

Note that sI � sJ ¼ lI � lJ since 	I and cI are the same for
all I, see Eq. (61). Hence, Eqs. (64) and (65) can be used to
understand in more detail the behavior of lIs as they all
diverge in the limit � ! �1 as given in Eq. (52). We will
discuss these features in Secs. VI and VII.

IV. INTERSECTING BRANES

We now analyze the evolution of the universe dominated
by mutually BPS N intersecting brane configurations of M
theory. The number of spacetime dimensions D ¼ 11.
The equations of state are assumed to be given by piI ¼
ð1� uIi Þ�I where, as a consequence of U duality symme-
tries, uIi are parametrized in terms of one constant u. The
indices i; j; � � � run from 1 to 10 and the indices I; J; � � �
from 1 to N. For 2 branes, 5 branes, and waves, N ¼ 1 and
the corresponding uIi are given in Eqs. (25). For 220550
configuration,N ¼ 4 and the corresponding uIi are given in
Eqs. (26).

A. EVOLUTION EQUATIONS

The evolution of �i describing the scale factors is given
by the equations described earlier which, for ease of ref-
erence, we summarize below:

�i
�� ¼

X
J

uiJel
J

(66)

lI�� ¼
X
J

GIJel
J

(67)

�i ¼ X
J

uiJðlJ � lJ0Þ þ Li� (68)

where

uiI ¼ X
j

GijuIj;

GIJ ¼ X
i;j

GijuIiu
J
j ;

uiI ¼
X
j;J

GIJG
ijuJj

(69)

with Gij and GIJ as defined earlier, and Li are arbitrary
constants satisfying the constraints

P
iu

I
iL

i ¼ 0 for all I.
Also, lI� obey the constraint

X
I;J

GIJl
I
�l

J
� ¼ 2

�
EþX

J

el
J

�
(70)

where 2E ¼ �P
i;jGijL

iLj. Eqs. (67) and (70) are to be

solved for lIð�Þ with initial conditions lIð0Þ ¼ lI0 ¼ ln�I0

and lI�ð0Þ ¼ KI where �I0 are initial densities and

X
I;J

GIJK
IKJ ¼ 2

�
EþX

J

el
J
0

�
: (71)

Then �ið�Þ follow from Eq. (68) and the physical time tð�Þ
from dt ¼ e�d�. Inverting tð�Þ then gives �ðtÞ, and thereby
�iðtÞ.
We can now calculate GIJ for the mutually BPS inter-

secting brane configurations. As explained in footnote 2, in
the BPS configurations two stacks of 2 branes intersect at a
point; two stacks of 5 branes intersect along three common
spatial directions; a stack of 2 branes intersects a stack of 5
branes along one common spatial direction; and, waves, if
present, will be along a common intersection direction.
With these rules given, it is now straightforward to calcu-
lateGIJ using Eqs. (25) and (69). It turns out because of the
BPS intersection rules that the resulting GIJ are given by

G IJ ¼ 2u2ð1� �IJÞ: (72)

The corresponding GIJ exists for N > 1, and is given by

G IJ ¼ 1

2u2

�
1

N � 1
� �IJ

�
: (73)

Note that, for N > 1, the above GIJ is a special case of the
example considered earlier in Eq. (60), now with a ¼ 2u2

and b ¼ 1,
It is also straightforward to calculate uiI and uiI for the

220550 configuration using the definitions in Eq. (69) and
the uIi in Eq. (26). They are given by
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2: ui1 / ð�2;�2; 1; 1; 1; 1; 1; 1; 1; 1Þ
20: ui2 / ð1; 1;�2;�2; 1; 1; 1; 1; 1; 1Þ
5: ui3 / ð�1; 2;�1; 2;�1;�1;�1; 2; 2; 2Þ
50: ui4 / ð2;�1; 2;�1;�1;�1;�1; 2; 2; 2Þ

(74)

where the proportionality constant is u
3 , and by

2: ui1 / ð2; 2;�1;�1;�1;�1;�1; 1; 1; 1Þ
20: ui2 / ð�1;�1; 2; 2;�1;�1;�1; 1; 1; 1Þ
5: ui3 / ð1;�2; 1;�2; 1; 1; 1; 0; 0; 0Þ
50: ui4 / ð�2; 1;�2; 1; 1; 1; 1; 0; 0; 0Þ

(75)

where the proportionality constant is 1
6u .

We are unable to solve Eqs. (67), (70), and (72), for
N > 1.9 However, applying the general analysis described
in Sec. III and making further use of the explicit forms of
uIi and G

IJ given in Eqs. (26) and (72), one can understand
the qualitative features of the evolution of the 220550
configuration.

We first make several remarks which will lead to
an immediate understanding of the evolution of this
configuration.

(1) Let ui ¼ P
Iu

I
i . It can then be checked thatP

i;jG
ijuiuj > 0. Also,

P
iuiL

i ¼ 0 since
P

iu
I
iL

i ¼
0 for all I. Hence, as shown in Appendix B, it
follows that E given in Eq. (70) is � 0 and that it
vanishes if and only if Li all vanish.

(2) The constraints
P

iu
I
iL

i ¼ 0 imply that

L1 � L4 ¼ L2 � L3 ¼ L5 þ L6 þ L7 ¼ 0

L8 þ L9 þ L10 ¼ �3ðL1 þ L2Þ: (76)

Thus, for example, we may take ðL1; L2; L6;
L7; L8; L9Þ to be independent. The remaining Lis
are then determined by the above equations. Also,
we have

L 
 X
i

Li ¼ �ðL1 þ L2Þ: (77)

Using Eqs. (76) and (77), and the Schwarz inequal-
ity (B1) in Appendix B, we write E as

2E¼X
i

ðLiÞ2�
�X

i

Li

�
2

¼3ðLÞ2þX7
i¼5

ðLiÞ2þ2
2
2þ
2

3

¼3ðL1Þ2þðL1þ2L2Þ2þX7
i¼5

ðLiÞ2þ
2
3 (78)

where the first line is the definition of E, 
2 ¼ 0 if
and only if L1 ¼ L2, and
3 ¼ 0 if and only if L8 ¼
L9 ¼ L10. See the Schwarz inequality given in
Eq. (B1). It is easy to show that the above expres-
sions for E imply that ðLiÞ2 for all i are bounded
above by E as follows: E � ciðLiÞ2 � 0 where ci
are constants ofOð1Þ. In particular, note the inequal-
ity 2E � 3ðLÞ2 which is required in Appendix C.

(3) It follows from Eqs. (68), (75), and (77), that

�� ¼
X
i

�i
� ¼ 1

6u
ð2l1� þ 2l2� þ l3� þ l4�Þ þ L: (79)

Using the explicit form ofGIJ given in Eq. (73) with
N ¼ 4, Eq. (70) becomes�X

I

lI�

�
2�3

X
I

ðlI�Þ2¼12u2
�
EþX

I

el
I

�
>0 (80)

where the inequality follows since E � 0 and

el
I
> 0. We show in Appendix C that this inequality

implies that none of ð��; l
I
�Þ may vanish, and that

they must all have same sign. Hence, for all �
throughout the evolution, ð��; l

I
�Þ must all be non-

vanishing, and be all positive or all negative.

B. Asymptotic evolution

With no loss of generality, let �t > 0 initially at t ¼ t0.
Then it follows from the above result that ð��; l

I
�Þ must all

be positive and nonvanishing for all �. Hence, ð�; lIÞ are all
monotonically increasing functions for all � throughout the
evolution.
Equation (67) may be written, using Eq. (72), as

lI�� ¼ 2u2
X
J�I

el
J
: (81)

In the past, � and all lI decrease continuously. Hence, the
right-hand side in Eq. (81) becomes more and more neg-
ligible. The asymptotic solution in the limit � ! �1 is

then given by lI ¼ ~cI�þ ~dI where ~cI > 0. Thus el
I ! 0 in

this limit.
Similarly, in the future, � and all lI increase continu-

ously. However, the right-hand side in Eq. (81) increases

exponentially now. It is then obvious that all el
I ! 1

within a finite interval of �, i.e. at a finite value �1 of �.
In this context, see Eqs. (45) and (46), and the general
analysis given in Sec. III B 2.

9In the case of black holes, the equations of motion for the
corresponding harmonic functions HI ¼ 1þ QI

r 
 e
~hI can also

be written in a form similar to that of Eq. (67). The main steps
are indicated in Appendix A. The analogous GIJ in the black
hole case turns out to be / �IJ , and the equations can then be
solved.
Also, note that if Li ¼ 0 for all i then �i in Eq. (68) here may be
written as in Eq. (A4) in Appendix A The role of ~hI there is
played by the functions 2uhI ¼ 2u

P
JGIJðlJ � lJ0Þ here. Such a

similarity is present for other intersecting brane configurations
also.
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We now analyze the corresponding asymptotic
solutions.

1. Asymptotic evolution: e� ! 0

It follows from the above discussion that e� ! 0 in the
limit � ! �1. Also, in this limit, we have

el
I ¼ e~c

I� ¼ t
~bI ; e�

i ¼ e~c
i� ¼ t

~bi (82)

up to multiplicative constants where ð~cI; ~ci; ~bI; ~biÞ are con-
stants. The evolution is then of Kasner type and is similar
to that described in Sec. III B 1. The constants ~cIs are
determined by the initial values lI0 and KI, but obtaining

the exact dependence in the general case requires complete
solution for lIð�Þ. However, if the initial values lI0 are large
and negative then we have el

I � 1 for all � < 0 and, hence,
~cI ¼ KI to a good approximation.

2. Asymptotic evolution: e� ! 1
It follows from the above discussion that e� ! 1 in the

limit � ! �1 where �1 is finite. Also, el
I ! 1 in this limit

and �1 depends on the initial values lI0 and KI.

Although solutions for lIð�Þ are not known, their asymp-
totic forms in the limit � ! �1, and hence those of �ið�Þ,
may be obtained following the analysis given in
Sec. III B 2. GIJ in Eq. (72) is a special case of the example
(60) where, now, N ¼ 4, a ¼ 2u2, and b ¼ 1. Hence, it
can be shown to correspond to the possibility (i) given

in Eq. (58). Therefore, we have 	I ¼ 1 and ec
I ¼

2
P

JGIJ ¼ 1
3u2

.

It then follows from Eq. (52) that el
I
and e�

i
are given in

the limit � ! �1 by

el
I ¼ 1

3u2
1

ð�1 � �Þ2 (83)

e�
i ¼ ev

i

�
1

3u2
1

ð�1 � �Þ2
�P

I

uiI
(84)

where, since �I0 ¼ el
I
0 , we have

vi ¼ �X
J

uiJl
J
0 þ Li�1; ev

i ¼ eL
i�1

Y
J

ð�J0Þ�uiJ :

(85)

Also, since 	 ¼ P
i;Iu

i
I ¼ 1

u , we have from Eq. (54) that the

physical time t is given in this limit by

t� ts ¼ Að�1 � �Þ�ð2�uÞ=u (86)

where ts and A are finite constants. Clearly, t ! 1 in the
limit � ! �1 since it is assumed that 0< u< 2. In this

limit, the scale factors e�
i
may be written in terms of t as

e�
i ¼ ev

iðBtÞ�i
(87)

where B is a constant and �i ¼ 2u
2�u

P
Ju

i
J. Using Eq. (75)

for uiI, the exponents �
i are given by

�i / ð0; 0; 0; 0; 0; 0; 0; 1; 1; 1Þ (88)

where the proportionality constant is 2
3ð2�uÞ . Note that

� ¼ P
i�

i ¼ 2
2�u > 1. Hence, we have e� � t� in the limit

t ! 1 with �> 1. See the discussion below Eq. (16) for
the relevance of this feature.
Thus, asymptotically in the limit t ! 1, we obtain that

e�
i ! t2=3ð2�uÞ for the common transverse directions i ¼ 8,

9, 10. Hence, these directions continue to expand, their
expansion being precisely that of a (3þ 1)—dimensional
homogeneous, isotropic universe containing a perfect fluid

whose equation of state is p ¼ ð1� uÞ�. Also, e�i ! ev
i

for the brane directions i ¼ 1; � � � ; 7. Hence, these direc-
tions cease to expand or contract. Their sizes are thus

stabilized and are given by ev
i
. Note that this result is in

accord with the general result described in Sec. II B since,

in the limit � ! �1, the brane densities �I / el
I
all become

equal and hence the four types of branes all become
identical; and, t ! 1 and e� � t� ! 1 with �> 1.

C. Mechanism of stabilization

Using the asymptotic solutions, we can now give a
physical interpretation of the dynamical mechanism under-
lying the stabilization of the brane directions seen above
for the 220550 configuration.
We first study the stabilization process. Consider

Eq. (66) for �1
��, for example. Using the values of uiI given

in Eq. (74), we have

�1
�� / ð�2el

1 þ el
2 � el

3 þ 2el
4Þ: (89)

In the 220550 configuration, x1 direction is wrapped by 2
branes and 5 branes and is transverse to 20 branes and 50
branes. Thus, from the above equation for �1 and from
similar equations for �2; � � � ; �7, we see that 2 brane and 5
brane directions ‘‘contract with a force’’ proportional to
2�ð2Þ and �ð5Þ respectively, whereas the directions trans-

verse to them ‘‘expand with a force’’ proportional to �ð2Þ
and 2�ð5Þ respectively, where �ð�Þ / el

ð�Þ
are the time de-

pendent densities of the corresponding branes.

When �I / el
I
all become equal, the forces of expansion

cancel the forces of contraction resulting in vanishing net
force for the x1 direction. Then, using Eq. (36), one has

�1
�� ¼ e2�ð�1

tt þ�t�
1
t Þ ¼ 0: (90)

Now, as described earlier in the context of Eqs. (17) and
(18), the transient ‘‘velocity’’ �1

t is damped and �1 reaches
a constant value in the expanding universe here since we
have e� � t� in the limit t ! 1 with �> 1. The result is
the stabilization of the x1 direction.

The stabilized size ev
1
of x1 direction is given by

ev
1 ¼ eL

1�1
�
�20�

2
40

�30�
2
10

�
1=6u

; (91)
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see Eq. (85). Note that ev
1
can be interpreted as arising

from the imbalance among the initial brane densities �I0,
and from the parts L1 of �1

t ð0Þ which indicate the tran-
sients. The above analysis can be similarly applied to the
stabilization of other brane directions ðx2; � � � ; x7Þ in the
220550 configuration.

Thus, three conditions need to be satisfied for stabiliza-

tion: (1) the time dependent brane densities �I / el
I
all

become equal; (2) the forces of expansion and contraction
for each of the brane directions be just right so that the net
force vanishes; (3) the universe be expanding as e� � t� in
the limit t ! 1 with �> 1 so that the transient velocities
are damped and the corresponding scale factors reach
constant values.

For any mutually BPSN > 1 intersecting brane configu-
rations with the equations of state as assumed here, it is
straightforward to show using the earlier analysis that the

evolution equations ensure that el
I
all become equal

asymptotically even if they were unequal initially, and
that e� � t� in the limit t ! 1 with �> 1. Thus condi-
tions (1) and (3) are satisfied. Condition (2) requires the
brane configuration to be such that each of the brane
directions is wrapped by, and is transverse to, just the right
number and kind of branes. This condition is satisfied for
the N ¼ 4 configurations 220550 and 550500W, both of
which result in the stabilization of seven brane directions
and the expansion of the remaining three spatial directions.
To our knowledge, the only other configurations which
satisfy the condition (2) are the N ¼ 3 configurations
220200 and 25W, both of which result in the stabilization
of six brane directions and the expansion of the remaining
four spatial directions [24]. However it is the N ¼ 4 con-
figurations that are entropically favorable, see Eq. (1).

Note that, as described in Sec. II B and up to certain
technical assumptions regarding the equality of brane den-
sities and the asymptotic behavior of e�, the stabilization
here follows essentially as a consequence of U duality
symmetries. In particular, it is independent of the ansatz
for energy momentum tensors, or of the assumptions about
equations of state, as long as the components of the energy
momentum tensors obey the U duality constraints of the
type given in Eq. (16). Obtaining the details of the stabi-
lization, however, requires further assumptions, e.g., of the
type made here.

Note also that the present mechanism of stabilization of
seven brane directions, and the consequent emergence of
three large spatial directions, is very different from the
ones proposed in string theory or in brane gas models
[28–31].

V. STABILIZED SIZES OF BRANE DIRECTIONS

We thus see for the 220550 configuration that, asymptoti-
cally in the limit e� ! 1, the initial (10þ 1)—
dimensional universe effectively becomes (3þ 1)—
dimensional. Also, if vs ¼ minfv1; � � � ; v7g then a

dimensional reduction of the (10þ 1)—dimensional M
theory along the corresponding xs direction gives type
IIA string theory with its dilaton now stabilized. Using
the standard relations, one can obtain the string coupling
constant gs, the string scale Ms, and the four-dimensional
Planck scaleM4 in terms of the M theory scaleM11 and the

stabilized values ev
i
. Defining vc ¼ P

7
i¼1 v

i and assuming,
with no loss of generality, that the coordinate sizes of all
spatial directions are of OðM�1

11 Þ, we obtain
g2s ¼ e3v

s
; M2

4 ¼ ev
c�vs

M2
s ¼ ev

c
M2

11 (92)

where the equalities are valid up to numerical factors of
Oð1Þ only and

ev
c ¼ eL

c�1
�
�10�20

�30�40

�
1=6u

; Lc ¼ X7
i¼1

Li (93)

as follows from Eqs. (75) and (85), and �I0 ¼ el
I
0 . Also,

note that gs ¼ ðMs

M11
Þ3.

Since we have an asymptotically (3þ 1)—dimensional
universe evolving from a (10þ 1)—dimensional one, it is

of interest to study the resulting ratios M11

M4
and Ms

M4
, and study

their dependence on the initial values ðlI0; KI; LiÞ. In par-

ticular, one may like to know the generic values of these
ratios and to know whether arbitrarily small values are
possible. Setting M4 ¼ 1019 GeV, one then knows the
generic scales of M11 and Ms and, for example, whether
M11 ¼ 10�15M4 ¼ 10 TeV is possible.
In view of the relations between ðM11;Ms;M4Þ given in

Eq. (92), this requires studying the stabilized values ev
c

and ev
c�vs

, their dependence on ðlI0; KI; LiÞ, and knowing

whether they can be arbitrarily large. Note that if Li ¼ 0
for all i then vi are all determined in terms of lI0 only, see
Eq. (85). It is then obvious from Eqs. (85) and (93) that any
values for ev

c
and ev

c�vs
, no matter how large, may be

obtained by fine-tuning �I0 correspondingly.
10

This statement remains true even when Lis do not all
vanish. In this case, however, one may question the neces-
sity of fine-tuning since, for example, the relation ev

c /
eL

c�1 suggests that large values such as 1030 � e70 may be
obtained by tuning Lis, or �1, or both to within a couple of
orders of magnitude only. It turns out, as we explain below,
that fine-tuning is still necessary to obtain such large
values.
Consider first the possibility of tuning Li. Note that

Eqs. (67) and (70) are invariant under the scaling

ðE; elI ; �Þ )
�

2E;
2el

I
;
�




�
(94)

10It follows from Eq. (71) and the definition of E that the
generic ranges of the initial values may be taken to be given by
jLij ’ KI ’ ffiffiffiffi

E
p ’ ffiffiffiffiffiffiffi

�I0
p

within a couple of orders of magnitude.
If the initial values lie way beyond such a range then we consider
it as fine-tuning.
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where 
 is a positive constant. The initial values scale
correspondingly as

ðelI0 ; KI; LiÞ ! ð
2el
I
0 ; 
KI; 
LiÞ: (95)

It then follows from Eq. (68) that �i, and hence ev
i
, remain

invariant.11 This scaling property merely reflects the choice
of a scale for time. For example, using this scaling, one

may set
P

Je
lJ
0 ¼ 1 or, when E> 0 as is the case here, set

E ¼ 1. The corresponding 
 then provides a natural time
scale for evolution. We set E ¼ 1 using the above scaling.

With E ¼ 1, the value of �1 now depends only on lI0 and
KI. Since 2E ¼ P

iðLiÞ2 � ðPiL
iÞ2, it is still plausible to

have a range of nonzero measure where Li are large and
E ¼ 1, and thereby obtain large values for ev

c
and ev

c�vs
.

However, Lis are further constrained by
P

iu
I
iL

i ¼ 0,
I ¼ 1; � � � ; 4, and consequently their magnitudes are all
bounded from above. For example, with E ¼ 1, we obtain
ðLcÞ2 � 8

3 . See remark (2) in Sec. IVA. Thus, large values

of ev
i
cannot be obtained by tuning Li alone.

Consider now the possibility of tuning �1. Obtaining the
dependence of �1 on ðlI0; KIÞ requires explicit solutions

which are not available. Hence, we obtain �1 numerically.
We will present the numerical results in the next section.
Here we point out that an approximate expression for �1
can be given in the limit when el

I
0 � E for all I. The

reasoning involved is analogous to that used in obtaining
�a in Eq. (49). Using similar reasoning and setting E ¼ 1

now, we have that if el
I
0 � 1 for all I then

�1 ’ �a ¼ minf�Ig; �I ¼ � lI0
KI : (96)

Note that �a can be calculated easily and requires no
knowledge of explicit solutions. Our numerical results
show that �a given above indeed provides a good approxi-

mation to �1 when el
I
0 � 1 for all I.

Note also that KI must satisfy Eq. (71) with E ¼ 1. It
then follows from an analysis similar to that given in
Appendix C that KI are all positive, cannot be too small,

and are ofOð1Þ generically. Hence, in the limit el
I
0 � 1 for

all I, �a in Eq. (96) are ofOðminf�lI0gÞ. This indicates that
large values of �1, and hence of ev

i
, cannot be obtained by

tuning KI alone; a tuning of lI0, which translates to fine-

tuning of �I0 ¼ el
I
0 , is required. Our numerical analysis

also supports this conclusion.
We thus find that, even when Lis do not all vanish, a fine-

tuning of �I0 ¼ el
I
0 is necessary to obtain large values for

ev
c�vs

and ev
c
.

VI. TIME VARYING NEWTON’S CONSTANT

The evolution of the 11-dimensional early universe
which is dominated by the 220550 configuration described

here can also be considered from the perspective of
four-dimensional spacetime. Indeed, in general, let the
11-dimensional line element ds be given by

ds2 ¼ g��dx
�dx� þX7

i¼1

e2�
iðdxiÞ2 (97)

where x� ¼ ðx0; x8; x9; x10Þ, with x0 ¼ t, describes the
four-dimensional spacetime, and the fields g�� and �

i, i ¼
1; � � � ; 7, depend on x� only. Also, let �c ¼ P

7
i¼1 �

i. It is
then straightforward to show that the gravitational part of
the 11-dimensional action S11 given in Eq. (3) becomes

S4 ¼ V7

16�G11

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi�gð4Þ
p

e�
c

�
Rð4Þ þ ðrð4Þ�cÞ2

�X7
i¼1

ðrð4Þ�iÞ2
�

(98)

where V7 is the coordinate volume of the seven-
dimensional space and the subscripts (4) indicate that the
corresponding quantities are with respect to the four-
dimensional metric g��. The action S4 describes four-

dimensional spacetime in which the effective Newton’s
constant G4 is spacetime dependent and is given by

G4ðx�Þ ¼ e��cðx�Þ G11

V7

: (99)

In the case of early universe, the fields g�� and �i depend

on t only. Then G4 is time dependent and we have, for G4

and its fractional time derivative,

G4ðtÞ ¼ e��cðtÞ G11

V7

;
ðG4Þt
G4

¼ ��c
t : (100)

For the four-dimensional spacetime arising from the
220550 configuration, the g�� fields are just the scale factors

ðe�8
; e�

9
; e�

10Þ for ðx8; x9; x10Þ directions, and all �ið�Þ are
given in Eq. (68) in terms of lIð�Þ, I ¼ 1; � � � ; 4. Then,
using Eq. (75) and the definitions of �c, Lc, and vc, we
have

�c ¼ � 1

6u
ðl1 þ l2 � l3 � l4Þ � Lcð�1 � �Þ þ vc:

(101)

In the limit t ! 1, we have from the results given earlier
that � ! �1 and the fields lI all become equal. Then
�c ! vc where ev

c
is given in Eq. (93), and the three-

dimensional scale factors evolve as in the standard FRW

case, namely e�
8 ¼ e�

9 ¼ e�
10 � t2=3ð2�uÞ as given in

Eqs. (87) and (88).
It thus follows that the effective Newton’s constant G4

varies with time in the early universe and, in the case of

220550 configuration, approaches a constant value ¼
e�vc G11

V7
as the four-dimensional universe expands to large

size. The precise time dependence of G4 will follow from

11This invariance is equivalent to that of Eqs. (28) and (29)
under the scaling ð�i; �; pi; tÞ ! ð�i; 
2�;
2pi;

t

Þ.
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explicit solutions to Eqs. (67) and (70). The consequences
of a such a time dependent G4 are clearly interesting, and
are likely to be important too. But their study is beyond the
scope of the present paper.

However, we like to point out here a characteristic
feature of the time dependence of G4 which arises in the
case of 220550 configuration. Consider the behavior of the
differences lI � lJ in the limit � ! �1 which, in our case,
vanish to the leading order. These quantities have been
analyzed in Sec. III C and, for the example of the GIJ given
in Eq. (60), they are given by Eqs. (64) and (65) to the
nontrivial leading order. The case of the 220550 configura-
tion corresponds to N ¼ 4, a ¼ 2u2, and b ¼ 1. Noting
that sI � sJ ¼ lI � lJ and that �< 0 in our case, Eq. (65)
now gives

ðlI � lJÞ � ð�1 � �Þð1=2Þð1	i
ffiffiffiffiffiffi
5=3

p
Þ (102)

to the leading order. Clearly, �cð�Þ given in Eq. (101) will
also have the same form as above to the nontrivial leading
order. Thus, taking the real part and writing in terms of t
using Eq. (86), we have

�c ¼ vc þ b

t�
Sinð!lntþ�Þ (103)

to the nontrivial leading order in the limit t ! 1 where b

and � are constants, � ¼ u
2ð2�uÞ , and ! ¼

ffiffi
5
3

q
u

2ð2�uÞ .
Correspondingly, the time varying Newton’s constant is
given by

G4 / e��c ¼ e�vc

�
1� b

t�
Sinð!lntþ�Þ

�
(104)

to the leading order in the limit t ! 1. Note that the
constants b and � depend on the details of matching.
The constants � and ! arise as real and imaginary parts
of an exponent on time variable, see Eq. (102). They do not
depend on the initial values ðlI0; KI; LiÞ and thus are inde-

pendent of the details of evolution, but depend only on the
configuration parameters N and u.

The amplitude of time variation of G4 is dictated by �,
and it vanishes in the limit t ! 1. Hence, the time varia-
tion of G4 in Eq. (104) is unlikely to contradict any late
time observations. The time variation of G4 has log peri-
odic oscillations also:G4 has an oscillatory behavior where
the nth and (nþ 1)th nodes occur at times tn and tnþ1

which are related by lntnþ1 ¼ �
! þ lntn, i.e. by tnþ1 ¼

e�=!tn. The characteristic signatures and observational
consequences of such log periodic variations of G4 are
not clear to us.

Log periodic behavior occurs in many physical systems
with ‘‘discrete self similarity’’ or ‘‘discrete scale symme-
try’’: for example, in quantum mechanical systems with
strongly attractive 1

r2
potentials near zero energy [39]; in

Choptuik scaling and brane–black hole merger transitions
[40]; and in a variety of dynamical systems [41].

Algebraically, the log periodicity arises when an exponent
on an independent variable becomes complex for certain
values of system parameters. The relevant equations and
solutions can often be cast in a form given in Eqs. (64) and
(65). But we are not aware of a physical reason which
explains the ubiquity of the log periodicity.
To our knowledge, this is the first time a log periodic

behavior appears in a cosmological context. One expects
such a behavior to leave some novel imprint in the uni-
verse. But it is not clear to us which effects to look for, or
which observables are sensitive to the log periodic varia-
tions of G4.

VII. NUMERICAL RESULTS

We are unable to solve explicitly the Eqs. (67)–(70)
describing the early universe evolution. Hence, we have
analyzed these equations numerically. In this section, we
briefly describe our procedure and present a few illustrative
results. We have analyzed both the u ¼ 2

3 and u ¼ 1 cases

which would correspond to a four-dimensional universe
dominated by radiation and pressureless dust, respectively.
The results are qualitatively the same and, hence, we take
u ¼ 2

3 in the following. Note that ! in Eq. (104) is then

determined and, for u ¼ 2
3 , the nth and (nþ 1)th nodes in

the log periodic oscillations occur at times tn and tnþ1

related by lnðtnþ1

tn
Þ ¼ 4�

ffiffi
3
5

q
’ 9:734.

We proceed as follows. We start at an initial time � ¼ 0
and choose a set of initial values lI0 ¼ ln�I0. For each set of

lI0, we further choose numerous arbitrary sets of ðKI; LiÞ
such that KI > 0, E ¼ 1, and Eqs. (71) and (76) are
satisfied.12 For each set of initial values ðlI0; KI; LiÞ, we
then numerically analyze the evolution for � > 0 and ob-
tain the value of �1; the evolution of lI, ð�1; � � � ; �10Þ, and
t; the stabilized values ðv1; � � � ; v7Þ; and the resulting

values for ðgs; M11

M4
; Ms

M4
Þ. For a few sets of initial values,

we have analyzed the evolution for � < 0 also.
We find that the numerical results we have obtained

confirm the asymptotic features described in this paper:

(1) e�
i
and lI all vanish in the limit � ! �1. In this

limit, the evolution of the scale factors e�
i
is of

Kasner type.
(2) lI and the physical time t all diverge in the limit � !

�1 where �1 is finite. In this limit, the scale factors

ðe�8
; e�

9
; e�

10Þ evolve as in the standard FRW case

and ðe�1
; � � � ; e�7Þ reach constant values.

(3) �a given in Eq. (96) provides a good approximation

to �1 when el
I
0 � 1 for all I.

12There are two special choices for the set of KI. One is where
K1 ¼ � � � ¼ K4 and another is the one which maximizes the
approximation �a given in Eq. (96). The later set may be
determined by the algorithm given in Appendix D.
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(4) Any values for the ratios M11

M4
and Ms

M4
can be obtained,

but a corresponding fine-tuning of �I0 ¼ el
I
0 is

necessary.
(5) The log periodic oscillations of lI � lJ, equivalently

of ð�1; � � � ; �7Þ, can also be seen in the limit � !
�1. They can be matched to solutions of the type
given in Eq. (102).

To illustrate the values of �1 and the ratios ðM11

M4
; Ms

M4
Þ one

obtains, and to give an idea of their dependence on the
initial values lI0, we tabulate these quantities in Table I for a
few sets of initial values ðlI0; KI; LiÞ. We have also tabulated

the values of �a as given by Eq. (96). The value of gs
follows from gs ¼ ðMs

M11
Þ3 and, hence, is not tabulated.

In Table II, the corresponding initial values ðKI; LiÞ,
i ¼ 1, 2, 6, 7, 8, 9, are tabulated up to overall positive
constants. The remaining Lis are given by Eqs. (76) and the
overall positive constants are determined by E ¼ 1 and
Eq. (71). All the sets of initial values ðlI0; KI; LiÞ are chosen
arbitrarily with no particular pattern and are presented here
to give an idea of the typical results.

We find, by analyzing numerous sets of initial values,
that changing the values of ðKI; LiÞ for a given set of lI0
changes the values of M11

M4
and Ms

M4
only up to about 4 orders

of magnitude. Any bigger change requires changing el
I
0 to a

similar order, confirming that any values for M11

M4
and Ms

M4
can

be obtained but only by fine-tuning �I0 ¼ el
I
0 .

We illustrate the evolution of the universe for the data set
(3) given in Tables I and II where many features can be
seen clearly. The evolution with respect to � of lI is shown
in Figs. 1, 2(a), and 2(b). For negative values of � not

shown in Fig. 1, all lI evolve along straight lines with no
further crossings and their evolution is of Kasner type.
Also, all lI diverge at a finite value �1 ’ 6:612 of �. The
magnified plots in Figs. 2(a) and 2(b) for � > 6:40 and for
� > 6:55 respectively show the continually criss-crossing
evolution of lI which, near �1, represent the log periodic
oscillations and are well described by Eq. (102).
The evolution with respect to lnt of ð�1; � � � ; �7Þ is

shown in Fig. 3. It can be seen that ð�1; � � � ; �7Þ, and hence
the scale factors ðe�1

; � � � ; e�7Þ of the brane directions, all
stabilize to constant values as t ! 1.
The evolution with respect to lnt of ð�8; �9; �10Þ and

�c ¼ P
7
i¼1 �

i is shown in Fig. 4. Note that the seven-

dimensional volume of the brane directions / e�
c
and

TABLE I. The initial values �ðl10; l20; l30; l40Þ and the resulting values of �a, �1,
M11

M4
, and Ms

M4
. The values in the last four columns have

been rounded off to two decimal places.

�ðl10; l20; l30; l40Þ �a �1
M11

M4

Ms

M4

(1) (2, 5, 8, 8) 1.88 3.21 5:77� 10�2 2:86� 10�2

(2) (5, 4, 6, 9) 2.96 4.16 4:56� 10�2 1:93� 10�2

(3) (15, 12, 10, 16) 4.88 6.61 5:95� 10�2 1:96� 10�2

(4) (25, 26, 27, 28) 22.00 22.59 1:99� 10�7 7:30� 10�10

(5) (41, 30, 50, 43) 25.80 28.30 1:87� 10�10 2:92� 10�11

(6) (44.5, 34, 49, 49.5) 34.82 36.20 2:59� 10�14 3:80� 10�15

TABLE II. The initial values of ðKI; LiÞ for the data shown in Table I, tabulated here up to overall positive constants. These constants
and the remaining Lis are to be fixed as explained in the text.

ðK1; K2; K3K4Þ / ðL1; L2; L6; L7; L8; L9Þ /
(1) (4.65, 9.14, 4.57, 6.87) ð0:60; 0:62; 0:76; 0:72;�0:94;�0:26Þ
(2) (8.86, 8.26, 6.01, 6.62) �ð0:08;�0:93; 0:08;�0:72; 0:54; 0:63Þ
(3) (1.61, 2.65, 0.69, 2.1) �ð0:2;�0:68;�0:14; 0:3; 0:08; 0:19Þ
(4) (1.03, 1.18, 1.17, 1.27) ð0:08; 0:58; 0:27; 0:27;�0:66;�0:66Þ
(5) (5.24, 4.83, 4.30, 4.96) ð0:74; 0:02; 0:24;�0:22;�0:61;�0:75Þ
(6) (33.79, 24.23, 35.4, 32.29) ð11:72; 9:31; 4:59;�6:46;�21:02;�21:02Þ

l1

l2

l3

l4

10 5 5

40

30

20

10

10

FIG. 1. The plots of lI with respect to �. The lines continue
with no further crossings for negative values of � not shown in
the figure. All lI diverge at �1 ’ 6:612. All figures in this paper
are for the data set (3) given in Tables I and II.
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that it stabilizes to a constant value ev
c
as t ! 1. We have

also verified that the evolution of ð�8; �9; �10Þ as t ! 1 is
the same as that of the corresponding ones in a four-
dimensional radiation-dominated FRW universe.

The log periodic oscillations of �c are illustrated in
Figs. 5(a) and 5(b) by magnifying the plots of (�c � vc)
with respect to lnt for lnt > 20 and for lnt > 30. The

internode separations can be seen in these figures, and
they match the value ’ 9:734 obtained in Eq. (103) from
the asymptotic analysis.
In all the cases we have analyzed, the evolutions of

ðlI; �iÞ are qualitatively similar to the ones shown in the

l2

l4

l1 l3

6.45 6.50 6.55 6.60

2

4

6

8

10

12

(a)

l4

l2

l1 l3

6.56 6.57 6.58 6.59 6.60 6.61

6

8

10

12

14

(b)

FIG. 2. (a), (b) The magnified plots of lI with respect to � for � > 6:40 and for � > 6:55 showing the continually criss-crossing
evolution of lI. Near �1 ’ 6:612, these crossings are well described by Eq. (102).

10 10 20 30 40 50
ln t

4

2

2

4

6

8

FIG. 3. The plots of ð�1; � � � ; �7Þ with respect to lnt. The lines,
from top to bottom at the rightmost end, correspond to
ð�2; �3; �5; �6; �4; �7; �1Þ. ð�1; � � � ; �7Þ all stabilize to constant
values as t ! 1.

8

9
10

c

10 10 20 30
ln t

5

5

10

15

20

FIG. 4. The plots of ð�8; �9; �10;�cÞ with respect to lnt. The
seven-dimensional volume of the brane directions / e�

c
. The

evolution of ð�8; �9; �10Þ as t ! 1 is the same as that of the
corresponding ones in a four-dimensional radiation-dominated
FRW universe.
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figures above. The details, such as the rise and fall of �i in
the initial times or the value of �1 or the stabilized values
of the brane directions, depend on the initial values but the
asymptotic features described in the beginning of this
section are all the same. Hence, we have presented the
plots for one illustrative set of initial values only.

VIII. SUMMARYAND CONCLUSIONS

We summarize the main results of the paper. We assume
that the early universe in M theory is homogeneous, an-
isotropic, and is dominated by N ¼ 4mutually BPS 220550
intersecting brane configurations which are assumed to be
the most entropic ones. Also, the ten-dimensional space is
assumed to be toroidal. We further assumed that the brane
antibrane annihilation effects are negligible during the
evolution of the universe at least until the brane directions
are stabilized resulting in an effective (3þ 1)—dimen-
sional universe.

We then present a thorough analysis of the evolution of
such an universe. We obtain general relations among the
components of the energy momentum tensor TAB using U
duality symmetries of M theory and show that these rela-
tions alone imply, under a technical assumption, that the
N ¼ 4 mutually BPS 220550 intersecting brane configura-
tions with identical numbers of branes and antibranes will
asymptotically lead to an effective (3þ 1)—dimensional
expanding universe.

To obtain further details of the evolution, we make
further assumptions about TAB. We then analyze the evo-
lution equations in D dimensions in general, and then
specialize to the 11-dimensional case of interest here.

Since explicit solutions are not available, we apply the
general analysis and describe the qualitative features of
the evolution of the N ¼ 4 brane configuration: In the
asymptotic limit, three spatial directions expand as in the
standard FRW universe and the remaining seven spatial
directions reach constant, stabilized values. These values
depend on the initial conditions and can be obtained nu-
merically. Also, any stabilized values may be obtained but
it requires a fine-tuning of the initial brane densities.
We also present a physical description of the mechanism

of stabilization of the seven brane directions. The stabili-
zation is due, in essence, to the relations among the com-
ponents of TAB which follow from U duality symmetries,
and to each of the brane directions in the N ¼ 4 configu-
ration being wrapped by, and being transverse to, just the
right number and kind of branes. This mechanism is very
different from the ones proposed in string theory or in
brane gas models.
In the asymptotic limit, from the perspective of four-

dimensional spacetime, we obtain an effective four-
dimensional Newton’s constant G4 which is now time vary-
ing. Its precise time dependence will follow from explicit
solutions of the 11-dimensional evolution equations. We
find that, in the case of N ¼ 4 brane configuration, G4

has characteristic log periodic oscillations. The oscillation
‘‘period’’ depends only on the configuration parameters.
Using numerical analysis, we have confirmed the quali-

tative features mentioned above.
We nowmake a few comments on the assumptions made

in this paper. Note that the assumptions mentioned above in
the first paragraph of this section pull a rug over many
important dynamical questions that must be answered in a

20 30 40 50 60
ln t

0.2

0.1

0.0

0.1

0.2

c vc

(a)

30 40 50 60
ln t

0.010

0.008

0.006

0.004

0.002

0.002

0.004

c vc

(b)

FIG. 5. (a), (b) The magnified plots of (�c � vc) with respect to lnt for lnt > 20 and for lnt > 30 showing log periodic oscillations
and the internode separation which is ’ 9:734.
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final analysis. Some of these questions,13 in the context of
M theory, are:

(i) Starting from the highly energetic and highly inter-
acting M theory excitations, which are expected to
describe the high temperature state of the universe,
how does a 11-dimensional spacetime emerge?

(ii) What determines the topology of the ten-
dimensional space? Here, we assumed it to be to-
roidal. How does the universe evolve if its spatial
topology is not toroidal?

(iii) From what stage onwards, does the 11-dimensional
‘‘low-energy’’ effective action provide a good de-
scription of further evolution?

(iv) What are the relevant ‘‘low-energy’’ configurations
of M theory? Here, based on the black hole studies,
we have assumed that the N ¼ 4 mutually BPS
220550 intersecting brane configurations are the
most entropic ones and, hence, that they are the
dominant configurations in the early universe
studied here.
This raises further questions: Are the 220550, and
not some other mutually BPS N � 4 or some
other non-BPS, configurations really the most en-
tropic and the dominant ones? Even assuming that
mutually BPS N ¼ 4 is the answer, are there other
N ¼ 4 configurations beside the 220550 ones and, if
so, how do they affect the evolution described here?
What are the effects of the subdominant configura-
tions? In particular, will the effects of other brane
configurations mentioned above undo the stabiliza-
tion of seven directions presented here?
Note that unless these questions are answered and,
furthermore, it is shown that other brane configura-
tions mentioned above do not undo the stabilization
presented here, our assumption that the evolution of
the universe is dictated by the 220550 configuration
amounts to a fine-tuning: The 220550 configuration
assumed here, where the sets of 2 branes and 5
branes wrap the directions ðx1; � � � ; x7Þ homogene-
ously everywhere in the mutually transverse three-
dimensional space, may not arise generically. Also,
the implicitly required absence of other brane con-
figurations is not natural in the context of the early
universe. Then the problem of the emergence of an
effective (3þ 1)—dimensional universe, a solution
for which is presented here, gets shifted to answer-
ing how the required, finely tuned, initial conditions
may arise naturally from M theory.

(v) What is the time scale of brane antibrane annihila-
tions in the 220550 configuration studied here? Is it
long enough for the brane directions to be stabilized

as described in this paper? Here, based on the black
hole studies, we have assumed it to be long enough.

(vi) A related question, but applicable after stabilization
of brane directions, is the following: If all the
branes and antibranes will eventually decay, as
seems natural, then what are the decay products?
How can one obtain the known constituents of our
present universe?

Although one of us has presented a principle in [8] that
may be of help, the fact is that we do not know even where
to begin in answering these questions quantitatively, much
less know the answers. Nevertheless we present the above
list of questions, unlikely to be complete, in order to
emphasize the further work required to understand how
our known (3þ 1)—dimensional universe may emerge
from M theory.
In the present work, with many attendant assumptions,

we considered the 220550 configurations and explained a
mechanism by which seven directions stabilize and an
effective (3þ 1)—dimensional universe results. Clearly,
it is important to answer the questions listed above and
thereby determine the relevance of this mechanism.
Within the present framework, there are many other issues

that may be studied further. We conclude by mentioning a
sample of them. We have shown here that a large stabilized
seven-dimensional volume can be obtained but it requires a
corresponding fine-tuning of initial brane densities. This is
within the context of our ansatzes for TAB and the equations
of state. It will be of interest to prove or disprove the
necessity of such a fine-tuning in more general contexts.
The N ¼ 4 intersecting brane configuration studied here

is the entropically favorable one and, as proposed in [8],
may be thought of as emerging from the high temperature
phase of M theory in the early universe. Such an emergence
suggests that there may be novel solutions to the horizon
problem and to the primordial density fluctuations, perhaps
similar to those explored recently in the Hagedorn phase of
string theory by Nayeri et al [52]. Note that this involves
answering many of the questions listed above.
It may be of interest to study further the consequences of

time varying Newton’s constant which appears here, in
particular, possible imprints of its asymptotic log periodic
oscillations.
In the case of a class of black holes, the brane configu-

rations describe well their entropy and Hawking radiation.
In the present description of a four-dimensional early uni-
verse in terms of N ¼ 4 intersecting branes, it is not clear
which quantities to calculate which, analogously to entropy
or Hawking radiation in the black hole case, may provide
further validation. It is important to study this further.
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APPENDIX A: U DUALITY RELATIONS
IN BLACK HOLE CASE

Consider black holes in mþ 2 dimensional spacetime
described by mutually BPS intersecting brane configura-
tions in M theory. The brane action Sbr in Eq. (3) is the
standard one for higher form gauge fields. The correspond-
ing black hole solutions and their properties are well
known, so here we only highlight the points related to U
duality symmetries. Also, for illustration, we consider only
2 branes and 5 branes.

As mentioned in Sec. II, the method of U duality sym-
metries applies here also and leads to the same relations
between �i. They are best seen in the extremal case. (The
nonextremal case requires further analysis and is more
involved.) The 11-dimensional line element ds for the
extremal brane configurations are of the form

ds2 ¼ �e2�
0
dt2 þX

i

e2�
iðdxiÞ2 (A1)

where ð�0; �iÞ depend on r, the radial coordinate of the
mþ 1 dimensional transverse space. For 2 branes and 5
branes, the �is may be written as

�1¼�2¼�2~h

6
; �3¼���¼�10¼

~h

6
(A2)

�1¼���¼�5¼�
~h

6
; �6¼���¼�10¼2~h

6
(A3)

where e
~h ¼ H ¼ 1þ Q

rm�1 is the corresponding har-

monic function and Q is the charge. See, for example,
[53] for more details. Clearly, the U duality relations in
Eqs. (11)–(13) are valid here also.

For the extremal 220550 configuration (12, 34, 13567,
24567), the transverse space is three-dimensional and the
�is may be written as [53]

�1 ¼ 1

6
ð�2~h1 þ ~h2 � ~h3 þ 2~h4Þ

�2 ¼ 1

6
ð�2~h1 þ ~h2 þ 2~h3 � ~h4Þ

�3 ¼ 1

6
ð~h1 � 2~h2 � ~h3 þ 2~h4Þ

�4 ¼ 1

6
ð~h1 � 2~h2 þ 2~h3 � ~h4Þ

�5 ¼ �6 ¼ �7 ¼ 1

6
ð~h1 þ ~h2 � ~h3 � ~h4Þ

�8 ¼ �9 ¼ �10 ¼ 1

6
ð~h1 þ ~h2 þ 2~h3 þ 2~h4Þ (A4)

where e
~hI ¼ HI ¼ 1þ QI

r are the corresponding har-

monic functions and QIs are the charges. Clearly, the U
duality relations in Eqs. (14) and (15) are valid here also.

Furthermore, if 2 and 20 branes are identical then ~h1 ¼ ~h2

and we get �1 ¼ �3, and similarly other relations when
different sets of branes are identical.
We further illustrate the U duality methods by interpret-

ing a U duality relation
P

ici�
i ¼ 0 as implying a relation

among the components of the energy momentum tensor
TAB. The relations thus obtained are indeed obeyed by the
components of TAB calculated explicitly using the corre-
sponding higher form gauge field action Sbr.
For this purpose, let the spacetime coordinates be xA ¼

ðr; x�Þ where x� ¼ ðx0; xi; aÞ with x0 ¼ t, i ¼ 1; � � � ; q,
a ¼ 1; � � � ; m, and qþm ¼ 9. The xi directions may be
taken to be toroidal, some or all of which are wrapped by
branes, and a are coordinates for an m-dimensional space
of constant curvature given by � ¼ 	1 or 0. The metric and
brane fields depend only on r coordinate. We write the line
element ds, in an obvious notation, as

ds2 ¼ �e2�0dt2 þX
i

e2�
iðdxiÞ2 þ e2�dr2 þ e2
d�2

m;�:

(A5)

The independent nonvanishing components of TA
B are

given by Tr
r ¼ f and T�

� ¼ p� where � ¼ ð0; i; aÞ.
These components can be calculated explicitly using the
action Sbr. For example, for an electric p-brane along
ðx1; � � � ; xpÞ directions, they are given by

p0 ¼ pk ¼ �p? ¼ �pa ¼ f ¼ 1

4
F01���prF01���pr (A6)

where pk ¼ pi for i ¼ 1; � � � ; p, p? ¼ pi for i ¼
pþ 1; � � � ; q, and note that f is negative. For mutually
BPS N intersecting brane configurations, it turns out
[42–51] that the respective energy momentum tensors
TA

B and TA
BðIÞ obey equations analogous to those given in

(21)–(23).
Equations of motion may now be obtained from

Eqs. (4) and (21). After some manipulations, they may
be written in a form similar to those given in (7)–(9) as
follows:

�2
r �

X
�

ð��
r Þ2 ¼ 2fþ �mðm� 1Þe�2
 (A7)

��
rr þ�r�

�
r ¼ �p� þ 1

9

�
f�X

�

p�

�

þ �ðm� 1Þe�2
��a (A8)

fr þ f�r �
X
�

p��
i
r ¼ 0 (A9)

where � ¼ P
��

� ¼ �0 þP
i�

i þm
 and the subscripts
r denote r-derivatives. See [50] particulary, whose set up
and the equations of motions are closest to the present
ones.
Consider now the case of 2 branes or 5 branes. We

assume that pa ¼ p? which is natural since a directions
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are transverse to the branes. Applying the U duality rela-
tions in Eq. (13) then implies, for both 2 branes and 5
branes, the relation

pk ¼ p0 þ p? þ f (A10)

among the components of their energy momentum tensors.
Note that it is also natural to take p0 ¼ pk since x0 ¼ t is
one of the world volume coordinates and may naturally be
taken to be on the same footing as the other ones
ðx1; � � � ; xpÞ. Equation (A10) then implies that p? ¼ �f.
The relation between pk and f is to be specified by an

equation of state which, in the black hole case, is that given
in Eq. (A6).

For now, however, we take p0 and pk to be different.

Keeping in mind that f is negative, we assume the equa-
tions of state to be of the form p�I ¼ �ð1� uI�ÞfI where
� ¼ ð0; i; aÞ, I ¼ 1; � � � ; N, and uI� are constants. Then for
2 branes and 5 branes, we have

2: u� ¼ ðu0; uk; uk; u?; u?; u?; u?; u?; u?; u?Þ
5: u� ¼ ðu0; uk; uk; uk; uk; uk; u?; u?; u?; u?Þ

(A11)

where the I superscripts have been omitted here and uk ¼
u0 þ u? which follows from Eq. (A10). Note that u? ¼ 0
and u0 ¼ uk ¼ 2 in the black hole case given in Eq. (A6).

Let

fI ¼ �el
I�2�; lI ¼ X

�

uI��
� þ lI0; d� ¼ e��dr

G�� ¼ 1� ���; GIJ ¼ X
�;�

G��uI�u
J
�: (A12)

Then, after a straightforward algebra, one obtains

lI�� ¼ �X
J

GIJel
J þ u?�mðm� 1Þe2ð��
Þ; (A13)

which are similar to Eqs. (39). The remaining equations are
not needed and, hence, not given here. Using Eqs. (A11)
and (A12), it is now straightforward to calculate GIJ for N
intersecting brane configurations. It turns out because of
the BPS intersection rules that GIJ may be written as

G IJ ¼ 2u0ðu? � u0�
IJÞ: (A14)

The corresponding GIJ is given by

G IJ ¼ 1

2u20

�
u?

Nu? � u0
� �IJ

�
: (A15)

Now take p0 ¼ pk. Then Eq. (A10) gives p? þ f ¼ 0. In
terms of u�, we now have u0 ¼ uk and u? ¼ 0. Clearly,
then GIJ / �IJ and Eqs. (A13) can be solved for lIð�Þ.
See [50] for such solutions, with u0 ¼ 2 as follows from
Eq. (A6), and their analysis.

Tracing through the steps in the above derivation, it can
also be seen that for the homogeneous early universe case,
ðr; fÞ here get replaced by ðt;��Þ, and ðt; p0; u0Þ here gets
replaced by ðr; p?; u? ¼ uÞ. Then, Eqs. (A10) and (A14)
become Eqs. (20) with z ¼ �1 and (72) respectively.

APPENDIX B: TO SHOW E � 0

Let ~1 ¼ ð1; 1; � � � ; 1Þ and ~v ¼ ðv1; v2; � � � ; vnÞ be the
standard n–component vectors with the standard vector

product. Let n be the angle between them. Then ~1 � ~1 ¼
n, ~v � ~v ¼ P

av
2
a, ð~1 � ~vÞ2 ¼ ðPavaÞ2 ¼ ncos2n

P
av

2
a,

and we have the Schwarz inequality in the form

n
Xn
a¼1

v2
a �

�Xn
a¼1

va

�
2 ¼ n
2

n � 0 (B1)

where 
2
n ¼ sin2n

P
n
a¼1 v

2
a. The equality is valid,

i.e. 
n ¼ 0, if and only if sinn ¼ 0, equivalently v1 ¼
� � � ¼ vn.
We now show the following:
Let Gij and Gij be given by Eq. (27). If ui and L

i satisfy

the relations
P

iuiL
i ¼ 0 and

P
ijG

ijuiuj > 0 then 2E ¼
�P

ijGijL
iLj � 0. E vanishes if and only if Li all vanish.

Proof: It is clear that E vanishes if Li all vanish. Now,

let ~1 ¼ ð1; 1; � � � ; 1Þ, ~u ¼ ðu1; � � � ; uD�1Þ, and  be the
angle between them. Then ðPiuiÞ2 ¼ ðD� 1Þcos2Piu

2
i .

Hence,
P

ijG
ijuiuj ¼ 1

D�2 ð
P

iuiÞ2 �
P

iu
2
i > 0 implies

that

1� ðD� 1Þsin2 > 0: (B2)

The vector ~L ¼ ðL1; � � � ; LD�1Þ is perpendicular to ~u sinceP
iuiL

i ¼ 0. Let ~L ¼ ~L? þ ~Lk where ~L? is perpendicular

to the plane defined by ~1 and ~u, and ~Lk lies in it. ThenP
iðLiÞ2 ¼ L2

? þ L2
k where L2

? ¼ ~L? � ~L? and L2
k ¼ ~Lk �

~Lk. Since ~L and ~u are perpendicular and ~Lk lies in the plane
defined by ~1 and ~u, it follows that ~Lk is perpendicular to ~u,

and that the angle between the vectors ~1 and ~Lk is �
2 	 .

We then have

2E ¼ �X
ij

GijL
iLj ¼ X

i

ðLiÞ2 �
�X

i

Li

�
2

¼ L2
? þ L2

k � ðD� 1ÞL2
ksin

2 � 0

where the inequality follows from Eq. (B2). The equality
holds, and hence E vanishes, only when L2

? ¼ L2
k ¼ 0, i.e.

only when Li all vanish. This completes the proof.

APPENDIX C: SIGNS AND
NONVANISHING OF ð��; l

I
�Þ

Here, we show that the inequality in Eq. (80) implies that
none of ð��; l

I
�Þmay vanish, and that they must all have the

same sign.
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Setting xI ¼ lI�, Eq. (80) becomes X ¼ 12u2ðEþP
Ie

lI Þ> 0 where the polynomial X ¼ ðx1 þ x2 þ x3 þ
x4Þ2 � 3ðx21 þ x22 þ x33 þ x24Þ. Now, if any of the xI
vanishes then X � 0, see the Schwarz inequality given in
Eq. (B1). Hence, none of the xI may vanish. Rewrite X as

X¼ fðx1 þ x2 þ x3Þ2 � 3ðx21 þ x22 þ x33Þg� 2x24

þ 2x4ðx1 þ x2 þ x3Þ
¼ fðx1 þ x2Þ2 � 2ðx21 þ x22Þgþ fðx3 þ x4Þ2 � 2ðx23 þ x24Þg

� ðx21 þ x22 þ x33 þ x24Þþ 2ðx1 þ x2Þðx3 þ x4Þ
and note that f� � �g � 0 for each curly bracket, see
Eq. (B1). Hence, the necessary conditions for X > 0 are

x4ðx1 þ x2 þ x3Þ> 0; ðx1 þ x2Þðx3 þ x4Þ> 0:

Let one of the xI, e.g. x4, be negative and the other three
positive. This violates the first inequality above and, hence,
is not possible. Let two of the xI, e.g. x3 and x4, be negative
and the other two positive. This violates the second in-
equality above and, hence, is not possible. Similarly, three
of the xI being negative and one positive is also not
possible. Thus, the only possibility is that all xI have
same sign. Thus we have that none of the lI� may vanish,
and that they must all have the same sign.

With lI� denoted as xI, Eq. (79) for �� becomes

6u�� ¼ 2x1 þ 2x2 þ x3 þ x4 þ 6uL:

Note that u > 0. If L ¼ 0 then it follows that �� does not
vanish and has the same sign as xI. Consider now the case
where L � 0. Using Eq. (B1) to eliminate

P
Ix

2
I in the

polynomial X, we obtain

X ¼ 1

4
ðx1 þ x2 þ x3 þ x4Þ2 � 3
2

4 ¼ 12u2
�
EþX

I

el
I

�
:

Using the inequality 2E> 3ðLÞ2, see Eq. (78), it follows
that ðx1 þ x2 þ x3 þ x4Þ2 > 72u2ðLÞ2. Combined with the
earlier result on lI�, this inequality implies that ðx1 þ x2 þ
x3 þ x4 þ 6uLÞ, and hence �� given above, may not van-
ish and must have the same sign as xI ¼ lI�, irrespective of
whether L is positive or negative. This completes the proof.

APPENDIX D: SET OF KI WHICH MAXIMIZES �a

With no loss of generality, let 0<�l10 � � � � � �l40.
The corresponding set of KI which satisfies Eq. (71), with

E ¼ 1, and which maximizes �a ¼ minf�Ig, where �I ¼
� lI0

KI , may be obtained by the following algorithm. The

required analysis is straightforward but a little tedious and,
hence, is omitted.
(i) Let K1 ¼ �l10K. It will turn out that �a ¼ �1 ¼ 1

K .

(ii) Choose K2 ¼ �l20K. Then �2 ¼ �1.
(iii) If �l10 � l20 � �l30 then choose K3 ¼ K4 ¼

�ðl10 þ l20ÞK. Then �4 � �3 � �2 ¼ �1.
(iv) If �l10 � l20 >�l30 then choose K3 ¼ �l30K. Then

�3 ¼ �2 ¼ �1.
(v) If �l10 � l20 >�l30 and if �l10 � l20 � l30 � �2l40

then choose K4 ¼ � 1
2 ðl10 þ l20 þ l30ÞK. Then �4 �

�3 ¼ �2 ¼ �1.
(vi) If �l10 � l20 >�l30 and if �l10 � l20 � l30 >�2l40

then choose K4 ¼ �l40K. Then �4 ¼ � � � ¼ �1.
(vii) KI are all thus determined in terms of K. Equation

(71), with E ¼ 1, will now determine K.
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