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Primordial gravitational waves provide a very important stochastic background that could be detected

soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the

polarization anisotropies of the cosmic microwave background. The detection of these waves will open

a new window into the early Universe, and therefore it is important to characterize in detail all possible

sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to

study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then

consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a

local Uð1Þ symmetry. We analyze in detail the dynamics of the system in both momentum and

configuration space. We show that gauge fields leave specific imprints in the resulting gravitational

wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to

the mass scales in the problem. We also show how these new features in the spectra correlate with

stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of

topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time

evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before

entering a turbulent regime where the gravitational wave energy density saturates.
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I. INTRODUCTION

Gravitational waves (GW) are a robust prediction of
general relativity [1]. They correspond to ripples in
space-time that travel at the speed of light, and are typi-
cally produced whenever an astronomically large body of
mass moves at relativistic speeds like in astrophysical
binary systems, or whenever large density contrast waves
collide against each other, like in early universe phase
transitions. The change in the orbital period of a binary
pulsar known as PSR 1913þ 16 was used by Hulse and
Taylor [2] to obtain indirect evidence of their existence.
Although gravitational radiation has not been directly de-
tected yet, it is expected that the present universe should be
permeated by a diffuse background of GW of either astro-
physical or cosmological origin [1]. Astrophysical sources,
like the gravitational collapse of supernovae or the neutron
star and black hole binaries’ coalescence, also produce a
stochastic gravitational wave background (GWB) which
comes from unresolved point sources. On the other hand,
among the backgrounds of cosmological origin, we find the
approximately scale-invariant background produced dur-
ing inflation [3], or the GWB generated at hypothetical
early universe thermal phase transitions [4–7], from rela-
tivistic motions of turbulent plasmas [8] or from the decay
of cosmic strings [1]. Fortunately, these backgrounds have
very different spectral shapes and amplitudes that might, in
the future, allow gravitational wave observatories like the
Laser Interferometer Gravitational Wave Observatory
(LIGO) [9], the Laser Interferometer Space Antenna

(LISA) [10], the Big Bang Observer (BBO) [11] or the
Decihertz Interferometer Gravitational Wave Observatory
(DECIGO) [12], to disentangle their origin. Unfortunately,
due to the weakness of gravity, this task will be extremely
difficult, requiring a very high accuracy in order to distin-
guish one background from another. It is thus important to
characterize the many different sources of GW as best as
possible. Recently there has been a significant improve-
ment in the sensitivity of laser interferometers to a cosmo-
logical background of GW and there are now limits on the
amplitude of this background that are just below the BBN
[13] and CMB bounds [14] as recently reported by the joint
LIGO and VIRGO collaborations [15].
One cosmological GW background that is very well

motivated by other observations is the approximately
scale-invariant spectrum of GW produced from quantum
fluctuations during inflation [3]. This spectrum extends
over a very wide frequency range and its amplitude is
directly related to the energy density during inflation.
These GW may be detected indirectly by forthcoming
CMB experiments through their effect on the B-mode
polarization of CMB anisotropies [16], or even directly in
the longer term by interferometric experiments, if inflation
occurs at sufficiently high-energy scales. However, if in-
flation occurs at lower energies, as is the case in many
models motivated by high-energy physics, GW from infla-
tion would have an amplitude that is too low to be observ-
able. On the other hand, in case a global phase transition
took place after the end of inflation, then a scale-invariant
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GW background is also generated [17–19]. The detailed
calculations show that the amplitude of this new GW
background is 2 orders of magnitude greater than that
expected from inflation for the same energy scale [19],
and thus might be detected directly by the future GW
detectors or in the B-mode polarization of the CMB [20].
Finally, another source of GW that may be relevant for
interferometric experiments and whose study will be our
main target here, is provided by the violent period follow-
ing the end of inflation. Indeed, in many models, the
inflaton decays in an explosive and highly inhomogeneous
way, in the process of preheating [21]. The particular
mechanism responsible for preheating is model dependent,
but it is generally dominated by a nonperturbative produc-
tion of Bose fields with very high occupation numbers, far
from thermal equilibrium. This leads to a second, longer
stage characterized by turbulentlike interactions between
classical waves, before the system eventually reaches a
thermal state [22]. The large and time-dependent inhomo-
geneities of the fields, produced during preheating, source a
stochastic GW background [23–31]. When redshifted until
today, this background may fall in the frequency range
accessible by interferometric experiments if inflation and
preheating occur at sufficiently low energy scales, provid-
ing an alternative to test inflation with GW. In addition, GW
from preheating carry crucial information about the mostly
unknown postinflationary dynamics and, because the de-
tails of preheating depend very much on the model, they
could be used in the future to discriminate between differ-
ent inflationary models.

Gravitational waves from preheating have been inten-
sively studied by different groups [23–31]. Different nu-
merical methods have been used in early works, see [30] for
a critical comparison, but the later results obtained by
different groups agree well with each other [26,29–31].
Two main classes of models have been studied so far:
preheating after chaotic inflation and preheating after hy-
brid inflation. In the first case, preheating proceeds via
parametric resonance [21]. Because inflation and preheat-
ing occur at high-energy scales in these models, the result-
ing GW have a typical frequency today in the range
106–109 Hz, which is too high for the signal to be observ-
able by currently available experiments. On the other hand,
preheating after hybrid inflation may occur at much lower
energy scales and the resulting GWmay fall in a frequency
range below 103 Hz, which is accessible by high-sensitivity
interferometric experiments. GW from preheating after
hybrid inflation [32,33] were first studied in Ref. [24], in
the framework of parametric resonance studied in [23]. It
was later understood that hybrid inflation models preheat in
an even more violent way, due to the tachyonic amplifica-
tion of fluctuations of the symmetry breaking field when the
fields roll towards the true minimum of the potential, a
process called tachyonic preheating [34]. Gravitational
waves from tachyonic preheating after hybrid inflation

were first studied in Ref. [28–30] and then fully explored
in [31], where the regions of the parameter space that may
lead to an observable signal were determined. Finally, it is
also worth noting that the methods developed to study GW
production from preheating may be applied to other out-of-
equilibrium sources in the early universe. One example that
is particularly interesting from the perspective of ground-
based interferometers is the GW background [35] produced
by the nonperturbative decay of flat direction condensates
in supersymmetric theories [36].1 Another example is the
evolution of unstable domain walls [39].
One common point in these works has been to focus on

models involving only scalar fields.2 However, in realistic
models, gauge (vector) fields may also be copiously pro-
duced during preheating [41–43].3 These lead to new terms
in the anisotropic stress sourcing GW, in addition to the
gradients of the scalar fields, and they may play an important
role in GW production. Indeed, the numerical simulations
[25,29–31] indicate that scalar fields do not lead to a signifi-
cant production of GW during the turbulent evolution to-
wards thermal equilibrium after preheating. This was
demonstrated in [30] where it was shown that massless
gauge fields may change this result. Out-of-equilibrium
gauge fields are of course also ubiquitous in other sources
of GW, such as thermal phase transitions and local topologi-
cal defects [1]. Moreover, tachyonic preheating [34,44,45]
could be responsible for copious production of dark matter
particles [46], lepto and baryogenesis [41,43,47–49], topo-
logical defects [34,44], primordial magnetic fields [42], etc.,
whose observational consequences could help put more
stringent constraints on the period immediately after infla-
tion responsible for the reheating of the Universe.
The main purpose of this paper is to study the GW

background produced by physical models with scalar and
gauge fields at preheating. We will develop numerical
methods and derive theoretical results which can be ap-
plied to out-of-equilibrium gauge fields in general. We will
then consider models of preheating after hybrid inflation
where the symmetry breaking field is complex and coupled
to a Uð1Þ gauge field. As we will see, a major consequence
of the gauge field is to introduce new characteristic scales
which are inherited by the GW spectra. This prompted us
to study in detail the dynamics of the system in both
Fourier and position spaces. We found, in particular, that
a crucial role is played by the dynamics of cosmic string

1GW may also be produced from Q-ball fragmentation [37];
see, however, [38].

2GW production from a decaying tachyon field coupled to a
gauge field has been studied numerically in Ref. [40], although
lattice gauge techniques do not seem to be used in this work and
the transverse-traceless part of GW does not seem to be correctly
extracted.

3Similarly, flat direction condensates in the ninimal super-
symmetric standard model are charged under the gauge symme-
tries and gauge fields are produced by their nonperturbative
decay [36].
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configurations of the gauge and scalar fields. In order to
probe these different scales in the simulations, we had also
to develop a lattice calculation of GW with gauge fields
that is accurate up to second order in the lattice spacing and
time step.

The paper is divided as follows. In Sec. II, we specify the
model of hybrid preheating embedded in a gauge frame-
work that we will study in this paper, briefly reviewing the
fields’ dynamics after inflation. Section III is dedicated to
theoretical perspectives on the effects of gauge fields on
GW production from preheating. In Sec. IV, we present our
numerical method to compute the GW spectra produced by
scalar and gauge fields on the lattice. In Sec. V, we study in
detail the dynamics of an Abelian-Higgs model of ta-
chyonic preheating in Fourier space and the resulting
GW spectra. Section VI is dedicated to the study of spatial
configurations in position space of both the sources and
the GW themselves. We conclude in Sec. VII with a
summary of our results and directions for future works.
In Appendix A, we derive a no-go result for Abelian
models discussed in the main text. The details of our lattice
calculation are given in Appendix B.

II. ABELIAN-HIGGS PREHEATING AFTER
HYBRID INFLATION

Hybrid inflation [32] is a class of inflationary models
based on particle physics and, in particular, on spontaneous
symmetry breaking by a scalar field. This field is coupled
to a singlet scalar, the inflaton, and triggers the end of
inflation when its mass squared goes from positive to
negative due to its coupling to the rolling inflaton. Let us
consider a generic hybrid inflation model, as described by
the potential

Vð’;�Þ ¼ �

4
ðj’j2 � v2Þ2 þ 1

2
g2�2j’j2 þ Vinflð�Þ; (1)

where g2 is the strength of the coupling of the inflaton � to
a symmetry breaking field ’, with self-coupling � and
vacuum expectation value (VEV) v. A relevant feature of
these models is that a small � is not a prerequisite in order
to generate the observed CMB anisotropies, while the
scale of inflation can be chosen to range from GUT scales
(� 1016 GeV) all the way down to GeV scales. Depending
on the particular model considered, the purely inflaton part
of the potential Vinflð�Þ can take different forms, see e.g.
Ref. [50], and an appropriate choice of the parameters
makes these models completely compatible with CMB
constraints.4

We want to embed this setup into a gauge-invariant
framework, such that the symmetry breaking field ’ is
coupled to the corresponding gauge fields. In general, the
group of gauge symmetry could be Abelian or non-Abelian
(or a product of both) and ’ could even be the Higgs field
of the standard model with gauge symmetry SUð3Þ �
SUð2Þ �Uð1Þ. In the very early universe the gauge group
could for instance contain multiple Uð1Þ’s, as described in
some compactifications of string theory. In the numerical
simulations, however, we will restrict ourselves to a com-
plex field ’ ¼ ð’1 þ i’2Þ coupled to a single gauge field
A�, with a Uð1Þ symmetry. Nevertheless we will also

consider other gauge groups in Sec. III, where we derive
theoretical expectations about the production of GW from
gauge fields.
For convenience, independently of the physical origin of

’, we will often refer to this field simply as the ‘‘Higgs’’ of
the model. In the case of aUð1Þ symmetry, wewill consider
the Abelian-Higgs model coupled to an inflaton, as
described by

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

4
F��F

�� þ ðD�’ÞyðD�’Þ

þ 1

2
ð@��Þ2 þ Vð’;�Þ

�
; (2)

with g the background metric determinant, F�� ¼ @�A� �
@�A� is the (antisymmetric) field strength of the gauge

field A�, and D� ¼ @� � ieA� the usual covariant deriva-

tive with e the gauge coupling. After inflation, the metric is
that of a (flat) Friedman-Robertson-Walker (FRW) back-
ground, with g�� ¼ diagð�1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ and aðtÞ
the scale factor. The (classical) equations of motion can
then be derived varying the action (2) as

� @�@
��þ 3H _�þ V;� ¼ 0 (3)

�D�D
�’þ 3H _’þ V;’� ¼ 0 (4)

_E i þHEi � �ijk@jBk � 2e Im½ðDi’Þ�’� ¼ 0; (5)

where a dot denotes the time derivative, H ¼ _a=a is the
Hubble rate, Ei ¼ F0i and Bi ¼ 1

2 �ijkF
jk are the gauge-

invariant electric and magnetic fields, and �ijk is the com-

pletely antisymmetric 3-tensor. Here and in what follows,
Latin indices i; j; k; . . . run over the three spatial coordi-
nates and repeated indices are summed unless stated
otherwise.
The equation associated to the time component of the

gauge field,

@kEk ¼ �2e Im½ðD0’Þ�’�; (6)

is not a dynamical equation, but rather a constraint equa-
tion equivalent to the Gauss law of classical electromag-

netism, ~r ~E ¼ �, with � ¼ �2e Im½ðD0’Þ�’�.

4For instance, the original model [32], with Vinflð�Þ ¼ �2�2

and � ¼ 1:4� 1014 GeV, v ¼ 3:6� 1016 GeV, � ¼ 0:17, and
g ¼ 0:001, produces a spectrum with scalar tilt ns ¼ 0:98 and
tensor-to-scalar ratio r ¼ 0:1, in perfect agreement at 95% C.L.
with the WMAP-7 yr data [51]. Other models based on loga-
rithmic loop corrections to the flatness of the potential also give a
negative tilt during inflation compatible with WMAP data.
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In this model the characteristic time scale evolution of

the fields after inflation is set by the inverse of m � ffiffiffiffi
�

p
v.

It follows then that the expansion of the universe is negli-
gible during preheating, since H � ðv=MpÞm � m. For

studying preheating it is thus sufficient to consider a flat
background ��� ¼ diagð�1; 1; 1; 1Þ. Moreover, for conve-

nience wewill evolve the system in the temporal gauge, i.e.
fixing A0 ¼ 0. The Higgs and gauge fields equations then
look as

€’�DiDi’þ V;’� ¼ 0 (7)

€A i � @j@jAi þ @i@jAj ¼ 2e Im½’�Di’� (8)

@i _Ai ¼ 2e Im½’� _’�: (9)

The condition A0 ¼ 0 does not fix the gauge completely as
we can still perform a gauge transformation ’ ! ei�’,
Ai ! Ai þ 1

e @i�, with a time-independent function

� ¼ �ð ~xÞ. Numerically, we will evolve the system in the
temporal gauge and use the remaining gauge degree of
freedom to set Ai ¼ 0 initially. The initial conditions for
the electric field are then read from satisfying initially the
Gauss constraint (9), see below.

The Abelian-Higgs model is known to give rise, upon
symmetry breaking, to cosmic strings connecting Nielsen-
Olesen vortices, where the Higgs winds n times. The type
of string (I and II) depends on the ratio of Higgs to gauge
field mass, 	 ¼ 2�=e2 ¼ m2

’=m
2
A. Magnetic flux lines

repel each other, while the scalar field produces an attrac-
tive force, and their range is controlled by the Compton
wavelength of the mediating boson. Depending on which
one is more massive, we may have type I or type II super-
conductors. For 	< 1 (� < e2=2) the penetration depth of
the magnetic field inside the string is smaller than the
coherence length of the string, and local vortices are stable
for arbitrary winding n, as in type I superconductors, while
for 	> 1 (� > e2=2) we have the opposite situation, and
the magnetic flux lines can live inside the string (vortices
with n > 1 are unstable in that case). Some of the proper-
ties that we will encounter in the time evolution of the
Abelian-Higgs model after symmetry breaking in fact
depends on whether the cosmic strings that are formed
are type I or II. In both cases we find cosmic strings with
windings of the Higgs around them, and their energy
density will be a strong source for gravitational wave
production. We leave for Secs. V and VI the detailed
description of the rather complicated dynamics.

A. Hybrid preheating

The general qualitative dynamics of the system is as
follows. For �> �c, where �c � m=g is called the critical
point, the Higgs field has a positive mass squared and the
potential has a valley at ’ ¼ 0. During inflation the ex-
pansion is driven by the false vacuum energy, V0 ’ �v4=4,

while the inflaton decreases slowly along the valley due to
the uplifting term Vinfð�Þ in (1). Inflation ends either when
� reaches the critical point or when the slow-roll condi-
tions are violated, whichever occurs first. In both cases,
when �< �c, the effective square Higgs mass becomes
negative and this triggers the symmetry breaking process
from hj’j2i ¼ 0 to the true vacuum hj’j2i ¼ v2. The time
at which the inflaton reaches �c is called the critical time
tc. Around that time, the inflaton’s evolution can be line-
arly approximated by �ðtÞ ¼ �cð1� Vcmðt� tcÞÞ, where
Vc is the (dimensionless) inflaton’s velocity at tc,

Vc � 1

�c

��������
d�ðtÞ
dðmtÞ

��������tc

¼ gj _�cjffiffiffiffi
�

p
v
: (10)

Through the Higgs-inflaton coupling, the evolution of �ðtÞ
around �c induces a time dependence in the Higgs effec-
tive mass, m2

’ ¼ �2Vcm
3ðt� tcÞ, which changes from

positive at t < tc (�> �c) to negative at t > tc (�< �c).
As described in Ref. [45], the quantum evolution of the
system around tc can indeed be solved exactly, as long as
the nonlinearities in the Higgs field (i.e. the self-
interactions of ’), the interactions with the inflaton fluctu-
ations and with the gauge fields are neglected. In such a
case the Higgs behaves as a free scalar field with time-
dependent mass m’ðtÞ, whose quantum evolution can be

solved in terms of Airy functions [45]. When t * tc, the
low-momentum k < m Higgs modes grow exponentially
fast due to the negative square mass, in a process known as
‘‘tachyonic preheating’’ [34,41,44,45]. This in turn sources

FIG. 1 (color online). Time evolution of the inflaton’s mean
h�i=�c (blue) and of the Higgs’ root mean squared hj’ji=v
(red) in a hybrid model with � ¼ g2=2 ¼ 0:125, e ¼ 0:3, and
Vc ¼ 0:024. One can clearly see the growth of the Higgs towards
the true vacuum, while the inflaton rolls down to the bottom of
the potential. Once the Higgs is sufficiently close to the true
vacuum, its self-interactions compensate the tachyonic mass and
the field oscillates close to the VEV, while the inflaton oscillates
around � ¼ 0.
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the production of the gauge field through its interactions
with the Higgs, see Figs. 1 and 2.

The low-momentum Higgs modes acquire large occupa-
tion numbers during tachyonic preheating and therefore
become quasiclassical very fast. The transition from quan-
tum to classical of the Higgs’ long wavelength modes, takes
place very rapidly indeed as compared with the time scale
of the symmetry breaking process itself. This way, soon
after the end of inflation but much earlier than the Higgs
reaches the true vacuum, the modes within the tachyonic
band have become fully classical, while all other modes
remain in their quantum ground state. Because of the non-
linear �
4 interaction term, the nontachyonic modes will
eventually get populated thanks to the highly occupied low-
momentum modes. Moreover, since the Higgs and the
gauge fields are directly coupled, the gauge fields are also
excited during and after tachyonic preheating.

Our strategy here, following [41,45], will be therefore to
introduce the system into a lattice in the precise moment in
which the Higgs modes within the tachyonic band have
became classical (slightly after the inflaton crossed the
critical point) but the nonlinearities and other interactions
are yet negligible. In order to solve for the evolution of the
system we will then use the lattice approach, consisting of
replacing the quantum evolution by the classical one.
This way, the quantum nature of the problem remains in
the stochastic character of the initial conditions. This ap-
proach is, of course, only valid in the particular scenario
under study because the quantum dynamics of the low-
momentum modes of ’ drives the system into a regime of
classical field behavior, which ultimately justifies the use
of the lattice. It is the subsequent nonlinear classical
behavior of the symmetry breaking field that induces the
growth of the inflaton and gauge field s, which then de-
velop a nontrivial anisotropic stress tensor which will
source gravitational waves. This approximation has the
clear advantage that it fully captures the nonlinear and
nonperturbative nature of the problem, and allows for the
use of gauge fields in a relatively simple way. The full
nonlinear evolution of the system can then be studied using
lattice techniques, discretizing both in space and time the
classical equations of all fields (7)–(9), see Sec. IVB be-
low. Note that other authors have also used the lattice
formulation to study hybrid preheating in the presence of
gauge fields, studying some of its phenomenological con-
sequences like baryogenesis [41,43,48,49] or the genera-
tion of the primordial seed of cosmological magnetic fields
[42]. Here, for the first time, we study the production of
GW associated to the presence of such gauge fields.

Finally, note that in general the model-dependent infla-
ton part of the potential Vinfð�Þ does not affect significantly
the dynamics of preheating, except by setting the initial
velocity with which the inflaton reaches the critical point.
We will thus ignore Vinflð�Þ and treat the initial velocity Vc

as a free parameter.

B. Initial conditions

The initial conditions of the fields follow the prescription
from Refs. [41,45]. The Higgs modes ’k are solutions of
the evolution equations obtained from (2), which can be
rewritten for each component, as oscillators with time-
dependent frequencies €’k þ ½k2 � 2m3Vcðt� tcÞ�’k ¼ 0.
If Vc is not extremely small and the couplings �, e, and g
are not very big, see Ref. [45], there is always a time ti
greater than the critical time tc, but much shorter than the
time scale in which the nonlinearities are important, for
which the Higgs modes within the tachyonic band have
become classical, whereas those out of the tachyonic band
can be set classically to zero. The amplitude of the
tachyonic modes can then be found at the time ti, as
distributed according to a Gaussian random field of zero
mean, which translates into a Rayleigh distribution,

Pðj’kjÞdj’kjd�k ¼ j’kj
�
2

k

expf�j’kj2=
2
kgdj’kjd�k; (11)

for the modulus, with a uniform random phase �k 2
½0; 2��. The dispersion 
2

k is given by 
2
k � Pðk; tiÞ=k3,

where Pðk; tiÞ ¼ jfkj2 is the power spectrum of the initial
Higgs quantum fluctuations in the background of the homo-
geneous inflaton [45]. In the classical limit, the conjugate
momentum _’kð�Þ is uniquely determined through _’kðtiÞ ¼
Fðk; tiÞ’kðtiÞ, where Fðk; �Þ ¼ Imðf�kð�Þgkð�ÞÞ, with fk and
gk functions defined in Eqs. (43) and (44) of [45]. The rest
of the fields (the gauge fields, the nonzero modes of the
inflaton, and the gravitational waves) are supposed to start
from the vacuum, and therefore we will semiclassically set
them to zero initially in the simulations. Their coupling to
the Higgs modes will drive their evolution, giving rise to a

FIG. 2 (color online). Time evolution of the covariant energy
density of the Higgs hDi’ðDi’Þ�i (black), the electric hEiEii
(red), and magnetic hBiBii (blue) energy densities, and the
inflaton’s gradient energy density h@i�@i�i (green), all normal-
ized to the total energy of the system. The parameters are the
same as in Fig. 1. A fast growth of the energy components is
experienced during tachyonic preheating, first in the Higgs field
and then in the rest of the fields due to the their interactions with
the Higgs.
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rapid growth of the gauge and inflaton modes and GW
subsequently. Their nonlinear evolution will then be well
described by the lattice simulations.

One could think that, initially at time ti, since the vector
fields are in vacuum (they have not been excited yet), one
could put their amplitude and conjugate momenta to zero,
once the classical regime in the Higgs sector has been
established. However, the Gauss constraint in Eq. (6)
imposes a relation between the gauge fields and the
Higgs’ components, which must be fulfilled at any time
during the evolution. Therefore, given our initial condi-
tions for the Higgs described above, we initialize the gauge
field in such a way that Gauss constraint is satisfied ini-
tially, following [41]. In the temporal gauge A0 ¼ 0, the
Gauss constraint (9) in Fourier space reads

þ iki _Aiðk; tiÞ ¼ j0ðk; tiÞ; (12)

with j0 ¼ �2e2 Im½ _’�’�. Note that our initial conditions
for the Higgs ensures that the initial charge vanishes,R
d3xj0ðtiÞ ¼ 0. This is a necessary condition for Eq. (9)

to be satisfied initially. We then set the initial conditions for
the electric field in Fourier space, according to

_A iðk; tiÞ ¼ �i
ki
k2

j0ðk; tiÞ (13)

_A ið ~k ¼ ~0; tiÞ ¼ 0 (14)

which is a particular solution of (12). Thus, our initial
conditions for the gauge field are such that initially the
electric field is purely longitudinal, _AiðtiÞ / ki, while the
magnetic field vanishes, AiðtiÞ ¼ 0.

III. THEORETICAL PERSPECTIVES ON THE GW
PRODUCTION IN SCALAR GAUGE THEORIES

Our main purpose in this paper is to study the details of
the production of a stochastic GWB during the reheating of
the universe after hybrid inflation. Such GWB has indeed
been extensively studied recently in global models of
hybrid inflation, in the absence of gauge fields [28–31].
There the dynamics of the interacting fields generate a
nontrivial anisotropic stress tensor in the scalar fields,
which source a significant background of GW. Here our
aim is to embed the hybrid model described in Eq. (1) into
the gauge-invariant framework of Eq. (2). The symmetry
breaking field ’ will then be coupled to the corresponding
gauge fields associated to the gauge symmetry, and the
dynamics of all the fields will be described by the set of
differential coupled equations (7)–(9). We will then
study in detail numerically (see Secs. IV, V, and VI) the
production of GW as coming from the new sources due to
the presence of the gauge fields. Before going into the
details of this model, however, we will first highlight
some theoretical and model-independent results about the
production of GW from gauge fields at preheating.

In this section, therefore, we start laying down the basic
formalism to study GW production in scalar gauge theo-
ries. Following Ref. [30], we then apply this formalism to
very simple, but relevant, wavelike sources which allow for
an easy analytical treatment. We will review the argument
why massless vector fields might enhance GW production
during the turbulent evolution towards thermal equilibrium
after preheating and wewill extend this argument to gauge-
invariant theories. We will then show that massless gauge
fields are not produced at preheating in Abelian scalar
gauge theories.
Gravitational waves on top of a (spatially flat) FRW

background correspond to (gauge-invariant) linear pertur-
bations of the metric that are symmetric, transverse, and
traceless (TT), �gij ¼ a2ðtÞhij with @ihij ¼ hii ¼ 0.5 The

perturbed Einstein equations describe the evolution of
these tensor perturbations [52] as

€h ij þ 3H _hij � 1

a2
r2hij ¼ 16�G�TT

ij : (15)

The source term is the TT part—verifying @i�
TT
ij ¼

�TT
ii ¼ 0—of the anisotropic stress, a2�ij ¼ Tij � pgij,

where p is the background pressure. In the present case,
both the scalar fields (Higgs and inflaton) and the vector
fields (gauge bosons) contribute to the GW source.
Defining �hij ¼ ahij and going to Fourier space, the GW

equations (15) read

�h 00
ij þ

�
k2 � a00

a

�
�hij ¼ 16�Ga3�TT

ij ; (16)

where k2 ¼ ~k2 is the square of the comoving wave number
and primes denote derivatives with respect to conformal
time d� ¼ dt=a. The TT part of a symmetric tensor in
Fourier space is obtained by the projection

�TT
ij ð ~kÞ ¼ Oij;lmðk̂Þ�lmð ~kÞ (17)

O ij;lmðk̂Þ ¼ Pilðk̂ÞPjmðk̂Þ � 1
2Pijðk̂ÞPlmðk̂Þ; (18)

where Pijðk̂Þ ¼ �ij � k̂ik̂j and k̂ ¼ ~k=k is the unit vector in

the direction of ~k.
For causal processes like preheating, most of the GWare

produced well inside the Hubble radius, where the term in
a00=a can be neglected in (16). The solution of (16) is then
expressed in terms of a simple Green function6

5In the following, we will raise or lower indices of the metric
perturbations with the spatial metric, which reduces at first order
in h to the Kronecker �ij, so hij ¼ hij ¼ hij, and so on.

6This is also the exact solution for all the modes in a radiation-
dominated universe where a00 ¼ 0. This is a good approximation
in a wide class of preheating models where the equation of state
quickly jumps towards w ¼ 1=3 at the beginning of preheating
[53]. In a matter-dominated universe, the Green function for
wavelengths of the order of, or larger than, the Hubble radius is
given by other Bessel functions.
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�h ijð ~k; �Þ ¼ 16�G

k

Z �

�i

d~� sin½kð�� ~�Þ�a3ð~�Þ�TT
ij ð ~k; ~�Þ

(19)

for initial conditions hij ¼ h0ij ¼ 0 at � ¼ �i.

The expansion of the universe will not play an important
role for the discussion in this section and it is usually
negligible during tachyonic preheating after hybrid infla-
tion that we will study in the next sections. Therefore, from
now on, we will work with a Minkowski background,
a ¼ 1. In that case, the TT part of the anisotropic stress
for the Abelian model (2) reads

�TT
ij ¼ ½@i�@j�þ 2Re½Di’ðDj’Þ�� � BiBj � EiEj�TT;

(20)

where pure-trace terms have been removed by the TT
projection. Non-Abelian gauge fields would lead to similar
contributions, with the corresponding modifications of the
covariant derivative and the electric and magnetic fields.

A. GW from wavelike sources

In general, the calculation of GW production through
(19) requires the knowledge of the time evolution of the
source. It is interesting to study the very simple case where
the source corresponds to a superposition of waves with
wavelike dispersion relation and adiabatically evolving
frequencies [30]. This case covers to a good approximation
different situations that occur in the context of preheating,
in particular the stage of turbulent evolution towards ther-
mal equilibrium.7 Specifically, consider the following time
evolution for the Fourier modes of some generic scalar
field 
,


ð ~k; �Þ ¼ �þ
k ð�Þei!
ðkÞ� þ ��

k ð�Þe�i!
ðkÞ� with

!2

ðkÞ ¼ k2 þm2


; (21)

and similarly for the other fields. In the context of preheat-
ing, we deal generally with interacting waves where the
interactions contribute to the effective mass m
. The cases

in which the frequency !
 is not constant but is never-

theless evolving adiabatically with time ( _! � !2) can be
treated in the same way, since there the WKB approxima-

tion gives 
ð ~k; �Þ / ��
k expð�i

R
� !
ðk; ~�Þd~�Þ.

In theories involving only scalar fields, the source terms
for GW have the same form as the first term in the right-
hand side (RHS) of (20). In Fourier space, the product of the
spatial derivatives of the scalar field leads to the convolution

�TT
ij ð ~k;�Þ /Oij;lmðk̂Þ

Z
d3 ~pplpm
ð ~p;�Þ
ð ~k� ~p;�Þ; (22)

where we have used Oij;lmkm ¼ 0. Inserting (22) into (19),

and using the time dependence (21), we get, whenever the
coefficients ��

k ð�Þ evolve adiabatically with time,

hijð ~k; �Þ / Ge�ik�Oij;lmðk̂Þ
Z

d3 ~pplpm�
�
p �

�
k�p

�
Z �

�i

d~� exp½i~�ð�!
ðpÞ �!
ðj ~k� ~pjÞ 	 kÞ�;

(23)

where we have decomposed the sine in (19) into imaginary
exponentials. In the limit of large time � with respect to the
frequencies, the time integrals above reduce to Dirac delta
distributions, enforcing energy conservation for trilinear
processes involving two ‘‘particles’’ of the field 
 and
one graviton. For instance, we have

!
ðpÞ þ!
ðj ~k� ~pjÞ ¼ k: (24)

for two 
 particles emitting a graviton (left panel of
Fig. 3). Not only the conservation of energy, but also the
conservation of momentum is taken into account in (24).
Other signs in the phase inside the time integral in (23)
correspond to other trilinear processes, such as the decay of
a 
 particle into another 
 particle and a graviton. Energy
and momentum conservations are possible only for mass-

less 
 particles8 and for ~k k ~p. However, for ~k k ~p, the
TT projection brings the GW amplitude to zero,

Oij;lmðk̂Þplpm ¼ 0 In (23). The reason for this is clearly

helicity conservation, which forbids interactions between
scalar waves and a graviton at leading order in the gravita-
tional coupling constant G. Interactions involving several
gravitons are possible beyond the linear order in hij, but

they are highly suppressed by extra powers of the Newton
constant G.
On the other hand, the presence of massless vector fields

(photons) may change this result, since interactions be-
tween two vector waves with helicity 1 and a graviton
(middle panel of Fig. 3) are not forbidden by helicity
conservation. Indeed, consider the two terms BiBj and

EiEj in the source (20) of GW, and decompose the vector

field Ai into a longitudinal part AL
i ¼ @iL and a transverse

part AT
i with @iA

T
i ¼ 0. Proceeding as above leads to

energy-momentum conservation like in (24), which again
implies the momenta of the two vector particles to be
parallel to the momentum of the graviton. As before,
each term involving a spatial derivative @i or @j then leads

to a factor of ki or kj in Fourier space, which vanishes when

contracted with Oij;lmðk̂Þ. However, the terms BiBj and

EiEj in (20) include contributions as

7Of course, there are also several situations in the context of
preheating where the time evolution of the fields is not wavelike,
such as the exponential amplification of fluctuations or the
collision of nonlinear bubble configurations.

8That Eq. (24) implies m
 ¼ 0 simply reflects the well-known
fact that a massless particle (here a graviton) cannot be emitted
by two massive particles (here the 
 particles), since in the
frame of the center of mass of the two incident particles the
massless particle should be emitted with zero momentum.
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@kA
T
i @kA

T
j and _AT

i
_AT
j (25)

which do not involve @i and @j. These terms can therefore

lead to a nonzero GW amplitude from a wavelike source,
through processes like the one illustrated in the middle
panel of Fig. 3. Note, however, that energy-momentum
conservation for these processes still requires the vector
field to be effectively massless.

In addition, extra channels of GW production from
wavelike fields arise in scalar gauge theories from the
covariant derivative of the scalars. Indeed, consider the
second term in the source (20) of GW. It involves contri-
butions of the form

e@i’Aj’
� and e2AiAjj’j2: (26)

Since these source terms are cubic and quartic in the fields,
GW production from these terms for wavelike fields cor-
respond to interactions between three and four particles
and a graviton, see e.g. the right panel of Fig. 3. Clearly,
these higher-order interactions are less restrictive as, for
instance, they are now possible even for massive scalar and
gauge fields.

These qualitative arguments, although valid only for a
very simple time dependence of the source, illustrate that
gauge fields can lead to new channels of GW production.
In particular, they suggest that gauge fields can keep GW
production active well after preheating, during the stage of
turbulent evolution towards thermal equilibrium. Since this
stage can last for a long period of time, this could signifi-
cantly increase the amplitude of the resulting GW spec-
trum. As we will see, this does not happen for the hybrid
model described by (1) and (2). In the context of the hybrid
Abelian-Higgs models, the gauge field will have specific
effects on GW production during preheating but the GW
amplitude will eventually saturate during the later stages of
the dynamics. Indeed, in such an Abelian model the gauge
field acquires a mass through the Higgs mechanism during
the dynamical spontaneous symmetry breaking. Therefore,
as discussed above, processes like the one in the middle

panel of Fig. 3 are forbidden.9 It is possible that massless
gauge fields produced at preheating could still enhance
GW production during the subsequent evolution towards
thermal equilibrium. However, this does not happen in
Abelian scalar gauge theories, as we discuss next.

B. No massless gauge fields from Abelian
scalar fields during preheating

In the rest of this section, we argue that massless gauge
fields are not produced during preheating in Abelian scalar
gauge theories, at least with canonical kinetic terms. More
precisely, we show that in this case a would-be massless
gauge field is either decoupled from the other scalar and
gauge fields and therefore not produced,10 or it receives an
effective mass due to its interactions during preheating and
the subsequent turbulent evolution.11 Here and in the
following, the term ‘‘mass’’ will be used in a very ‘‘loose’’
sense and should be understood as a contribution to the
dispersion relation of the fields in the adiabatic regime (21),
which is relevant for our discussion of GW production from
wavelike sources in Sec. IIIA. We will consider a generic
form of the scalar potential and an arbitrary number ofUð1Þ
symmetries and of scalar and gauge fields charged under
these symmetries. However, the argument does not apply to
non-Abelian theories, like SUð2Þ �Uð1Þ, where massless
photons may be produced at preheating [42].
Before considering the general case, consider again the

system (2) of a single Abelian gauge field A� coupled to a

FIG. 3. Contribution of different source terms to GW production from wavelike fields. Left panel: contribution associated to the
source term in @i
@j
 for scalar fields, corresponding to the interaction between two scalar waves and a graviton (forbidden by

helicity conservation). Middle panel: contribution associated to the terms in (25), corresponding to the interaction between two vector
waves and a graviton (allowed if the vector field is massless). Right panel: contribution associated to the second term in (26),
corresponding to the interaction between several scalar and vector waves and a graviton.

9On the other hand, processes like the one in the right panel of
Fig. 3 are in principle possible, although they are further sup-
pressed by the gauge coupling constant.
10Here we do not consider fermions, which of course can also
couple to gauge fields. Since the production of fermions is
limited by Pauli blocking, they are not expected to lead to an
abundant production of gauge fields at preheating.
11When the system equilibrates and cools down, such an
effective mass will eventually become negligible, but this occurs
at much later stages in the dynamics, much beyond our simula-
tions’ range.
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single scalar field ’. A first possibility to obtain a massless
gauge field would be that the VEV of ’ vanishes, since
otherwise the gauge field acquires a mass through the
Higgs mechanism. However, in that case, A� acquires an

effective mass through its interaction with the fluctuations
�’ of ’:

@�F�� þ 2e2j�’j2A� ¼ 2e Im½�’�@��’�: (27)

In the second term of the left-hand side, the large and
classical fluctuations of the scalar field behave as a classi-
cal VEV providing a mass to the gauge field by the Higgs
mechanism. The fluctuations �’ are produced whenever
A� is produced, since both of them act as a source for the

production of the other. Either the fluctuations of ’ are
responsible for the production of A� or the gauge field is

produced by another mechanism and leads in turn to the
production of �’ fluctuations through its interaction with
’. Thus, it does not seem possible to produce a massless
gauge field at preheating in this model.

Another possibility is to consider several gauge fields so
that a combination of them can remain massless like in the
SUð2Þ �Uð1Þ standard model. Consider therefore an

Abelian model with two gauge fields Að1Þ
� and Að2Þ

� , coupled
to a single scalar field ’ with coupling constants e1 and e2,

D�’ ¼ ð@� � ie1A
ð1Þ
� � ie2A

ð2Þ
� Þ’. The system is invari-

ant under the gauge transformation,

’ ! ei�ðxÞþi	ðxÞ’;

Að1Þ
� ðxÞ ! Að1Þ

� ðxÞ þ 1

e1
@��ðxÞ;

Að2Þ
� ðxÞ ! Að2Þ

� ðxÞ þ 1

e2
@�	ðxÞ:

(28)

The equations of motion are

@�FðkÞ
�� ¼ 2ek Im½’�D�’� (29)

for k ¼ 1; 2 and whereFðkÞ
�� ¼ @�A

ðkÞ
� � @�A

ðkÞ
� . It is easy to

see that the combination ~A� ¼ e2A
ð1Þ
� � e1A

ð2Þ
� is massless.

However, both the mass term and the source term vanish

for ~A�, so it is a free field

@� ~F�� ¼ 0; (30)

where ~F�� ¼ @� ~A� � @� ~A� is the gauge field strength of

the massless combination ~A�. Thus the massless gauge

field is decoupled from the system and therefore not pro-
duced. This is similar to the photon of the SUð2Þ �Uð1Þ
standard model, which does not couple to the Higgs at tree
level. However, it couples to the W and Z bosons because
of the nonlinear nature of non-Abelian theories. In that
case, Higgs fluctuations amplified at preheating may
source the production of W and Z bosons, which in turn
source the production of photons [42]. On the other hand,
in the case ofUð1Þ symmetries, interactions between gauge
fields would require noncanonical kinetic terms in the

Lagrangian, like ðF��F
��Þ2, or higher-order terms like

�F��
~F�� or 
y
F��F

��, in order to avoid the tree-level

decoupling of the photons.
It is straightforward to extend the arguments above

to an arbitrary number of scalar and gauge fields, see
Appendix A. We conclude thus that massless gauge fields
are not significantly produced during preheating in Abelian
scalar gauge theories. As discussed in the previous sub-
section, we therefore do not expect a significant production
of GW during the stage of turbulent interactions after
preheating in such theories. The situation could be differ-
ent, however, for non-Abelian theories.

IV. NUMERICAL CALCULATION OF
GW WITH GAUGE FIELDS

In this section, we present our numerical method to
calculate GW production in scalar gauge theories on the
lattice. The basic methods developed in [29–31] for scalar
fields can be directly generalized to such theories. We
briefly review these methods in the first subsection. On
the other hand, in the presence of gauge fields, special care
must be paid in the lattice calculation of GW in order to
reproduce the continuum theory up to Oðdx2Þ and Oðdt2Þ
accuracy in the lattice spacing dx and time step dt. This is
discussed in Sec. IVB.
The numerical results presented in this paper were ob-

tained with lattices of 1283 and 2563 points. We performed
a number of checks to verify that the results are physical
and not affected by lattice artefacts like insufficient IR or
UV coverage or too large time step.

A. Numerical method

Since the expansion of the universe is negligible during
preheating after hybrid inflation, we will work in a
Minkowski background to simplify the notations. The
extension to an expanding universe is straightforward
[29–31]. In a Minkowski background, the equation (15)
describing the evolution in time of the TT tensor perturba-
tions representing GW reduces to

€h ij � @k@khij ¼ 16�G�TT
ij ; (31)

where the source term�TT
ij was given in (20). In the lattice

simulations, however, we can solve an alternative equation
in position space,

€u ij � @k@kuij ¼ 16�G�ij; (32)

where the source term12

�ij ¼ @i�@j�þ 2Re½Di’ðDj’Þ�� � BiBj � EiEj (33)

is not transverse traceless. We can thus solve Eq. (32)
together with the evolution equations of the scalar and

12Here we neglect again pure-trace terms in �ij because they
will be removed by the TT projection.
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gauge fields sourcing GW. The reason is the following: the
TT part of the source is most easily calculated in Fourier
space through the projection (17), which is nonlocal in
position space. One could of course Fourier transform the
anisotropic stress tensor at each time step in order to
calculate its TT part and then evolve the GW equation,
but this would be highly time consuming. However, since
the equation (31), the TT projection (17), and the Fourier
transform are all linear in hij, we can just solve for Eq. (32)

with a non-TT source term, and apply the TT projection
(17) on uij in Fourier space only at those moments of time

when we want to output the GW spectra. This is certainly a
faster procedure since it does not require to take Fourier
transforms at each time step. This method was originally
proposed in [29]. A modified version was developed in [31]
based on the formalism of [30]. Another alternative
method is to use the formal solution of (16) in terms of
its Green function (19) to directly calculate the GW spectra
from the source �TT

ij [30]. The results presented in the

next section were obtained using the methods of both
Refs. [29,31] and we checked that the method of [30] gives
the same results. We refer the reader to those references for
more details.

The GW propagate freely after their production and their
energy density can be calculated by the spatial average,

�gw ¼ h _hij _hiji
32�G

: (34)

Performing an extra time average over a full period in order
to eliminate the fast oscillations of the waves with time, the
energy density is given by the sum of the kinetic and
gradient terms,

�gw ¼ 1

64�GV

Z
d3 ~kð _hijð ~kÞ _hijð ~kÞ� þ k2hijð ~kÞhijð ~kÞ�Þ;

(35)

where V is the volume of the lattice box and hij ¼
Oij;lmulm is the TT component calculated in Fourier space.

The spectrum of energy density in GW per logarithmic
frequency interval at the time of production is then given
by

�
d�gw

d lnk

�
p
¼ k3

16GV
ð _hijð ~kÞ _hijð ~kÞ� þ k2hijð ~kÞhijð ~kÞ�Þ; (36)

where we have used the fact that the spectrum is statisti-
cally isotropic.

Finally, the quantity of interest is the present-day spec-
trum of energy density in GW per logarithmic frequency
interval divided by the critical density,

h2�gwðfÞ ¼
�
1

�c

d�gw

d lnf

�
0
; (37)

where the subscript ‘‘0’’ refers to today. Assuming a
‘‘standard’’ thermal history after reheating, the frequency

and amplitude of the GW today are obtained from the
spectrum at the time of production according to

f ¼ 4� 1010 Hz
k

ap�
1=4
p

�
ap
a�

�ð1=4Þð1�3 �wÞ
(38)

h2�gw ¼ 9:3� 10�6

�
1

�

d�gw

d lnk

�
p

�
ap
a�

�
1�3 �w

; (39)

where ap and �p ¼ �v4=4 are the scale factor and total

energy density at the time of GW production, a� is the
scale factor when the universe becomes radiation domi-
nated, and �w is the mean equation of state between these
two moments of time, see e.g. [30] for details. Since
tachyonic preheating is a very fast process, we assume
that the universe becomes radiation dominated in less
than a Hubble time, so that the dependence on the scale
factor in Eqs. (38) and (39) is negligible.

B. Lattice formulation

Our lattice formulation for the evolution of the scalar
and gauge fields is standard and described in full details in
Appendix B. The scalar fields are defined at the lattice
points and the gauge field in the segments between lattice
points. We start from a discretized version of the contin-
uum action of the Abelian-Higgs model (1),

S ¼ �dtd3 ~x
X
fx�g

�
1

2
@þ� ~�@þ� ~�þDþ

� ~’ðDþ� ~’Þ�

þ 1

4
~F��

~F�� þ Vð~�; j~’jÞ
�
; (40)

where the sum is over all the space-time lattice points. We
denote the lattice fields with a tilde to distinguish them
from their continuum analog. The lattice expressions for
the forward partial derivative @þ� , the forward gauge

covariant derivative Dþ
� , and the gauge field strength ~F��

are given in Eqs. (B2)–(B4), respectively. The action (40)
is invariant under the lattice gauge transformation

~’ðxÞ! ei~�ðxÞ ~’ðxÞ; ~A�

�
xþ �̂

2

�
! ~A�

�
xþ �̂

2

�
þ1

e
@þ� ~�

(41)

which is a discretized version of the gauge transformation
in the continuum. This ensures, in particular, that the
discretized equations of motion derived from (40) lead to
the conservation of the discretized version of Gauss con-
straint [41]. These equations are derived in Appendix B,
where we show that they reproduce the continuum equa-
tions up to Oðdx2Þ and Oðdt2Þ accuracy in the lattice
spacing dx and time step dt.
On the other hand, this property would be lost by a naive

discretization of the equations of motion (31) and (32) for
GW. The non-TT tensor perturbations ~uijðxÞ are defined at

the lattice points (as the scalar fields) and their discretized
equation of motion is
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@þ�@þ�~uij ¼ 16�G ~�ij: (42)

Contrary to the equations of motion of the scalar and gauge
fields, the lattice expressions @þ� , Dþ

� , and ~F�� reproduce

their continuum analog up toOðdx; dtÞ only as dx, dt ! 0.
Therefore, the same would be true for the RHS of Eq. (42)
if we use these lattice expressions to calculate the different

source terms (33) of ~�ij. Instead of this, we have to

construct new lattice expressions that reproduce their con-
tinuum analog up to Oðdx2; dt2Þ accuracy and which lead
to a stress-energy tensor that is still invariant under the
gauge transformation (41). The details of this procedure
are derived in Appendix B and the final expression for�ij

is given in Eq. (B23).
Note that the calculation of GW production withOðdx2Þ

accuracy ensures a much better control on the UV part of
the GW spectra. This is illustrated in Fig. 4, where we
compare the GW spectra obtained by computing the GW
source term withOðdxÞ andOðdx2Þ accuracy, for the same
lattice and model parameters. The two spectra agree well in
the IR, but the OðdxÞ spectrum (in red) displays a larger
(unphysical) growth in the UV.

Finally, we conclude this section by showing in Fig. 5
how the total energy density in GW is accumulated with
time during preheating in the model (1) and (2) for typical
values of the parameters. As anticipated in Sec. III, GW
production eventually saturates at late times after symmetry
breaking. Another observation that we can already make
from Fig. 5 is that the total energy density in GW varies in a
nonmonotonic way with the ratio of the gauge coupling and

the Higgs’ self-coupling e=
ffiffiffiffi
�

p
. For e=

ffiffiffiffi
�

p � 1, the gauge
field leads to higher GW energy density than in the case
with only scalar fields. This does not result from the mere
addition of an extra field, but rather from an increase of the
terms sourcing GW due to the dynamics of the coupled

system of scalar and gauge fields. As wewill see in Sec. VI,
a crucial role in the dynamics of preheating in the model (1)
and (2) is played by cosmic string configurations of the

fields in position space. When e=
ffiffiffiffi
�

p � 1, strings of the
Higgs field and strings of the gauge field have the same
width and lie on top of each other. In that case, the different
source terms in (20) add to each other at the position of the
strings. As we will now discuss, not only the amplitude of
the GW signal is affected by the gauge field, but also its
spectral properties.

V. SCALAR, VECTOR, AND GRAVITY
WAVES SPECTRA

In this section we present our results for the GW spectra
produced by the system of scalar and gauge fields at
preheating in the model (1) and (2). In order to highlight
the consequences of the presence of gauge fields, let us first
quickly review the gross features of the GW spectra pro-
duced from preheating in models involving only scalar
fields. In that case, the spectra of the scalar fields amplified
by preheating are usually strongly peaked around some
typical momentum k�, which depends on the particular
model considered and can usually be calculated analyti-
cally as a function of the parameters. The final GW spec-
trum depends essentially on this typical scale k�, with a
peak frequency and amplitude today that can be estimated
according to

f� 
 k�
�1=4
p

4� 1010 Hz; h2��
gw 
 10�6

�
Hp

k�

�
2
; (43)

where Hp and �p are the Hubble parameter and the total

energy density at preheating when gravity waves are pro-
duced. The factor 10�6 arises from the redshift of the GW
radiation. In configuration space, R� � 1=k� corresponds

FIG. 4 (color online). Example of GW spectra calculated with
OðdxÞ (red) and Oðdx2Þ (blue) accuracy (see Appendix B for
details), for the model (1) and (2). The two spectra were obtained
with the same model and lattice parameters and they were output
at the same moment of time (mt ¼ 100).

FIG. 5 (color online). Evolution with time of the fraction of
energy density in GW during preheating, �gw=�tot, for the model

(1) and (2) with e=
ffiffiffiffi
�

p ¼ 6 (red), 0.5 (blue). and 0 (black). The
last case simply corresponds to the model without gauge field.
The other parameters were v ¼ 10�3MPl, � ¼ g2=2 ¼ 10�4,
and Vc ¼ 0:024.
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to the typical size of the ‘‘bubble-shaped’’ fluctuations of
the scalar fields amplified by preheating. Not surprisingly,
similar estimates hold for the GW produced by bubble
collisions in first order phase transitions, where in that
case R� is the typical size of the bubbles when they collide.

As we will see, a major consequence of the presence of
gauge fields is to introduce, in addition to k�, new charac-
teristic scales in the problem, which will be inherited by
the final GW spectra. We will therefore first study the
appearance of these scales in the spectra of the scalar and
gauge fields themselves, before considering their conse-
quences for the GW spectra. In the next section, wewill see
how these new scales arise from the dynamics of stringlike
spatial configurations of the scalar and gauge fields. Of
course, at the practical level, the presence of different
scales in the problem makes numerical simulations more
difficult, since each scale has to be resolved efficiently in a
single simulation. One can tune the parameters in such a
way that the different scales coincide with each other, but
important consequences of the gauge field can then be
missed. It was therefore important for us to develop a
lattice formulation accurate up to second order in the
lattice spacing dx (see Appendix B), as it allowed us to
obtain reliable results for the UV behavior of the GW
spectra while keeping a higher IR resolution as compared
to a calculation accurate up to OðdxÞ only. Nevertheless,
we will naturally be able to simulate only a restricted
region of the parameter space. We will therefore study in
some detail how our results vary with the model parame-
ters, in order to extrapolate them to other regions of the
parameter space.

As discussed in Sec. II, the model involves five inde-
pendent parameters: the Higgs VEV v, its self-coupling �,
its coupling to the inflaton g, the gauge coupling constant
e, and the initial velocity of the inflaton condensate at the
critical point Vc (10). The GW produced in this model
without gauge field were first studied in [28–30] and more
in detail, exploring the parameters space, in [31]. Without
gauge field (e ¼ 0), the GW spectra are already very
sensitive to the remaining parameters. In general, however,
very small values of the coupling constants � and/or g2 are
required for these GW to have a sufficiently small fre-
quency today to be observable. Neglecting the expansion
of the universe (which is a good approximation for pre-
heating after hybrid inflation, unless v is very high), the
VEV v can be scaled out of the field equations and of the
initial conditions by suitable redefinition of the fields and
variables, so the dependence of physical quantities on v is
known exactly. For the GW spectrum redshifted into
present-day variables, one finds that the GW frequencies
do not depend on v at all,13 while the GW energy density

scales as h2�gw / Gv2. These scalings with v are pre-

served in the presence of gauge fields and we will simply
take v ¼ 10�3MPl throughout this section. Depending on
the remaining parameters �, g, and Vc, three different
dynamical regimes of GW production from preheating
after hybrid inflation were identified in Ref. [31]. In each
regime, the scale k� and the resulting GW spectra vary in a
very different way with the parameters �, g, and Vc. As we
will see, the effects of the gauge field may also depend
on which regime is considered. Our main interest here is on
the consequences of the gauge field for GW production
and, as could be easily expected, an important parameter
in this respect is now the ratio e2=�. Note that, in a regime
where a very small � is required for the GW to fall in an
observable frequency range, the ratio e2=� may be huge.
Let us first study the consequences of the gauge field for

�� g2 and a significant initial velocity Vc. As far as the
scalar sector is concerned, this is the easiest case to simu-
late as different dynamical scales are of the same order of
magnitude. In that case, the scalar fields are amplified with

a typical momentum k� � V1=3
c m, where m ¼ ffiffiffiffi

�
p

v ¼
m’=

ffiffiffi
2

p
is the mass of the Higgs’ fluctuations (divided byffiffiffi

2
p

) around the minimum of the potential. In Fig. 6, we
show the spectra k3j’j2 and k3jBj2 of the Higgs and
magnetic fields at late time, mt� 250 (when the field
distributions have saturated and evolve very slowly with

time), for � ¼ g2=2 ¼ 10�4, Vc ¼ 0:024, and e=
ffiffiffiffi
�

p ¼ 8.
The main observation is that the two spectra are peaked

around well-distinct scales, k� V1=3
c m for the Higgs and

the vector mass k� ev for the magnetic field. This is a
rather unusual situation in the context of preheating with
only scalar fields, where mode to mode interactions tend to
smooth the differences in the spectra of the different fields.
In the present case, the vector mass is the typical scale for

FIG. 6 (color online). Spectra k3j’j2 and k3jBj2 of the Higgs
and magnetic fields at mt ¼ 250 for � ¼ g2=2 ¼ 10�4, Vc ¼
0:024, and e=

ffiffiffiffi
�

p ¼ 8. Here the normalization of the amplitude
of the two spectra is arbitrary and has been chosen only for
convenience. The results were checked with N ¼ 256 simula-
tions with kIR=m ¼ 0:075, 0.1, and 0.15.

13This is true, despite the fact that different values of v lead to
different values of the energy density � ¼ �v4=4 during infla-
tion and preheating.
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the width and interactions of stringlike spatial structures of
the gauge field (see the next section). We also note a ‘‘UV
bump’’ in the Higgs’ spectrum, which is absent without
gauge fields. As we will see, these features will be im-
printed in the resulting GW spectrum. We found that the
spectra of the gauge field are always peaked around its
mass as long as it is more massive than the Higgs. This is
illustrated in Fig. 7, where we plot the spectra of the
magnetic energy density for different ratios of the vector

and Higgs’ masses, mA=m’ ¼ e=
ffiffiffiffiffiffi
2�

p
. The spectra of the

electric energy density behave in a similar way. This ratio
plays a crucial role in the theory of cosmic strings (in the
Abelian-Higgs model), distinguishing between type I
(mA >m’) and type II (mA < m’) strings. For instance,

the dynamics of multivortex solutions is governed by the
fact that the interaction between vortices is attractive for
mA > m’ and repulsive for mA < m’. Here we note that

the spectrum of the gauge field tends to be peaked around

the greatest of these scales, i.e. k� ffiffiffiffi
�

p
v if m’ >mA and

k� ev if m’ <mA. Note, however, the ‘‘IR features’’ of

the spectra for m’ >mA.

The presence of well-distinct characteristic scales for the
scalar and gauge fields leads to specific signatures in the
resulting GW spectra, as illustrated in Fig. 8. In order to
compare the GW and matter fields’ spectra, we will first
consider the spectrum of energy density in GW per loga-
rithmic frequency interval,

�p
gwðkÞ ¼

�
1

�t

d�gw

d lnk

�
p
; (44)

as a function of the wave number k, both quantities being
evaluated at the time of GW production (i.e. during

preheating). Present-day redshifted spectra will be consid-
ered later on. We see in Fig. 8 the presence of three distinct

peaks in the GW spectrum for e � ffiffiffiffi
�

p
: an IR peak around

k� 0:25m, a middle peak located around the Higgs mass,
k�m, and a UV peak located around the vector mass k�
ev (i.e. k=m� e=

ffiffiffiffi
�

p
). We never encountered such features

in models without gauge field, where the GW spectra are
usually peaked around a single frequency (see e.g. the
black spectrum in Fig. 9) even when different scales are
present in the model. Contrary to the UV peak, the position
and amplitude of the IR and middle peaks in Fig. 8 are

independent of e=
ffiffiffiffi
�

p
, as long as e � ffiffiffiffi

�
p

. We will see how
they vary with the other parameters later on. The frequency
of the IR peak tends to be smaller than in the case without

gauge field, see Figs. 8 and 9. When e� ffiffiffiffi
�

p
, the middle

and UV peaks are superimposed. The resulting GWampli-

tude is greater than in the cases e � ffiffiffiffi
�

p
and e � ffiffiffiffi

�
p

,

see Fig. 9. This is already the case for e=
ffiffiffiffi
�

p ¼ 6 in Fig. 8

FIG. 8 (color online). GW spectra (44) for e=
ffiffiffiffi
�

p ¼ 6 (red) and
8 (blue) at mt ¼ 250. The other parameters are the same as in
Fig. 6. The results were checked with N ¼ 256 simulations with
kIR=m ¼ 0:075, 0.1, and 0.15.

FIG. 9 (color online). Same as Fig. 8 for e=
ffiffiffiffi
�

p ¼ 0 (black),
0.2 (green), 0.5 (blue), 2 (red), and 4 (black, dashed).

FIG. 7 (color online). Spectrum of magnetic energy density
per logarithmic frequency interval divided by the total energy

density, 1
�t

d�mag

d lnk / k3jBj2, at mt ¼ 250 for different values of

e=
ffiffiffiffi
�

p
. From left to right, e=

ffiffiffiffi
�

p ¼ 0:2 (black), 0.5 (blue), 2 (red),
4 (black, dashed), and 8 (green). The other parameters are the
same as in Fig. 6.
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(red spectrum), where the UV peak has a higher amplitude

than for e=
ffiffiffiffi
�

p ¼ 8 (blue spectrum). Finally, for e � ffiffiffiffi
�

p
the GW spectrum becomes indistinguishable from the case
without gauge field, see e.g. the black and green spectra in

Fig. 9 for e=
ffiffiffiffi
�

p ¼ 0 and 0.2, respectively.
Up to now, we have considered the spectra of the scalar,

vector, and gravity waves at late times, when the distribu-
tions have saturated and evolve very slowly with time. It is
interesting to see how they build up with time, as for
instance the different peaks in the GW spectra of Fig. 8
are actually produced at different moments of time.
Furthermore, although the spectra of the magnetic or elec-
tric energy density are useful to single out the vector sector,
the covariant gradient energy of the Higgs contributes to a
greater fraction of the total energy density, see Fig. 2, and
similarly the source of GW is dominated by the covariant
gradient terms in (20). By analogy with (44), we can
consider the spectrum of the covariant gradient energy
density of the Higgs, per logarithmic frequency interval,
divided by the total energy density

�p
covðkÞ ¼

�
1

�tot

d�cov

d lnk

�
p
; (45)

where �cov ¼ hDi’ðDi’Þ�i is the covariant gradient
energy density of the Higgs.

The evolution with time of �p
covðkÞ is shown in the left

panels of Fig. 10, together with the evolution of the spec-
trum of energy density in GW (44) in the right panels. Each
line in Fig. 10 corresponds to a different interval of time.
Frommt ¼ 5 to 15.5 (first line), both spectra�p

cov and�
p
gw

are peaked around k� � V1=3
c m and their amplitude in-

creases exponentially with time as the tachyonic instability
amplifies the Higgs’ fluctuations. From mt ¼ 15:5 to 19
(second line), the peak of the spectra moves clearly to-
wards UV, while their amplitude still increases. During this
interval of time, the amplitude of the Higgs’ fluctuations
reaches its VEV in more and more regions of space and
starts to oscillate back in the potential. This leads to the
collision of bubbles of the fluctuations and thinner and
thinner regions of space where the Higgs is locally small
and where it is energetically more favorable for the gauge
field to be localized, as we will see in Sec. VI.

Next, from mt ¼ 19 to 23 (third line in Fig. 10), the
spectrum �p

cov moves back towards the IR, where two
peaks form around k� � 0:25m and k� �m. During this
interval of time, the fluctuations of the Higgs have oscil-
lated back in the potential and become small in more and
more regions of space, where the gauge field tends to be
localized. Indeed, we will see in the next section that the
stringlike configurations of the gauge field get significantly
fatter during this interval of time, the increase of their
width corresponding to the shift of the spectrum towards
IR that we observe here. Meanwhile, the IR part of the GW
spectrum starts to increase during this interval of time.
Then from mt ¼ 23 to 26.5 (fourth line in Fig. 10), the

two IR peaks in�p
cov disappear and the spectrum oscillates

back towards UV. During this time interval, the amplitude
of the Higgs’ fluctuations goes back to its VEV in more and
more regions of space. We will see in the next section that
the stringlike configurations of the gauge field tend to
fragment into smaller structures during this interval of
time. We see here that the IR part of the GW spectrum
grows significantly during this period. In fact, the IR peak
of �p

gw around k� � 0:25m reaches almost its final ampli-

tude during this interval of time, while the UV part of the
spectrum will still significantly increase. This IR peak is
inherited from the peak of �p

cov at the same location that
formed during the previous interval of time and which has
now disappeared.
Finally,�p

cov moves slightly back towards IR frommt ¼
26:5 to 29 (fifth line in Fig. 10) with a new peak forming
around k� �m, before going back to the UV frommt ¼ 29
to 50 (sixth line in Fig. 10). During this interval of time, the
GW spectrum increases significantly around k� �m. From
there on the spectrum of�p

cov has saturated and it is peaked
around the vector mass, k� � 6m. The GW spectrum then
slowly increases around this momentum to eventually
reach its final form displayed in Fig. 8 (red curve).
To sum up, we see that the different peaks in the GW

spectrum appear at different moments of time during the
process of tachyonic preheating and symmetry breaking.
They can be traced back to similar features in the spectrum
of the covariant gradient energy density of the Higgs.
However, whereas these features disappear in �p

cov, which
becomes eventually peaked around the vector mass, the IR
peaks remain in the GW spectrum, since GW decouple as
soon as they are produced and their spectral shape remains
unchanged since then.
Let us now study how the GW spectra varies with the

other parameters. Without gauge field, and still in the
regime � & g2 and significant initial velocity, the peak
frequency of the GW spectrum at the time of production

varies as k / V1=3
c m and the peak amplitude as �p

gw /
V�2=3
c v2, see Ref. [31]. In Fig. 11, we show the GW spectra

computed for Vc ¼ 0:024, g2 ¼ 2�, e ¼ 3
ffiffiffiffi
�

p
, and two

values of the Higgs’ self-coupling: � ¼ 10�2 and 10�6.
The two spectra are almost on top of each other (in the
units of k=m) so, as in the case without gauge field, the GW
amplitude is independent of � while their frequency at the

time of production varies as k / m / ffiffiffiffi
�

p
, as far as the

ratios g2=� and e2=� are kept constant. The dynamics
and the shape of the final GW spectrum are very sensitive
to these ratios of the coupling constants but not to the
absolute value of �.14

14Rescaling the coordinates as x ! mx and the fields as 
 !

=v, the coupling constant � drops out of the equations of
motion and enters only in the initial conditions for the amplitude
of Higgs’ fluctuations. These have very little consequences on
the shape of the final GW spectrum, as illustrated in Fig. 11.
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FIG. 10 (color online). Evolution with time of the spectrum of covariant gradient energy density of ’ (45) (left panels) and of the
spectrum of energy density in GW (44) (right panels) for � ¼ g2=2 ¼ 10�4, Vc ¼ 0:024, and e=

ffiffiffiffi
�

p ¼ 6. The spectra are shown
between mt ¼ 5 and 15.5 on the first line, between mt ¼ 15:5 and 19 on the second line, between mt ¼ 19 and 23 on the third line,
between mt ¼ 23 and 26.5 on the fourth line, between mt ¼ 26:5 and 29 on the fifth line, and between mt ¼ 29 and 50 on the sixth
line. In each case, the spectra are output every mt ¼ 0:24 and red spectra correspond to earlier moments of time while blue spectra
correspond to later moments of time (the colors go from red to yellow, green and blue as time evolves).
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In Fig. 12, we show the GW spectra computed for � ¼
g2=2 ¼ 10�4, e=

ffiffiffiffi
�

p ¼ 3 and two values of the initial
velocity of the inflaton at the critical point: Vc ¼ 0:024
and Vc ¼ 0:003. The frequency of the IR peak of the GW

spectrum varies exactly as V1=3
c , as without gauge field. Its

amplitude does not vary exactly as V�2=3
c , which even

without gauge field is only approximate anyway, but never-
theless increases as Vc decreases. Thus, we see that the IR

peak of the GW spectrum, which is present when e *
ffiffiffiffi
�

p
,

varies with the parameters approximately in the same way
as the GW spectrum produced without gauge field. For

e *
ffiffiffiffi
�

p
, however, extra peaks are still present around the

Higgs mass k�m and the vector mass k� ev. These are
on top of each other in Figs. 11 and 12. We see in Fig. 12
that the amplitude of at least one of these extra peaks seems
to decrease when Vc decreases, while the amplitude of the

IR peak behaves in the opposite way. However, a quanti-
tative estimate of the GW amplitude as a function of the
initial velocity of the inflaton at the critical point would
require one to consider a larger range of values of Vc. Since
the frequency of the IR peak decreases with Vc while the
frequency of the two other peaks remains constant for

e *
ffiffiffiffi
�

p
, it becomes soon impossible to catch accurately

the different scales in a single simulation. On the other

hand, for e � ffiffiffiffi
�

p
the gauge field becomes negligible and

we recover the results of [31].
As discussed in [31], the regime with � & g2 and a

significant initial velocity Vc that we have considered up
to now is the easiest one to simulate but not the most
interesting one from an observational perspective.
Without gauge field, another regime of GW production in
the model (1) occurs for � & g2 and a small initial velocity
Vc, where the onset of preheating is driven by quantum
diffusion of the fields around the critical point [31]. Wewill
not study the consequences of the gauge field in this case
here, but the main difference of this case compared to the
previous one is in the onset of preheating, while the gauge
field is amplified during the later stages. We thus expect the
gauge field to have similar consequences as above.
Finally, the third regime of GW production identified in

[31] corresponds to the case g2 � �. In that case, the
hybrid potential is much flatter in the inflaton direction
than in the Higgs direction. As a result, the inflaton con-
densate oscillates several times around the minimum of the
potential with relatively large amplitude, see Fig. 13. This
leads to successive amplifications of the inflaton fluctua-
tions by a combination of tachyonic instability and non-
adiabatic resonance. In Fig. 14, we show the GW spectrum
for �=g2 ¼ 16 with (blue) and without (red) gauge field.
As before, the gauge field leads to GW spectra with several
peaks. We see here that the frequency of the IR peak can be
significantly lower than the frequency of the peak without
gauge field. This prevents us from simulating a significant

FIG. 12 (color online). GW spectra for Vc ¼ 0:024 (red) and
Vc ¼ 0:003 (blue) at mt ¼ 250. The other parameters are � ¼
g2=2 ¼ 10�4 and e=

ffiffiffiffi
�

p ¼ 3. The results were checked with
N ¼ 256 simulations with kIR=m ¼ 0:05, 0.075, and 0.1.

FIG. 13 (color online). Time evolution of the inflaton’s mean
h
i=
c (blue) and of the Higgs’ root mean squared hj’ji=v (red)
for �=g2 ¼ 16, e=

ffiffiffiffi
�

p ¼ 0:5, � ¼ 10�4, and Vc ¼ 0:024. Notice
the large oscillations of h
i as compared to Fig. 1.

FIG. 11 (color online). GW spectra for � ¼ 10�2 (red) and
� ¼ 10�6 (blue) at mt ¼ 300. The other parameters are
Vc ¼ 0:024, g2 ¼ 2�, and e ¼ 3

ffiffiffiffi
�

p
.
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range of parameters, since both the IR and UV scales have
to be included in the same simulations. Nevertheless, the
results are consistent with a UV peak located around the
vector mass, see Fig. 15, as was the case for �� g2. As
before, we also expect the emergence of a middle peak

located around the Higgs mass when e � ffiffiffiffi
�

p
, although we

could not simulate this case for g2 � �.
In any case, the main feature seen in Fig. 14 is the effect

of the gauge field on the IR part of the GW spectrum,
which can be of particular interest from the observational
perspective. When �=g2 increases, the frequency of the IR
peak decreases while its amplitude increases, see Fig. 16.
This is similar to the behavior of the GW spectrum without
gauge field, which could be studied more accurately for a
much wider range of values of �=g2 in [31]. It is thus

possible that the gauge field merely enhances this behavior
but that the frequency and amplitude of the IR peak remain
relatively well described by the predictions of [31] without
gauge field. On the other hand, it is perhaps not surprising
to observe specific effects of the gauge field for g2 � �.
As shown in Fig. 13, the inflaton condensate oscillates with
relatively large amplitude around the minimum of the
potential in that case. When it is far away from the mini-
mum, the minimum in the Higgs direction is at j’j< v and
the Higgs amplitude is small in relatively large regions of
space. As we will see in the next section, these regions play
a crucial role as magnetic strings are produced there. We
therefore expect a different dynamics of the strings when
g2 � �. A detailed study of this case is certainly interest-
ing, but it lies beyond the scope of this paper.
To conclude this section, let us summarize our results and

relate them to the position space picture discussed in the

next section. For e >
ffiffiffiffi
�

p
, the final GW spectrum can be

understood as made of three different peaks, which are
produced at different moments of time during the process
of tachyonic preheating and symmetry breaking. A IR peak
appears first, when bubbles of the Higgs start to collide and
strings are formed in between the bubbles. The frequency of
this IR peak tends to be smaller than the frequency of the
peak of the GW spectrum produced without gauge field, but
our results indicate that it varies in the same way with the
model parameters. The frequency of the IR peak is set by the
typical size of the bubbles of the Higgs field when they
collide and by the correlation length of straight string seg-
ments at that time (these two scales are approximately
equal). Next, a middle peak appears, whose frequency is
set by the Higgs mass. This is the typical scale for the width
and interactions of the Higgs’ strings. Finally, a UV peak is
formed when a significant fraction of energy has already
been radiated away from the strings, see the next section.

FIG. 14 (color online). GW spectra for �=g2 ¼ 16 and
e=

ffiffiffiffi
�

p ¼ 0 (red, no gauge field) and e=
ffiffiffiffi
�

p ¼ 0:5 (blue) at
mt ¼ 400. The other parameters are � ¼ 10�4 and Vc ¼
0:024. The results were checked with N ¼ 256 simulations
with kIR=m ¼ 0:03, 0.04, and 0.075.

FIG. 15 (color online). GW spectra for �=g2 ¼ 8 and e=
ffiffiffiffi
�

p ¼
0:5 (blue), 1 (black), and 2 (red) at mt ¼ 350. The other
parameters are Vc ¼ 0:024 and � ¼ 10�4. The results were
checked with N ¼ 256 simulations with kIR=m ¼ 0:045 and
0.06.

FIG. 16 (color online). GW spectra for �=g2 ¼ 0:5 (black),
8 (red), and 16 (blue) at mt ¼ 400. The other parameters are
Vc ¼ 0:024, � ¼ 10�4, and e=

ffiffiffiffi
�

p ¼ 0:5. The results were
checked with N ¼ 256 simulations with kIR=m ¼ 0:03, 0.04,
and 0.075.
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At that time, the spectrum of the gauge field is peaked
around the vector mass, which is the typical scale for the
width and interactions of the strings of the gauge field, and
this scale sets the frequency of the UV peak of the GW
spectrum.

Once the GW are redshifted until today, their frequency
is given by Eq. (38). We can then predict the present-day
frequency of the three peaks as

f1 & fðg; �; VcÞ ðIR peakÞ
f2 
 �1=41011 Hz ðmiddle peakÞ
f3 
 effiffiffiffi

�
p �1=41011 Hz ðUV peakÞ;

(46)

where the frequency f1 of the IR peak depends on the
parameters g, �, and Vc and is of the order of, or smaller
than, the frequency of the peak of the GW spectrum
produced without gauge field. We can then use the predic-
tions of [31],

fðg;�;VcÞ

8<
:
�1=4V1=3

c 1011 Hz for g2*� andVc* 500g3

�1=4g1011 Hz for g2*� andVc& 500g3

�1=4 gffiffiffi
�

p 1010 Hz for g2��;

(47)

for the frequency of this peak. When e� ffiffiffiffi
�

p
, the middle

and UV peaks merge into a single one with higher ampli-

tude. For e � ffiffiffiffi
�

p
, the gauge field becomes negligible and

the results reduce to the case with only scalar fields,
characterized by a GW spectrum with a single peak around
fðg; �; VcÞ. Note that, depending on the parameters, the
frequencies f1, f2, and f3 of the three peaks can differ by
many orders of magnitude. It is of course not possible to
simulate such cases on the lattice, but we expect the
estimates (46) to remain valid in such cases since they
result directly from the presence of well-defined character-
istic scales in the problem.

Finally, we come to the amplitude of the GW spectrum.

Without gauge field, or for e � ffiffiffiffi
�

p
, we can use the pre-

dictions of [31],

h2��
gw

�

8>>>><
>>>>:

10�6V�2=3
c

�
v
MPl

�
2

for g2 * � and Vc * 500g3

10�8

g2

�
v
MPl

�
2

for g2 * � and Vc & 500g3

10�5 �
g2

�
v
MPl

�
2

for g2 � �;

(48)

for the peak amplitude of the GW spectrum today. For

e *
ffiffiffiffi
�

p
, we could not vary the parameters over a suffi-

ciently large range to study quantitatively how they
affect the amplitude of each peak in the GW spectrum.
However, our results indicate that the amplitude of the
IR peak behaves roughly as in the case without gauge field
and agrees within an order of magnitude with (48).

The amplitude of the UV peaks should then be also well
described by these estimates if a significant fraction of the
total energy density is indeed efficiently converted into
small-scale structures of the Higgs and gauge fields.

When e� ffiffiffiffi
�

p
, the middle and UV peaks are superimposed

and their amplitude is slightly larger than in the case

without gauge field. On the other hand, when e � ffiffiffiffi
�

p
,

the amplitude of each peak is slightly smaller than in the
case without gauge field. In any case, the amplitude of the
three peaks is mostly sensitive to the VEVof the Higgs and
the corresponding behavior is known exactly, �gw / Gv2.

VI. SPATIAL CONFIGURATIONS

The spectra of the anisotropic stresses of the matter
fields and GW power spectra give us only partial informa-
tion on the evolution of the fields and the origin of the
peaks in the spectrum. In order to understand the detailed
dynamics, one has to use all the information available, and
in particular, follow the spatial configurations in detail as a
function of time, since then one can understand how spe-
cific features (like topological strings configurations) are
formed and give rise to the observed peaks in the spectrum.
Moreover, apart from both spatial images and power spec-
tra, a very useful tool for this detailed understanding is the
time evolution of histograms of both the Higgs and the
magnetic fields’ energy densities. These histograms allow
us to identify the moments when the Higgs’s oscillations
make its VEV reach zero and induce nontrivial windings at
places where topological defects form.
For this purpose we turn to the discussion of the pro-

duction of GW in configuration space, describing the spa-
tial distributions and correlations between the energy
density of the scalar and vector sources, and that of the
GW. We will see how the Higgs field forms bubbles that
expand and collide and how the gauge field is excited
during the symmetry breaking, forming elongated struc-
tures (tubes) in between the Higgs’ bubbles. These string-
like spatial configurations of the time-dependent Higgs and
gauge fields follow from the dynamical equations of
motion of the coupled system and will of course exhibit
some differences with respect to the usual Nielsen-Olesen
solution for static and infinite strings [54]. We will follow
the formation and evolution of these strings during and
after the symmetry breaking, but well before any scaling
regime of string networks has been achieved and on length
scales much smaller than the Hubble radius.
For Nielsen-Olesen strings, the magnetic flux decays

away from the core of the string with a typical length scale
that is given by the inverse of the gauge field mass.
However, during the process of symmetry breaking, the
Higgs field provides an effective mass for the gauge field
which oscillates in time as the Higgs oscillates around its
VEV, with relatively large amplitude, see e.g. Fig. 1.
Furthermore, the magnetic flux tends to be confined in
the regions of space where the amplitude of the Higgs is
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small, i.e. between the bubbles of large Higgs amplitude,
and the width of these regions is also strongly time depen-
dent as the Higgs bubbles oscillate and collide. Therefore,
we will see that the width of the stringlike configurations of
the gauge field oscillate with time, becoming thicker when
the amplitude of the Higgs is a maximum. The same occurs
for the Higgs field whose effective mass is also time
dependent via its coupling to the oscillating inflaton field.
At later times, we will see how magnetic energy density is
shedded away from the core of the strings. Similar effects
have been observed in field theory simulations of cosmo-
logical networks of cosmic strings in the Abelian-Higgs
model, see e.g. [55] and references therein. Such effects are
usually suppressed by the ratio of the width of the string
over the length of straight string segments, which is not
small for the system under study.

A. Higgs bubbles

In Fig. 17 we show a sequence of snapshots of the spatial
distribution of the modulus of the Higgs field for a model
with couplings g2 ¼ 2� ¼ 0:25, initial inflaton velocity

Vc ¼ 0:024, and gauge coupling e ¼ 6
ffiffiffiffi
�

p
. From left to

right, top to bottom, the snapshots correspond tomt ¼ 5:5,
11.0, 17.3, and 23.0, and capture the details of the symme-
try breaking process towards the true VEV. We have
chosen a simulation beginning at mt ¼ 5, when the ta-
chyonic modes of the Higgs are already well inside in
the classical regime, as described by (11). Therefore, the
distribution of the Higgs at mt ¼ 5:5, i.e. slightly after the
initialization of the simulation, simply shows the bubble-
like structures as developed in random positions, corre-
sponding to the tail of high field values of the Gaussian
distribution (11) which describes the tachyonic modes.

FIG. 17 (color online). Time evolution of the spatial distribution of the modulus of the Higgs field, j’jðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’2

1 þ ’2
2

q
, during the

process of symmetry breaking. The images have been obtained with a N ¼ 256 lattice simulation with an IR cutoff kIR ¼ 0:15m, and
parameters g2 ¼ 2� ¼ 0:25, Vc ¼ 0:024, and e ¼ 6

ffiffiffiffi
�

p
. From left to right, top to bottom, the snapshots correspond to mt ¼ 5:5, 11.0,

17.3, and 23.0.
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Since we are using a big lattice with N ¼ 256 points per
dimension, the number of bubbles we capture in a single
box is statistically quite significant, and the resolution of
their spatial profiles is also quite well captured, as can be
clearly seen in the figures corresponding to mt ¼ 5:5 and
mt ¼ 11. In the snapshot corresponding to mt ¼ 11, the
tachyonic instability of the excited modes has already led
to the growth of the amplitude of the Higgs field towards
the true vacuum, such that the Higgs field at the center of
the bubbles at that time has reached already a 5% ampli-
tude of the true VEV. The higher the random value of the
Higgs was in a given location at the initial time, the faster
the amplitude of the Higgs has grown in such location and
the neighboring region. However, at time mt ¼ 11, for the
parameters chosen, the system has already entered into a
regime in which the nonlinearities due to the self-coupling
for the Higgs are not negligible anymore. In the nonlinear
regime, the initially IR tachyonic modes are transferring
power into the higher momenta modes out of the initial
tachyonic band. As a result, in configuration space one can
see that the amplitude of the Higgs has grown everywhere
in space, although the bubble structures are yet preserved.
At mt ¼ 17:25 we see that the Higgs has already reached
the true VEV. Indeed, the Higgs at the centers of the
bubbles has overpassed the VEV and reached a slightly
greater value (as allowed by energy conservation). Because
of the nonlinearities, the bubbles are growing in that mo-
ment and are about to percolate. Since the size of the
bubbles grows in time, the effective volume of the regions
of lower amplitude in between the bubbles is naturally
shrinking. At mt ¼ 23, the bubbles have already perco-
lated and one can clearly see in the intermediate regions
between bubbles, that the Higgs amplitude is an order of
magnitude lower than the true VEV. Those regions corre-
spond to the locus of points in configuration space where a
nontrivial winding has been developed, therefore leading
to the formation of a spatial region where the Higgs
amplitude is frustrated to reach the true VEV. Of course,
we are still far away from the stationary regime describing
the evolution of topological defect networks. Rather, in the
previous sequence of snapshots, we are looking at the
dynamics of the symmetry breaking process itself, from
the false to the true vacuum, in a time scale in which the
fields are still highly oscillatory and have not reached a
scaling behavior.

The growth and collisions of the Higgs bubbles during
symmetry breaking give rise to a significant anisotropic
stress tensor in the scalar fields, which drives the initial
production of GW in this model. The specific correlation in
configuration space between the locus of points where the
gradients of the Higgs are maximum and the distribution of
the GW energy density was already shown in [29] (Sec. V
of that paper), see also [31]. We will not reproduce again
here such correlations and rather we will focus on the
correlations between the GW energy density distribution

and the energy density of the new source of GW considered
in this paper, the gauge fields.
Note that we will maintain the parameters chosen for

Fig. 17 fixed through the rest of this section, such that all
the plots shown will represent some output from a simula-
tion run with those values for the parameters.

B. Magnetic string formation and evolution

We already saw in momentum (Fourier) space how a
new scale emerges in the spectrum of the gauge fields as
the Higgs approaches the true vacuum, since then the
gauge field acquires a mass through the Higgs mechanism.
The covariant gradient energy of the Higgs is minimized
for [41]

A� ¼ 1

e
�@��;

where� ¼ 
=j
j is an element of Uð1Þ. This induces the
magnetic field to concentrate its energy density within
those regions in which the Higgs amplitude is smaller
and phase gradients are larger. Thus, during the symmetry
breaking of the Higgs, magnetic flux tubes will be concen-
trated in the regions between the Higgs bubbles. This can
clearly be seen in the left panel of Fig. 18, where we plot a
high value isosurface of the magnetic energy density,
showing this way how the three dimensional configurations
of the magnetic field forms flux tubes (strings). Together
with the strings, we also show a two-dimensional plane
orthogonal to those long flux tubes, showing how the
strings appear in those places where the Higgs is minimum.
This correlation between Higgs’ zeros and magnetic field
strings is a universal feature of the Abelian-Higgs model,
and is related to the Nielsen-Olesen vortices (and strings)
predicted in the model many decades ago [54].
Note that in the Abelian-Higgs model, the magnetic flux

along the strings is quantized and is related to the Higgs
winding number,

�B ¼
Z

d2x ~B � ẑ ¼
I

d~x � ~A ¼ 2�n

e
;

where n is an integer called the winding number. This
topological number is conserved along the evolution unless
there are over-the- barrier transitions during preheating,
see Ref. [41]. In the right panel of Fig. 18, we have shown
the magnetic strings (the magnetic energy density) from a
perspective in which one can see the (color coded) varia-
tion of the phase of the Higgs from 0 to 2�, as painted in a
transverse plane to the string in the center of the box. Such
a plane corresponds to a bidimensional cut of the three-
dimensional distribution of the values of the Higgs’ phase
between 0 and 2�. Around the place where the central
string segment touches the plane, one can clearly see that
the Higgs phase winds nontrivially around the string. The
plane is also crossed by another string segment close to one
of the walls of the box, and again one can see the nontrivial
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structure of the winding around such string. Besides, the
two-dimensional distribution of the Higgs phase in the
chosen plane also shows very clearly the locus of points
(lines within the plane) where the Higgs phase jumps from
2� to 0. If we interpret the plane as a Riemann surface, the
curve lines where the Higgs phase jumps would then be the
edges of the Riemann surfaces.

In Fig. 19 we show the time evolution of the spatial
distribution of the magnetic energy density, from time
mt ¼ 5:5 untilmt ¼ 23. As explained above, the magnetic
fluxes will tend to concentrate in those regions in which the
Higgs amplitude (gradients) will be minimum (maximum).
Thus, in the first two plots of Fig. 19, we see that during the
initial times of symmetry breaking (when the Higgs
bubbles have not yet percolated), the distribution of the
magnetic field forms inhomogeneous lumps where the
magnetic energy density is maximum in the spatial regions
in between the initial nucleated Higgs bubbles. However,
the amplitude of the magnetic field is still very small to
compete with the gradients of the Higgs, so the GW
production is driven initially only by the Higgs inhomoge-
neities. When the Higgs bubbles percolate, the magnetic
field is finally excited significantly and its amplitude grows
by several orders of magnitude. At the same time, the
regions between the percolating bubbles shrink, forming
elongated tubes, i.e. topological defects, which corre-
spondingly induce new spatial configurations in the distri-
bution of the magnetic field. In particular, at timesmt ¼ 17
and mt ¼ 19, see the third and fourth plots of Fig. 19, the
magnetic field is compressed into thin tubes, located pre-
cisely in the locus of points where the Higgs was prevented
to reach the true VEV due to the development of a topo-
logical winding around the tube. Since the effective mass
of the gauge field oscillates dynamically according to the
amplitude of the Higgs around the VEV, the string con-
figurations of the gauge field do not have a constant width,
but rather a time-dependent one, see fifth plot of Fig. 19.

Indeed, the magnetic field string configurations get thicker
and eventually break into concentric layers which are
shedded away, see the sixth plot of Fig. 19. Nevertheless,
the Higgs winding remains, following the Higgs’ zeros
at the cores of the strings. At time mt ¼ 23 we can even
see in the figure a thin string at the core of a thicker one.
Later, we will see that these features are also inherited by
the spatial distribution of the energy density of GW. Since
the magnetic field energy is pushed away from the core
of the strings, one expects that, at late times, there will be
three components of the magnetic field, one associated
with the core of the strings, another one which has ‘‘evapo-
rated’’ from the core and now occupies the whole box in
the form of very small-scale structures, plus a diffuse
radiation component [42]. This is indeed what we see in
the first two plots of Fig. 22. Again these features will also
be inherited by the GW distribution of energy, see the last
two plots of Fig. 21.

C. Histograms of the Higgs and magnetic field energy

Histograms give yet another perspective on the dynam-
ics of the Abelian- Higgs model at preheating. Power
spectra gave us an idea of the energy distribution as a
function of scale, and allowed us to pick up certain typical
scales of the problem. Then we could look at the spatial
distributions/configurations to search for specific features
and find those given scales, like the string width and length.
However, neither the power spectra nor the spatial distri-
butions tell us how common those features are. For that we
have to look at the histograms of the values of the fields,
and see how these distributions change with time. For
instance, since magnetic strings seem to the localized
around the zeros of the Higgs, if we can follow the time
evolution of the Higgs histograms, we can see how often
the Higgs field has a significant fraction of lattice points
with its VEV close to zero. At those points one expects new

FIG. 18 (color online). Snapshots at time mt ¼ 17 of the spatial distribution of the magnetic energy density B2 (in units of m4). The
images have been obtained for a N ¼ 256 lattice with an IR cutoff kIR ¼ 0:1m, and parameters g2 ¼ 2� ¼ 0:25, Vc ¼ 0:024, and
e ¼ 6

ffiffiffiffi
�

p
. In the left we see clearly how the stringlike configurations of the magnetic fields are localized where the minima of the

Higgs are, as described by the colored transverse plane which plots the Higgs amplitude (normalized to the VEV) at that moment. On
the right, the analogous figure where now the transverse colored plane shows the phase of the Higgs, thus clearly demonstrating the
existence of nontrivial winding in the Higgs around the positions of the magnetic strings.
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FIG. 19 (color online). Time evolution of the spatial distribution of the magnetic energy density B2 (in units of m4) along the process
of the Higgs symmetry breaking. The images have been obtained with a N ¼ 256 lattice simulation with an IR cutoff kIR ¼ 0:1m, and
parameters g2 ¼ 2� ¼ 0:25, Vc ¼ 0:024, and e ¼ 6

ffiffiffiffi
�

p
. From left to right, top to bottom, the snapshots correspond to mt ¼ 5:5, 11.0,

17.3, 19.0, 21.0, and 23.0. At early times, before the Higgs bubbles percolate, the magnetic field is still very small and has not acquired
yet the distinctive shape of topological string configurations. At times mt� 17–19, the stringlike spatial distributions of the magnetic
energy density have finally developed, following the locus of points which corresponds to the intermediate regions between Higgs
bubbles. The stringlike distributions are most clearly seen at time mt ¼ 19. Later, due to the time evolution of the gauge field’s mass,
the string segments fatten and start shedding away the magnetic field, see the main text.
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FIG. 20 (color online). Evolution in time of both the histograms of the Higgs field normalized to its VEV (left) and the magnetic
energy B2 normalized to m4 (right). The first row corresponds to the initial times, from mt ¼ 5:05 to mt ¼ 19. The second row
corresponds to times from mt ¼ 19 to mt ¼ 32. The third row corresponds to times from mt ¼ 32 to mt ¼ 50. It can be clearly
distinguished that the Higgs moves very fast towards the true VEV in the initial stages of hybrid preheating and later oscillates close to
VEV (see the left tails of the Higgs histograms). At any moment, even when the Higgs is oscillating in the broken phase with small
amplitude compared to the VEV, there remains a significant fraction of points in the lattice where the amplitude of the Higgs is much
smaller than the VEV, corresponding to the spatial regions located in between the Higgs bubbles.
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FIG. 21 (color online). Time evolution of the spatial distribution of GW j _hijðx; tÞj2 (in arbitrary units) along the process of the
symmetry breaking of the Higgs. Note that we use the same arbitrary units for all the plots, so the relative amplitude between one
snapshot and another tells about the physical growth of the GWenergy density. The images have been obtained with a N ¼ 256 lattice
simulation with IR cutoff kIR ¼ 0:1m and parameters g2 ¼ 2� ¼ 0:25, Vc ¼ 0:024, and e ¼ 6

ffiffiffiffi
�

p
. From left to right, top to bottom,

the snapshots correspond to mt ¼ 5:5, 11.0, 17.3, 19.0, 21.0, and 23.0. At early times, before the Higgs bubbles percolate, the GW
energy density is still very small and distributed in lumps over the lattice, with maximum values in the regions where the gradients of
the Higgs are maximum. At times mt� 17–19, however, the stringlike configurations of the gauge and Higgs fields induce similar
stringlike distributions of GW. The tubes of highest energy in GW can be seen most clearly at timesmt ¼ 17–19. Later, due to the time
evolution of the strings, i.e. their fattening and shedding away of small-scale structures, the distribution of GW seems also to follow a
similar pattern. Particularly noticeable here is the figure corresponding to time mt ¼ 21, where inside one of the concentric tubes one
can see another stringlike configuration in the core of the tube, very similar to what we observed in the magnetic energy density.
Finally, note that the orientation of the box has been chosen such that one can clearly see as best as possible some of the features
developed by the spatial distribution of GW. Consequently, there is no specific correlation between the particular magnetic strings
shown in Fig. 19 and the ones shown here, since the boxes are being observed from very different orientations.
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windings to appear, and indeed this is what seems to occur,
see the left panel in Fig. 20.

One can also correlate the time evolution (oscillations)
of the Higgs histograms with the production of magnetic
field energy, associated with both the strings and the dif-
fuse component coming from their evaporation. We show
the time evolution of these histograms in the right panel of
Fig. 20.

D. Spatial distributions of GW

Finally, let us consider the spatial configurations of GW.
The expression for the GW energy density was given in

(34) and here we will look at the spatial distribution of
_hij _hij. We will show in a sequence of snapshots the time

evolution of j _hijðx; tÞj2 in space, similarly to what we did

with the Higgs and magnetic fields previously. Note that

we will plot j _hijðx; tÞj2 in arbitrary units, since we only

want to hint the spatial features developed in the distribu-
tion of GW over the lattice, to show that these features
follow precisely the stringlike configurations of the source.
As expected, the spatial distribution of GWwill follow that
of the dominant source term at each time.

In Fig. 21, a series of six snapshots of j _hijðx; tÞj2 are

shown sequentially from mt ¼ 5:5 to mt ¼ 23. In the first

FIG. 22 (color online). Here we show the magnetic field energy density B2 in units of m4 (top) and the GW spatial distribution _h2ij in
arbitrary units (bottom), for timesmt ¼ 29 (left) andmt ¼ 35 (right). Note that there are in fact three components in the magnetic field
spatial distribution, the very core of the strings (barely seen here), as well as lumps of a small-scale structure which has been shedded
away from the initial stringlike configuration, plus a diffuse background (in green in the figures) which we interpret as radiation. The
spatial distribution of GW follows a similar pattern.

GRAVITATIONAL WAVES FROM ABELIAN GAUGE FIELDS . . . PHYSICAL REVIEW D 82, 083518 (2010)

083518-25



two figures, corresponding to timesmt ¼ 5:5 andmt ¼ 11,
the distribution of GW follows the spatial configurations of
the Higgs bubbles during the initial tachyonic stage. The
correlation between the Higgs features and the GW distri-
bution was studied in detail in [29], here we simply want to
emphasize that initially the spatial configurations of GW
are distributed as lumps over the lattice. However, in the
middle figures of Fig. 21, corresponding to times mt ¼ 17
andmt ¼ 19, the GW distribution has begun to concentrate
within elongated regions which coincide precisely with
those positions in space in which the Higgs and gauge
fields have formed stringlike configurations. The spatial
distribution of GW is clearly concentrated around these
strings. In the last two snapshots of the sequence of Fig. 21,
corresponding to times mt ¼ 21 and mt ¼ 23, we see that
the stringlike configurations of GW also fatten and break
into small structures shedded away in the lattice, in full
analogy with the behavior of the magnetic energy density
that we observed before. At later times, we show in Fig. 22
how both the magnetic field and the GWare distributed all
over the lattice, in the form of very small-scale structures.
This behavior of the spatial distribution of GW, closely
tracking the behavior of the Abelian-Higgs strings as they
are formed, evolve, and later fragment into small-scale
structures, is in perfect agreement with the successive
appearance of the different peaks in the GW spectrum
that we observed in Sec. V.

VII. DISCUSSION AND PERSPECTIVES

Gravitational waves are a robust prediction of general
relativity. There is indirect evidence of their existence from
inspiraling binary pulsars, although no single direct detec-
tion has been claimed. A stochastic background of GW
may soon be discovered, either directly with laser interfer-
ometer antennas or indirectly through the pattern of polar-
ization anisotropies they induce in the cosmic microwave
background. Such a detection would open a completely
new and unexplored window into the early Universe, pos-
sibly as rich as that which has been recently revealed in the
CMB. There are many sources of GW that can generate a
stochastic backgrounds and thus it is necessary to charac-
terize those backgrounds with as much detail as possible.
Apart from known astrophysical pointlike sources beyond
the confusion limit (where we cannot resolve them), there
are also predictions for GWB from cosmic defects and
hypothetical strongly first order phase transitions in the
early Universe. Moreover, cosmological inflation makes a
robust prediction of a stochastic GWB produced during the
quasiexponential expansion of the Universe, with very
specific spectral signatures: a Gaussian, almost scale-
invariant spectrum with an amplitude directly related to
the energy scale of inflation. If the scale is high enough
(close to the grand unification theories’ scale) then these
GW will also leave an imprint in the (curl) polarization
anisotropies of the CMB. Unfortunately, this GWB is still

too weak to be discovered with the near-future GW inter-
ferometric antennas, although it does cover a sufficiently
broad frequency range to be detectable by future GW
observatories (GWO) like BBO or DECIGO.
Furthermore, a robust prediction of inflation is that it

must have ended, converting the vacuum energy respon-
sible for the tremendous expansion into the matter and
radiation we observe today. Such a process, known as
reheating, is typically very violent and very inhomogene-
ous, with large density waves moving at relativistic speeds
and colliding among each other, thus converting a large
fraction of their gradient energy into gravitational waves.
In some cases, the conversion is so sudden and violent that
a significant fraction of the total energy that goes into
radiation ends in a stochastic background of GW, which
could be detected in the future. The energy spectrum of
such a GWB is very nonthermal and far from scale invari-
ant, but actually peaked at a frequency which is related to
the typical mass scale responsible for the end of inflation
(either the mass of the inflaton or that of the field that
triggers the end of inflation, like in hybrid models), which
could be orders of magnitude smaller than the Hubble scale
at the end of inflation. However, if the energy scale of
inflation is large (of the order of the GUT scale) then this
stochastic GWB will be peaked at GHz frequencies, far
from the present sensitivity of GW interferometers.
Nowadays, our only chance of detecting the GWB from
reheating is to consider the low-scale models of inflation—
like hybrid models—with the appropriate parameters to
convert a large fraction of the initial vacuum energy into
GW. The analyses done so far have considered only scalar
fields whose gradient energies source the anisotropic
stresses needed for GW production. However, vector fields
(gauge or not gauge) are expected to be an even better
source of GW, due to their anisotropic curl components, so
that preheating scenarios with gauge fields may have a
larger contribution to the GWB than scalar models. In
fact, previous studies of gauge fields at preheating, in the
context of electroweak baryogenesis and in the generation
of primordial magnetic fields, have identified the formation
of long-wave semiclassical gauge field configurations like
sphalerons and helical magnetic flux tubes which evolve
with time very anisotropically and could contribute signifi-
cantly to the production of GW.
In this paper, we have developed a formalism to calculate

the production of GW by coupled systems of scalar and
gauge fields on the lattice. The numerical method that we
have constructed can be applied to different sources of GW
where out-of-equilibrium gauge fields play an important
role, such as thermal phase transitions, cosmological net-
works of local defects, or nonperturbative decays of scalar
condensates into gauge fields. We have studied in detail the
dynamics and the production of GW during preheating after
hybrid inflation, in the context of Abelian-Higgs models
that go through dynamical symmetry breaking triggered by
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the expectation value of the inflaton field. As the inflaton is
driven slowly (as opposed to a quench) below the critical
value, the mass squared of the Abelian-Higgs field becomes
negative and drives the spinodal growth of long-wave
modes of the Higgs. Since the Higgs is charged, its rapid
growth induces a corresponding growth of gauge field
configurations. At the end of inflation there are no tempera-
ture fluctuations that can induce over-the-barrier transi-
tions. However, long-wave quantum fluctuations become
semiclassical and act as a stochastic force that allow tran-
sitions over the false vacuum and thus induce (locally) the
generation of a topological winding number of the Higgs
field. After symmetry breaking, there is not enough energy
to unwind the Higgs phase, leaving behind a Nielsen-
Olesen string. Such cosmic string configurations can be
seen explicitly in our spatial distributions of both Higgs
and gauge fields. They play a crucial role in the production
of GW at preheating and we observe that the spatial distri-
bution of GW is indeed concentrated around the strings.
Those strings will eventually decay (we see that they
become wider and disperse away their energy density in
the form of small-scale structures of the fields, although the
winding phase around the core of the string remains, since it
is topologically stable), which eventually shuts off the GW
production.

The complicated dynamics occurring at preheating in
this Abelian-Higgs-inflaton model has been studied using
both power spectra analyses, as well as the fields’ distri-
butions in configuration space, together with histograms of
the fields’ values, as a function of time, in order to correlate
the different features observed and their evolution. The
picture that arises is the following. At the end of inflation
the tachyonic growth of the Higgs Gaussian random field
creates an inhomogeneous distribution of fields character-
ized by ‘‘bubbles’’ of Higgs energy density that expand and
collide. The gauge field concentrates at the valleys between
the bubbles, where the Higgs has low values, forming long
flux tubes of magnetic energy density. The dynamics of the
bubbles when they expand and collide leads to regions in
space where the Higgs field reaches the false vacuum and
there are over-the-barrier transitions, with topological
windings associated with them. These Nielsen-Olesen vor-
tices are connected with each other in a cosmic string
which runs along the core of the magnetic flux tubes.
There are strings that encompass the whole simulation
box and even beyond, thanks to periodic boundary con-
ditions. We observe this process both in configuration
space and with the histograms of Higgs VEVs.

We have followed the dynamics of the strings during and
after the symmetry breaking, although still on time scales
shorter than the Hubble time and on length scales smaller
than the Hubble radius. Once the strings are formed, they
evolve by increasing their size and shedding away layers of
magnetic energy density. At the cores of the strings there
always remain a thin magnetic flux line but the energy

seems to pour away from the strings in the form of waves
concentric with the string. Nevertheless, we observe (in a
transverse plane to the string) that at the core of the string
there remains a conserved winding number of the Higgs.
We have followed this winding number up to long times
and we confirm that it is still there, in spite of the fact that
the magnetic flux tube is so dilute that we cannot see it
coherently: it seems to have evaporated. What remains is a
diffuse background of small-scale structures of the Higgs
and gauge fields permeating the whole box, together with
the remnants of the strings.
The formation, evolution, and fragmentation of the

strings are accompanied by a significant production of
gravitational waves which inherit specific features from
the string dynamics. In position space, we observe how the
distribution of GW follows very closely the evolution of
the strings, being first concentrated around the straight
segments of strings, then fattening as the strings become
wider and finally being dispersed over the lattice as the
strings emit small-scale structures of the fields. In Fourier
space, this dynamics is encoded into the successive appear-
ance of very distinct peaks in the GW spectra. The position
of each peak is directly related to the physical scales in the
problem: the Higgs mass, which governs the width and
interactions of Higgs field’s strings, the gauge field mass,
which governs the width and interactions of gauge field’s
strings, and the typical momentum amplified by tachyonic
preheating, which determines the characteristic size of the
bubbles when they collide and the correlation length of the
straight segments of strings. The former two determine the
peaks in the high momentum (UV) range of the spectrum,
while the latter corresponds to the long-wave (IR) peak.
The IR peak appears first, when the bubbles collide and the
strings are formed, while the UV peaks are formed later on,
when the strings evolve and decay into small-scale struc-
tures of the Higgs and gauge fields. When the different
scales are close to each other, the different peaks are
superimposed and the amplitude in GW increases. When
the gauge coupling constant is significantly smaller than
the Higgs’ self-coupling, the results reduce to the GW
spectra produced without gauge field, characterized by a
single peak.
We have calculated the GW spectra produced in this

Abelian-Higgs model of preheating after hybrid inflation
with state-of-the-art simulations, although still limited in
spatial resolution and box sizes. In order to probe reliably
the different scales in the problem in each simulation, we
developed a lattice calculation of GW production with
gauge fields that is accurate up to second order in the
lattice spacing. Our numerical results for the GW spectra
today are well described by Eqs. (46)–(48). The present-
day frequency and amplitude of these GW are very sensi-
tive to the model parameters and the frequency of the
different peaks may differ by many orders of magnitude,
as illustrated in Fig. 23. As in the same model with only
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scalar fields, very small coupling constants are still neces-
sary for these GW to fall into a frequency range that is
accessible by interferometric experiments. Whether this is
natural or not depends on the underlying theory for infla-
tion and particle-physics models of hybrid inflation with
such small coupling constants have indeed been already
proposed in the literature, see [31] and references therein.
We also observed that the frequency of the IR peak in the
GW spectrum can be smaller than the peak frequency
produced in the same model with only scalar fields, so
the gauge field may enlarge the regions of the parameter
space that may lead to an observable signal. More gener-
ally, there are many other models of inflation and preheat-
ing where gauge fields may play an important role and
which may lead to GW that could be observed in the future.

After preheating the system enters into a turbulent re-
gime where, at least in the Abelian-Higgs model that we
considered, gravitational waves are no longer produced
and the GWenergy density saturates. We expect this result
to be rather generic in Abelian scalar gauge theories,
because in that case the gauge fields that are produced at
preheating acquire a mass, either directly through the
Higgs mechanism or due to their interactions with scalar
fields’ fluctuations. It would be interesting to study models
with other gauge groups, like SUð2Þ �Uð1Þ, where gauge
fields remain effectively massless after symmetry break-
ing. This may happen for instance during preheating after
hybrid inflation close to the electroweak scale (possibly a
secondary stage of inflation, not necessarily related to the

CMB anisotropies, only responsible for reheating the
universe), where the photon spectra may exhibit inverse
cascade during the turbulent evolution towards thermal
equilibrium [42]. This could significantly lower the typical
frequency of the resulting GW today and relax the con-
ditions on the parameters for these GW to be observable.
The details of the GW spectra produced from preheating
should also be rather sensitive to the particular gauge group
under consideration because this determines the nature of
the defects that can be formed. The defects do not have to
be stable since these GWare produced when they are being
formed.
An intriguing possibility is the following. Given that

preheating is so extremely inhomogeneous, and since these
inhomogeneities get imprinted in the gravitational wave
background, which immediately decouples from the
plasma, one may envision a stage of technological develop-
ment in the not so far future in which GWO with sufficient
angular resolution may resolve the structures that gave rise
to the GWB right at the moment when the Universe re-
heated. In the usual preheating scenario at high-energy
scales with only scalar fields, the physical structures will
have today a size that is completely undetectable when
projected over the sky, and thus the GWB will look essen-
tially homogeneous from Earth. However, if gauge fields
with long stringlike configurations (of horizon size and
possibly even with superhorizon correlations) were behind
the generation of the GWB, then one could expect to see
inhomogeneities in the angular distribution of those gravi-
tational waves. In particular, an array of GWO could detect
the stringlike anisotropies in the GWB across the sky. At
the moment, the angular resolution of LIGO is not better
than a degree projected in the sky. However, in the future
one could resolve much finer structures in the GWB thanks
to a dense network of ground-based laser interferometers,
as proposed e.g. in Ref. [56]. Thinking ahead of our times,
it may not be unrealistic to imagine that in the not so far
future the GWB will be mastered with sufficient detail to
resolve the anisotropies in this elusive background and thus
recover vital information about the physics responsible for
the violent conversion of energy from inflation to a radia-
tion and matter-dominated epoch (the big bang of the old
theory). No other probe can give us so much information,
since GW decouple immediately upon production and thus
retain the spatial and energy distributions of the sources
that produced them. We can compare with the cosmic
microwave background, which gives us detailed informa-
tion about the epoch of photon decoupling thanks to the
exquisite measurements of the angular correlation of
both temperature and polarization anisotropies. The CMB
provides a snapshot of what the Universe was like
380 000 years after the big bang. On the other hand, the
GWB would open a window into the physics of the big
bang itself, allowing us to infer from its detailed features
whether it was as violent and inhomogeneous as we
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FIG. 23 (color online). The predicted stochastic background of
GW from preheating in the Abelian-Higgs model for two
different sets of parameters, �� 10�3, g� 10�8, e� 0:1,
v� 1011 GeV (red curve) and g� ffiffiffiffi

�
p � 10�6, e� 10�4,

v� 1013 GeV, and negligible initial velocity (blue curve), to-
gether with the expected sensitivity from future GWO like
Advanced LIGO/VIRGO, LISA, ET, BBO, and DECIGO. Note
that in order to reach GWO sensitivity we had to extrapolate the
position of the IR peaks using the expressions in Eq. (47), and
make an educated guess for the shape of the spectra between the
peaks (dashed lines). Also plotted are the expected GWB from a
global phase transition and that from an inflationary model with
tensor-to-scalar ratio r ¼ 0:1.
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predict, to determine what kind of fields were present and
whether the rich phenomenology that we associate with
preheating (topological defects, baryogenesis and/or lepto-
genesis, primordial magnetic seed creation, nonthermal
production of dark matter, etc.) was actually realized in
nature.
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APPENDIX A: NO MASSLESS GAUGE FIELDS
IN ABELIAN SCALAR GAUGE THEORIES

DURING PREHEATING

In this Appendix, we extend to an arbitrary number of
fields the argument of Sec. III that massless gauge fields
are not produced during preheating in Abelian scalar gauge
theories.

Consider an Abelian theory Uð1ÞK, with K gauge fields

AðkÞ
� coupled to N complex scalars ’n,

�L ¼ 1

4

XK
k¼1

FðkÞ
��FðkÞ�� þ XN

n¼1

ðD�’nÞ�D�’n (A1)

with

D�’n ¼ @�’n � i
XK
k¼1

eknA
ðkÞ
� ’n (A2)

and FðkÞ
�� ¼ @�A

ðkÞ
� � @�A

ðkÞ
� . The equations of motion are

@�FðkÞ
�� þ 2

XN
n¼1

j’nj2ekn
XK
l¼1

elnA
ðlÞ
� ¼ 2

XN
n¼1

ekn Im½’�
n@�’n�

for k¼ 1; . . . ;K: (A3)

Denoting by vn the VEVof ’n, the K � K mass matrix of
the gauge fields is

M kl ¼ 2
XN
n¼1

v2
nekneln for k; l ¼ 1; . . . ; K: (A4)

The matrixM is real and symmetric, so the system can be
diagonalized with an orthogonal matrix U: UTMU is
diagonal with U�1 ¼ UT . For the system to admit a mass-
less gauge field, at least one eigenvalue of the mass matrix
should vanish. Suppose that the jth eigenvalue �j vanishes,

so that

�j ¼ ðUTMUÞjj ¼ 2
XN
n¼1

v2
n~e

2
jn ¼ 0; (A5)

where we have defined

~e kn ¼ XK
l¼1

elnUlj for k ¼ 1; . . . ; K and

n ¼ 1; . . . ; N:

(A6)

In the new basis

~A ðkÞ
� ¼ XK

l¼1

UlkA
ðlÞ
� for k ¼ 1; . . . ; K; (A7)

~AðjÞ
� is a massless candidate. It satisfies the equation

@� ~FðjÞ
�� þ 2

XN
n¼1

j’nj2~ejn
XK
l¼1

~eln ~A
ðlÞ
� ¼ 2

XN
n¼1

~ejn Im½’�
n@�’n�

for k¼ 1; . . . ;K; (A8)

where ~FðjÞ
�� is its gauge field strength. There are two cases

to consider. If all the scalar fields have a nonzero VEV,
vn � 0 8n ¼ 1; . . . ; N, then the condition (A5) implies
that ~ejn ¼ 0 8n ¼ 1; . . . ; N. In this case, we see from

(A8) that the massless gauge field ~AðjÞ
� decouples from all

the scalars, @� ~FðjÞ
�� ¼ 0. On the other hand, for this field to

remain coupled we need ~ejn � 0 for at least one value of n.

The condition (A5) then implies that ’n has a zero VEV.

However, since ~ejn � 0, we see from (A8) that ~AðjÞ
� ac-

quires an effective mass proportional to ~ejnhj�’nj2i due to
its interaction with the fluctuations of ’n. Thus, the Uð1Þ
gauge fields are either effectively massive or decoupled
from the scalars and the other Uð1Þ gauge fields.

APPENDIX B: LATTICE FORMULATION
WITH Oðdx2Þ ACCURACY

In this Appendix we describe the discretized equations
of motion that we evolve on the lattice. As is well known,
special care has to be made when discretizing a gauge
theory in order to preserve gauge invariance on the lattice.
For instance, this is necessary for constraint equations to
follow from the dynamical equations that are evolved. The
basic formalism that we use is standard (see e.g. [57]) but,
in the presence of gravity waves, we have to generalize it in
order to reproduce the continuum theory up to Oðdx2Þ and
Oðdt2Þ accuracy in the lattice spacing dx and time step dt.
We have thus modified substantially the public available
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packages LATTICEEASY/CLUSTEREASY [58], in order to in-
corporate all the necessary ingredients for a lattice gauge
invariant formulation accurate to order Oðdx�2Þ.

In the lattice formulation, the scalar fields ~� and ~’ are
defined at space-time lattice points x while the gauge field
~A� is defined in the middle of the segments between lattice

points, at xþ �̂=2, where �̂ is a vector of length dx� in the
� direction, dxi ¼ dx is the lattice spacing, and dx0 ¼ dt
is the time step. In this Appendix, we denote the lattice
fields with a tilde to distinguish them from their continuum
analogs. One then introduces link variables, also defined in
the segments between lattice points, and related to the
gauge field according to

~U�

�
xþ �̂

2

�
¼ e�iedx� ~A�ðxþð�̂=2ÞÞ: (B1)

In this equation the repeated index� is not summed. In the
case of Abelian symmetry, we can choose to treat either the
gauge field or the links as the fundamental objects that we
evolve numerically. We found that the first option led to
faster simulations, so in the following we will express
everything in terms of the gauge field. The discussion is
easily generalized to the case where the links are consid-
ered as the fundamental variables.

The starting point is the lattice action (40) which is a
discretized version of the continuum action (2). The lattice
expressions for the forward partial derivative, the forward
gauge covariant derivative and the gauge field strength are
given, respectively, by

@þ� ~� ¼ 1

dx�
½~�ðxþ �̂Þ � ~�ðxÞ�; (B2)

Dþ
� ~’ ¼ 1

dx�

�
~U�

�
xþ �̂

2

�
~’ðxþ �̂Þ � ~’ðxÞ

�
; (B3)

~F �� ¼ @þ� ~A� � @þ� ~A�: (B4)

Again, repeated indices are not summed in Eqs. (B2) and
(B3). In the limit dx� ! 0, these expressions reduce to
the continuum partial derivative, gauge covariant deriva-
tive, and gauge field strength, respectively. The definitions
(B2)–(B4) imply that the action (40) is invariant under the
lattice gauge transformation (41), which is a discretized
version of a continuum gauge transformation.

The equations of motion following from (40) are
obtained by the lattice equivalent of functional differentia-
tion. They read

@��@þ� ~� ¼ @V

@~�
(B5)

D��Dþ
� ~’ ¼ @V

@~’� (B6)

@�� ~F�� ¼ �2e Im½~’�Dþ
� ~’�; (B7)

where we have defined the backward partial derivative

@�� ~� ¼ 1

dx�
½~�ðxÞ � ~�ðx� �̂Þ� (B8)

and the backward gauge covariant derivative

D�
� ~’ ¼ 1

dx�

�
~’ðxÞ � ~U�

�
x� �̂

2

�
~’

�
x� �̂

��
; (B9)

where again repeated indices are not summed.
We evolve these equations in the temporal gauge

( ~A0 ¼ 0, ~U0 ¼ 1) with the staggered leapfrog method,
where the fields and their time derivatives are evaluated
at times that differ by half a time step. Explicitly, we have

~_�

�
xþ dt

2

�
¼ ~_�

�
x� dt

2

�
þ dt

�
@�i @þi ~�� @V

@~�

�
ðxÞ

(B10)

~_’

�
xþdt

2

�
¼ ~_’

�
x�dt

2

�
þdt

�
D�

i D
þ
i ~’� @V

@~’�

�
ðxÞ

(B11)

~E i

�
xþ î

2
þ dt

2

�
¼ ~Ei

�
xþ î

2
� dt

2

�
þ dt½@�j ~Fji

þ 2e Im½~’�Dþ
i ~’��ðxþðî=2ÞÞ (B12)

together with ~fðxþ dtÞ ¼ ~fðxÞ þ dt~_fðxþ dt
2 Þ and ~Aiðxþ

î
2 þ dtÞ ¼ ~Aiðxþ î

2Þ þ dt ~Eiðxþ î
2 þ dt

2 Þ.
Finally, the discretized version of Gauss constraint (9)

reads

@�i ~Ei ¼ 2e Im½~’� ~_’�: (B13)

It follows from the dynamical equations (B11) and (B12) if
it is satisfied initially, because these equations are derived
from the same, gauge-invariant lattice action (40). Gauss
constraint was satisfied down to machine precision in all
our runs.
In the limit dt ! 0, one can show that the equations of

motion (B10)–(B12) implies that the total energy density

� ¼ h12~_�2 þ j~_’j2 þ 1
2
~Ei
~Ei þ 1

2@
þ
i ~�@þi ~�þDþ

i ~’ðDþ
i ~’Þ�

þ 1
4
~Fij

~Fij þ Vi (B14)

is conserved, d�=dt ¼ 0. Here h� � �i denotes the average
over all the lattice points. Energy was conserved up to
�0:1% in all our runs.
It is important to note that these discretized equations of

motion reproduce the continuum ones up to Oðdt2Þ and
Oðdx2Þ when dt, dx ! 0. This can be checked explicitly,
remembering that the gauge field and thus its equations of
motion are defined in the segments between lattice points.
In particular, we have

D�
i D

þ
i ~’ ’ DiDi’ðxÞ þOðdx2Þ (B15)

~F ij ’ Fij

�
xþ î

2
þ ĵ

2

�
þOðdx2Þ (B16)
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@�j ~Fji ’ @jFji

�
xþ î

2

�
þOðdx2Þ (B17)

Im ½~’�Dþ
i ~’� ’ Im½’�Di’�ðxþðî=2ÞÞ þOðdx2Þ: (B18)

We now come to the discretized equations of motion for

gravity waves ~hijðxÞ, that we define at the lattice points as
the scalar fields. Fortunately, we do not have to start from a
discretized action for them because GW are gauge invari-
ant and no constraint equation is associated to them.
However, in the presence of gauge fields, special care is
to be paid in order to reproduce the continuum equation
(31) up to Oðdx2Þ and Oðdt2Þ accuracy. In order to do so,
we cannot replace the terms (20) in �TT

ij by their lattice

analogs defined above, because these reduce to the con-
tinuum values at lattice points up to OðdxÞ or OðdtÞ
accuracy only. We thus have to construct new lattice ex-
pressions that reproduce the continuum up to second order
and which lead to a gauge-invariant stress-energy tensor.
For the partial derivative of the inflaton, this is just the
symmetric derivative,

@Si ~� ¼ 1

2dx
½~�ðxþ îÞ � ~�ðx� îÞ�; (B19)

which indeed reduces to @i�ðxÞ þOðdx2Þ for dx ! 0.
We can achieve the same for the gauge covariant derivative
of the Higgs, by defining

DS
i ~’ ¼ 1

2
ðDþ

i ~’þD�
i ~’Þ

¼ 1

2dx

�
~Ui

�
xþ î

2

�
~’ðxþ îÞ � ~Ui

�
x� î

2

�
~’ðx� îÞ

�
:

(B20)

Note also that, under the lattice gauge transformation (41),
this transforms as DS

i ~’ ! ei~�DS
i ~’, as it should.

For the lattice gauge field strength ~Fij, note that it

reduces with Oðdx2Þ accuracy to the continuum Fij eval-

uated in between lattice points, see Eq. (B16). To achieve
the same at the lattice points themselves, we consider the
clover average,

~Fc
ijðxÞ ¼

1

4

�
~Fij

�
xþ î

2
þ ĵ

2

�
þ ~Fij

�
xþ î

2
� ĵ

2

�

þ ~Fij

�
x� î

2
þ ĵ

2

�
þ ~Fij

�
x� î

2
� ĵ

2

��
: (B21)

Similarly, the lattice electric field ~Ei reduces with Oðdx2Þ
and Oðdt2Þ accuracy to its continuum counterpart

evaluated at xþ î=2þ dt=2. We thus consider its clover
average,

~Ec
i ðxÞ ¼

1

4

�
~Ei

�
xþ î

2
þ dt

2

�
þ ~Ei

�
xþ î

2
� dt

2

�

þ ~Ei

�
x� î

2
þ dt

2

�
þ ~Ei

�
x� î

2
� dt

2

��
; (B22)

which reduces to EiðxÞ þOðdx2Þ þOðdt2Þ for dx; dt ! 0.
In terms of these, the lattice analog of (20) is given by

~�TT
ij ¼ ½@Si ~�@Sj ~�þ 2Re½DS

i ~’ðDS
j ~’Þ��

þ ~Fc
ik
~Fc
jk � ~Ec

i
~Ec
j�TT: (B23)

It fulfills the conditions stated above, namely, it is invariant
under the lattice gauge transformation (41) and reproduces
the continuum with second order accuracy in dx and dt.
Contrary to ~Ei which was displaced by half time steps,

the clover average of the electric field ~Ec
i is defined at the

time steps themselves, as the other terms in (B23). This
allows one to preserve the leapfrog scheme for the gravity
waves,

~_h ij

�
xþ dt

2

�
¼ ~_hij

�
x� dt

2

�
þ dt½@�k @þk ~hij

þ 16�G ~�TT
ij �ðxÞ: (B24)

This is easily implemented at each iteration, by first ad-
vancing ~Ei by half a time step, then advancing the gravity
waves by a full time step, and finally advancing ~Ei by the
remaining half time step.
As discussed in Sec. IVB, theOðdx2Þ calculation of GW

allows for much better control on the UV part of the GW
spectra.
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