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08193 Bellaterra, Barcelona, Spain

(Received 22 July 2010; published 12 October 2010)

We study radion stabilization in the compact Randall-Sundrummodel by introducing a bulk scalar field, as

in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar

field on the metric. Our generalization reconciles the radion potential found by Goldberger andWise with the

radion mass obtained with the so-called superpotential method where backreaction is fully considered.

Moreover we study the holographic phase transition and its gravitational wave signals in this model. The

improved control over backreactions opens up a large region in parameter space and leads, compared to

former analysis, toweaker constraints on the rankN of the dual gauge theory.We conclude that, in the regime

where the 1=N expansion is justified, the gravitational wave signal is detectable by LISA.
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I. INTRODUCTION

Even though the standard model (SM) of particle phys-
ics has achieved many impressive experimental successes
it fails to provide an explanation to some experimental and
theoretical issues. On the experimental side, neither can the
observed dark matter density be explained (the SM lacking
an appropriate natural candidate for it) nor can the baryon
asymmetry of the Universe be accounted for, mainly be-
cause the SM does not provide sizable CP violation
sources and a strong enough first-order electroweak phase
transition. On the theoretical side there is no plausible
explanation for the huge hierarchy between the electro-
weak scale, responsible for the mass of the weak gauge
bosons, and the Planck scale, apparent in the weakness of
gravitational interactions. Thus an extension of the SM
seems necessary.

Guided by the naturalness criterion to solve the Higgs
hierarchy problem one very attractive possibility is
Randall-Sundrum (RS) models, which are based on the
framework of a compact warped extra dimension [1]
with two branes localized on it: an ultraviolet (UV) brane,
which provides the UV cutoff of the higher dimensional
theory, and an infrared (IR) one, which spontaneously
breaks the conformal symmetry of the theory. In this class
of models the four-dimensional part of the metric has a
strong dependence on the fifth coordinate, which is un-
observable macroscopically, and the hierarchy between the
two energy scales is generated by localizing the relevant

physical degrees of freedom responsible for electroweak
breaking at (or near) the IR brane. In this way the huge
hierarchy can be explained by a natural distance between
the two branes of Oð10Þ times the fundamental five-
dimensional Planck length.
To complete the picture the distance between the branes

should not be considered as a fundamental input but in-
stead it should arise from a stabilization mechanism. In fact
this is even essential to avoid a massless radion generating
an unobserved fifth force, and to obtain the observed
Friedmann-Robertson-Walker cosmology at late times
[2,3]. One elegant possibility to stabilize the brane distance
is to assume the existence of a bulk scalar with a five-
dimensional mass1 that is slightly smaller than the funda-
mental Planck mass scale, as pioneered by Goldberger and
Wise (GW) [6]. In this setup one usually assumes the weak
field limit in which case the dynamics of the bulk scalar
field and the metric decouple. This does not only have the
advantage of simplifying the analysis but also facilitates
the interpretation of the scalar action as a radion potential.
In the modern context of the AdS/CFT correspondence

[7] this kind of model can be interpreted as dual to a
strongly coupled gauge theory that for instance might serve
as a UV completion [8] to little Higgs models [9]. Usually
the five-dimensional system is considered in the limit of a
large ratio between the Planck mass and the bulk cosmo-
logical constant, which implies a large number of degrees
of freedom in the dual field theory and allows oneto neglect
stringy effects. However there is a certain tension between
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1Alternatively, the Casimir effect can also lead to a stabilizing
potential [4,5].
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this assumption and a viable cosmology: even though the
model has the above discussed brane setup at low tempera-
ture (called RS-GW in the following), at high temperature
it is represented by an AdS-Schwarzschild (AdS-S) bulk
metric according to the AdS/CFT correspondence. Even
though a first-order phase transition could allow the
Universe to escape from the (conformal) AdS-S to today’s
(quasiconformal) RS-GW phase [10], its completion leads
to a stringent constraint on the above ratio [10–14] which
jeopardizes the consistency of the original assumptions.

On the other hand, several appealing features character-
ize this necessary phase transition. One of them is its
extreme supercooling, which may couple the conformal
phase transition to the electroweak one making the latter
strong enough to plausibly explain the baryon asymmetry
of the Universe [13]. Besides a further feature is its poten-
tial testability: the phase transition could mark the gravi-
tational wave spectrum which could allow to probe most of
the interesting parameter space of the model [11].

In conclusion, given the success of RS models as ex-
tensions of the SM we believe it is of importance to clarify
the impact of the phase transition on the validity of the
models. This paper is dedicated to this issue in the case of
RS-GW models. Our aim is to alleviate the tension be-
tween the ratio of the Planck mass to the bulk cosmological
constant and the phase transition completion and to show
how this scenario can be tested in the gravitational wave
spectrum.

In this paper we will proceed as follows. After introduc-
ing some notations and conventions in Sec. II we will
review in Sec. III the usual procedure to determine the
effect of the bulk scalar on the brane distance [6,15]. We
will remark that the method of Ref. [6] determines the
effective potential of the radion although without taking
into account the backreactions of the scalar field on the
gravitational metric. On the contrary the superpotential
method [15] solves the problem exactly but it does not
provide the radion effective potential which is needed to
study the phase transition. For this reason in Sec. IV we
will present an alternative approach to determine the ra-
dion potential in the regime of detuned brane tensions and
sizable backreactions. It is based on fitting the radion
potential information that we can determine in this regime:
the position of the radion potential extrema and the radion
mass and cosmological constant in these extrema. The
obtained potential will be used in Sec. V to study the phase
transition and we will find relaxed bounds that may alle-
viate the above problematic parameter tension. The corre-
sponding gravitational wave spectrum will be determined
in Sec. VI and we will conclude by commenting on the
prospects of detection with forthcoming experiments such
as LISA. Finally we will devote Sec. VII to summarize the
main results of the paper and we leave for the Appendix
some technical details that we need in Sec. IV to determine
the radion mass in the presence of a cosmological constant.

II. NOTATION AND CONVENTIONS

A very interesting feature of RS models with a scalar in
the bulk is that the scalar field can stabilize the brane
distance [6,15]. The corresponding five-dimensional (5D)
action is given by

S ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q �
�M3Rþ 1

2
ð@�Þ2 � Vð�Þ

�

�X
�

Z
B�

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q
��ð�Þ; (1)

whereM is the 5D Planck scale, �� and V are the brane and
bulk potentials of the scalar field �, and the metric gMN is
defined in proper coordinates by

ds2 ¼ e2AðrÞ �g��dx
�dx� � dr2; M4: �g�� ¼ ���;

(2)

dS4: �g��dx
�dx� ¼ dt2 � e2

ffiffiffi
�

p
tðdx21 þ dx22 þ dx23Þ; (3)

AdS4: �g��dx
�dx� ¼ �dx23 � e�2

ffiffiffiffiffiffi��
p

x3

� ðdx21 þ dx22 � dt2Þ: (4)

Accordingly the induced four-dimensional (4D) metric
�g�� is Minkowski, de Sitter, or anti–de Sitter and the

corresponding 4D cosmological constant � has mass di-
mension equal to 2. In all cases the Ricci tensor and scalar
turn out to be

R�� ¼ e2Að4A02 � A00 � 3�e2AÞ �g��; (5)

R55 ¼ �4A02 � 4A00; (6)

R ¼ 20A02 þ 8A00 � 12�e�2A; (7)

where 0 � d=dr. The equation of motion for the scalar field
reads

�00 þ 4A0�0 ¼ @V

@�
þX

�

@��

@�
�ðr� r�Þ; (8)

and the Einstein equations have the form

A00 þ�e�2A ¼ ��2

3
�02 � �2

3

X
�

���ðr� r�Þ; (9)

A02 ��e�2A ¼ ��2

6
V þ �2

12
�02; (10)

with �2 ¼ 1=ð2M3Þ. Hereby the localized terms impose
the following constraints (assuming a Z2 symmetry across
the branes):

A0jr�þ	
r��	¼��2

3
��ð�ðr�ÞÞ; �0jr�þ	

r��	¼@��ð�ðr�ÞÞ
@�

: (11)

Using these equations in the action one obtains
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S ¼ 6M3
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q
e�2A�: (12)

We would like to emphasize that this relation does not
rely on any approximation so far. The key observation is
that from an effective four-dimensional point of view the
expansion parameter � has to be related to the value of the
radion potential. If the system (8)–(10) allows for several
solutions, the corresponding values of � allow one to
determine the difference in potential energy of the radion
between different configurations. Here we will focus on
positive cosmological constants and our aim will be to
determine � with an accuracy that goes beyond the usual
weak field assumption �2 � M3 [6].

III. STABILIZATION AND GW MECHANISM

Solving the system (8)–(10) is a hard task for generic
scalar potentials. A possibility to overcome this difficulty
is to consider the quadratic GW scalar potential [6]

Vð�Þ ¼ � 12M3

l2
þ 1

2
m2�2; (13)

��ð�Þ ¼ �0
� þ 
�ð�� v�Þ2 with 
� ! 1; (14)

where l is the AdS length such that 1=l ¼ k is of the order
of the Planck scale, � and v� have mass dimension 3=2
and 
� has mass dimension 1. We assume that these
potentials are chosen such that the warping in the metric
is close to AdS, meaning that AðrÞ in (10) is dominated by
the bulk vacuum energy

l2�02�24M3; l2m2�2�24M3; �� l�2: (15)

At leading order in � the scalar sector then decouples
completely from gravity. The equations of motion for the
metric are then given by � ¼ 0 and A0 ¼ �1=l and the
gauge choice Að0Þ ¼ 0 leads to the solution

AðrÞ ¼ �r=l; (16)

in the bulk. We assume the UVand IR branes to be located
at r1 ¼ 0 and r2 ¼ r0, respectively.

Finally under the assumptions (15) the solution of the
scalar field turns out to be

�ðrÞ ¼ v1e
k�r þ ðv2 � v1e

k�r0Þ ekþr � ek�r

ekþr0 � ek�r0
; (17)

lk� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2l2

p
; (18)

where v� denote the values of � at the UVand IR branes.2

We focus on negative values3 of k� and a solution of the
hierarchy problem (r0 � 37l) requires

v1 � v2 �M3=2; 1� ek�r0 � 1016 � er0=l; (19)

such that one obtains

�ðrÞ � v1e
k�r þ ðv2 � v1e

k�r0Þekþðr�r0Þ: (20)

Using this in the action (1) yields

S ¼ l�1
Z

d4xflk�v2
1

� e�4r0=l½ð4� lk�Þðv2 � v1e
k�r0Þ2 þ lk�v2

2�g:
(21)

In Ref. [6] this is identified (after a change of sign) with the
potential of the radion VGW as

S ¼ �
Z

d4xVGWðr0Þ; (22)

and has a minimum at � ¼ �� (i.e. r0 ¼ r�) where

� � v1

v2

ek�r0 ;

�� � v1

v2

ek�r� ¼ 1þ jlk�j1=2=2� lk�=4þOððlk�Þ3=2Þ:
(23)

The value of the potential at this minimum is of OðTeV4Þ
VGWðr�Þ � VGWð1Þ ’ l�1jlk�j3=2v2

2e
�4r�=l: (24)

However this result is not conclusive. In an effective
description of the radion one would like to split the dy-
namics into four-dimensional gravity and the radion degree
of freedom. Hence the radion potential should not only
depend on the scalar part of the action but might also
receive a contribution from 5D gravity. In the derivation
of Eq. (23) we neglected contributions to the field A of
order �2 but these terms can potentially change the action
and thus the potential seen by the radion. In fact from
Eq. (12) it is intuitive that these corrections should arise
since, in a nonexpanding background, � ¼ 0, the action
should vanish. In particular these additional contributions
will change the boundary conditions on the branes and
could potentially modify the difference in action between
the minimum and the limit r0 ! 1 which is most impor-
tant for the analysis of the phase transition.
Alternatively the system (8)–(10) for � ¼ 0 can

be solved by the so-called superpotential method [15,16].
Its large advantage is that it provides exact solutions
since backreactions are automatically taken into account.
Starting from a superpotential Wð�Þ the equations of mo-
tion for the choice

"���ð�Þ ¼ Wð�ðr�ÞÞ þ @Wð�ðr�ÞÞ
@�

ð���ðr�ÞÞ

þ "�
�ð���ðr�ÞÞ2; (25)

2In the brane potentials (14) the linear terms satisfying
Eqs. (11) and (17) are omitted since the results of our analysis
will be independent of them.

3Most results in our analysis are easily carried over to
positive k�.
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Vð�Þ ¼ 1

8

�
@W

@�

�
2 � �2

6
Wð�Þ2 (26)

(where "1;2 � �1 refer to the two branes, at r1 ¼ 0 and

r2 ¼ r0, respectively, according to the Z2-orbifold bound-
ary conditions) can be recast in terms of the first-order
differential equations

�0 ¼ 1

2

@W

@�
; A0 ¼ ��2

6
W: (27)

In particular, the superpotential of the form

W ¼ 12M3

l
þ k��2; (28)

provides the following scalar potential:

V ¼ � 12M3

l2
þ ðk�lÞ2 � 4k�l

2l2
�2 � ðk�lÞ2�2

6l2
�4: (29)

For the aim of estimating� at order�2, Eq. (29) coincides
with the potential (13) after imposing Eq. (18) and requir-
ing �2 � M3. The corresponding solutions to the equa-
tions of motion read [15,16]

A ¼ � r

l
� 1

6
v2
1e

2k�r; (30)

� ¼ v1e
k�r: (31)

Consequently once one chooses v2 the brane distance is
fixed by

�� ¼ v1

v2

ek�r� ¼ 1; (32)

which differs from Eq. (23). Furthermore, notice that this
solution is based on the requirement � ¼ 0, which means
that the action at its extremum � ¼ �� vanishes [cf.
Eq. (12)]. On the other hand, in the limit r0 ! 1, the �
profile (31), which matches with (17), is still a solution of
the equations of motion with � ¼ 0 and thus the radion
potential also approaches asymptotically a vanishing cos-
mological constant. Hence the superpotential method
shows that backreactions can have an important impact
on the radion potential.

IV. RADION POTENTIAL
INCLUDING BACKREACTIONS

The superpotential method can also be generalized to
nonvanishing cosmological constant [16] and in principle
every solution to Eqs. (8)–(10) can be exactly derived from
some superpotential. Nevertheless it is not of much use in
determining the radion potential since, for fixed scalar bulk
and brane potentials, it cannot be used to find several
solutions corresponding to different brane separations.4

Understanding the structure of the radion potential (par-
tially) including backreactions is the aim of this section.

For an arbitrary brane separation the system (8)–(10) does
not always have a solution. There are three integration
constants: the brane separation r0, the parameter �, and
four constraints on the branes (11). However only the com-
bination �e2A enters in the equations and one integration
constant can be eliminated. It can be used to choose e.g.
Að0Þ ¼ 0 or j�j ¼ 1. In summary we have four constants to
be fixed by four boundary conditions, so generically one
expects a unique solution for given bulk and brane poten-
tials. This is not too surprising since one would expect that
the system does not allow for a time-independent solution
(up to Hubble expansion) for the radion field when it is not
located at an extremum of the potential.
Naively one would like to determine the action for

several brane separations and identify it with the negative
potential seen by the radion. This is basically the procedure
followed by Goldberger and Wise in a fixed gravitational
background. However there are two objections to calculat-
ing the radion potential in this way if backreactions are
included. First, solutions to the Einstein equations do not
constitute an extremum of the Einstein-Hilbert action, so
the action of the gravitational part should have no physical
significance. This problem can be easily overcome by
including the Gibbons-Hawking term in the action [17,18]
as we will see. Second, the system of equations (8)–(10)
only allows for brane separations that correspond to ex-
trema in the radion potential. One way of avoiding this
latter problem would be to solve all equations including a
time dependence and this program is followed in the
vicinity of the static solution in Ref. [3], though without
any stabilization mechanism for the radion.
In the present work we will present an alternative and

simplified treatment which includes the bulk potential. We
first determine the action and the radion mass in the
extrema of the radion potential and, after computing the
kinetic term, we use this information to get a reliable fit to
the whole potential. We finally check that the results of our
effective four-dimensional theory are consistent with the
ones of Ref. [3].
We will focus on the particular case of the bulk and

brane potentials (13) and (14) constrained by the bounds
(15) and with solution (20). However the rationale we
follow can be used to analyze the radion potential also in
other scenarios.

A. Cosmological constant and position of the extrema

The values of the action at its extrema are related to the
expansion parameter � at those points according to (12).
We will determine this parameter in this section. A basic
ingredient for our analysis is the scalar solution (20) which
was obtained under the constraints (15). Besides we make
use of stiff scalar potentials on the branes. In this case
the scalar field is fixed to the values v� on the branes and
Eq. (10) in combination with the boundary conditions (11)
reads

4Using the superpotential method a change in the brane
separation would lead, according to (25), to a change in the
brane potentials.
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�e�2Aðr�Þ þ �2

12
�02

��������r¼r�

¼ �4

36
�2
�ðv�Þ þ �2

6
Vðv�Þ: (33)

On the basis of this equation it is possible to accurately
determine the expansion parameter � including5 backre-
actions. Notice that due to the presence of stiff brane
potentials only the left-hand side depends on the brane
separation, once the model parameters are fixed, while
the right-hand side can be arbitrarily chosen due to the
brane potentials. In the following we will first discuss the
case where the brane potential is tuned to reproduce the
results obtained with the superpotential method for the
choice

"��
0
� ¼ 12M3

l
þ k�v2

�; (34)

and we will subsequently detune it to obtain cosmologi-
cally more realistic potentials as the one deduced by
Goldberger and Wise.

1. Tuned case

Let us consider Eq. (33) evaluated for the two branes at
r 2 f0; r0g. For the brane potentials �0

� used in the super-
potential method these two equations read

24M3�1 ¼ v2
1k

2� � ðv1k� þ kþðv2 � v1e
k�r0Þe�kþr0Þ2;

24M3�2e
2r0 ¼ v2

2k
2� � ðv1k�ek�r0 þ kþðv2 � v1e

k�r0ÞÞ2;
(35)

where we have made use of the equality

m2 ¼ k2� � 4k�=l: (36)

Owing to the choice of brane potentials two solutions with
vanishing expansion parameter, � ¼ 0, are given by r0 !
1 and r0 ¼ r� with

v1

v2
ek�r� ¼ 1; (37)

as obtained by the superpotential method. Nevertheless
there is an additional solution with a larger brane separa-
tion and a positive cosmological constant that leads to a
positive Einstein-Hilbert action according to Eq. (12). As
an example we show in Fig. 1 the functions �1;2 versus r0
corresponding to a given set of parameters.

An analytic estimate for the second solution can be
obtained as follows. Notice that the function �1 is small
compared to �2 due to the factor e�kþr0 and

24M3�1 � �2k�kþv1ðv2 � v1e
k�r0Þe�kþr0 : (38)

Hence the values of r0 for the solutions to �1 ¼ �2 are
close to the zeros of �2 that are given by

�	 � v1

v2

ek�r	 ¼ kþ 	 k�
kþ � k�

: (39)

The first solution is just the usual solution obtained by the
superpotential method

r� ¼ 1

k�
log

v2

v1

; (40)

while the other solution is given by

rþ ¼ r� þ 1

k�
log

kþ þ k�
kþ � k�

� r� þ 2

kþ
� r� þ l

2
: (41)

Using this value in Eq. (38) gives for � the value

�þ � k2�
6

v1v2

M3
e�4rþ=l: (42)

The expansion parameter �þ is in this case additionally
suppressed compared to the energy scale involved in the
hierarchy problem and one might attempt to use this fact to
solve, or at least to alleviate, the cosmological constant
problem in a similar way to the proposals in Ref. [19].
However and not unexpectedly, as we will find in a later
section, this solution does correspond to a maximum in the
radion potential and is not stable.
Let us compare this result with the findings from the

superpotential method. Since backreactions are taken into
account to order �2 the action and the brane separation r�
should agree to this order and they indeed precisely do.
Notice that the expansion parameter � for an infinitely
large brane separation also vanishes in agreement with the
superpotential method. One can thus infer that the radion
potential has two degenerate minima at r0 ¼ fr�;1g

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
r
0

/ l

-4

-2

0

2

4

6

8

10

12

14

Λ
l2

/1
0-7

Λ2
Λ1

FIG. 1 (color online). The functions �1;2 leading to the two
different solutions of the equations of motion. The parameters
used are k�l ¼ 0:5, v1 ¼ 0:1M3=2, v2 ¼ 0:05M3=2, and l ¼
M�1 which corresponds to m2l2 ¼ 2:25. The values are chosen
for illustrative purposes and do not lead to a realistic hierarchy.5Subject to the constraints in (15).
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separated by a maximum at rþ.
6 Consequently a realistic

phase transition proceeding from 1 to r� requires some
detuning away from the scenario with a superpotential, e.g.
by changing the brane potentials which is the next step of
our analysis.

2. Detuned case

Using the brane potentials of the tuned case above does
not allow a realistic phase transition. Since the radion
potential is degenerate at r0 ¼ r� and r0 ! 1 the system
would be stuck in the high temperature phase. For a
realistic model we should modify these two configurations
by some detuning of the UV and IR brane tensions.
Following the same steps leading to Eqs. (35) the new
boundary conditions for A0 in Eq. (11) lead to

24M3�1 ¼ v2
1k

2� � ðv1k� þ kþðv2 � v1e
k�r0Þe�kþr0Þ2

þ c1v
2
1; (43)

24M3�2e
2r0 ¼ v2

2k
2� � ðv1k�ek�r0 þ kþðv2 � v1e

k�r0ÞÞ2
þ c2v

2
2;

(44)

where we have parametrized the detuning by
c�v

2
� � 2

3 ð�2
� � �02

� Þ.
We first enforce that today’s observed expansion is

small. If the minimum of the potential has a vanishing
expansion parameter�, according to Eq. (44) it is given by

�� ¼ v1

v2

ek�r� ¼ kþ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ c2

p
kþ � k�

; (45)

which depends on the free parameter c2. For � ¼ 0
Eq. (43) reads

0 ¼ 24M3�1 � 2v1v2kþk�ð�� 1Þe�kþr þ c1v
2
1; (46)

which together with the position of the minimum �� in
Eq. (45) fixes the value of c1 as

c1v
2
1 ¼ 2v1v2kþjk�jð�� � 1Þe�kþr� : (47)

This choice is the fine-tuning that is needed to solve the
cosmological constant problem and it is in general present
in RS-type models.

Once one fixes �� (and correspondingly c1 and c2) the
system (43) and (44) has a second solution �þ that fulfills

k2� þ c2 � ðk��þ þ kþð1� �þÞÞ2 � c1
v2
1

v2
2

e2rþ=l

¼ 2
v1

v2

kþjk�jð�� � 1Þe�kþr�þ2rþ=l: (48)

As long as c2 is small the right-hand side can be neglected
and the position of �þ is, in a similar way to the minimum
��, given by

�þ¼v1

v2

ek�rþ ¼kþ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�þc2

p
kþ�k�

¼ 2kþ
kþ�k�

���: (49)

On the other hand, if c2 surpasses k2þ � k2� the left-hand
side is positive for �þ > 0. In this case, the right-hand side
has to become comparatively large with what happens at

rþ � kþl
2 r� � 2r� which implies �þ � v2

v1
�2� < �� for

k� < 0. Comparison shows that sizable deviations from
(49) are hence not expected for

�� & � v1

2v2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1

4v2
2

þ 2v1

v2

s
: (50)

It turns out that the parameter space that violates this bound
is less interesting in the sense that it leads generally to
rather strong phase transitions. In this way we will mostly
be concerned with the region in parameter space where
(49) is a good approximation.
Plugging Eq. (47) in (43) one finds the expansion

parameter at the maximum �þ to be

�þ � v1v2

12M3
kþjk�jðð�� � 1Þe�kþr� þ ð1� �þÞe�kþrþÞ:

(51)

If �� is not too close to unity the first contribution domi-
nates this expression because rþ > r�. On the other hand,
the cosmological constant in the limit � ! 0 (r0 ! 1) is
given by this first contribution

�1 � v1v2

12M3
kþjk�jð�� � 1Þe�kþr� (52)

as it can be easily deduced from Eqs. (43) and (47). The
radion potential as a function of � is hence very flat
between � ¼ 0 and � ¼ �þ and then quickly drops to
zero at � ¼ ��. In a subsequent section we will provide
a parametrization that interpolates between these extremal
values.
We will also demand that this construction solves the

hierarchy problem, i.e. r� � 37l, and thus for fixed ratio
v1=v2 the parameter m2 (and hence k�) should be accord-
ingly chosen while we treat �� (or r�) as a free parameter.
In principle c2 can always be chosen such that one obtains
for �� an arbitrary value in the interval ½1;1� (with
�1 
 0) but we will assume �� to be smaller than
v1=v2 in order to obtain a negative k�

k� ¼ 1

r�
log

�
v2

v1

��
�
: (53)

About the approximations we employed, notice that we
used (13) as a scalar potential and nowhere the assumption
�2 � M3 that needs to be fulfilled in order to make
contact with the superpotential method. The sole constraint

6A more detailed explanation why this guess is correct will be
provided in the next section.
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for the applicability of our results so far is (15). This leads
to the inequalities [using (20)]

m2l2�2 & m2l2v2
1 � �4lk�v2

1 � 24M3; (54)

and

l2�02 ¼ v2
2ðlk��þ lkþð1� �ÞÞ2

< v2
2ðlk��� þ lkþð1� ��ÞÞ2 � 24M3: (55)

Depending on the parameters these constraints can
be much weaker than those employed in the literature
to ensure smallness of backreactions [6,10], namely,
�2 � M3. However, they still guarantee that the deforma-
tion of the CFT induced by the operators corresponding to
the bulk scalar can be treated perturbatively at all scales up
to the 4D Planck scale.7

Notice that even if the conditions (54) and (55) are
fulfilled (which ensures that the relative error in A0 is small)
there still can be sizable (cumulative) deviations in eA since
Aðr0Þ � 37. Nevertheless this will not affect the equations
of motion of � that only depend on A0 and not on the
exponential warp factor. Hence the expansion parameter
deduced from Eqs. (43) and (44) is reliable. Still the
detuning parameters need in principle (small) corrections
to reproduce the correct hierarchy. In the following we call
the regime where our constraints are saturated and our
approximation becomes unreliable the regime of large
backreactions.

Let us compare these findings with the results from the
superpotential method and those in the GW framework.
The GW potential can be written as

VGW ¼ l�1v2
2

�
v1

v2

�

��4=ðlk�Þ½ð4� lk�Þð1� �Þ2 þ lk��
þ const; (56)

and the extrema fulfill

4

lk���
¼ 2ð4� lk�Þð1� ��Þ

ð4� lk�Þð1� ��Þ2 þ lk�
: (57)

This leads to a quadratic equation for �� with solutions
that are of the form

�� ¼ kþ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ c2

p
kþ � k�

; (58)

for an appropriate c2. This coincides with the positions of
the extrema in the detuned case found in (45) and (49)
under the assumption (50). The value of the potential in the
extrema is given by

VGWðr�Þ � VGWð1Þ ¼ 2v2
2l

�1e�4r�=lðlk�Þ��ð1� ��Þ;
(59)

which is proportional to the difference in expansion pa-
rameters (�� ��1). The value of the radion potential can
indeed be inferred from the expansion parameter � as we
will see in Sec. IVC. In conclusion our results agree [at
least to order Oð�2Þ] with the superpotential method for
the choice

�� ¼ 1 ðsuperpotential methodÞ; (60)

while the GW potential (up to a constant piece) is repro-
duced for the choice

�� ’ 1þ jlk�j1=2=2� lk�=4 ðGoldberger-WiseÞ;
(61)

under the assumption (50). Hence our approach unifies the
results obtained both in the GW and superpotential
approaches.
Finally some comments on the role of the original GW

potential are in order. In our framework the potential
obtained by Goldberger and Wise merely corresponds to
a specific choice for the parameter ��. From our point of
view there is no special significance to this choice and it
just results from imposing initially the same tension on the
two branes when the backreactions are ignored. Once
the behavior of the scalar field is determined one would
be forced to adjust these brane tensions in order to cancel
the contributions from the backreactions and to obtain a
vanishing expansion parameter at the minimum (as already
mentioned in Ref. [6]). Hence this parameter choice is in
no way a distinguished one. In particular, the fact that the

potential difference (24) scales with ðlk�Þ3=2 results from
the peculiar choice in (61) (or equivalently for the brane
potentials). This scaling is also reflected in the radion mass
as we next discuss.

B. The radion mass

In this section we will determine the radion mass in the
detuned case along the lines of Ref. [15] while the decou-
pling of the linearized Einstein equations is demonstrated
in the Appendix. It turns out that in the case of an expand-
ing Universe the impact of the expansion parameter � can
be absorbed in the radion mass parameter

m̂ 2
rad ¼ m2

rad þ 6�: (62)

However the contribution from � is anyway negligible
(being smaller by a factor e2A) leading to the equation
[see Eq. (A15)]

F̂ 00 þ 2A00F̂� 2A0F̂0 � 2
�00

0

�0
0

F̂0 ¼ �m2
rade

�2AF̂; (63)

which can be solved to obtain mrad. If backreaction is

neglected, A00 ¼ 0, this allows for a solution with F̂ ¼ 1

and m2
rad ¼ 0. For small backreaction, F̂ ¼ 1þ f, this

system of equations can be linearized as

7In the case k� > 0 these operators become strong in the IR
which is potentially more cumbersome [10].
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f00 � 2A0f0 � 2
�00

0

�0
0

f0 ¼ �2A00 �m2
rade

�2A

¼ 2�2

3
�02

0 �m2
rade

�2A; (64)

while the boundary conditions in the limit 
� ! 1 read
f0ð0Þ ¼ f0ðr0Þ ¼ 0. The main difference with respect to the
standard solution presented in Ref. [3] comes from the
factor�00

0=�
0
0 that deviates from k� close to the TeV brane.

The solution reads

f0ðrÞ ¼ �02ðrÞe2AðrÞ
Z r

0
dx

�
2�2

3
e�2AðxÞ � m2

rad

�02ðxÞ e
�4A

�
;

(65)

that by construction fulfills the boundary condition
f0ð0Þ ¼ 0. At this point we will neglect backreactions in
A that would lead to corrections of order Oð�4Þ on the
radion mass.8 Then the constraint f0ðr0Þ ¼ 0 determines
the mass by the equation

m2
rad

Z r0

0
dx

e4x=l

�02ðxÞ ¼ l
�2

3
e2r0=l: (66)

For the scalar field solution in the limit of small back-
reactions (15), which can be written

�0ðrÞ ¼ v1k�ek�rð1� ~qeðkþ�k�Þðr�r0ÞÞ;

~q ¼ kþ=k�
�
1� 1

�

�
;

(67)

the above integral becomes (using lkþ ¼ 4� lk�)Z r0

0
dx

e4x=l

�02ðxÞ �
leð4�2lk�Þr0=l

4v2
1k

2�ð1� ~qÞ : (68)

For ~q > 1 the integrand actually contains a pole. However
a more sophisticated analysis shows that the solution (65)
is still regular due to the prefactor �02ðrÞ and that the naive
integration is justified. Therefore one concludes that the
radion mass is

m2
rad ¼

2

3
k2�ð1� ~qÞeð�2þ2lk�Þr0=l v

2
1

M3

� 8

3l2
lk�

�
1� �þ �

k�
kþ

�
�e�2r0=l

v2
2

M3
: (69)

Observe that in the case without detuning (correspond-
ing to a scenario that can be treated with the superpotential
method)

�� ¼ kþ � k�
kþ � k�

; (70)

the masses turn out to be

m2
rad;� � 	 2

3l2
ðlk�Þ2e�2r�=l

v2
2

M3
ðsuperpotentialÞ;

(71)

which agrees with the physical radion mass m2
rad found in

[15] and also with the interpretation that �� denotes a
minimum of the potential while �þ is a maximum.
Moreover in the case of GW, see Eq. (61), the mass is

m2
rad �

4

3l2
jlk�j3=2e�2r0=l

v2
2

M3
ðGoldberger-WiseÞ;

(72)

which indeed scales with jlk�j3=2 as expected from the GW
potential in Eq. (13).
Notice that the radion mass is slightly below the TeV

scale that is essential for an effective four-dimensional
description. To compare the radion mass obtained here
with the one from the radion potential involves the kinetic
term which is the topic of the next section.

C. Kinetic term

So far we have only discussed the occurring expansion
parameter � for the different solutions of the equations of
motion. The main motivation was the relation (12) that
implies that the action is proportional to the expansion
parameter. In the current section we will make contact
between the five-dimensional system and the effective
action of the radion.
Let us start with the kinetic term of the radion. It was

derived in several ways [3,20,21] and here we briefly
review the calculation of Ref. [15]. We will use the metric
(A1) but will neglect the contributions from the scalar field.
These effects are suppressed by a factor ðlk�Þ2v2

1=M
3 [15]

which is small under the constraints (55). The Einstein

equations are then solved by the radion ansatz Fðx; rÞ ¼
e2r=lRðxÞ and the Einstein-Hilbert action contains a kinetic
term of the form

Krad ¼ 6M3l
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q
ðe2r0=l � 1Þð@RÞ2: (73)

The correct normalization is obtained by the observation
that in this background the geodesic distance of the branes
is given by

rðxÞ ¼
Z r0

0
drð1� 2e2r=lRðxÞÞ ¼ r0 � le2r0=lRðxÞ; (74)

from which ð@RÞ2 ¼ l�2e�4r0=lð@rÞ2 ’ l�2e�4r=lð@rÞ2.
Hence Krad becomes

8When approaching the region of large backreactions one
would have to take the above mentioned cumulative effect in
the warp factor into account and the final radion mass would
involve the corrected warp factor instead of the plain one. Notice
that the determination of the radion mass only serves as an
additional check on our radion effective action and the tunneling
analysis of the radion is generally not affected by this subtlety.
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Krad ¼ 12M3l�1
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q 1

2
ð@rÞ2e�2r=l

¼ 12ðMlÞ3
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q 1

2
ð@�Þ2; (75)

with the notation � ¼ l�1e�r=l. We do not absorb the
prefactor 12ðMLÞ3 in the definition of � because it will
prove to be useful in the analysis of the phase transition.9

In Ref. [6] the action resulting from the bulk scalar was
right away interpreted as the negative potential seen by the
radion. In the present case this could hardly be true since
the action is positive for an expanding universe. We better
expect this to correspond to a maximum and not to a
minimum of the potential, since on the other hand the
radion mass is negative in this situation. Moreover an
expanding universe without any bulk scalar would also
have a nonvanishing action, even though the radion does
not see any potential in this case.

In order to obtain the potential seen by the radion we
must separate the action into the contributions from the
expansion and that from the radion interacting with the
bulk scalar. The contribution to the action from the expan-
sion is according to (7) given by

Sexp ¼ 12M3
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q
e�2A�; (76)

and, considering the action provided by (12), it results in a
radion action

Srad ¼ �6M3
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q
e�2A�; (77)

which must arise from the value of the radion potential at
its extrema.

As mentioned before an additional problem arises from
the fact that the solution is not an extremum of the action in
general relativity. To overcome this problem one can con-
fine the system to a box, t 2 ½�T; T�, and add the so-called
Gibbons-Hawking [18] term to the action10

SGH ¼
Z
@M

2K; (78)

where K denotes the extrinsic curvature and @M is
the boundary of the space-time manifold. Using the metric
given in (2) one can evaluate the Gibbons-Hawking term
[22]

SGH ¼ �18M3
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q
e�2A�; (79)

and the total action is given by

Stot ¼ Sexp þ Srad þ SGH

¼ �12M3
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgMNj

q
e�2A�: (80)

After integration over the fifth dimension the effective
action for the radion hence reads11

Seff ¼ 12ðMlÞ3
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q �
1

2
ð@�Þ2 � Vradð�Þ

�

þM2
P

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �g��j

q
Rð4Þ þ SGH; (81)

where we defined the four-dimensional Planck mass,
ðMPlÞ2 ¼ ðMlÞ3, and identified the radion potential in its
extrema as

Vradðr�Þ ¼ l�2��=2: (82)

This is the essential relation that we use to connect the
value of the radion potential to the expansion around its
extrema.
Let us compare this result with the one obtained in

Ref. [3]. There an effective action was obtained by perturb-
ing the background metric but without taking a stabilizing
mechanism into account. Their result reads in our notation
(a is the scale factor)

Seff /
Z

dta3
�
1

2
_r2e�2r=ll�2 þ 1

2

�
€a

a
þ

�
_a

a

�
2
�
� VradðrÞ

�
þ SGH

¼
Z

dta3
�
1

2
_r2e�2r=ll�2 � 1

2

�
_a

a

�
2 � VradðrÞ

�
:

(83)

The last equality is obtained by partial integration which
cancels the Gibbons-Hawking term at a timelike boundary
as discussed above. The radion potential VradðrÞ was not
specified in [3] but comparison with our result (81) con-
firms that the radion potential and the expansion (including
the Gibbons-Hawking term) contribute equally to the ac-
tion in the extrema of the radion potential.

D. Interpolating potential

In the following we will approximate the effective po-
tential seen by the radion. The equations of motion have
only stationary (up to the Hubble expansion) solutions in
the three extremal situations r 2 fr�; rþ;1g [or � 2
f��; �þ; 0g] and we use these three values to provide a fit
to the potential. The positions of the extrema of the radion
potential are given by Eqs. (45) and (48). We parametrize
the potential by

9Notice that this kinetic term was obtained by decoupling the
Einstein equations and the result is a factor of 2 smaller than the
one from the more naive approach derived in [6,10] and sub-
sequently used in the analysis of the phase transition in
[10,11,13].
10Inclusion of this term is actually not relevant since the radion
potential could be inferred from (77), but it will elucidate the
comparison with Ref. [3] later on.

11Note that we integrate over the orbifold S1=Z2 and hence
twice over the bulk as it is customary in the literature on RS
models.
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V 0
radð�Þ / �!�1ð�� ��Þð�� �þÞ; (84)

and integration yields

Vradð�Þ / �!

�
�2

!þ 2
� �ð�� þ �þÞ

!þ 1
þ ���þ

!

�
; (85)

where the integration constant is fixed to zero by
Vradð0Þ ¼ 0. The parameters ! and the prefactor can be
adjusted in order to reproduce Vradð��Þ given by Eqs. (51),
(52), and (82). This corresponds to the expression

Vradð�Þl4 ¼ �e�kþrPð�Þ; (86)

with

� ¼ 1

24

v1v2

M3
lk�lkþ; (87)

and

P ¼ 1� ��
��

�
�

��

�
!þkþ=k� !ð!þ 1Þ�2 �!ð!þ 2Þð�� þ �þÞ�þ ð!þ 1Þð!þ 2Þ���þ

!ð�� � �þÞ � 2�þ
: (88)

The function Pð�Þ is normalized to Pð��Þ ¼ ð�� � 1Þ and
! is determined by Pð�þÞ ¼ ð�þ � 1Þ, which yields�

�þ
��

�
!þkþ=k�þ1 !ð�þ � ��Þ � 2��

!ð�� � �þÞ � 2�þ
¼ 1� �þ

1� ��
; (89)

and hence ! � �kþ=k�.
Another ingredient useful for the fit is the radion mass

at the extrema where the second derivative of Vrad turns out
to be

�2 d2

d�2
Vradð��Þ¼�!2e�kþr

ð1���Þð����þÞ
ð����þÞ�2��=!

: (90)

Using the standard kinetic term for the � field

� ¼ l�1e�r=l; @�=@� ¼ �lk��=�; (91)

one gets the expression for the mass

m2 ¼ V00
radð��Þ

�
@�

@�

�
2

� 16l�2�eðk�l�2Þr=l ð�� � 1Þð�� � �þÞ
ð�� � �þÞ � 2��=!

: (92)

If �� is not too close to unity the last factor becomes
(�� � 1) in agreement with (69). On the other hand in
the superpotential limit (39)

�� ! 1; �þ ! 1� 2=!; (93)

the last factor behaves as [using (89)]

ð�� � 1Þð�� � �þÞ
ð�� � �þÞ � 2��=!

! 	 1

!
; (94)

in agreement with Eq. (71). This shows that our fit is indeed
consistent with the effective action (81).

The above parametrization is reasonable as long as
�þ < 1 which is the case we will consider hereafter. For
the �þ > 1 case on the one hand, Eqs. (51) and (52) imply
�þ <�1, so that Vradð�þÞ becomes negative and at the
same time transforms into a minimum according to (69). In

this case our ansatz for the metric (2) does not allow for
additional solutions between the two minima at �� while
according to (69) any additional solution should be a
minimum. Therefore our ansatz in (2) produces in this
case two local minima of the radion potential in configu-
ration space but no local maximum. This complicates the
question of what the radion potential might look like in the
case �þ > 1 so that we will disregard this case in the
following.

V. HOLOGRAPHIC PHASE TRANSITION

In this section we will present the discussion of the
holographic phase transition at finite temperature along
the lines of Refs. [10,11,13].12 At finite temperature the
system allows for an additional gravitational solution with
a black hole singularity in the bulk. This AdS-S metric
describes in the AdS/CFT correspondence the high tem-
perature phase of the system [24,25]. This phase starts
dominating at temperatures of the order of the TeV scale.
In fact the potential difference between AdS-S and pure
AdS phases is given by [10]

� 4�4ðMlÞ3T4
hjTh¼T; (95)

where Th is the scalar field parametrizing the distance
between the horizon and UV brane and T is the tempera-
ture of the system. On the other hand the difference be-
tween the RS-GW and pure AdS phases is expressed by
Eq. (59) which should equal Eq. (95) at the critical tem-
perature Tc of the phase transition. It turns out that typi-
cally Tc is between the electroweak and TeV scales.13

12A precursor at zero temperature can be found in [23].
13In reporting the expression (95) we omit the subdominant
contribution of the bulk matter fields since this correction plays a
minimal role in our analysis. The same consideration holds for
the thermal corrections to the RS-GW potential. We assume
nearly all SM fields to be fundamental so that their thermal
contribution to the two-phases free energies is similar and thus it
cancels out.
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Starting from a hot universe in the AdS-S phase a first-
order phase transition toward RS-GW may happen below
Tc. In the five-dimensional picture this means that the IR
brane emerges from the black hole horizon and to mini-
mize the bounce action this crossing has to happen far from
the UV brane. For this reason it is commonly assumed that
the bounce path consists in moving the horizon away from
the UV brane until arriving at the (unstable) pure AdS
phase, and subsequently displacing the IR brane from r ¼
1 to r ¼ r�. This reasonable assumption fixes the bounce
path and it reduces the study of the tunneling probability to
the usual analysis of the one-dimensional bounce [26,27]
in which the bouncing scalar field is identified with � (Th)
in the part of the path between pure AdS and RS-GW
(AdS-S).14

In particular the path in the AdS-S space can be sim-
plified by observing that the kinetic term of the field Th has
a small prefactor.15 Consequently this part of the path
becomes extremely short once Th is canonically normal-
ized, so that in the AdS-S region the potential seen by the
bouncing field can be approximated by a step function.

We will release the radion field � from a certain initial
position �0 and we will evolve it to the point � ¼ 0
(corresponding to the pure AdS phase) according to the
Oð3Þ bounce equation [26,27]

@2
�þ 2
@
�



¼ @
Vrad; (96)

where 
2 ¼ ~x2. In the bounce solution the radion field
should arrive at � ¼ 0 with the kinetic energy necessary
to jump and stop on the top of the AdS-S minimum

4�4T4 ¼ 6ð@
�Þ2j�¼0; (97)

and this solution is used to determine the bounce action
S3=T.

In order to explicitly calculate the tunneling probability
it is useful to rewrite the radion action (81) as

Seff ¼ 12ðMlÞ3
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det �gMNj

q �
1

2
_�2 � Vradð�Þ

�
; (98)

where the potential, neglecting a constant piece, is

Vradð�Þ ¼ �̂�4 !ð!þ 1Þð!þ 2Þ
!ð1� �þ

��
Þ � 2 �þ

��

�
�

��

��!lk��lkþ�lk�

�
�

1

!þ 2

�
�

��

��2k� � 1

!þ 1

�
�

��

��k�

�
�
1þ �þ

��

�
þ 1

!

�þ
��

�
; (99)

with ! determined by Eq. (89) and

�� ¼ l�1

�
v2

v1

��
��1=ðlk�Þ

; (100)

�̂ ¼ 1

24

v2
2

M3
ðlk�ÞðlkþÞð�� � 1Þ��: (101)

The dimensionless tunneling action will only depend on

the parameters �̂,!, and�þ=�� and not explicitly on��.
This can be seen by using the conformal transformation

x� ! a�1x�; Vradð�Þ ! a�4Vradða�Þ; (102)

which is equivalent to a rescaling of all dimensionful
quantities, in particular �� ! ��=a. Therefore the rele-
vant scale involved in the bounce solution is �0 and the
functional determinant [26] of the tunneling process has to
be proportional to �4

0. Tunneling can hence occur for

bubble action Sb

Sb ’ log
�4

0

�2
� 4

r�
l
þ 4 log

�0

��
& 140; (103)

where it is used that the expansion parameter is the cos-
mological constant of the RS-GW phase (52). Observe that
if the tunneling takes place during radiation domination the
Hubble expansion is quadratic in temperature and the
right-hand side of this equation would increase when the
tunneling temperature decreases. However in the present
case the Hubble parameter is dominated by the vacuum
energy (which can even lead to a short period of inflation
[13,27]) and a smaller temperature in fact lowers the right-
hand side via its dependence in the functional determinant.
Notice that even though the four-dimensional gravity con-
tributions to the action are significant (due to the expan-
sion) gravitational effects16 in the tunneling process should
not relevantly modify our results [28].
As long as the release point is far away from the mini-

mum and maximum of the potential

ð�þ=��Þ1=jk�j � �0

��
� 1; (104)

the field experiences a nearly conformal potential. If ��
is not too close to unity the position of the maximum,
given by

ð�þ=��Þ�1=lk� &

�
v2

v2

��
��1=lk� ¼ e�r�=l ¼ l��

¼ TeV scale

Planck scale
; (105)

is such that there is a large hierarchy between the position
of the minimum and the maximum and for a large range of
release points the potential is nearly conformal.

14For more details about the AdS-S solution and the bounce of
this phase transition see Refs. [10–13].
15The estimate of this factor is controversial. We checked in the
numerical evaluation that admitting a sizable kinetic term would
only lead to slightly smaller tunneling temperatures.

16Gravitational effects become important when nucleated bub-
bles are of order 1=

ffiffiffiffi
�

p
.
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In the conformal case the potential is of the form

Vconf ! � ���4: (106)

Solving Eqs. (96) and (97) with this potential gives an
action, temperature, and bubble size for the Oð3Þ symmet-
ric bubble

S3=T ’ 217:0 ���3=4ðMlÞ3; T=�0 ’ 0:103 ��1=4;

�
�0 ’ 3:45 ���1=2:
(107)

However the potential (106) is normalized to the origin
instead of being normalized at the AdS-S minimum [26]
and we have to add to the action the omitted contribution

16�5

3
T3 �
3ðMlÞ3 ’ 72:3 ���3=4ðMlÞ3: (108)

This yields for the tunnel action

S3=T ’ 289:3 ���3=4ðMlÞ3: (109)

Besides thermal fluctuations the potential barrier can
also be overcome by quantum fluctuations. In this case
the bounce solution is Oð4Þ symmetric and Eq. (96) has to
be replaced by

@2
�þ 3
@
�



¼ @
Vrad: (110)

This tunnel configuration is relevant for temperatures that
are below the inverse bubble radius [13,27]. In the present
model the bounce solution results to be in this regime and
the quantum tunneling competes with thermal tunneling. In
the conformal case, the solution to the bounce equation is
given by

�ð
Þ ¼ 2�0

2þ ��
2�2
0

; (111)

which leads to the action

S4 ¼ 12ðMlÞ3 2�
2

3 ��
; (112)

while the corresponding temperature vanishes. Small de-
viations from the conformal case will only lead to a rela-
tively small temperature while sizable temperatures can
only be obtained when the conformal symmetry is broken
by a release point which is not too far away from the
minimum of the potential. In this regime our nearly con-
formal approximation (112) underestimates the real action
that could be reliably obtained in the thin-wall approxima-
tion. Still one can generally conclude that for the same
release point the thermal tunneling leads to larger tempera-
tures than the quantum tunneling since the friction term in
the bounce equation is smaller. Hence if both tunneling
modes are feasible the system tends to tunnel by thermal
fluctuations.

In the near-conformal case a good approximation is
given by using a conformal potential normalized at the
release point

Vnear-conf ¼ Vradð�0Þ
�
�

�0

�
4
; (113)

such that

�� ¼ �Vradð�0Þ
�4

0

: (114)

In this approximation the minimum of the bounce action as
a function of �0 (or equivalently T) is given by the maxi-
mum of Vradð�0Þ=�4

0. According to (85) the function

Vradð�Þ=�4 is nearly polynomial in terms of � with one
extremum between �� and �þ. The derivative of this
function at the end points is given by

d� ¼ @�
Vradð�Þ
�4

���������¼��
¼ � 4

lk��
Vradð�Þ
�4

���������¼��

¼ 1

6

v2
2

M3
ðlkþÞð�� � 1Þ: (115)

A reasonable estimate of the position of the minimum is

d��� � dþ�þ
d� � dþ

¼ �� þ �þ � 1; (116)

with the approximate value

�� max ¼ � d�dþ
d� � dþ

�� � �þ
2

¼ 1

12

v2
2

M3
ðlkþÞð�� � 1Þð1� �þÞ: (117)

For example a nearly maximal value is given for �� � 1:5,
v1=v2 � 3. In this case the coefficient is given by �� �
9:2� 10�3v2

1=M
3. For this choice of parameters and with

v1 ¼ 4M3=2, N ¼ 3, k�l ’ �0:019, which create the cor-
rect hierarchy, a comparison between this approximation
and the full numerical result is shown in Fig. 2. It turns out
that the estimate is quite reliable and, in particular, no
appreciable difference is found for S4.
The bulk cosmological constant is related to the five-

dimensional Planck mass by the flux N of the background
fields which, according to the AdS/CFT correspondence,
translates into the rank of the gauge group of the CFT in
four dimensions. In the present context this relation is only
known to leading order in N and here we use ðMlÞ3 ¼
ðN2 � 1Þ=16�2 as definition [29]. Then considering the
maximal allowed �� for the thermal tunneling action one
obtains the bound

S3=T * 61:5� ðN2 � 1Þ
�
v2
1

M3

��3=4
; (118)

and a nucleation temperature that is substantially smaller
than the scale ��. Using the criterion (103) for tunneling
this translates into

N2 � 1 & 2:3�
�
v2
1

M3

�
3=4 ðthermalÞ; (119)
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which is quite similar to the bound obtained in [10].
Analogously for the case of quantum tunneling one finds

S4 * 54:3� ðN2 � 1Þ
�
v2
1

M3

��1
; (120)

and

N2 � 1 & 2:6�
�
v2
1

M3

�
ðquantumÞ: (121)

Depending on the value of v2
1=M

3 the weakest bound
between (119) and (121) constitutes the minimal require-
ment on N allowing for a first-order transition.

Alternatively one can saturate the bound of applicability
of our analysis (55) which reads, for �� not too close to
unity, as

v2
2

M3

�
�� � 1� k�

kþ

�
2
&

3

2l2
; (122)

such that

�� &
1

2

ð�� � 1Þð1� �þÞ
ð�� � 1� k�=kþÞ2

&
1

2
; (123)

which gives for thermal tunneling

N & 6:8 ðthermalÞ; (124)

while for quantum tunneling one finds

N & 12:5 ðquantumÞ: (125)

Thus there is a small window where quantum tunneling is
possible while thermal tunneling is not.

We conclude that even though the limits on tunneling
derived including backreactions are parametrically similar
to the results obtained without them our analysis shows
that the constraint on the parameter space used in the
literature, �2 � M3 [6,10–13], is actually more conserva-
tive than necessary.

VI. GRAVITATIONALWAVE OBSERVATIONS

The main input parameter for the determination of the
gravitational wave spectrum is the inverse duration of the
phase transition that, normalized to the Hubble parameter,
is given by

�=
ffiffiffiffi
�

p
¼ T

d

dT

�
S3
T

�
: (126)

This equation assumes that the temperature is proportional

to the inverse scale factor, T / expð� ffiffiffiffi
�

p
tÞ, which is also

true in the AdS-S phase [29]. In this section wewill present

analytic as well as numerical estimates for �=
ffiffiffiffi
�

p
.

The dependence of the coefficient �� in the near-
conformal case is approximately polynomial at the release
point �0. Besides the tunnel action should grow to infinity
if �0 approaches either �� or �þ � 2� ��. A reasonable
fit is then given by

��ð�0Þ ¼ ��max

�
1�

�
�0 � 1

�� � 1

�
2
�
: (127)

Hereby and depending on the model parameters the value
of ��max is somewhere in the range

3:1�10�3ðN2�1Þ4=3< ��max<0:56 ðthermalÞ;
3:6�10�3ðN2�1Þ< ��max<0:56 ðquantumÞ;

(128)

where the lower bound arises from the constraint that the
system will tunnel [Eqs. (109) and (112)] while the upper
bound results from a numerical equivalent of (123) ob-
tained by exploring the parameter space constrained by the
requirement of small backreaction (55).
For the thermal tunneling action (109) the inverse dura-

tion of the phase transition is given by (notice that approxi-
mately �0 / T as shown in Fig. 2)
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FIG. 2 (color online). The left plot shows the comparison of S3=T and S4 as a function of the release point �0 between the
approximation in (113) and the full numerical results. The two curves for S4 lie on top of each other and significant deviations only
occur for a release point very close to the minimum of the potential. The right plot shows the temperature T as a function of the release
point �0. The used values are v1 ¼ 4M3=2, v2 ¼ v1=3, N ¼ 3, �� ¼ 1:5, and k�l ’ �0:019.
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�=
ffiffiffiffi
�

p
¼ 3

4

S3
T
ðlk�Þ�0

��

d ��

d�0

¼ 3

2

S3
T
ð�lk�Þ ��max

��

�0

�� � 1

�0 � 1

�� � 1

¼ 3

2

S3
T
ð�lk�Þ �0

�� � 1

��max

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

��max

s
: (129)

At first sight it seems that �=
ffiffiffiffi
�

p
can become arbitrarily

large for �� ! 1. However if �� approaches the unity the
constraint (54) becomes more severe than (55) and ��max is
according to (117) bounded by

��max ’ 1

12

v2
2

M3
ðlkþÞð�� � 1Þð1� �þÞ

<
2

lk�
v2
2

v2
1

ð�� � 1Þð1� �þÞ; (130)

such that the maximum possible value of �=
ffiffiffiffi
�

p
in fact

becomes constant in this limit. Hence one can obtain a
conservative estimate by assuming that �� is in the tran-
sition region where the two constraints (54) and (55) are
equally severe

�� � 1 ’ ffiffiffiffiffiffiffiffiffiffiffiffi�lk�
p 1

2

v1

v2

; (131)

and hence

�=
ffiffiffiffi
�

p
< 3

ffiffiffiffiffiffiffiffiffiffiffiffi�lk�
p S3

T

v2

v1

��max

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

��max

s
: (132)

Noting that

ffiffiffiffiffiffiffiffiffiffiffiffi�lk�
p v2

v1

’ ffiffiffiffiffiffiffiffiffiffiffiffi�lk�
p

ek�r� &

ffiffiffiffiffiffiffiffiffiffiffi
l

2er�

s
; (133)

one obtains the bound

�=
ffiffiffiffi
�

p
&

ffiffiffiffiffiffiffiffiffiffiffi
9l

2er�

s
S3
T

��max

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

��max

s

� 30
��max

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

��max

s
: (134)

Equation (128) for the thermal case implies

��max

��
&

180

ðN2 � 1Þ4=3 ; (135)

which finally yields a bound on �=
ffiffiffiffi
�

p
.

Analogously for quantum tunneling one finds

�=
ffiffiffiffi
�

p
&

ffiffiffiffiffiffiffiffi
8l

er�

s
S4

��max

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

��max

s �
T

�0

d�0

dT

�
: (136)

The last factor is typically smaller than in thermal tunnel-
ing (where it is unity, cf. Fig. 2) so that commonly quantum
tunneling happens only when the system cannot tunnel by
thermal fluctuations, which implies

�� max <

�
140

290
16�2

��4=3ðN2 � 1Þ4=3: (137)

Besides the largest �� that can be realized in the present
model is generally given by ��max < 0:56 according to
Eq. (128). On the other hand the quantum tunneling con-
dition (128) implies

�� > ð2� 140Þ�1ðN2 � 1Þ; (138)

such that successful quantum transitions which are not
spoiled by earlier thermal tunneling lead to the constraint

��max

��
& min½0:85ðN2 � 1Þ1=3; 155ðN2 � 1Þ�1�: (139)

The first bound increases with N and arises from the
requirement of no thermal tunneling while the second
bound stems from viable quantum tunneling and decreases
with N. As a result, as far as N decreases the quantum

tunneling bounds on �=
ffiffiffiffi
�

p
become first weaker (while

thermal tunneling becomes less likely) and then stronger
(as thermal tunneling is in general not possible for N > 7).
Finally for N > 12 tunneling is impossible altogether.
The approximate values and numerical results on the

bound on �=
ffiffiffiffi
�

p
are given in Table I. Already for N ¼ 2

one observes a rather strong phase transition (� * 1). We
see that for small N, when the release point is close to the
minimum of the potential, our approximation overesti-

mates the numerical result for �=
ffiffiffiffi
�

p
, while for larger

values of N it yields fairly precise results.
The second ingredient for the gravity wave spectrum is

the vacuum energy normalized to the radiation energy of
the system (traditionally denoted by � in the literature)

� ¼ 12ðMlÞ3ðVradð1Þ � Vradðr�ÞÞ

radiation

¼ l�2�

2�4T4
n

: (140)

In the present system this parameter is much larger than
unity as it is shown in Table I due to the large supercooling.
This also implies that the nucleated bubbles expand with
near luminal velocities. The vacuum energy is very effi-
ciently transformed into bulk motion of the plasma or
directly into kinetic energy of the bubble wall and resides
in a very thin shell around the bubble wall [30]. In this
sense the phase transition is extremely strong.
The main mechanisms of gravity wave production dur-

ing a first-order phase transition are bubble collisions [31–
36], turbulence [37–40] and magnetohydrodynamic turbu-
lence [41,42]. In our analysis we will focus on the produc-
tion mechanism by bubble collisions for the following
reasons. First, while reliable information about the gravity
wave spectrum in the case of bubble collisions is provided
by computer simulations, the analysis of turbulence relies
typically on additional assumptions (e.g. on the overall
normalization of the spectrum). Second, the peak fre-
quency of the spectrum produced by turbulence compared
to the one by bubble collisions is typically suppressed by
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the eddy velocity that occurs in the turbulent fluid motion
[37,38]. At the same time the spectrum for turbulence falls
off faster than the one by bubble collisions. Hence even if
the different components are of similar size they might be
disentangled because they lead to a double peak structure
or at least a knee in the spectrum. Finally, recent studies
have shown that very strong phase transitions most proba-
bly have a runway behavior of the wall [43] and in this case
most of the vacuum energy is transformed into gradient/
kinetic energy of the Higgs and not into collective bulk
motion of the plasma [30]. This should also reduce the
portion of energy that leads to turbulent plasma motion. In
the following we will focus on the spectrum produced by
bubble collisions.

In the above discussed limit, � � 1, the energy fraction
for colliding bubbles of the gravitational radiation at the
time of production is given by [36]

h2�� ¼ 7:7� 10�2

� ffiffiffiffi
�

p
�

�
2
: (141)

In a standard cosmology this energy density is diluted to
today’s observed energy fraction

h2 �� ¼ 1:3� 10�6

� ffiffiffiffi
�

p
�

�
2
: (142)

The only assumption that enters here is that the Universe is
dominated by radiation after the phase transition.
Immediately after the phase transition the energy fraction
stays constant up to the time of matter-radiation equality
when the energy fraction of gravitational radiation starts to
become suppressed together with all the other light com-
ponents of the plasma.

The frequency peak of the spectrum at time of genera-
tion is in the limit of very strong phase transition, � � 1,
and large wall velocities, vb � 1, given by [36]

f� ¼ 0:23�: (143)

The redshift to today’s observed spectrum depends on
the reheating temperature after the phase transition accord-
ing to

�f ¼ 0:23�
T0

Treh

; (144)

where T0 is the observed temperature of the cosmic mi-
crowave background. The spectrum is of form [36]

�ðfÞ ¼ ��
3:8f2:8 �f1:0

1:0 �f3:8 þ 2:8f3:8
: (145)

Several sample spectra are given in Fig. 3.
As long as the expansion is negligible during the phase

transition the reheating temperature Treh can be determined
by energy conservation. Since the phase transition is ex-
tremely supercooled at the typical nucleation temperatures
the energy density of the AdS-S phase is comparable to the
one of pure AdS and thus

g�
�2

30
T4
reh ’ 12ðMlÞ3ðVradð0Þ � Vradð��ÞÞ ¼ 6ðMlÞ3l�2�;

(146)

where � ¼ �1 and g� denotes the effective number of
degrees of freedom just after the phase transition. Notice
that for g� & 120�2ðMlÞ3 the critical temperature, given
by

4�4T4
c ¼ 6l�2�; (147)

is smaller than the reheating temperature and percolation is
followed by a period of phase coexistence.17 Nevertheless
we will assume that the redshift of the gravity waves is
given by the naive expression involving the reheating
temperature (146).

TABLE I. Upper limits on �=
ffiffiffiffi
�

p
and lower limits on � for all possible values of N.

Thermal Quantum

N �approx=
ffiffiffiffi
�

p
�num=

ffiffiffiffi
�

p
�num �num=

ffiffiffiffi
�

p
�num

2 <1230 <770 >3:2 <15 >1:0� 1011

3 <235 <315 >10 <33 >5� 107

4 <131 <143 >50 <45 >2:5� 106

5 <62 <67 >800 <56 >4� 105

6 <29 <30 >105 <63 >1:3� 105

7 <6:5 <6:0 >108 <71 >5� 104

8 <54 >5� 105

9 <40 >8� 106

10 <27 >3� 108

11 <17 >4� 1010

12 <5:4 >5� 1014

17Assuming that some SM fields are composite relaxes the
condition on g�.
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We now give a conservative estimate for the range of

possible values for Treh=
ffiffiffiffi
�

p
in a realistic model. According

to (52) and (69) the expansion parameter is related to the
radion mass by

� � 1
8m

2
rade

�2r�=l; (148)

such that together with the definition of the four-
dimensional Planck mass, ðMPlÞ2 ¼ ðMlÞ3, one obtains

g�
�2

30

T4
reh

�2
¼ 48

M2
P

m2
rad

e2r=l: (149)

Introducing the TeV scale�� ¼ l�1e�r�=l and the relation
ðMPlÞ2 ¼ ðN2 � 1Þ=16�2 the peak frequency can be writ-
ten as

�f ¼ 1:77� 10�3 mHz
�ffiffiffiffi
�

p ðN2 � 1Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrad��
TeV2

r
: (150)

Realistically the last factor varies within a range of [0.3,
10]. The corresponding ranges for the possible positions of
the peak structure of the gravitational wave spectrum
compared with sensitivities of future experiments are
shown in Fig. 4. For N 
 3 the phase transition could be
weak enough to prohibit detection by LISA. Besides for
these values the 1=N expansion is clearly questionable and
stringy loop contributions invalidate our analysis. On the
other hand for N 
 4 the model would lead to a gravita-
tional wave signal that is observable by LISA.

VII. CONCLUSION

Motivated by the sizable impact of backreactions on the
radion mass determined with the so-called superpotential
method [15,16], we studied backreactions to the radion
potential in a perturbative scheme. Our approach includes
backreactions on the five-dimensional gravitational fields
from the bulk scalar under the constraints in Eqs. (54) and
(55) which are less severe than the usual assumption of
weak fields, �2 � M3 [6,10–13]. An immediate conse-
quence of the backreactions is the necessity to generalize
the metric to include the Hubble expansion of space-time
in four dimensions. In our framework a judicious choice of
brane tensions allows one to reproduce the radion potential
found by Goldberger and Wise as well as (within the
applicability of our approach) the radion mass obtained
with the superpotential method. We then clarify the appar-
ent paradox that the radion mass computed in the GW and
superpotential frameworks scale (for a bulk scalar mass

m2 � 4k�=l) as jk�j3=2 and jk�j2, respectively. On top of
that in the regime of sizable detuning of brane tensions we
found that a scaling proportional to k� is possible. This
results in a larger radion mass for fixed TeV scale and in
turn it leads to a deeper radion potential which has signifi-
cant impact on the thermal phase transition of the system.
The phase transition constitutes a serious problem for

the holographic interpretation of models with a radion
stabilized by a bulk scalar [10–14]: the tunnel action scales
as N2 with the flux N of the background field such that the
metastable symmetric phase becomes, for large values of
N, effectively stable and the conformal symmetry is never
broken during the course of the Universe. One possible
solution to this problem is to consider more general scalar
potentials (as e.g. done in Ref. [44]) which modify the
behavior of the bulk fields considerably in the IR.
Analogously large backreactions can have potentially the
same effect by decreasing the ‘‘effective’’ N through a
stronger warping close to the TeV brane.
In our analysis of the phase transition, and compared to

former work [10,11], we did not use the common thick- or
thin-wall approximations to obtain the tunnel action but
devised an approximation that is tailor-made for nearly
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FIG. 3 (color online). Several example spectra of gravitational
waves. The straight (dashed) lines are for a reheating tempera-
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0.01 0.1 1 10 100

f / mHz

10
-13

10
-12

10
-11

10
-10

10
-09

10
-08

10
-07

Ω
 h

2

LISA
BBO
BBO corr.

N<3

N<5

N<4

N<8
N<9

N<10

N<11

N<12

N<13

FIG. 4 (color online). The regions denote the possible posi-
tions for the peak of the gravity wave spectrum depending on the
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conformal potentials. Besides notice that we used the
kinetic term obtained by decoupling the Einstein equations
[15] which differs by a factor of 2 from the one used in
[10,11,13]. The main consequence of our approach is that
the tunneling action depends logarithmically on the tem-
perature and can lead to a couple of e-folds of low scale
inflation without tuning the model parameters (this was
already observed in the numerical analysis of Ref. [13]).
While a few e-folds of inflation cannot solve the horizon
problem a low phase transition temperature has a large
impact on gravitational wave production since, in this case,
the energy stored in the vacuum bubbles during percolation
at the end of the phase transition is many orders of magni-
tude larger than the energy stored in the thermal plasma.

In summary we found that, in the regime of large back-
reactions, the deeper radion potential leads to a signifi-
cantly weaker phase transition and numerically the
absolute limit N < 13 applies. Besides we reanalyzed the
gravitational wave spectrum produced by the first-order
phase transition. We conclude that as long as stringy
corrections can be neglected (specifically N > 3), the
model leads to a stochastic background of gravitational
radiation that can be observed by LISA (see Fig. 4).
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APPENDIX: LINEARIZED SYSTEM OF
EQUATIONS AND THE RADION MASS

In order to calculate the radion mass we will follow the
analysis of Ref. [15] including the expansion of the
Universe. For the perturbations of the metric we use the
ansatz

�ðx; rÞ ¼ �0ðrÞ þ ’ðx; rÞ;
ds2 ¼ e2Aþ2Fðx;rÞ �g��dx

�dx� � ð1� 2Fðx; rÞÞ2dr2;
(A1)

where �g denotes the induced dS4 metric as in Eq. (2)

�g ��dx
�dx� ¼ dt2 � e2

ffiffiffi
�

p
tðdx21 þ dx22 þ dx23Þ; (A2)

and solve the linearized Einstein equations, �R�� ¼ �T��.

The corresponding entries for the Riemann tensor are
given by

�R�� ¼ �g��ð�hFþ F00 þ 10A0F0 þ 6A00Fþ 24A02FÞ;
�R�5 ¼ �6A0@�F� 3@�F

0;

�R55 ¼ �2hF� 16A0F0 � 4F00; (A3)

where we defined the d’Alembertian operator in curved
space-time ( �g ¼ det �g��)

hF¼ �g�ð1=2Þ@�ð �g1=2 �g��@�FÞ
¼ �g��@�@�Fþ3

ffiffiffiffi
�

p
e�2A@tF: (A4)

The energy-momentum tensor is given by

�T�� ¼ � 4

3
�g��ðV0ð�0Þ’þ 2Vð�0ÞFÞ

� 2

3
�g��

X
i

�
@�ið�0Þ
@�

’þ 4�ið�0ÞF
�
�ðr� riÞ;

�T�5 ¼ 2�0
0@�’;

�T55 ¼ 4�0
0’

0 þ 4

3
V0ð�0Þ’� 16

3
Vð�0ÞF

þ 8

3

X
i

�
@�ið�0Þ
@�

’� 2�ið�0ÞF
�
�ðr� riÞ; (A5)

and the scalar equation is given by

h’�’00 �4A0’0 þ@2V

d�2
ð�0Þ’¼

�X
i

�
@�ið�0Þ
@�

’�2�ið�0ÞF
�
�ðr�riÞ

�6�0
0F

0 �4
@V

@�
F: (A6)

The equation for R�5 can be integrated to yield

�0
0’ ¼ �3

2ðF0 þ 2A0FÞ: (A7)

Next consider the equation 1
4
�g���R�� þ �R55 in the bulk

3hFþ 6A0F0 � 24A02F� 6A00Fþ 3F00

¼ 8VF� 4�0
0’

0: (A8)

With Eq. (A7)

� 2

3
�0

0’
0 ¼ F00 þ 2A00Fþ 2A0F0 ��00

0

�0
0

ðF0 þ 2A0FÞ;
(A9)

and Eqs. (9) and (10)

� 4
3V ¼ A00 þ 4A02 � 3�e�2A; (A10)

this can be brought into the form

hF ¼ F00 þ 2A0F0 þ 4A00F� 2
�00

0

�0
0

½F0 þ 2A0F�

þ 6�e�2AF: (A11)
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A minimally coupled scalar in four-dimensional curved
space-time fulfills the equation

ðe2Ahþm2ÞF ¼ 0; (A12)

which leads to the equation

ð�m2 � 6�Þe�2AF ¼ F00 þ 2A0F0 þ 4A00F

� 2
�00

0

�0
0

½F0 þ 2A0F�: (A13)

Hence in an expanding universe the sole difference on the
equation for the radion mass with respect to the usual

radion equation can be taken into account by a shift in
the mass parameter

m̂ 2 ¼ m2 þ 6�: (A14)

Since the Hubble parameter is many orders smaller than
the radion mass this shift can quite generally be neglected.

Using the ansatz F ¼ e2AF̂ this leads to

F̂ 00 þ 2A00F̂� 2A0F̂0 � 2
�00

0

�0
0

F̂0 ¼ �m̂2e�2AF̂; (A15)

which is the starting point of the analysis in Sec. IVB.
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