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We place new constraints on the primordial local non-Gaussianity parameter fNL using recent cosmic

microwave background anisotropy and galaxy clustering data. We model the galaxy power spectrum

according to the halo model, accounting for a scale-dependent bias correction proportional to fNL=k
2. We

first constrain fNL in a full 13 parameters analysis that includes 5 parameters of the halo model and 7

cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we

find fNL ¼ 171þ140
�139 at 68% C.L. and �69< fNL <þ492 at 95% C.L. We discuss the degeneracies

between fNL and other cosmological parameters. Including SN-Ia data and priors on H0 from Hubble

Space Telescope observations we find a stronger bound:�35< fNL <þ479 at 95%. We also fit the more

recent SDSS DR7 halo power spectrum data finding, for a �CDMþ fNL model, fNL ¼ �93� 128 at

68% C.L. and �327< fNL <þ177 at 95% C.L. We finally forecast the constraints on fNL from future

surveys as EUCLID and from CMB missions as Planck showing that their combined analysis could

detect fNL � 5.
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I. INTRODUCTION

The standard paradigm of structure formation relies on
the inflation [1–4], and, as shown in [5–9], it predicts
flatness of the Universe and nearly scale-invariant spec-
trum of initial fluctuations. According to this scenario,
quantum-mechanical fluctuations in the scalar field driving
inflation lead to primordial density perturbations respon-
sible for the large-scale structures we observe today.
Although the simplest assumption is that these fluctuations
were Gaussian distributed [10], there are several inflation-
ary models [11–16] involving the existence of a primordial
non-Gaussianity. A detection or exclusion of non-
Gaussianities would hence be of fundamental interest for
understanding the physics of the primordial Universe.
Several cosmological observables and methods can be
used to constrain non-Gaussianities. Cosmic microwave
background (CMB) anisotropies provide the most direct
method for the detection of primordial non-Gaussianity
(see e.g. [17]) through, for example, measurements of the
three-point correlation function [18] (or equivalently the
bispectrum) which is nonzero in the presence of non-
Gaussianities. The large-scale structure of the Universe is
also affected by non-Gaussianities that may be detected by
looking at the bispectrum or the trispectrum of galaxy
distribution. The abundance of galaxy clusters, that de-
pends on the tails of the density probability distribution,
is also sensitive to any deviation from Gaussianity. Non-
Gaussianity has a direct impact on the clustering of dark
matter halos by changing their mass and correlation func-
tion [19–24]. A common way to parametrize primordial
non-Gaussianities is to introduce a quadratic correction to
the potential [25,26]:

� ¼ �þ fNLð�2 � h�2iÞ; (1)

where � is the primordial potential and � is a Gaussian
random field. In this case the non-Gaussianity is a local type
correction whose amplitude is given by fNL. Themost recent
constraint on fNL from CMB gives �10< fNL <þ74 at
95% C.L. from bispectrum analysis of WMAP-7 years data
[27], improving the WMAP5 constrain (� 9< fNL <
þ111) [28]. The authors of [29] used a different estimator
applied to WMAP5 data, finding fNL ¼ �13� 62 at 68%
C.L., while [30], using the needlet bispectrum applied to the
same data, found fNL ¼ þ84� 40 at 68% C.L.
In [24,31–34] it has been shown that a quadratic correc-

tion to the potential like that of Eq. (1) produces a scale
dependence in the bias of the galaxy clustering with respect
to matter distribution. In particular, a scale-dependent term
�bðkÞ arises in the halo bias on larger scales (smaller k)
and is proportional to fNL [�bðkÞ / fNL=k

2] hence with
galaxies being more (less) clustered for positive (negative)
values of fNL. The authors of [34] analyzed the galaxy
power spectrum of luminous red galaxies (LRG) of the
Sloan Digital Sky Survey (SDSS) to constrain this scale
dependence of the bias, putting the constraint �21<
fNL <þ209 at 95% C.L. In the same work other large-
scale data sets have been used to constrain non-Gaussianity
(quasars, integrated Sachs-Wolfe effect data and photo-
metric LRG sample) finding �29< fNL <þ70 at 95%
C.L. from the combination of all data sets. Recently, the
authors of [35] obtained þ25< fNL <þ117 at 95% C.L.
from the combination of WMAP-7 years data [27], bar-
yonic oscillations data from SDSS and Two-degree Field
Galaxy Redshift Survey (2dFGRS) [36] and supernovae
distance moduli measurements [37] with autocorrelation

PHYSICAL REVIEW D 82, 083511 (2010)

1550-7998=2010=82(8)=083511(9) 083511-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.083511


function measurements of radio sources from the NRAO
VLA Sky Survey [38], claiming a detection of non-
Gaussianity at �3�.

In this paper we follow the methodology of [34] and
constrain fNL by looking at the scale dependence of the
bias in current galaxy surveys data. We implement the
calculation of galaxy and halo power spectrum using
the halo model (see [39] and Sec. II) and we include in it
the non-Gaussian scale-dependent correction to the bias.
We then place constraints on fNL by comparing this model
to the SDSS [40] galaxy power spectrum data [41] and to
the halo power spectrum data obtained from the LRG
sample [42]. We include in the analysis the WMAP-7 years
cosmic microwave background anisotropy data [27]. We
also fit the LRG galaxy power spectrum data to the same
model, including Hubble constant measurements from the
Hubble Space Telescope (HST, [43]) and supernovae dis-
tance moduli measurements for the Union data set [37].
Results are shown in Sec. III. We finally forecast the power
of future galaxy surveys in constraining non-Gaussianity
by generating mock data for galaxy power spectrum using
specifications of the EUCLID [44] survey combined with
mock data from the Planck [45] satellite and showing in
Sec. IV that the combination of data from these experi-
ments could reach the precision required to detect even
small non-Gaussianities.

II. HALO MODEL

In the halo-model scenario (see [39] for a detailed re-
view) all matter is contained in halos and, as a consequence,
the abundance of halos, their spatial distribution, and their
internal density profiles are closely connected to the initial
dark matter fluctuation field. Under the assumption that
galaxies are formed in these halos of dark matter [46] it is
then possible to use the halo model to calculate the statis-
tical properties of the distribution of galaxies. To this aim,
the basic quantity is the halo occupation distribution (HOD,
see [47]) that encodes the information on how galaxies
populate dark matter halos as a function of halo mass.
The statistical information is contained in the two-point
correlation function of galaxies or equivalently its Fourier
transform, the galaxy power spectrum. It is hence important
to assess the number of pairs of galaxies in an individual
halo and the number of pairs of galaxies in separate halos.
The former can be shown to be related to the variance of
the HOD, �2ðM; zÞ ¼ hNgðNg � 1Þi, while the latter is the
square of themeanhalooccupation numberNðM; zÞ ¼ hNgi.
The galaxy power spectrum is then the sumof the 1-halo term
describing pairs of objects in the same halo and of a 2-halo
term for objects in different halos: Pðk; zÞ ¼ P1hðk; zÞ þ
P2hðk; zÞ. The two terms can be written as

P1hðk; zÞ ¼ 1

n2galðzÞ
Z

dMnhaloðM;zÞjuDMðk;M;zÞjp

��2ðM;zÞ; (2)

P2hðk; zÞ ¼ P0ðk; zÞ
n2galðzÞ

�Z
dMnhaloðM; zÞNðM; zÞ

� bðM; zÞuDMðk;M; zÞ
�
2
; (3)

wherenhalo is the halomass function [48],uDMðk;M; zÞ is the
normalized dark matter halo density profile in Fourier space,
P0ðk; zÞ is the linear darkmatter power spectrum, bðM; zÞ the
linear bias parameter, and ngal is themean galaxy number per

unit of comoving volume:

ngalðzÞ ¼
Z

dMnhaloðM; zÞNðM; zÞ:
For low occupied halos [NðM; zÞ< 1] the exponent p of the
density profile in Eq. (2) is equal to 1 while it is equal to 2
otherwise [39]. To calculate the two terms (2) and (3) it is
necessary to assume a form for the HOD. We choose the
parametrization described in [49,50]where theHODconsists
of two separated contributions for central and for satellite
galaxies:

hNcenðMÞi ¼ 1

2
Erfc

�
lnðMmin=MÞffiffiffi

2
p

�cen

�
; (4)

hNsatðMÞi ¼
�
M� �Mmin

M1

�
�
; (5)

where Mmin, M1 �cen, �, and � are free parameters of the
model. In this description the mean occupation number of
central galaxies is modeled as a smoothed step function
above the minimum mass Mmin, while satellite galaxies
follow a Poisson distribution with a mean given by a power
low and a cutoff at multiple � of the minimum mass. This
5-parameters model showed a good agreement with hydro-
dynamical and N-body simulations and semianalytic
models [51–53].
For the halo density profile uDMðk;M; zÞ, we choose the

shape of the Navarro, Frenk, and White profile (NFW)
[54]. The variance of the HOD can be calculated as in [55]:

�ðM; zÞ ¼ NðM; zÞ; NðM; zÞ> 1; (6)

�ðM; zÞ ¼ �ðMÞ2NðM; zÞ; NðM; zÞ< 1; (7)

with �ðM; zÞ ¼ log10ðM=MminÞ=log10ðM0=MminÞ and M0

is the mass at which the mean occupation number is equal
to 1. This parametrization of �ðM; zÞ has been shown to
have a good agreement with both semianalytic models and
hydrodynamical simulations [56,57]. The halo mass func-
tion is given by the Press and Schechter relation [58]:

M2nhaloðM; zÞ
��

dM

M
¼ �fð�Þd�

�
; (8)

where �� is the background comoving density and � is
defined as the ratio between the critical density required
for spherical collapse at redshift z [�scðzÞ] and the variance
of the initial density fluctuation field �0ðMÞ: � ¼
�2
scðzÞ=�2

0ðMÞ. Here we choose the Sheth-Tormen model

[59] for the shape of �fð�Þ:
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�fð�Þ ¼ AðpÞð1þ ðq�Þ�pÞ
�
q�

2	

�
1=2

exp

�
�q�

2

�
(9)

with p� 0:3, AðpÞ � 0:3222, and q� 0:75. The linear
bias bðM; zÞ is then given by [59,60]

bðM; zÞ ¼ 1þ q�� 1

�scðzÞ þ 2p=�scðzÞ
1þ ðq�Þp : (10)

A. Non-Gaussian corrections

The halo model described so far allows the calculation
of the galaxy power spectrum starting from the assumption
of Gaussian primordial fluctuations. The existence of de-
viations from Gaussianity determines a correlation be-
tween small-scale and large-scale perturbations because
of the quadratic correction fNL�

2 (in the case of local
non-Gaussianities we are considering here) that appear in
the potential [25,61]. As shown in [31,33,34] the effect of
non-Gaussian fluctuations on the galaxy power spectrum
appears on large scales through a scale-dependent correc-
tion of the halo bias. Following [34] we write this correc-
tion as

�bðM; z; kÞ ¼ 3�mH
2
0

c2k2TðkÞGðzÞ fNL
@ lnnhalo
@ ln�8

(11)

that reduces to

�bðM; z; kÞ ¼ 3�mH
2
0

c2k2TðkÞGðzÞ fNLðb� rÞ�sc; (12)

where GðzÞ is the linear growth factor, TðkÞ is the transfer
function, and the parameter r is 1 if the objects equally
populate all the halos, that is a good assumption for the
LRG galaxies we use in this analysis (see also [34]) or
�1:6 for objects populating only recently merged halos.
The information on fNL is then expected to come from the
low-k part of the galaxy power spectrum because of the k�2

term of Eq. (12) [TðkÞ is constant at low wave vectors].

For an even quite large value of fNL, for example
fNL ¼ þ100, the correction on the halo bias is smaller
than a 10% for wave vectors k > 0:01h Mpc�1 (see Fig. 1).
The amplitude of the correction is proportional to fNL but
also to H0 and �m. One should expect hence important
degeneracies among these parameters that will affect the
strength of constraints on fNL.

III. ANALYSIS AND RESULTS

A. Constraints from red luminous
galaxies power spectra

We implemented the calculation of the theoretical galaxy
power spectrum through the halo model described above
and performed a Monte Carlo Markov chain analysis using
cosmic microwave background data from WMAP-7 years
of observations [27] and the most recent LRG galaxy power
spectrum data [41] available from the Sloan Digital Sky
Survey at a mean redshift z ’ 0:35. We fitted these data
assuming flatness of the Universe over a 13 parameters
model that consists of 7 standard cosmological parameters
(the physical baryon and cold dark matter densities, the
ratio of sound horizon to the angular diameter distance at
decoupling, the optical depth to reionization, the scalar
spectral index, the overall normalization of the spectrum
at k ¼ 0:002h Mpc�1, and the amplitude of the Sunyaev-
Zel’dovich (SZ) spectrum: �bh

2, �ch
2, 
, �, ns,

log1010
10As, and ASZ) and of the 5 parameters of the halo

model plus the non-Gaussianity parameter (log10Mmin, �,
�, �cen, log10M1, fNL). In what follows we will express the
masses in units of solar masses. The Markov chain analysis
has been performed using the publicly available cosmo-
logical code COSMOMC [62] suitably modified to include
the calculation of the halo model and to fit over the pa-
rameters of the halo model and fNL. The convergence
diagnostic of this code is based on the Gelman and Rubin
statistic [63] (also known as the R� 1 statistic, where R is
defined as the ratio between the variance of chain means
and the mean of variances). The results of our fit are shown
in Table I and Fig. 3. For this model we found weak
constraints on the non-Gaussianity, fNL ¼ 171þ140

�139 at

68% C.L. and a range �69< fNL <þ492 at 95% C.L.
from the combination WMAP7 and LRG galaxy power
spectrum. The best fit power spectrum computed for the
values of Table I is shown in Fig. 2; as one can see there is
a slight preference for a nonzero value of fNL at 1� but is
largely consistent with Gaussian initial conditions when we
consider 2� constraints. These limits are weaker than those
obtained with a similar data set in [34] where small-scale
nonlinearities aremodeledwith a two parameter k dependent
correction. The difference is that in our case the uncertainty
on fNL is heavily affected by degeneracies with�m,H0, and
�8, parameters which are themselves degenerate with the
parameters of the halo model. We are in fact requiring the
information on fNL to come only from SDSS data since
we are using WMAP data only to constrain cosmological

FIG. 1. Scale-dependent correction to the halo bias according
to Eq. (12) for different values of fNL.
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parameters. The LRG data range only for scales between
0:01< k< 0:2h Mpc�1 and, as shown in Fig. 2, on these
scales the effect of an even large non-Gaussianity is small
and can be easily confused with the effect of cosmological
or halo-model parameters. We repeated this fit including
both the Hubble Space Telescope prior on H0 from [43]
and supernovae distance moduli measurements for the
Union data set [37] obtaining only a slightly improved
constraint on fNL, i.e. �35< fNL <þ479 at 95%, and

other parameters. In Fig. 3 we plot constraints on fNL and
on the parameters most involved in degeneracies with fNL
for the fit to WMAP7þ LRGþ SNeþ HST data. As for
the model parameters, we found generally higher values
for log10Mmin, �, and �cen than [49], but with greater
uncertainty, while � results to be in good agreement and
log10M1 has a very large uncertainty. These differences
may arise because of the different data set and modeling
(in [49] they fit the projected correlation function) and
parameter space. The same figure confirms the expected
degeneracy between �m and log10Mmin as found also in
[49], due to the correlation between halo masses and the
number of galaxies in massive halos [64], [65]. The con-
sequence of this degeneracy is that our constraint on the
matter density is �m ¼ 0:264� 0:022 from WMAP7þ
LRG and hence only slightly better than the constrain from
WMAP7 alone �m ¼ 0:266� 0:029.

B. Constraints from halo power spectra

In this section we constrain fNL using recent data of the
power spectrum for the reconstructed halo density field
derived from a sample of LRGs [42] in the seventh data
release of the SDSS (DR7). The halo power spectrum is
more directly connected to a dark matter density field for a
wider k range and this allows one to use data points in the
power spectrum up to k� 0:2h Mpc�1. The main differ-
ence with respect to the analysis of the previous section is
that to model the halo power spectrum it is not necessary to
model the halo occupation distribution of galaxies. The
halo power spectrum in [42] is modeled as

PhaloðkÞ ¼ PdampðkÞrDM;dampðkÞrhaloðkÞFnðkÞ; (13)

where Pdamp is a power spectrum that account for damping

of baryonic acoustic oscillations and is calculated as

PdampðkÞ ¼ P0ðkÞe�k2�2=2 þ PnwðkÞð1� e�k2�2=2Þ (14)

with P0 being the linear matter power spectrum and Pnw is
the matter power spectrum with baryon oscillations re-
moved calculated as in [66]. The value of � is chosen
fitting the reconstructed halo density field in the mock
LRG catalog [42,67]. The factor FnðkÞ is a nuisance term
defined as

FnðkÞ ¼ b20

�
1þ a1

�
k

k�

�
þ a2

�
k

k�

�
2
�
; (15)

where b0 is the effective bias of the LRG at the effective
redshift zeff ¼ 0:313 and k� ¼ 0:2h Mpc�2. The likeli-
hood code for halo power spectra for SDSS-DR7 is im-
plemented in COSMOMC and performs a marginalization
over the nuisance parameters b0, a1, and a2. The terms
rDM;dampðkÞ and rhaloðkÞ in (13) model the connection be-

tween the nonlinear matter power spectrum and the
damped linear power spectrum and between halo and
matter power spectrum and they are calibrated against

TABLE I. Best fit values and 68% C.L. errors on the parame-
ters of our model for WMAP7þ LRG and WMAP7þ LRGþ
SNeþ HST data. The combination with SNe and HST data only
slightly improves the constraints.

WMAP7þ LRG
WMAP7þ LRG
þHSTþ SNe

102�bh
2 2:241þ0:065

�0:063 2:263þ0:055
�0:054

�ch
2 0:1103þ0:0047

�0:0047 0:1123þ0:0036
�0:0035


 0:010 395þ0:000 032
�0:000 030 0:010 396þ0:000 028

�0:000 027

� 0:088þ0:0075
�0:0087 0:087þ0:0065

�0:0072

ns 0:964þ0:014
�0:015 0:965þ0:012

�0:013

lnð1010AsÞ 3:08þ0:04
�0:03 3:08þ0:03

�0:03

h 0:715þ0:023
�0:021 0:705þ0:016

�0:015

�8 0:800þ0:028
�0:029 0:812þ0:025

�0:025

logðMminÞ 13:90þ0:16
�0:25 14:19þ0:12

�0:12

� 0:85þ0:18
�0:20 0:83þ0:17

�0:18

� 9:97þ5:5
�5:6 10:7þ5:1

�5:1

�cen 1:00þ0:57
�0:57 1:09þ0:56

�0:56

logðM1Þ 12:0þ2:7
�2:6 12:3þ2:7

�2:6

fNL 171þ140
�139 202þ129

�130

FIG. 2. Best fit galaxy power spectrum calculated with the
values of Table I for the fit to WMAP7þ LRG data compared
with the LRG galaxy power spectrum.
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numerical simulations (see Sec. 3 in [42] for more details).
Here we use a modified version of the modeling described
so far introducing the k dependent bias correction (12)
averaged over masses:

bðk; zÞ ¼
R½bðM;zÞþ�bðM;z;kÞ�nhaloðM;zÞMdMR

nhaloðM;zÞMdM
: (16)

We then fitted the data varying fNL together with the
seven cosmological parameters (�bh

2, �ch
2, 
, �, ns,

log1010
10As, and ASZ) and minimizing the chi square by

varying nuisance parameters a1 and a2. Our results are
shown in Table II and in Fig. 4. We also show our best fit
halo power spectra in Fig. 5. Our fit for this data set shows a
preference for a negative value fNL ¼ �93� 128 at 68%

C.L. that allows one to have a better fit to five points in
the observed power spectra in the range ð0:03< k<
0:05Þh Mpc�1. The uncertainty on this value remains any-
way quite large and the 95% C.L. range for fNL is�327<
fNL <þ177, hence with a very slight improvement with
respect to the constraints from the previous data set. For the
other cosmological parameters we find a good agreement
with results from [27] for WMAP7 combined with halo
power spectra of the LRG sample.
We note that, according to degeneracies showed in

Fig. 4, allowing for a possible non-Gaussianity implies
an increase of uncertainty on some cosmological parame-
ters, namely h and �8 with an increase of a �10% on the
1� error with respect to �CDM case for WMAP7þ LRG
and an increase of a �14% on the error for �ch

2.
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FIG. 3 (color online). 68% and 95% C.L. contour plots and likelihoods for fNL and other parameters of the model for the fit to SDSS
DR4 galaxy power spectrum combined with WMAP7, SNe, and HST data. The plot shows the degeneracies of fNL with cosmological
and halo-model parameters. As expected fNL results in being correlated with matter density and the Hubble parameter. Strong
degeneracies involve also Mmin, �m, �8, and H0 weakening the constraints on these parameters.

CONSTRAINTS ON PRIMORDIAL NON-GAUSSIANITY . . . PHYSICAL REVIEW D 82, 083511 (2010)

083511-5



IV. FORECAST FOR FUTURE SURVEYS

In this section we consider constraints on fNL from
future data generating mock data sets for both CMB
anisotropy and galaxy power spectra. For a galaxy survey
the error on the matter power spectrum can be calculated
as [68,69]

�
�P

P

�
2 ¼ 2	2

4k2�kVeff

; (17)

where the effective volume of the survey is given by

Veff ¼ V

�
nP

nPþ 1

�
2

(18)

TABLE II. Best fit values and 68% C.L. errors on the parame-
ters of our model for the fit to SDSS-DR7 halo power spectra.

102�bh
2 2:248þ0:055

�0:055

�ch
2 0:1144þ0:0041

�0:0041


 0:010 389þ0:000 026
�0:000 027

� 0:086þ0:0063
�0:0072

ns 0:963þ0:013
�0:013

lnð1010AsÞ 3:09þ0:03
�0:03

h 0:694þ0:018
�0:018

�8 0:822þ0:025
�0:024

fNL �93þ128
�129

0.105 0.115 0.125

−400 0 400
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FIG. 4 (color online). 68% and 95% C.L. contour plots and likelihoods for some parameters of our model for the fit to SDSS-DR7
data. As noted before fNL results in being correlated mainly with matter density and the Hubble parameter.
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and �k is the width of k bins. Here we use specification for
a typical future galaxy survey like EUCLID [44] with
galaxy number density n ’ 1:6� 10�3, redshift range 0<
z < 2 and fsky ’ 0:5. The minimum k of the mock data set

is chosen to be greater than 2	=V1=3, while the maximum k
we use is 0:02h Mpc�1. For CMB anisotropy power spec-
trum we use the specification for the Planck experiment
[45] assuming the noise of the 143 GHz channel. We
explore a�CDMþ fNL model and we choose as a fiducial
model the WMAP-7 years best fit for �CDM parameters
[27]. For the non-Gaussianity parameter we choose three
fiducial models, fNL ¼ þ1, þ5, and þ10. Remember that
in our approach we are using only the information of large-
scale galaxy clustering to constrain non-Gaussianity, while
we use CMB measurements only to constrain other cos-
mological parameters and hence to break degeneracies.

Results of our forecast on fNL are shown in Table III. As
one can see the combination of accurate galaxy power
spectrum measurements, attainable with a survey like
EUCLID and Planck CMB measurements, could reach
the sensitivity required to detect an even small non-
Gaussianity, such as fNL ¼ þ5 or fNL ¼ þ10, with a
confidence level of at least 95%. We note that this results

in agreement with other forecasts for future galaxy surveys
(see [70] for example). Very small non-Gaussianities
(fNL ¼ þ1) seem instead rather difficult to detect, mainly
due to degeneracies with other parameters. Nevertheless in
[71] it has also been shown that in more complicated
models (allowing variation of neutrino mass, running of
spectral index, dark energy equation of state, and relativ-
istic degrees of freedom) constraints on fNL may deterio-
rate up to �80%.

V. SYSTEMATICS

Before concluding we discuss the possible systematics
introduced by the assumptions we made or, more generally,
by the theoretical uncertainties of the model.
First, we have seen that the value of r that appears in

Eq. (12) may have a value in the range 1–1.6. We have
assumed r ¼ 1 since we are using luminous red galaxies
that are old galaxies at the center of halos. This is a
common assumption for this kind of analysis (see also
[34]). Anyway we find that even assuming r ¼ 1:6 the
differences in the power spectrum with respect to the
case r ¼ 1 are very small. Using r ¼ 1:6 we find only a
slight variation in the �2 with respect to r ¼ 1 for the best
fit model:��2 � 0:3. The reason for this is that actual data
constrain scales k > 0:02h Mpc�1 where the exact value of
r is less relevant. Nevertheless for future low-k data it may
be necessary for a more precise modeling of Eq. (12).
A second assumption we made is that the density profile

of the halos is described by the NFW profile. Although the
exact shape of the profiles in the halos is still uncertain, this
profile has been tested against several numerical simula-
tions and it turned out to be a good approximation [39].
Moreover, again, the information on fNL is coming from
k < 0:1h Mpc�1 where the density profile is constant in
Fourier space.
An important point is the comparison between the re-

sults from the LRG power spectrum of [41] and the halo
power spectrum from [42]. The first data set provides a
galaxy power spectrum while the second a halo density
field that does not require any assumption about the halo
occupation number. In [42] there is a large discussion on
the differences between these two data sets and we refer the
reader to this work for a complete discussion. Here we
remark that the main differences are due to the heavy
Finger of Gods compression algorithm used in [41] to
obtain the matter power spectrum. This process may cause
transfer of power from a scale to another, causing consis-
tent deviations (up to�40% on k ¼ 0:2h Mpc�1) between
the reconstructed halo density field and the matter power
spectrum [42]. For the DR7 halo power spectrum instead,
the halo density field is reconstructed before the computa-
tion of the power spectrum (see Sec. 2.2 in [42]) and the
deviations between the two are smaller than 4%. Also
the modeling of the theoretical halo power spectrum and
of the galaxy power spectrum is different. The model of

FIG. 5. Best fit model (solid line) to halo power spectra
data from SDSS-DR7. We show for comparison the same
model but with fNL ¼ 0. A negative value of fNL allows one
to have a better fit to the data points in the range ð0:03< k<
0:05Þh Mpc�1

TABLE III. 1� errors (68% C.L.) from the combination of
mock data sets generated for the specifications of the Planck
experiment and the EUCLID survey and for three different
fiducial values of fNL.

EUCLIDþ Planck

Fiducial value �

fNL ¼ þ1 2.23

fNL ¼ þ5 2.29

fNL ¼ þ10 2.39
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[42] is calibrated on N-body simulations and mock data
sets made especially for this LRG sample. Moreover the
authors of [42] imposed priors on the nuisance parameters
of the model based on N-body simulations. For the galaxy
power spectrum of [41] the Q model was used [72] for the
nonlinear part of the power spectrum, marginalizing over
Q with weak priors. All these differences necessarily re-
flect on the cosmological parameters estimation, including
fNL. The comparison between results of the two data sets is
made in Sec. 6.1 of [42]. Significant differences are found
on some cosmological parameters from the two LRG data
sets only (i.e. not including CMB) of the two releases: in
particular, the �mh values [that enter also in Eq. (12)]
differ of almost 2� between the two surveys.

In our work, to fit the DR7 data we are only introducing
the bias scale-dependent correction to the model of [42], in
order to be as much as possible consistent with the data
compression algorithm of this LRG catalog. We ascribe the
differences between the results of Secs. III A and III B to
the significant differences of the data compression process,
as noted also in [42].

The last issue concerns the modeling of power spectra
on nonlinear scales. For DR7 data, the authors of [42]
normalize the final halo power spectrum using mock cata-
logs to account for the small offset between the N-body
and HALOFIT results.

Concerning the galaxy power spectrum we used to fit
data from [41], the PðkÞ we are using in relation (3) is the
linear matter power spectrum, which is well known. The
galaxy power spectrum is calculated through the halo
model itself. The 5-parameters model we are using showed
a good agreement with hydrodynamical and N-body simu-
lations and semianalytic models [51–53,56,57]. Moreover,
we are marginalizing over the 5 free parameters that
account for the uncertainties of the model, so that our
analysis is rather conservative.

In the forecast section we model the galaxy power
spectrum relying on the same assumption made above
(r ¼ 1 for galaxies and NFW profiles) and using the same
HOD modeling. Our results show the potential of a survey
like EUCLID to detect even small non-Gaussianities and
are in good agreement with forecast done for the same

survey and for a similar modeling of the scale-dependent
bias [70]. It is clear, however that the analysis of real data
from these future surveys will probably require a more
accurate modeling of the galaxy power spectrum and of
the scale-dependent correction in order to not bias the
estimated value of the cosmological parameters.

VI. CONCLUSIONS

We place new constraints on the local type non-
Gaussianity parameter fNL by looking at the scale depen-
dence of the halo bias (at small wave vectors) in the recent
galaxy and halo power spectra measurements from the
LRG sample of the Sloan Digital Sky Survey. We fit
2006 SDSS power spectra data with a halo model consist-
ing of 5 parameters plus 7 cosmological parameters and
fNL. Our large parameter space and the restriction of the
data set to relatively small scales (k > 0:01h Mpc�1) lead
to a weak constraint:�69< fNL <þ492 at 95% C.L. We
show and discuss degeneracies with halo model parame-
ters. When including both type Ia supernovae and HST
data the 1� error on fNL is reduced to about�10%. We use
also 2009 halo power spectra data obtained from the SDSS
LRG sample finding a slightly better constraint �327<
fNL <þ177 at 95% C.L., again limited by the fact that the
data set does not extend below k� 0:02h Mpc�1. We also
forecast the constraints obtainable from data sets of a
survey like EUCLID when combined with Planck CMB
data, finding that these surveys could reach the accuracy
required to detect even small non-Gaussianities as
fNL ¼ þ5, thus confirming the power of this method.
Finally we discuss the possible systematics and theoretical
uncertainties that may affect the results.
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