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We argue that the possibility of having infinite energy in the center-of-mass frame of colliding particles

is a generic property of rotating black holes. We suggest a general model–independent derivation valid for

dirty black holes. The earlier observations for the Kerr or Kerr-Newman metrics are confirmed and

generalized.
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I. INTRODUCTION

Quite recently, a series of works [1–6] appeared in which
interesting observations were made about energetics of
particles near rotating black holes. Namely, it was argued
that under certain conditions, the energy in the center-of-
mass frame can grow unbound, so a black hole acts as a
supercollider. This opens a window into a new physics,
including the possibility of unknown channels of reaction
between elementary particles, with potential astrophysical
applications such as elucidation of the nature of active
nuclei in the Galaxy [7], etc. At the present, these results
were obtained for the Kerr metric and extended to the
Kerr-Newman one.

The aim of the present work is to show that this remark-
able property of being an accelerator to infinitely high
energies is the direct consequence of the general properties
of the event horizon, provided one of the colliding particles
approaches certain critical value of the angular momen-
tum. We rely not on the particular properties of the Kerr or
Kerr-Newman metric, but on the generic axially symmetric
rotating black holes. This is especially important in the
given context, since physical significance of the effect
under discussion implies the presence of matter (say, an
accretion disc) around the horizon, so the black hole, as is
usual in astrophysics, is ‘‘dirty’’. Thus, our motivation is
twofold: to elucidate the essence of the effect from general
principles, and to give derivation valid for black holes
surrounded by matter. The general approach we push
forward enables us to give a natural explanation to some
important features of black holes as particles accelerators,
observed earlier in particular examples.

It was observed in [2] that the infinite acceleration can
occur not only for extremal black holes (as was stated in
[1]) but also for nonextremal ones, and the distinction
between the two cases was traced in detail for the Kerr
metric. This is important, since in [1,5,6] the effect under
discussion was related to just extremal black holes; mean-
while, there are astrophysical limitations on the proximity
of the angular momentum of a black hole to the extremal
value [8]. In this sense, the aforementioned result of [2]

enables us, in principle, to evade this restriction and
consider the effect not only for extremal black holes.
Therefore, it is desirable to trace whether this is retained
for astrophysically relevant dirty black holes. Now, differ-
ent kinds of limiting transitions and the role of the type of
the horizon (nonextremal versus extremal) follow directly
from this general approach.

II. BASIC FORMULAS AND LIMITING
TRANSITIONS

Consider the generic axially symmetrical metric. It can
be written as

ds2 ¼ �N2dt2 þ g��ðd��!dtÞ2 þ dl2 þ gzzdz
2: (1)

Here, the metric coefficients do not depend on t and �. On
the horizon, N ¼ 0. Alternatively, one can use coordinates
� and r, similar to the Boyer-Lindquist ones for the Kerr
metric, instead of l and z. In (1), we assume that the metric
coefficients are even functions of z, so the equatorial plane
� ¼ �

2 (z ¼ 0) is a symmetric one.

In the spacetime under discussion, there are two con-
served quantities, u0 � �E and u� � L, where u� ¼ dx�

d�

is the four-velocity of a test particle, � is the proper time,
and x� ¼ ðt; �; l; zÞ are coordinates. The aforementioned
conserved quantities have the physical meaning of the
energy per unit mass (or frequency, for a lightlike particle)
and azimuthal component of the angular momentum, re-
spectively. It follows from the symmetry reasonings that
there exist geodesics in such a background which lie
entirely in the plane � ¼ �

2 . Then, the first integrals for

such geodesics read (here, the dot denotes the derivative
with respect to the proper time �):

_t ¼ u0 ¼ E�!L

N2
: (2)

We assume that _t > 0, so that E�!L> 0.

_� ¼ L

g��

þ ð�!2Lþ E!Þ
N2

; (3)
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_l 2 ¼ ðE�!LÞ2
N2

� �� L2

g��

: (4)

Here, � ¼ 0 for lightlike geodesics and � ¼ 1 for time-
like ones. For definiteness, we consider a pair of particles
labeled by the subscript i ¼ 1; 2 and having the equal rest
masses m1 ¼ m2 ¼ m. We also assume that both particles

are approaching the horizon, so _l < 0 for each of them.
The quantity that is relevant for us is the energy in the

center-of-mass frame E c:m: ¼
ffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u�ð1Þu�ð2Þ

q
[1–6].

After simple manipulations, one obtains from (2)–(4) that

E2
c:m:

2m2
¼ cþ 1� Y; c ¼ X

N2
; (5)

where

X ¼ X1X2 � Z1Z2; (6)

Xi � Ei �!Li,

Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi �!LiÞ2 � N2bi

q
; bi ¼ 1þ L2

i

g��

; (7)

Y ¼ L1L2

g��

: (8)

Here, the crucial role is played by the quantity c that
determines whether the energy can grow unbound. Now,
we will discuss different limiting transitions.

(1) For generic Li, one approaches the horizon, so
N ! 0. Expanding the radicals and retaining the first
nonvanishing corrections in the numerator, one ob-
tains (subscript H refers to the horizon value):

�
E2

c:m:

2m2

�
H
¼ 1þ b1ðHÞðL2ðHÞ � L2Þ

2ðL1H � L1Þ
þ b2ðHÞðLð1ÞH � L1Þ

2ðL2ðHÞ � L2Þ � L1L2

ðg��ÞH ;

LiðHÞ � Ei

!H

:

(9)

By the very meaning of derivation, it is supposed in
(9) that L1 � L2ðHÞ, L2 � L2ðHÞ.
Let us now specify the range of angular momenta in
such a way that one of them is close to the critical
value: L1 ¼ L1ðHÞð1� "Þ, " � 1, L2 � L2ðHÞ.
Then, we have that

�
E2

c:m:

2m2

�
H
� b1ðHÞðL2ðHÞ � L2Þ

2L1ðHÞ" : (10)

This quantity can be made as large as one likes, due
to " ! 0. It follows from (5) and (9) that

lim
L1!L1ðHÞ

lim
N!0

E c:m: ¼ 1: (11)

(2) Let us take L1 ! L1ðHÞ first and then consider the

limit N ! 0. The previous formula (9) is valid both
for nonextremal and extremal horizons. In contrast
to it, the distinction between two types of the hori-
zon now comes into play.

(i) First, consider the nonextremal case. We are inter-
ested in the immediate vicinity of the horizon where
the effect under discussion is expected to show up.
Near the horizon, we can infer the restriction that
follows from the condition of positivity of the ex-
pression inside the square root in (7). To this end, let
us use the general form of the asymptotic expansion
for the metric coefficient ! that follows from the
general requirement of regularity of the geometry
near the nonextremal horizon [9]:

! ¼ !H þ BN2 þ . . . (12)

Here, !H is constant and has the physical meaning
of the angular velocity of the horizon itself, the
coefficient B ¼ Bð�Þ. For the case � ¼ �

2 under

consideration, B is simply constant. Its exact value
is model-dependent.
Thus, the condition of the positivity of (4) cannot
be satisfied, since the first term has the order N2,
whereas the others have the order N0 and are nega-
tive. It means that the horizon is unreachable (the
admissible region adjacent to the horizon shrinks to
the point, and there is some turning point situated on
a finite distance from the horizon). Therefore, the
present case should be rejected.

(ii) Now, consider the extremal horizon. Then, instead
of (12), one has more general expansion:

! ¼ !H � B1N þ B2N
2 þ . . . (13)

The distinction between expansions for both hori-
zons can be understood using the Kerr metric as
an example. The first corrections have the order
r� rH, where r is the Boyer-Lindquist coordinate.
However, for the nonextremal case N2�r�rH,
whereas for the extremal Kerr metric N2 � ðr�
rHÞ2, B1 ¼ M�1, where M is the mass.
In a more general case, one can just appeal to the
definition of the nonextremal and extremal black
holes using the proper length—namely, in the non-
extremal case N � �l near the horizon, where � is
the surface gravity, and in the extremal one N �
N0 expð�AlÞ, with N0, A ¼ const> 0 and l ! 1.
In principle, so-called ultraextremal horizons with
N � l�s with s > 0 are also possible and can con-
tain fractional powers of r� rH (where r is the
analogue of the Boyer-Lindquist coordinate), but
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we do not discuss them here. (For the spherically
symmetric configurations, such horizons are classi-
fied in [4].)
After the substitution of (13) to (6) and (7), we
obtain after simple manipulations that

E2
c:m:

2m2
� ðE2 �!HL2Þ

N

�
B1

E1

!H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E2
1

!2
H

B2
1 � b1

�s �
: (14)

Here, it is implied that the condition of the positivity
is fulfilled for the expression inside the radical (this
cannot be worked out in more detail in a model-
independent way). Thus,

lim
N!0

lim
L1!L1ðHÞ

E c:m: ¼ 1: (15)

The extremal case has one more interesting feature.
Namely, the proper time needed to reach the horizon
tends to infinity. Indeed, it follows from (4) and (13)
that, for the particle having L ¼ LðHÞ and approach-
ing the horizon,

��
Z dlN

Z
� l ! 1; (16)

since the proper distance from any point to the
extremal horizon is infinite. For the nonextremal
horizon, the proper distance is finite, as well as the
proper time. Also, one can easily find from (3) and
(4) that the number of revolutions

�� � EB1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

!2
H

B2
1 � b1Þ

r Z dl

N
: (17)

Using again the asymptotic form N � N0 expð�AlÞ
in the extremal case, we see that �� ! 1.

(3) In two previous situations, the result was formally
determined by a play between two small quantities "
and N and the order of taking the limits " ! 0 and
N ! 0. Meanwhile, it is of interest to trace what
happens when both quantities are small but nonzero,
and what are limitations on the possibility of colli-
sion with infinitely growing energies. For the Kerr
metric, a particle with the critical value of the
angular momentum LðHÞ cannot come from infinity

because a potential barrier prevents this, so that the
energy cannot grow unbound as a result of single
scattering [1,6]. Meanwhile, as was demonstrated
for the Kerr metric [2], this becomes possible if
multiple scattering occurs, so one of the colliding
particles does not come from infinity but receives
the near-critical angular momentum as a result of

collision near the horizon. As far as the generic
spacetime is concerned, in principle it can happen
that a particle with the critical angular momentum
coming from infinity is able to reach the horizon.
However, such a possibility is model-dependent and
requires special conditions for the behavior of
the metric. Meanwhile, we are interested in features
that have general model-independent character.
Therefore, we will not discuss such particular cases,
and will assume that a particle has a near-critical
angular momentum in the near-horizon region due
simply to multiple collisions. Let us see the neces-
sary condition for this.
From the condition Z2 � 0, where Z is defined
in (7), we obtain for the nonextremal horizon using
(12) that the process under discussion can indeed
occur, but only in the narrow strip near the horizon
where

0 � N � E"ffiffiffiffiffiffi
bH

p : (18)

Thus, the energy (10) can indeed be as large as one
likes, but this happens provided a particle acquires
the near-critical angular momentum in the region
bounded by Eq. (18). If " ¼ 0 exactly, the permitted
strip (18) shrinks to the point, and we return to Case
2(i) when the effect is impossible. For the extremal
horizon, there is no limitation similar to (18) since
one can put " ¼ 0 in accordance with case 2(ii), see
also Eq. (13).

(4) For completeness, let us consider the case when
L1 ¼ L1ðHÞ, L2 ¼ L2ðHÞ simultaneously. In the non-

extremal case, it follows from (12) that the radical
cannot remain positive near the horizon and the
horizon is unreachable, so this case is irrelevant
for our analysis. For the extremal case, in the hori-
zon limit, we obtain from (13) that the terms of the
order N in the numerator cancel, so that the first
nonvanishing term has the same order N2 as the
denominator. As a result, the quantity E c:m: is
finite. However, the proper time needed to reach
the horizon is still infinite.
If we compare the meaning of limits 1 and 2, we see
that in the nonextremal case, the energy in the
center-of-mass frame is finite but can be made as
large as one likes if the angular momentum of one of
two colliding particles is arbitrarily chosen close
to the critical value. If this value is chosen exactly
equal to the critical value from the very beginning,
the energy can be made as large as one wishes when
one approaches the horizon (it becomes possible in
the extremal case only). This is direct generalization
of observations made in [1,2] for the Kerr metric.
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III. COMPARISON OF GENERAL RESULTS
WITH CASE OF KERR METRIC

It is instructive to compare some general results obtained
in our paper to those obtained earlier for the Kerr metric.
Then, for the equatorial plane � ¼ �

2 ,

g00 ¼ �
�
1� 2M

r

�
; g0� ¼ � 2Ma

r
;

g�� ¼ r2 þ a2 þ 2Ma2

r
; ! ¼ � g0�

g��

:

(19)

N2 ¼ ðr� rHÞðr� rCÞ
r2 þ a2 þ 2M

r a2
; (20)

where r is the Boyer-Lindquist coordinate, rH ¼
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, rC ¼ M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, the horizon value

of the coefficient omega is equal to !H ¼ a
2MrH

. If we

define L ¼ lEM and take E ¼ 1 (that corresponds to a
particle falling from infinity from the state of the rest), the

critical value of the angular momentum is lðHÞ ¼ 2rH
a .

Then, using (9)–(12), one can calculate the energy in the
center of mass for a collision on the horizon:

�
E c:m:

2m

�
H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Mðl1 � l2Þ2

2rCðl1 � lHÞðl2 � lHÞ

s
; (21)

which coincides exactly with Eq. (10) of [2], from which
further analysis of collisions in the Kerr metric can be
carried out.

Near the horizon, b � 2MrH
a2

, and Eq. (18) turns into

0 � r� rH � a2"2

rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

M2

q ; (22)

which is completely equivalent to Eq. (18) of [2], where

instead of ", the quantity � ¼ " 2rH
a was used. A particle

with E ¼ 1 cannot penetrate from infinity to the horizon,
but nonetheless, there is a narrow region between a hori-
zon—a potential barrier where such motion can occur that
can generate acceleration to arbitrarily large energies (see
[2] for details). Equation (21) is valid for both nonextremal
and extremal cases; Eq. (22) applies to the nonextremal
metric. In the extremal case, Eq. (14) turns into a very
simple formula:

E2
c:m:

2m2
� ð2� l2Þ

2N
ð2� ffiffiffi

2
p Þ: (23)

It can also be obtained from Eq. (17) of [10] by putting
there " ¼ 1, lH ¼ 2.
In the case E ¼ 1, substituting B1 ¼ M�1, !H ¼

ð2MÞ�1, r�M � M expð� l
MÞ, N � r�M

2M into (17), we

obtain that �� � M
ffiffi
2

p
r�M ! 1, in agreement with [2].

Thus, our general results from Sec. II correctly repro-
duce the basic formulas for the Kerr metric.

IV. DISCUSSION AND CONCLUSIONS

Thus, we suggested a very simple and direct derivation
of the effect of growing energy from first principles and
without using the explicit form of the black hole metric.
This became possible due to the fact that the relevant
region is the vicinity of the horizon only where universality
of the black hole physics reveals itself. In particular, we
generalized recent observations made for the Kerr metric in
[2] and showed that, generically, for the nonextremal rotat-
ing black hole, the horizon value of the energy in the center
of mass is finite but can be made as large as one likes if the
angular momentum of one colliding particle approaches
the critical value. In the extremal case, the energy for the
critical value of the momentum grows unbound as a hori-
zon is approached, but the proper time also does so. In this
respect, the mechanism preventing infinite energies has an
universal character.
It was stated that there are astrophysical limitations on

the significance of the effect in question due to gravita-
tional radiation, backreaction, etc. [5,6]. We did not con-
sider here the role of such mechanisms, having restricted
ourselves by the picture of geodesic motion. A separate
important task beyond the scope of the present paper that
needs further attention is to evaluate the relative role of
such effects; this also includes studying some concrete
models. There is one more obstacle to get infinitely large
energies in the nonextremal case since, generically, one
particle should acquire the critical angular momentum in
the very narrow strip near the horizon due to multiple
scattering only. Therefore, further investigation of these
issues is needed. Nonetheless, bearing in mind that the
main results described above have universal characteris-
tics, potential acceleration to large (formally, infinite) en-
ergies should be taken seriously, both as a manifestation of
general properties of black holes and as the relevant effect
in astrophysics of high energies.

ACKNOWLEDGMENTS

I thank Yuri Pavlov for his stimulating interest in this
work and fruitful discussions.

OLEG B. ZASLAVSKII PHYSICAL REVIEW D 82, 083004 (2010)

083004-4



[1] M. Banados, J. Silk, and S.M. West, Phys. Rev. Lett. 103,
111102 (2009).

[2] A. A. Grib and Y.V. Pavlov, Pis’ma v Zh. Eksp. Teor. Fiz.
92, 147 (2010).[JETP Lett. 92, 147 (2010)].

[3] S.WWei, Y. X Liu, H. Guo, and C. E. Fu, arXiv:1006.1056.
[4] K. A. Bronnikov, E. Elizalde, S. D. Odintsov, and O. B.

Zaslavskii, Phys. Rev. D 78, 064049 (2008).
[5] E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U.

Sperhake, Phys. Rev. Lett. 103, 239001 (2009).

[6] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104,
021101 (2010).

[7] A. A. Grib and Y.V. Pavlov, Mod. Phys. Lett. A 23, 1151
(2008).

[8] K. S. Thorne, Astrophys. J. 191, 507 (1974).
[9] A. J.M. Medved, D. Martin, and M. Visser, Phys. Rev. D

70, 024009 (2004).
[10] A. A. Grib and Y.V. Pavlov, arXiv:1007.3222.

ACCELERATION OF PARTICLES AS A UNIVERSAL . . . PHYSICAL REVIEW D 82, 083004 (2010)

083004-5

http://dx.doi.org/10.1103/PhysRevLett.103.111102
http://dx.doi.org/10.1103/PhysRevLett.103.111102
http://arXiv.org/abs/1006.1056
http://dx.doi.org/10.1103/PhysRevD.78.064049
http://dx.doi.org/10.1103/PhysRevLett.103.239001
http://dx.doi.org/10.1103/PhysRevLett.104.021101
http://dx.doi.org/10.1103/PhysRevLett.104.021101
http://dx.doi.org/10.1142/S0217732308027072
http://dx.doi.org/10.1142/S0217732308027072
http://dx.doi.org/10.1086/152991
http://dx.doi.org/10.1103/PhysRevD.70.024009
http://dx.doi.org/10.1103/PhysRevD.70.024009
http://arXiv.org/abs/1007.3222

