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Using the covariant formalism developed in a companion paper [F.-Q. Wu, L. E. Qiang, X. Wang, and

X. Chen, preceding Article, Phys. Rev. D 82, 083002 (2010)] (paper I), we derive observational

constraints on the Brans-Dicke model in a flat Friedmann-Lemaı̂tre-Robertson-Walker universe with a

cosmological constant and cold dark matter. The CMB observations we use include the Wilkinson

Microwave Anisotropy Probe 5 yr data, the Arcminute Cosmology Bolometer Array Receiver 2007 data,

the Cosmic Background Imager polarization data, and the Balloon Observations of Millimetric

Extragalactic Radiation and Geophysics 2003 flight data. For the large scale structure we use the matter

power spectrum data measured with the luminous red galaxy survey of the Sloan Digital Sky Survey Data

Release 4. We parametrize the Brans-Dicke parameter ! with a new parameter � ¼ lnð1=!þ 1Þ, and use
the Markov-Chain Monte Carlo method to explore the parameter space. We find that using CMB data

alone, one could place some constraints on positive � or !, but negative � or ! could not be constrained

effectively. However, with additional large scale structure data, one could break the degeneracy at � < 0.

The 2� (95.5%) bound on � is �0:008 37< � < 0:010 18 (corresponding to !<�120:0 or !> 97:8).

We also obtained constraints on _G=G, the rate of change of G at present, as �1:75� 10�12 yr�1 <
_G=G< 1:05� 10�12 yr�1, and �G=G, the total variation of G since the epoch of recombination, as

�0:083< �G=G< 0:095 at the 2� confidence level.
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I. INTRODUCTION

The Jordan-Fierz-Brans-Dicke theory [1–5] (hereafter
the Brans-Dicke theory for simplicity) is the most natural
alternative to the standard general relativity theory and
the simplest example of a scalar-tensor theory of gravity
[6–10]. The gravitational constant becomes a function of
space and time, and is proportional to the inverse of a scalar
field. Its action in the usual (Jordan) frame is

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

��Rþ!

�
g��r��r��

�
þSðmÞ;

(1)

where � is the Brans-Dicke field, ! is a dimensionless

parameter, and SðmÞ is the action for the ordinary matter

fields SðmÞ ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

LðmÞ. For convenience, we also

define a dimensionless field

’ ¼ G�; (2)

where G is the Newtonian gravitational constant. The
Einstein equations are then generalized to

G�� ¼ 8�G

’
TðmÞ
�� þ !

’2

�
r�’r�’� 1

2
g��r�’r�’

�

þ 1

’
ðr�r�’� g��r�r�’Þ; (3)

where TðmÞ
�� is the stress tensor for all matter except for the

Brans-Dicke field, and the equation of motion for ’ is

rara’ ¼ 	

2!þ 3
TðmÞ�
� : (4)

In order to match the result of Cavendish-type experi-
ments, the present-day value of ’ should be

’0 ¼ 2!þ 4

2!þ 3
: (5)

The original motivation of Brans-Dicke theory is the
idea that the gravitational constant G ought to be related to
the average value of a scalar field, which is determined by
the mass density of the Universe, so that the Mach princi-
ple is satisfied [4,5]. Later, it is noted that scalar-tensor
gravity appears in the low-energy limit of supergravity
theories from string theory [11] and other higher-
dimensional gravity theories [12]. The Brans-Dicke field
may be associated with the dilaton-graviton sector of the
string effective action [11,13]. The dimensionless parame-
ters in string theory—including the value of the string
coupling constant—can ultimately be traced back to the
vacuum expectation values of scalar fields [14].
The unexpected discovery of the accelerating expansion

of the Universe [15–17] forced us to look for an explanation
of the so-called ‘‘dark energy’’ which may drive such
acceleration. Scalar fields rolling down a proper potential
may serve as a dynamical dark energy model [18–24].
However, in these phenomenological models, the scalar
fields are added by hand, and the connection to fundamental
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physics is often unclear. The Brans-Dicke field � is a
natural candidate for the scalar field; this is the so-called
‘‘extended quintessence’’ scenario [25–31]. Alternatively,
Brans-Dicke theory could also serve as an effective model
of fðRÞ gravity, in which gravity is invoked to explain the
cosmic acceleration [28,32–45].

Brans-Dicke theory is reduced to Einstein theory in the
limit of

! ! 1; ’0 ! 0; ’00 ! 0: (6)

So in some sense it could never be excluded completely
even if Einstein’s general relativity theory turns out to be
the final word on the classical theory of gravitation. So far,
no significant deviation from Einstein theory has been
discovered, and the most stringent limit on Brans-Dicke
theory comes from Solar-System experiments which con-
strain the parametrized post-Newtonian (PPN) parameter

 ¼ ð1þ!Þ=ð2þ!Þ. A recent significant result was re-
ported in 2003 using the Doppler tracking data of the
Cassini spacecraft while it was on its way to Saturn, with

� 1 ¼ ð2:1� 2:3Þ � 10�5 at the 2� confidence level
[46], which corresponds to about j!j> 40 000. The limi-
tation of such experiments is that they are ‘‘weak-field’’
experiments and probe only a very limited range of space
and time. They could not reveal spatial or time variations of
the gravitational constant on larger scales.

It has long been known that cosmological observations
such as the CMB and large scale structure (LSS) could be
used to test Brans-Dicke theory [47–58]. While the con-
straints obtainable with such methods are generally weaker
than the Solar System tests, they probe a much larger range
of space and time. In recent years, with the launch of the
Wilkinson Microwave Anisotropy Probe (WMAP) satel-
lite, and the completion of the 2 degree field and Sloan
Digital Sky Survey (SDSS), it is interesting to put such a
test into practice.

In 2003, Nagata et al. used the WMAP first-year
data and �2 test method to derive a constraint on the
Brans-Dicke parameter. They obtained !> 1000 at the
2� confidence level [54]. However, in 2004, Acquaviva
et al. obtained a new constraint using a Markov-Chain
Monte Carlo approach with CMB data from the WMAP
first-year data, the Arcminute Cosmology Bolometer Array
Receiver (ACBAR), Very Small Array (VSA), and Cosmic
Background Imager (CBI) data, and the galaxy power
spectrum data from 2dF. They obtained a result of !>
120 at the 2� confidence level [55]. These two limits differ
by an order of magnitude. We are unable to reproduce the
result of Ref. [54], but we did reproduce successfully the
result of Ref. [55] using the procedures described in their
paper and the same data set as they used.

Nevertheless, as will be discussed in the next section,
there is room for improvement upon the method used
in Ref. [55]. Moreover, new CMB and LSS data have
since become available; it is therefore time to revisit this

problem with a new approach and update the constraint
with the latest observational data.
We have developed a covariant and gauge-invariant

method for calculating the CMB anisotropy in Brans-
Dicke theory; the formalism of our approach is presented
in the companion paper [59] (paper I). In the present paper,
we apply the method developed in paper I and use the latest
CMB data and large scale structure data to constrain the
Brans-Dicke parameters. Here we consider only the case of
the massless Brans-Dicke model with cold dark matter and
a cosmological constant. The more interesting case of the
Brans-Dicke field with an interacting potential will be
investigated in a future study.

II. METHODS

The formalisms for calculating CMB angular power spec-
tra and the matter power spectrum in Brans-Dicke theory
with the covariant and gauge-invariant methods are presented
in paper I. We also described in that paper the numerical
implementation of the method in the CMB code CAMB [60].
The results of the modified CAMB code have been checked
with the results given by Chen and Kamionkowski (1999)
in Ref. [52], which was based on a modified version of
CMBFAST in the synchronous gauge. The outputs of the two

codes show excellent agreement. Our new code has been
implemented with some techniques to improve the architec-
ture of the program, and the code is much faster than the old
one. We refer the reader to paper I for more details.
We consider deriving the constraint on the Brans-Dicke

model with the observational data using the Markov-Chain
Monte Carlo (MCMC) simulation. The CAMB code is used
by the publicly available COSMOMC code [61] as the driver
for calculating the CMB angular power spectra and matter
power spectrum. Here we use the modified CAMB code in
the COSMOMC simulation.
The data we used to constrain the Brans-Dicke model

are the latest cosmic microwave background power
spectrum data, which include the WMAP five-year [62],
ACBAR 2007 [63], CBI polarization [64], and Balloon
Observations of Millimetric Extragalactic Radiation and
Geophysics (BOOMERANG 2003 [65–67] data. We also
use the galaxy clustering power spectrum data derived from
the SDSS luminous red galaxy (LRG) survey DR4 [68].
We do not use the type Ia supernovae (SNe Ia) data when

making the constraint in this paper, because the value of
the gravitational constant varies during the expansion of
the Universe. We know that the Chandrasekhar mass

MCh / G�3=2. The variation of the gravitational constant
G means that the peak luminosity of SNe, which is
approximately proportional to the Chandrasekhar mass,
will change, so the supernovae cannot be assumed to be
standard candles in this model.
Besides the Brans-Dicke parameter, the cosmological

parameters explored in our MCMC simulation are
{�bh

2, �mh
2, �, , ns, logð1010AsÞ, ASZg. �bh

2, �mh
2
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are the baryon and matter densities, respectively. The �
parameter represents the ratio between the sound horizon
and the angular diameter distance to the last scattering
surface; it is used in lieu of the Hubble parameter h since
it is less correlated with other parameters.  is the optical
depth to reionization, As is the amplitude of the primordial
superhorizon power spectrum in the curvature perturbation
on the 0:05 Mpc�1 scale, ns is the scalar spectral index,
and ASZ characterizes the marginalization factor of the
Sunyaev-Zel’dovich effect. We only consider the Brans-
Dicke model in a flat universe with the cosmological
constant as dark energy. We assume flat priors for these
parameters, and the allowed ranges of the parameters are
wide enough such that further increasing the allowed
ranges has no impact on the results.

In any Bayesian approach to the error estimate and
parameter constraint, the result will depend somewhat on
the parametrization and prior. The original Brans-Dicke
parameter! is inconvenient to use, because it is unbounded,
and the Einstein limit appears at ! ! 1. Even if one
restricts the allowed range of ! to some finite interval, the
large ! region would be unduly favored, because in such a
region the difference in the CMB and LSS produced by
models of different ! becomes indiscernibly small.

Acquaviva et al. introduced a variable ln� ¼ ln½1=ð4!Þ�
in Ref. [55], and set its prior to be uniform in the range
ln� 2 ½�9; 3�, corresponding to ! 2 ½0:01; 2025:77�. The
choice of the lower limit of ln� is motivated by the fact that
for !> 2000, visual inspections show that the CMB
angular power spectra become insensitive to !. This
parametrization is workable, but has some drawbacks: first,
it does not include the negative values of !, and second,
the lower limit of ln�min ¼ �9, while ostensibly a reason-
able choice, is nonetheless put in by hand and is quite
arbitrary. In fact, the 2� limit would be sensitive to this
artificial choice because the likelihood is high and almost
flat at ln� <�9, so if one varies the lower limit ln�min, the
overall normalization of the posterior probability distribu-
tion function would be directly affected.

In this paper, we introduce a new parameter which is
more convenient to use:

� ¼ ln

�
1þ 1

!

�
: (7)

This parameter has the nice property that � ! 0 asymptotes
the Einstein gravity, and it is easy to obtain the two-sided
(i.e. allows negative !) likelihood distribution around
� ¼ 0. � � 1=! when ! is a large number (i.e. very close
to Einstein gravity). We set the allowed range as � 2
½�0:014; 0:039�, which brackets the Einstein gravity case,
and corresponding to ! 2 ½�1;�71� [ ½25;1�. There is
no arbitrary limit on large the j!j value, but only a limit on
the small j!j value. Outside this range, i.e.�71<!< 25,
our numerical code breaks down, because the background
evolution deviates too much from the standard model.
However, as we are looking primarily for small departures

from Einstein gravity, this is not a big concern, and large
departures would have been easily detected by other means
as well. When making plots of the likelihood, we do take
into account the range of allowed parameters, so that the
probability is properly normalized. Unavoidably, this arti-
ficial restriction on the parameter range has some effect on
the final result, but as long as the final probability distribu-
tion is much smaller than the allowed range, it would not
fundamentally change our conclusion.

III. RESULTS

A. Constraint on Brans-Dicke theory

The one-dimensional marginalized likelihood distribu-
tions for � are shown in Fig. 1. The three curves are
obtained with the WMAP data alone (magenta dash-dot
curve), with all CMB data, i.e. WMAP, ACBAR, CBI,
and BOOMERANG data (blue dashed curve), and with
all CMB data as well as the LSS data from the SDSS
LRG survey (red solid curve). Interestingly, using only the
CMB data, we find that a negative � is favored. Indeed, the
two curves obtained with only the CMB data decline very
slowly at � < 0, making it difficult to obtain a limit on
negative � with them, sowe could not easily quote a number
for the CMB-only constraint. However, with the additional
constraint from the large scale structure data, the best-fit
value of � goes back to the neighborhood of zero, and the
likelihood declines rapidly (almost Gaussian) at negative � .
This shows that the large scale structure data play a very
important role in constraining Brans-Dicke gravity.
To understand this result in more detail, we consider

three models: (1) the original best-fit minimal (six parame-
ters) �CDM model with Einstein gravity obtained by the

FIG. 1 (color online). The one-dimensional marginalized like-
lihood distributions for the parameter � . ‘‘WMAP5’’ denotes
WMAP 5-yr data. ‘‘ALL CMB’’ represents WMAP 5-yr data
plus some small scale data and polarization data, i.e. ACBAR
2007 [63], CBI polarization [64], and BOOMERANG 2003
[65–67] data. ‘‘LSS’’ means galaxy clustering power spectrum
data from SDSS DR4 LRG data.
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WMAP team using their 5-yr CMB data combined with the
distance measurement from SN and baryon acoustic oscil-
lations in the distribution of galaxies [69], which is marked
as ‘‘WMAP �CDM’’ in the figure; (2) the best-fit Brans-
Dicke model using only WMAP 5-yr CMB data, which is
marked as ‘‘WMAP5’’ in the figure; and (3) the best-fit
Brans-Dicke model using all CMB data as well as the
SDSS LRG data, which is marked as ‘‘All CMBþ LSS’’
in the figure.

The CMB angular power spectra and linear galaxy
power spectra for these models are plotted in Figs. 2 and
3 respectively.

As shown in Fig. 2, due to parameter degeneracy, the
differences between the three curves of CMB are almost
indiscernible: for a slightly negative � , the Brans-Dicke
model could produce CMB spectra which fit the data very
well. However, as shown in Fig. 3, the matter power spectra
are quite different. The Brans-Dicke model which best fits
the CMB data does not fit the galaxy power spectra very
well. To be sure, if one also allows the bias parameter as a
free parameter, the fit could be somewhat improved; never-
theless, it still fails compared to the model obtained by
fitting both the CMB and LSS data. Thus, we see that the
galaxy power spectrum data could play an important role in
distinguishing models, even though when used alone their
constraining power is relatively weak.

The 95% marginalized bound we derive in this paper is

� 0:008 37< � < 0:010 18; (8)

corresponding to

!<�120:0 or !> 97:8: (9)

We note that when comparing this result with that of
Ref. [55], one must remember that we have adopted differ-
ent parametrizations and priors. In fact, we have used CMB
data with higher precision (WMAP 5 yr vs WMAP 3 yr),
and additionally we used the LSS data (SDSS), which they
did not use. Despite this improvement in data quality, the
limit we derived appears to be slightly weaker than theirs.
This is due to the different parametrization and prior we
used; particularly, we allowed negative !, which was not
considered in Ref. [55].
To better understand the degeneracy and the 2D like-

lihood space distribution, we plot the 2D contours of the
marginalized likelihood distributions of � against �� in
Fig. 4. Einstein gravity with �� � 0:75 is still the best-fit

FIG. 3 (color online). The linear galaxy power spectra given
by the three best-fit models compared with SDSS LRG DR4 data
[68]. We adopt an original value of bias of b ¼ 1:9 as given in
Ref. [68]. For the best-fit model using only WMAP 5-yr data, we
also plot the result adjusting the b value to 2.2 to better fit the
galaxy power spectrum, for comparison.

FIG. 2 (color online). CMB angular power spectra data with
the predictions of three best-fit models; see text for details.

FIG. 4 (color online). The 2D contours of the marginalized
likelihood distribution of � against ��.

FENG-QUAN WU AND XUELEI CHEN PHYSICAL REVIEW D 82, 083003 (2010)

083003-4



model for the All CMBþ LSS data set. If � is greater,��

should also be greater, and vice versa.

B. Constraint on cosmological parameters

In Fig. 5, we plot one-dimensional marginalized like-
lihood distributions for other parameters in Brans-Dicke
theory (red solid curves); for comparison, we also plot
the same distributions in the general relativity case (black
dotted curves), which fixes � ¼ 0, using the same data
set—‘‘All CMBþ LSS,’’ i.e. all CMB data combined
with the LSS data from the SDSS LRG survey. The pa-
rameters in the top two rows of panels are the primary
cosmological parameters used in the MCMC program,
and the parameters in the bottom two rows of panels are
the derived parameters (not the parameters really run in the
MCMC code). We see that the best-fit values of the pa-
rameters are almost unchanged. Furthermore, for most of
the primary parameters, the width of the likelihood distri-
bution is also unchanged. Only the distribution of the dark
matter density parameter �ch

2 is slightly broader. For the
derived parameters, the best-fit values are also basically
unchanged. However, the likelihood distributions for most
parameters are broader, showing that the introduction of
the Brans-Dicke model allows a larger uncertainty in these
parameters. The notable exception is the reionization red-
shift zre which is basically unaffected.

The 2D contours of the marginalized likelihood distri-
butions of � against other cosmological parameters are
shown in Fig. 6. As can be seen in the upper two rows of
panels, there are apparently not many correlations between
� and the other primary cosmological parameters used in
the MCMC program, such as �bh

2, �mh
2, �, , ns, and

logð1010AsÞ. However, from Fig. 4 and the lower two rows
of panels of Fig. 6, we see that � is correlated with�� and
the derived parameters, including the age of the Universe,
H0,�m, and �8, though there is almost no correlation with
the reionization redshift zre.
We summarize the 68% confidence limits on cosmologi-

cal parameters in Table I. Note that our pivot wave number
k0 ¼ 0:05 Mpc�1 of the primordial power spectrum is
different from that of the WMAP group 5-yr data release
(k0 ¼ 0:002 Mpc�1), and the set of primary parameters
we used is also slightly different from the one used by the
WMAP group, as they used �� instead of � as a primary
parameter. As we have mentioned, the � parameter is less
correlated with � ; hence our choice in this case could help
improve the efficiency of the MCMC method. The data
used by the WMAP group [69] are the WMAP 5-yr data,
type Ia supernovae data, and baryon acoustic oscillation
data. We have not included the supernovae data, which we
considered unreliable in the case of modified gravity. From
Table I, we find that our best-fit values of cosmological
parameters are generally consistent with the WMAP group
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FIG. 5 (color online). The one-dimensional marginalized probability distributions for the other cosmological parameters in Brans-
Dicke theory and in general relativity. Data are all CMB data and the LSS data from the SDSS LRG survey (i.e. all CMBþ LSS). Red
solid curves are results for Brans-Dicke gravity, and black dashed curves represent the case for the �CDM model in general relativity.
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result at the 1-� confidence level; however, our constraints
are a bit weaker than those given by the WMAP group, as
we have added the Brans-Dicke parameter, and also used
somewhat different data sets.

C. Constraint on the variation of
the gravitational constant G

An interesting question is what limit one could place on
the variation of the gravitational constantG using the CMB

TABLE I. Summary of cosmological parameters and the corresponding 68% intervals.

Class Parameter WMAP5 All CMB All CMBþ LSS WMAP group [69]

Primary �bh
2 0:021 90þ0:000 73

�0:000 62 0:022 00þ0:000 69
�0:000 52 0:022 29þ0:000 33

�0:000 71 0:022 65� 0:000 59

�ch
2 0:1040þ0:0089

�0:0049 0:1064þ0:0077
�0:0039 0:1066þ0:0042

�0:0046 0:1143� 0:0034

� 1:0391þ0:0049
�0:0024 1:0425þ0:0032

�0:0028 1:0432þ0:0018
�0:0030

 0:088þ0:009
�0:009 0:085þ0:011

�0:007 0:093þ0:001
�0:014 0:084� 0:016

ns 0:947þ0:035
�0:006 0:956þ0:027

�0:012 0:962þ0:015
�0:011 0:960þ0:014

�0:013

log½1010As� 3:034þ0:074
�0:024 3:050þ0:065

�0:024 3:070þ0:030
�0:047 As ¼ ð2:457þ0:092

�0:093Þ � 10�9

Derived �� 0:780þ0:100
�0:009 0:789þ0:076

�0:093 0:753þ0:029
�0:031 0:721� 0:015

�b 0:0462� 0:0015
�c 0:233� 0:013

Age/Gyr 14:09þ0:97
�1:00 13:82þ0:82

�1:13 13:63þ0:49
�0:44 13:73� 0:12Gyr

�m 0:210þ0:085
�0:085 0:218þ0:093

�0:076 0:247þ0:031
�0:029

�8 0:789þ0:053
�0:055 0:817� 0:026

zre 10:4þ1:7
�1:5 10:2þ1:8

�1:4 10:9þ0:9
�1:8 10:8� 1:4

H0 63:5þ12:4
�11:6 64:4þ14:2�9:7 72:3þ5:0

�4:7 70:1� 1:3
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and LSS observations. In Brans-Dicke theory, G also
underwent evolution from the time of recombination to
the present time; the variation in G is correlated with the
value of � , so we can also derive a limit on the variation of
G. Of course, this evolution is not arbitrary, but determined

by the dynamical equation (4), so when citing the bounds
on variation ofG obtained in this way, one has to remember
its limitations. Nevertheless, we note that in Brans-Dicke
theory, the impact on CMB and LSS comes mainly from
the variation of G [52,59], so the result obtained this way
could still serve as a good reference value.
For making this constraint, we introduce two derived

variables in the MCMC, namely, the rate of change of the
gravitational constant _G=G at present and the integrated
change of the gravitational constant since the epoch of
recombination �G=G:

_G=G � � _’=’; �G=G � ðGrec �G0Þ=G0: (10)

The one-dimensional marginalized likelihood distributions
of _G=G and �G=G are plotted in Figs. 7 and 8, respec-
tively. The ‘‘WMAP5’’ and the ‘‘ALL CMB’’ data both
favor a slightly nonzero (positive) _G=G. With the addition
of the SDSS power spectrum data, however, the best-fit
value is back to zero. From these figures, we could still see
some effect of the prior, as the likelihoods are still nonzero
or, at best, just approaching zero at the edge of the figures.
Nevertheless, with the LSS data added, the likelihood is
quite symmetric around the central value.
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FIG. 8 (color online). One-dimensional marginalized likeli-
hood distributions of �G=G.
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FIG. 7 (color online). One-dimensional marginalized likeli-
hood distributions of _G=G.

FIG. 9 (color online). The 2D contours of the marginalized
likelihood distribution of � against _G=G.

FIG. 10 (color online). The 2D contours of the marginalized
likelihood distribution of � against �G=G.
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With this caveat in mind, we derive the following 2�
(95.4%) constraints:

�1:75�10�12 yr�1< _G=G<1:05�10�12 yr�1 (11)

and

� 0:083< �G=G< 0:095: (12)

We also plot 2D contours of marginalized likelihood
distributions of � versus _G=G and �G=G in Figs. 9 and
10, respectively. As expected, the variation of the gravita-
tional constant is strongly correlated with the value of � in
this model.

Some previous constraints on these two variables, to-
gether with the result of the present paper, are summarized
in Table II. We note that in order to obtain such a con-
straint, one has to make some assumptions, either in the
underlying theoretical model or in the wayG varies. This is
particularly true for the case of constraints derived from
CMB and LSS, as the impact of varying G on these are
manifold. For example, Ref. [77] modeled the variations of
G by some hypothetical functions, Ref. [78] parametrizes
the evolution of G as three forms (constant, linear, and
Heaviside functions), while the present paper assumed the
Brans-Dicke model. One has to be careful when comparing
the different limits, as the assumptions made are often
different. Nevertheless, from this table we can get a feeling
of the current limits on the variation of gravitational
constants.

IV. CONCLUSION

In this paper, we use the currently available CMB
(WMAP 5 yr [62], ACBAR 2007 [63], CBI polarization
[64], and BOOMERANG 2003 [65–67]) and the LSS
data (galaxy clustering power spectrum from SDSS DR4
LRG data [68]) to constrain Brans-Dicke theory. We use
the covariant and gauge-invariant method developed in
paper I to calculate the CMB angular power spectrum
and LSS matter power spectrum.

To explore the parameter space, we use the MCMC
technique. We parametrize ! with a new parameter,

� ¼ lnð1=!þ 1Þ, in order to explore the likelihood distri-
bution of the Brans-Dicke parameter ! in a continuous
interval. This method of parametrization is approximately
equivalent to � ¼ 1=!when! is a large number. It allows
consideration of a negative ! value, and also there is no
arbitrary upper limit on j!j (due to a numerical problem,
one has to choose a lower limit for j!j). We explore in
the range � 2 ½�0:014; 0:039�, corresponding to ! 2
½�1;�71� [ ½25;1�.
We found that while the CMB observation could con-

strain models with positive !, for the present data set and
best-fit parameter values, there is some degeneracy at
!< 0. The LSS data could effectively remove this degen-
eracy. Finally, using the CMB and LSS data, we obtain a
2� (95.5%) limit on � as �0:008 37< � < 0:010 18, cor-
responding to !<�120:0 or !> 97:8. These limits
may appear weaker than the previous limit obtained by
Ref. [55], even though we used later data. However, this
difference is largely due to the different assumption made
in the constraint. Particularly, we consider the case of !<
0, which was not considered in Ref. [55]. As expected, the
current limit on ! derived from CMB and LSS data is
much weaker than those derived from Solar System tests.
However, the large temporal and spatial range probed by
these observations make it a useful complement to the
latter.
To examine whether the gravitational coupling is really

a constant, we introduced two newly derived parameters
in our MCMC code: one is _G=G, the rate of change of
the gravitational ‘‘constant’’ G at present, and the other
is �G=G, the integrated change of G since the epoch
of recombination. We obtain the 2� limit for these
two variables as �1:75� 10�12 yr�1 < _G=G< 1:05�
10�12 yr�1 and �0:083< �G=G< 0:095, respectively.
These limits are still somewhat weaker than the those of
the Solar System, but again they probed larger scales.
Especially for this test, the assumptions made in each
technique could be quite different, which one must bear
in mind when making comparisons.
The Planck satellite [79] is expect to begin operation and

bring back even better CMB data. The SDSS-3 Baryon

TABLE II. Constraints on the rate of variations of the gravitational constant. The errors are 1�
unless otherwise noted.

Parameter Value Method Reference

_G=G [10�13 yr�1] 2� 7 Lunar laser ranging Muller & Biskupek 2007 [70]

0� 4 Big bang nucleosynthesis Copi et al. 2004 [71]

Bambi et al. 2005 [72]

0� 16 Helioseismology Guenther et al. 1998 [73]

�6� 20 Neutron star mass Thorsett 1996 [74]

20� 40 Viking lander ranging Hellings et al. 1983 [75]

40� 50 Binary pulsar Kaspi et al. 1994 [76]

�96–81 (2�) CMB (WMAP3) Chang & Chu 2007 [77]

�17:5–10:5 (2�) CMBþ LSS Wu & Chen 2009 (this paper)
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Oscillation Spectroscopic Survey [80], WiggleZ [81],
and Large Sky Area Multi-Object Fiber Spectroscopic
Telescope surveys [82] are expected to measure galaxy
power spectra at higher redshifts and with better precision.
We look forward to obtaining more stringent constraints on
Brans-Dicke theory and other scalar-tensor gravity models
in the near future.
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