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In the covariant cosmological perturbation theory, a 1þ 3 decomposition ensures that all variables in

the frame-independent equations are covariant and gauge invariant and that they have clear physical

interpretations. We develop this formalism in the case of Brans-Dicke gravity, and apply this method to

the calculation of CMB anisotropy and large scale structures. We modify the publicly available Boltzmann

code CAMB to calculate numerically the evolution of the background and adiabatic perturbations, and

obtain the temperature and polarization spectra of Brans-Dicke theory for both scalar and tensor modes;

the tensor mode results for Brans-Dicke gravity are obtained numerically for the first time. We first present

our theoretical formalism in detail, and then explicitly describe the techniques used in modifying the

CAMB code. These techniques are also very useful for other gravity models. Next we compare the CMB

and large scale structure spectra in Brans-Dicke theory with those in the standard general relativity theory.

At last, we investigate the integrated Sachs-Wolfe effect and the CMB lensing effect in Brans-Dicke

theory. Constraints on the Brans-Dicke model with current observational data are presented in a

companion paper [F. Wu and X. Chen, following Article, Phys. Rev. D 82, 083003 (2010)] (paper II).
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I. INTRODUCTION

The Jordan-Fierz-Brans-Dicke theory [1–5] (hereafter
Brans-Dicke theory for simplicity) is a natural alternative
and a simple generalization of Einstein’s general relativity
theory; it is also the simplest example of a scalar-tensor
theory of gravity [6–10]. In Brans-Dicke theory, the purely
metric coupling of matter with gravity is preserved, thus
ensuring the universality of free fall (equivalence princi-
ple) and the constancy of all nongravitational constants.
From early on, testing Brans-Dicke theory with CMB
anisotropy has been considered [11]. However, the usual
approach is to use a metric-based and gauge-dependent
method, i.e. making the calculation with a particular
gauge; see, e.g., Refs. [12–16].

The covariant approach to general relativity (GR)
is an elegant solution to the ‘‘gauge problem’’ which
has plagued the study of linear perturbation in gauge-
dependent methods since the pioneering work of Lifshitz
[17]. Before this problem was recognized, contradictory
predictions of the behavior of perturbation of Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmologies were
made. In 1980, Bardeen reformulated the metric approach
using gauge-invariant variables [18] (see also Ref. [19] for
a review on the variables, which has been widely used in
recent perturbation calculations). However, as pointed out
by Ellis [20], although the Bardeen variables are related to
the density perturbations, they are not those perturbations
themselves, since they include Fourier components of the
metric tensor and other quantities in cunning combina-
tions. The physical meaning of Bardeen’s gauge-invariant

variables is not always transparent. As emphasized by
Hawking [21], the metric tensor cannot be measured di-
rectly, so it is not surprising that the variables used in the
metric-based method do not always have a clear physical
interpretation.
The covariant approach to general relativity and cosmol-

ogy has its origins in the work of Heckmann, Schücking,
Raychaudhuri, and Hawking [21–23]. In 1989, Ellis and
Bruni proposed using the spatial gradient of matter density
(Da�) as the basic variable to describe density perturbations
[20]. Subsequently, the cosmological applications have
been developed extensively by Ellis and others in recent
years [24–40]. The method has also been applied to
problems in CMB physics [41–44]. Instead of using the
components of the metric as basic variables, the covariant
formalism performs a 1þ 3 split of the Bianchi and
Ricci identities, using the kinematic quantities, energy-
momentum tensors of the fluid(s), and the gravito-
electromagnetic parts of the Weyl tensor to study how
perturbations evolve. The most notable advantage of this
method is that the covariant variables have transparent
physical definitions, which ensures that predictions are
always straightforward to interpret physically. Other advan-
tages include the unified treatment of scalar, vector, and
tensor modes; a systematic linearization procedure which
can be extended to consider higher-order effects (this means
the covariant variables are exactly gauge invariant, inde-
pendent of any perturbative expansion); and the ability to
linearize about a variety of background models, e.g. either
the FLRW or the Bianchi models [45,46].
A pioneering work in applying the covariant approach to

Brans-Dicke theory is Ref. [47], in which a conformal
transformation was performed and the calculation was
done in the Einstein frame. More recently, Refs. [48,49]

*wufq@bao.ac.cn
†xuelei@cosmology.bao.ac.cn

PHYSICAL REVIEW D 82, 083002 (2010)

1550-7998=2010=82(8)=083002(17) 083002-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.083002


chose the effective fluid frame, implying Da� ¼ 0 and
!ab ¼ 0; i.e. their foliation selects vorticity-free spacelike
hypersurfaces in which � ¼ const, and hence greatly sim-
plifies the calculations.

The aim of this paper is to construct a full set of covariant
and gauge-invariant linearized equations to calculate angu-
lar power spectra of CMB temperature and polarization
anisotropies in the cold dark matter (CDM) frame, and to
show that the covariant method will lead to a clear, mathe-
matically well-defined description of the evolution of den-
sity perturbations. In a companion paper [50] (hereafter
denoted paper II), we shall apply the formalism developed
in this paper to the latest CMB and large scale structure data
to obtain constraints on the Brans-Dicke parameter.

In Sec. II, we briefly review Brans-Dicke theory and its
background cosmological evolution. The formalism of co-
variant perturbation theory is presented in Sec. III and the
numerical implementation in Sec. IV. We discuss the re-
sults on primary anisotropy in Sec. V. The integrated
Sachs-Wolfe (ISW) effect and gravitational lensing are
discussed in Sec. VI. Finally, we summarize and conclude
in Sec. VII.

Throughout this paper we adopt the metric signature
ðþ ���Þ. Our conventions for the Riemann and Ricci
tensors are fixed by ½ra;rb�uc ¼ Rabcdu

d, where ra

denotes the usual covariant derivative, and Rab � Racb
c.

We use @a to represent an ordinary derivative. The spatially
projected part of the covariant derivative is denoted by Da.
The index notation Al denotes the index string a1 . . . al.
Round brackets around indices denote symmetrization on
the indices enclosed, square brackets denote antisymmet-
rization, and angled brackets denote the projected symmet-
ric and trace-free (PSTF) parts. We adopt � ¼ 8�G and
use units with ℏ ¼ c ¼ kB ¼ 1 throughout. In the numeri-
cal work we use Mpc as units for distance.

II. BRANS-DICKE THEORYAND
BACKGROUND COSMOLOGY

Brans-Dicke theory is a prototype of the scalar-tensor
theory of gravity. One of its original motivations is to
realize Mach’s principle of inertia [4,5]. It introduced a
new degree of freedom of the gravitational interaction in
the form of a scalar field nonminimally coupled to the
geometry. The action for Brans-Dicke theory in the usual
(Jordan) frame is

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

��Rþ!

�
g��r��r��

�
þSðmÞ;

(1)

where � is the Brans-Dicke field, ! is a dimensionless

parameter, and SðmÞ is the action for the ordinary matter

fieldsSðmÞ ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

LðmÞ. Matter is not directly coupled

to �, in the sense that the Lagrangian density LðmÞ does
not depend on �. For convenience, we also define a dimen-
sionless field

’ ¼ G�; (2)

where G is the Newtonian gravitational constant measured
today. The Einstein field equations are then generalized to

G�� ¼ 8�G

’
TðmÞ
�� þ !

’2

�
r�’r�’� 1

2
g��r�’r�’

�

þ 1

’
ðr�r�’� g��r�r�’Þ; (3)

where TðmÞ
�� is the stress tensor for all other matter except

for the Brans-Dicke field, and it satisfies the energy-

momentum conservation equation, r�TðmÞ
�� ¼ 0. The equa-

tion of motion for ’ is

rara’ ¼ �

2!þ 3
TðmÞ: (4)

Here TðmÞ ¼ T
ðmÞ�
� is the trace of the energy-momentum

tensor. The action (1) and the field equation (3) suggest that
the Brans-Dicke field � plays the role of the inverse of the
gravitational coupling, Geffð’Þ ¼ 1

� ¼ G
’ , which becomes a

function of the space-time point.
For background cosmology, we treat ordinary matter as

a perfect fluid with energy density � and pressure P,

TðmÞ
�� ¼ ð�þ PÞu�u� � Pg��: (5)

The equations describing the background evolution are

�0 þ 3H ð�þ PÞ ¼ 0; (6)

H 2 ¼ �S2

3’
�þ!

6

�
’0

’

�
2 �H

’0

’
; (7)

’00 þ 2H’0 ¼ �S2

2!þ 3
ð�� 3PÞ; (8)

where the prime denotes the derivative with respect to
conformal time �, S is the scale factor, and H ¼ S0=S.
General relativity is recovered in the limits

! ! 1; ’0 ! 0; ’00 ! 0: (9)

To recover the value of Newton’s gravitational constant
today, which is determined by Cavendish-type experi-
ments, we also require that the present-day value of ’ be
given by

’0 ¼ 2!þ 4

2!þ 3
: (10)

III. PERTURBATION THEORY

A. The 1þ 3 covariant decomposition

The main idea of the 1þ 3 decomposition is to make
space-time splits of physical quantities with respect to the
four-velocity ua of an observer. There are many possible
choices for the frame, for example, the CMB frame in
which the dipole of CMB anisotropy vanishes, or the local
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rest frame of matter. These frames are generally assumed
to coincide when averaged on a sufficiently large scale.
Here it will be convenient to choose ua to coincide with the
velocity of the CDM component, since ua is then geodesic,
and acceleration vanishes. From the four-velocity ua,
we could construct a projection tensor hab into the space
perpendicular to ua (the instantaneous rest space of
observers whose four-velocity is ua):

hab � gab � uaub; (11)

where gab is the metric of the space-time. Since hab is a
projection tensor, it can be used to obtain a covariant tensor
perpendicular to ua, and it satisfies

hab ¼ hðabÞ; uahab ¼ 0; hcahcb ¼ hab; haa ¼ 3:

(12)

With the timelike four-velocity ua and its tensor coun-
terpart hab, one can decompose a space-time quantity into
irreducible timelike and spacelike parts. For example, we
can use ua to define the covariant time derivatives of a
tensor Tb...c

d...e:

_T b...c
d...e � uaraT

b...c
d...e : (13)

Furthermore, we can exploit the projection tensor hab to
define a spatial covariant derivative Da which returns a
tensor that is orthogonal to ua on every index:

DaTb...c
d...e � haph

b
r . . .h

c
sh

t
d . . . h

u
erpTr...s

t...u: (14)

If the velocity field ua has vanishing vorticity, Da reduces
to the covariant derivative in the hypersurfaces orthogonal
to ua. The PSTF parts of the vectors and rank-2 tensors are

Vhai ¼ ha
bVb; (15)

Thabi ¼ hha
chbi

dTcd ¼ hða
chbÞ

dTcd � 1
3h

cdTcdhab: (16)

One can also define a volume element for the observer’s
instantaneous rest space:

"abc ¼ �abcdu
d ¼ "½abc�; (17)

where �abcd is the four-dimensional volume element

(�abcd ¼ �½abcd�,�0123 ¼ � ffiffiffiffiffiffijgjp
). Note thatDchab ¼ 0 ¼

Da"bcd. The skew part of a projected rank-2 tensor is

spatially dual to the projected vector Ta ¼ 1
2 "abcT

½bc�,
and any projected second-rank tensor has the irreducible
covariant decomposition

Tab ¼ 1
3Thab þ "abcT

c þ Thabi; (18)

where T ¼ Tcdh
cd is the spatial trace. In the 1þ 3 cova-

riant formalism, all quantities are either scalars, projected
vectors, or PSTF tensors. The covariant decompositions of
the velocity gradient are

raub ¼ Daub þ uaAb; (19)

Daub ¼ !ab þ 	ab þ 1
3
hab; (20)

where 	ab ¼ Dhaubi is the shear tensor, which satisfies

	ab ¼ 	ðabÞ, 	a
a ¼ 0, and ua	ab ¼ 0; !ab ¼ D½aub� is

the vorticity tensor, which satisfies !ab ¼ !½ab� and

ua!ab ¼ 0. One can also define the vorticity vector !a ¼
"abc!

bc=2 (with !ab ¼ "abc!
c). The scalar 
 � raua ¼

Daua ¼ 3H is the volume expansion rate, H is the local
Hubble parameter, and Aa � ubrbua ¼ _ua is the accel-
eration, which satisfies uaAa ¼ 0. We note that the
tensor Daub describes the relative motion of neighboring
observers. The volume scalar 
 determines the average
separation between two neighboring observers. The effect
of the vorticity is to change the orientation of a given fluid
element without modifying its volume or shape; therefore
it describes the rotation of matter flow. Finally, the shear
describes the distortion of matter flow; it changes the shape
while leaving the volume unaffected [35].
Gauge-invariant quantities can be constructed from

scalar variables by taking their projected gradients. The
comoving fractional projected gradient of the density field

�ðiÞ of a species i is the key quantity of the covariant
method [20],

XðiÞ
a � S

�ðiÞ Da�
ðiÞ; (21)

which describes the density variation between two neigh-
boring fundamental observers. The comoving spatial gra-
dient of the expansion rate orthogonal to the fluid flow is

Za � SDa
; (22)

which describes perturbations in the expansion. These
quantities are, in principle, observable, characterizing in-
homogeneity in a covariant way, and they vanish in the
FLRW limit.

The matter stress-energy tensor TðmÞ
ab can be decomposed

irreducibly with respect to ua as follows:

TðmÞ
ab � �uaub þ 2uðaqbÞ � Phab þ �ab; (23)

where � � TðmÞ
ab uaub is the density of matter measured by

an observer moving with four-velocity ua, qa � hbaT
ðmÞ
bc uc

is the relativistic momentum density or heat (i.e. energy)

flux and is orthogonal to ua, P � �habTðmÞ
ab =3 is the

isotropic pressure, and the projected symmetric traceless

tensor �ab � TðmÞ
habi is the anisotropic stress, which is also

orthogonal to ua. The quantities �, P, qa, �ab are referred
to as dynamical quantities and 	ab, !ab, 
, Aa as kine-
matical quantities. In the FLRW limit, isotropy restricts

TðmÞ
ab to the perfect-fluid form, so the heat flux qa and

anisotropic stress �ab must vanish.
The remaining first-order gauge-invariant variables that

we need are derived from the Weyl tensor Cabcd, which is
associated with the long-range gravitational field and
vanishes in an exact FLRW universe due to isotropy.
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In analogy to the electromagnetic field, theWeyl tensor can
be split into electric and magnetic parts, denoted by Eab

and Bab, respectively. They are both symmetric traceless
tensors and are orthogonal to ua,

Eab � Cacbdu
cud ¼ Ehabi; (24)

Bab � ��Cacbdu
cud ¼ �1

2"a
efCefbdu

d ¼ Bhabi: (25)

Here � denotes the dual, �Cacbd ¼ 1
2�ac

efCefbd.

For the radiation field, we can make a 1þ 3 covariant
decomposition of the photon four-momentum as

pa ¼ Eðua þ eaÞ; (26)

where E ¼ paua is the energy of the photon. ea describes
the propagation direction of the photon in the instanta-
neous rest space of the observer. The observer can intro-
duce a pair of orthogonal polarization vectors ðe1Þa and
ðe2Þa, which are perpendicular to ua and ea, to form a right-
handed orthonormal tetrad fua; ðe1Þa; ðe2Þa; eag at the ob-
servation point. The (screen) projection tensor is defined as

H ab ¼ gab � uaub þ eaeb; (27)

which is perpendicular to both ua and ea, and satisfies
H a

bðe1Þb ¼ ðe1Þa.
Using the polarization basis vectors, the observer

can decompose an arbitrary radiation field into Stokes
parameters IðE; eaÞ, QðE; eaÞ, UðE; eaÞ, and VðE; eaÞ
[41]. Therefore one can introduce a second-rank transverse
polarization tensor PabðE; ecÞ,

PabðeiÞaðejÞb ¼ 1

2

I þQ Uþ V
U� V I �Q

� �
; (28)

for i and j ¼ 1, 2, and we have omitted the arguments
E and ea. Pab / E3H c

aH d
bfcd, where fcd is a photon

distribution function. Decomposing PabðE; edÞ into its
irreducible components, one obtains

PabðE; edÞ ¼ �1
2IðE; edÞH ab þ P abðE; edÞ

þ 1
2VðE; edÞ�abcec; (29)

where the linear polarization tensor P abðE; edÞ satisfies

P abðeiÞaðejÞb ¼ 1

2

Q U
U �Q

� �
: (30)

It is convenient to define the energy-integrated multipole
for the total intensity brightness and the electric part of the
linear polarization:

IAl
¼

Z 1

0
dE

Z
d�IðE; ecÞehAli; (31)

E Al
¼ M2

l

Z 1

0
dE

Z
d�ehAl�2

P al�1aliðE; ecÞ; (32)

where eAl
¼ eaebec . . . el and Ml �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðl� 1Þ=½ðlþ 1Þðlþ 2Þ�p
.

B. The linearized perturbation equations

In the 1þ 3 covariant approach, the fundamental quan-
tities are not the metrics, which are gauge dependent, but
the kinematic quantities of the fluid, namely, the shear 	ab,
the vorticity !ab, the volume expansion rate 
, the ac-
celeration Aa, the energy-momentum of matter, and
the gravito-electromagnetic parts of the Weyl tensor. The
fundamental equations governing these quantities are the
Bianchi identities and the Ricci identities. The Riemann
tensor in these equations is expressed in terms of Eab, Bab,
and the Ricci tensor Rab. The modified Einstein equation
connects the Ricci tensor to the matter energy-momentum
tensor. In the following, we have linearized all the pertur-
bation equations. We should also note that the definitions
of the covariant variables do not assume any linearization,
and exact equations can be found for their evolution.
The first set of equations is derived from the Ricci

identities for the vector field ua, i.e.

2r½arb�uc ¼ Rabcdu
d: (33)

Substituting the four-velocity gradient (19) and the decom-
position of the Riemann tensor, and separating out the
timelike projected part into the trace, the symmetric
trace-free part, and the skew symmetric part, we obtain
three propagation equations. The first propagation equation
is the Raychaudhuri equation,

_
þ 1

3

2 �Da _ua þ �

2’
ð�þ 3PÞ

þ 1

2

�
2!

_’2

’2
þ 1

’
DaD

a’þ 

_’

’
þ 3

€’

’

�
¼ 0; (34)

which is the key equation of gravitational collapse,
accounting for the time evolution of 
. The second is the
vorticity propagation equation,

_!ab �D½a _ub� þ 2
3
!ab ¼ 0: (35)

The last one is the shear propagation equation,

_	habi þ 2

3

	ab �Dha _ubi þ Eab

þ �

2

�ab

’
þ 1

2’
DhbDai’þ 1

2

_’

’
	ab ¼ 0; (36)

which describes the evolution of kinematical anisotropies.
It shows that the tidal gravitational field Eab and the
anisotropic stress �ab would induce the shear directly,
and the shear will change the spatial inhomogeneity of
the expansion through the constraint equations (37).
The propagation equations are complemented by three

constraint equations, which are spacelike components of
Eq. (33). The first is the shear constraint,

Db!ab þDb	ab � 2

3
Da
� �

’
qa �!

_’

’2
Da’

� 1

’
ðDa’Þ: � _’

’
_ua ¼ 0; (37)
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which shows the relation between the momentum flux qa,
the shear 	ab, and the spatial inhomogeneity of the expan-
sion. The second constraint equation is the vorticity diver-
gence identity,

Dcð"abc!abÞ ¼ 0: (38)

The last one is the Bab equation,

Bab þ ðDc!dða þDc	dðaÞ�d
bÞceu

e ¼ 0; (39)

which shows that the magnetic Weyl tensor can be
constructed from the vorticity tensor and the shear tensor.
With this last equation Bab may be eliminated from some
equations in favor of the vorticity and the shear.

So far we have only discussed propagation and con-
straint equations for the kinematic quantities. The second
set of equations arises from the Bianchi identities of the
Riemann tensor,

r½eRcd�ab ¼ 0; (40)

which gives a constraint on the curvature tensor and leads
to the Bianchi identities for the Weyl tensor after contract-
ing once,

rdCabcd ¼ r½bRa�c þ 1
6gc½bra�R: (41)

The 1þ 3 splitting of the once-contracted Bianchi identi-
ties leads to two propagation and two constraint equations
which are similar in form to the Maxwell field equations in
an expanding universe, governing the evolution of the
long-range gravitational field. The first propagation equa-
tion is the _E equation,

_Eab þ 
Eab þDcBdða�bÞce
due þ �

6’
½3ð�þ PÞ	ab

þ 3Dhaqbi � 3 _�ab � 
�ab� þ 1

2
	ab

�
!þ 3

2

�
_’2

’2

� 1

6

	ab

’
D�D

�’þ 1

2

�
!þ 3

2

�
_’

’2
DhaDbi’

þ 1

2

_’

’
Eab þ 3

4
�

_’

’2
�ab ¼ 0; (42)

and the second propagation equation is the _B equation

_Bab þ
�

þ _’

2’

�
Bab �

�
DcEdða þ �

2’
Dc�dða

þ 1

2’
DcDdDða’� 1

6’
DcD�D

�’hdða
�
�bÞce

due¼ 0:

(43)

This pair of equations for electric and magnetic parts of the
Weyl tensor would give rise to wavelike behavior for its
propagation: if we take the time derivative of the _E equa-
tion, commuting the time and spatial derivatives of the B
term and substituting from the _B equation to eliminate B,
we would obtain an €E term and a double spatial derivatives
term, which together give the wave operator acting on E;

similarly we can obtain a wave equation for B by taking the
time derivative of the _B equation. These waves are also
subjected to two constraint equations, which emerge from
the spacelike component of the decomposed equation (41).
The first constraint is

DbEab� �

6’
ð2Da�þ2
qaþ3Db�abÞþ2�

3
�
Da’

’2

��

2

_’

’2
qa�

�
!

3
þ1

2

�
_’

’2

�
4

3

Da’þðDa’Þ:þ _u _’

�
¼ 0:

(44)

This is the div E equation, with the source term given by
the spatial gradient of the energy density. It can be regarded
as a vector analogue of the Newtonian Poisson equation,
and it shows that the scalar modes will result in a nonzero
divergence of Eab, and hence a nonzero gravitational E
field. The second constraint equation is

DbBab � �

2’
½ð�þ PÞ�ab

cdub!cd þ �abcdu
bDcqd�

� 1

2

��
!

_’2

’2
� 1

3’
D�D

�’� 


3

_’

’
þ €’

’

�
�ab

cdub!cd

þ �abcdu
b

�
!

_’

’2
DcDd’þ 1

’
ðDcDd’Þ: þ 


3’
DcDd’

þ _’

’
Dc _ud

��
¼ 0: (45)

This is the div B equation, with the fluid vorticity serving
as the source term. It shows that the vector modes will
result in nonzero divergence of Bab, and hence a nonzero
gravitational B field. The above equations are remarkably
similar to the Maxwell equations of the electromagnetism,
so we have chosen to use Eab and Bab as the symbols.
The last set of equations arises from the twice-

contracted Bianchi identities. Projecting parallel and
orthogonal to ua, we obtain two propagation equations,

_�þ 
ð�þ PÞ þDaq
a ¼ 0; (46)

_q a þ 4
3
qa þ ð�þ PÞ _ua þDb�ab �DaP ¼ 0; (47)

respectively. For perfect fluids, these reduce to

_�þ 
ð�þ PÞ ¼ 0; (48)

ð�þ PÞ _ua �DaP ¼ 0; (49)

which are the energy conservation equation and momen-
tum conservation equation, respectively.
The background field equation for the Brans-Dicke field

is given in Eq. (8). The first-order covariant and gauge-
invariant perturbation variable of the Brans-Dicke field is
defined as the spatial derivative of the Brans-Dicke field,

V a � SDa’: (50)
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Taking the covariant spatial derivative of Eq. (8), and
commuting the spatial and time derivatives of the V
term, we could obtain the first-order perturbation equation
for the Brans-Dicke field after linearization,

V 00
a þ 2HV 0

a þ SZa’
0 þ S2DaD

bV b

¼ �S2

3þ 2!

X
i

ð1� 3cðiÞ2s Þ�ðiÞXðiÞ; (51)

where the upper index ðiÞ labels the particle species.
In the absence of rotation, !ab ¼ 0, one can define

global three-dimensional spacelike hypersurfaces that are
everywhere orthogonal to ua. This three-surface is meshed
by the instantaneous rest space of comoving observers. The
geometry of the hypersurfaces is determined by the three-
Riemann tensor defined by

½Da;Db�uc ¼ ð3ÞRabdcu
d; (52)

which is similar to the definition of the Riemann tensor
Rabdc but with a conventional opposite sign. The relation-

ship between ð3ÞRabdc and Rabdc is

ð3ÞRabcd ¼ �ha
qhb

shc
fhd

pRqsfp � vacvbd þ vadvbc

¼ ð3ÞR½ab�½cd�; (53)

where vab ¼ Dbua is the relative flow tensor between two
neighboring observers. In analogy to four dimensions, the
projected Ricci tensor and Ricci scalar are defined by

ð3ÞRab ¼ ð3ÞRacbdh
cd ¼ ð3ÞRc

acb (54)

and

ð3ÞR ¼ ð3ÞRabh
ab: (55)

The ð3ÞRab is determined by the Gauss-Codacci formula

ð3ÞRab ¼ 1

3
ð3ÞRhab � 1

3

	ab � �

2
�ab þ Eab; (56)

where

ð3ÞR ¼ 2ð��� 1
3


2Þ: (57)

Equation (57) is also the generalized Friedmann equation,
showing how the matter tensor determines the three-space
average curvature.

The last first-order covariant and gauge-invariant varia-
bles can be obtained from the spatial derivative of the
projected Ricci scalar,

�a � 1
2SDa

ð3ÞR: (58)

After a tedious calculation, we obtain

�a ¼ �
�Xa

’
� �

�V a

’2
� 1

S

�
2H þ ’0

’

�
Za

þ 1

S2

�
!

’0

’2
� 3H

’

�
ðV 0

a �HV aÞ

þ ð!þ 3Þ 1
S2

’0

’2
HV a þ 1

S

�
!
’02

’2
� 3H

’0

’

�
Wa

� !

S2
’02

’3
V a � 1

’
DaD�V � � 3

S
H 2 V a

’
: (59)

C. Mode expansion in spherical harmonics

In the linear perturbation theory it is convenient to
expand the Oð�Þ variables in harmonic modes, since it
splits the perturbations into scalar, vector, or tensor modes
and decouples the temporal and spatial dependencies of
the 1þ 3 equations. This converts the constraint equations
into algebraic relations and the propagation equations into
ordinary differential equations along the flow lines. In this
paper we focus on the scalar and tensor perturbation
modes, since the vector modes would decay in an expand-
ing universe in the absence of sources such as topological
defects.

1. Scalar mode

For scalar perturbations we expand in the scalar eigen-

functions QðkÞ of the generalized Helmholtz equation

S2DaDaQ
ðkÞ ¼ k2QðkÞ (60)

at zero order. They are defined so as to be constant along

flow lines, i.e. independent of the proper time _QðkÞ ¼ Oð�Þ,
and orthogonal to the fluid four-velocity ua.
For the lth multipoles of the radiation anisotropy and

polarization, we expand in the rank-l PSTF tensor QðkÞ
Al
,

derived from the scalar harmonics with

QðkÞ
Al

¼
�
S

k

�
l
Dha1...DaliQ

ðkÞ; (61)

where the index notation Al denotes the index string

a1 . . . al. The recursion relation for QðkÞ
Al
,

QðkÞ
Al

¼ S

k
DhalQ

ðkÞ
Al�1i; (62)

follows directly from Eq. (61). The factor of ðS=kÞl in the

definition of QðkÞ
Al

ensures that _QðkÞ
Al

¼ 0 at zero order. QðkÞ
Al

also satisfies some other zero-order properties,

uaiQðkÞ
a1::ai::al ¼ 0; haiajQðkÞ

a1::ai::aj::al ¼ 0: (63)

We also have the following differential relations which can
be derived from Eqs. (60) and (62):

Da1QðkÞ
a1a2...al ¼

l

2l� 1

k

S

�
1� ðl2 � 1Þ K

k2

�
QðkÞ

a2...al ; (64)
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D2QðkÞ
a1...al ¼

k2

S2

�
1� lðlþ 1Þ K

k2

�
QðkÞ

a1...al : (65)

Now we can expand the gauge-invariant variable in the
following dimensionless harmonic coefficients:

XðiÞ
a ¼ X

k

kXðiÞ
k QðkÞ

a ; (66)

Za ¼
X
k

k2

S
ZkQ

ðkÞ
a ; (67)

qðiÞa ¼ �ðiÞX
k

qðiÞk QðkÞ
a ; (68)

vðiÞ
a ¼ X

k

vðiÞ
k QðkÞ

a ; (69)

�ðiÞ
ab ¼ �ðiÞX

k

�ðiÞ
k QðkÞ

ab; (70)

Eab ¼ X
k

k2

S2
�kQ

ðkÞ
ab; (71)

	ab ¼ X
k

k

S
	kQ

ðkÞ
ab; (72)

Aa ¼
X
k

k

S
WkQ

ðkÞ
a ; (73)

V a ¼ X
k

kV kQ
ðkÞ
a ; (74)

�a ¼ X
k

k3

S2
�kQ

ðkÞ
a ; (75)

IAl
¼ ��

X
k

IðlÞk QðkÞ
Al
; (76)

E Al
¼ ��

X
k

EðlÞ
k QðkÞ

Al
; (77)

where the upper index ðiÞ labels the particle species. The

scalar expansion coefficients, such as XðiÞ
a , are first-order

gauge-invariant variables, and their spatial gradients are

second order, for example,DaXðiÞ
k ¼ Oð2Þ. In the covariant

and gauge-invariant approach, we characterize scalar
perturbations by requiring that the vorticity and the mag-
netic part of the Weyl tensor be at most second order.
Demanding !ab ¼ Oð2Þ ensures that density gradients
are not from kinematic effects due to vorticity, and setting
Bab ¼ Oð2Þ ensures that gravitational waves are excluded
from the first order.
To obtain the scalar equations for the scalar expansion

coefficients, one could substitute the harmonic expansions
of the covariant variables into the propagation and con-
straint equations given in the section above. Here we will
consider only the adiabatic modes. For the ðiÞ fluid,

DaPðiÞ ¼ cðiÞ2s Da�ðiÞ; (78)

where cðiÞs is the adiabatic sound speed of the ðiÞ fluid. For
the spatial gradients of the total density Xk, we find

X0
k þ

3H
�

X
i

�ðiÞXðiÞ
k

�
cðiÞ2s � P

�

�
þ k

��
1þ P

�

�
Zk

þX
i

qðiÞk
�
� 3H

�
1þ P

�

�
Wk ¼ 0: (79)

For the individual fluid of the ðiÞ species, the propagation
equation satisfies

X0ðiÞ
k þ 3H

�
cðiÞ2s � PðiÞ

�ðiÞ

�
XðiÞ
k þ k

��
1þ PðiÞ

�ðiÞ

�
Zk þ qðiÞk

�

� 3H
�
1þ PðiÞ

�ðiÞ

�
Wk ¼ 0: (80)

For the heat fluxes, we have

q0ðiÞk þH
�
1� 3

PðiÞ

�ðiÞ

�
qðiÞk þ

�
1þ PðiÞ

�ðiÞ

�
kWk

þ 2

3
k

�
1� 3K

k2

�
�ðiÞ

k � kcðiÞ2s XðiÞ
k ¼ 0: (81)

The heat flux for each fluid component is often given by

qðiÞk ¼ ð�ðiÞ þ PðiÞÞvðiÞ
k , so we can derive the propagation

equations for vðiÞ
k from Eq. (81).

We also can obtain the time evolution of the spatial
gradient of the expansion,

Z0
k þHZk þWk

k
ð3H 0 � 3H 2 � k2Þ þ 1

k

�S2

2’

X
i

ð1þ 3cðiÞ2s Þ�ðiÞXðiÞ
k þ 1

2k

�
V k

�
�4!

’02

’3
� 3

’00

’2
� S2�

’2
ð�þ 3PÞ þ k2

’

�

þ 4!
’0

’2
V 0

k þ 3
V 00

k

’
þ kZk

’0

’
þWk

�
4!

’02

’2
þ 6

’00

’
� 3H

’0

’

�
þ 3

’0

’
W 0

k

�
¼ 0: (82)

Substituting the covariant harmonic expansion into Eq. (59), and then taking the time derivative of this equation, we
obtain the evolution of the spatial gradient of the three-curvature scalar:
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k2�0
k¼�Xk

�
S2�ð�þ3PÞH

’
þS2��

’0

’2

�
þS2��

X0
k

’
þV k

�
S2�ð�þ3PÞH

’2
þ3

2
S2�ð��PÞ’

0

’3
þ3H

’00

’2
�6

’02

’3
H

�
�
2!þ3

2

�
’0’00

’3
þ2!

’03

’4
þk2

’0

’2

�
þV 0

k

�
S2�

2’2
ð3P��Þþ

�
!þ3

2

�
’00

’2
�2!

’02

’3
þ6H

’0

’2
�k2

’

�

þV 00
k

�
!
’0

’2
�3H

’

�
þWk

�
2!

’0’00

’2
�2!

’03

’3
�3H 0’

0

’
�3H

’00

’
þ3H

’02

’2

�
þW 0

k

�
!
’02

’2
�3H

’0

’

�

�kZk

�
2H 0 þ’00

’
�’02

’2

�
�kZ0

k

�
2H þ’0

’

�
: (83)

As mentioned by Ref. [51], by solving the propagation
equation of �k, we avoid the numerical instability problem
in isocurvature modes when we work in the CDM frame.

From the shear propagation equation (36), the propaga-
tion equation for 	k becomes

	0
k þH	k � kWk þ k�k þ S2

k

�

2’
��k

þ k
V k

2’
þ 1

2

’0

’
	k ¼ 0: (84)

From the div E equation (44), we could obtain the �k

equation,

2
k3

S3

�
1� 3

K

k2

�
�k � k

S

��

’

�
Xk þ

�
1� 3

K

k2

�
�k

�

� 3H
S

��

’
qk þ 2

k

S
��

V k

’2
� 3

2

1

S

’0

’2
��qk

�
�
!þ 3

2

�
k

S3
’0

’2
ðV 0

k þ 3HV k þWk’
0Þ ¼ 0: (85)

The algebraic equation of 	k can be derived from the shear
constraint equation (37),

3

2
k

�
Zk � 	k

�
1� 3

K

k2

��
þ S2

k

�

’
�qk þ!

’0

’2
V k

þ 1

’
ðV 0

k �HV kÞ þ ’0

’
Wk ¼ 0: (86)

From the first-order perturbation equation for the Brans-
Dicke field (51), we could derive the quadratic differential
equation of V k,

V 00
k þ 2HV 0

k þ kZk’
0 þ k2V k

¼ �S2

3þ 2!

X
i

ð1� 3cðiÞ2s Þ�ðiÞXðiÞ: (87)

The variables Xk, qk, and �k [without the upper index ðiÞ]
refer to variables of the total matter, and can be expressed
as

�Xk ¼ �ð�ÞXð�Þ
k þ �ð�ÞXð�Þ

k þ �ðbÞXðbÞ
k þ �ðcÞXðcÞ

k ; (88)

�qk ¼ �ð�Þqð�Þk þ �ð�Þqð�Þk þ ð�ðbÞ þ pðbÞÞvðbÞ
k þ �ðcÞvðcÞ

k ;

(89)

��k ¼ �ð�Þ�ð�Þ
k þ �ð�Þ�ð�Þ

k : (90)

2. Tensor mode

For tensor modes, we expand the first-order perturbation
variables in the rank-2, zero-order PSTF tensor eigenfunc-

tions QðkÞ
ab of the comoving Laplacian,

S2DcDcQ
ðkÞ
ab ¼ k2QðkÞ

ab: (91)

Similar to the case of scalar modes, this equation holds
at the zero order. The tensor harmonics are transverse,
orthogonal to ua, and constant along the integral curves
of ua:

DaQðkÞ
ab ¼ 0; uaQðkÞ

ab ¼ 0; _QðkÞ
ab ¼ 0: (92)

They can also be classified as having electric parity

(denoted by QðkÞ
ab) or magnetic parity (denoted by �QðkÞ

ab).

These two parity harmonics are related by a curl:

curl QðkÞ
ab ¼ k

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3K

k2

s
�QðkÞ
ab; (93)

curl �QðkÞ
ab ¼ k

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3K

k2

s
QðkÞ

ab: (94)

For tensor mode perturbations, the vorticity and all
gauge-invariant vectors vanish at the first order; i.e. !ab,
Xa, Za, qa, Aa, V a, �a all equal zero [45,52]. The rest of
the rank-2 gauge-invariant tensors are constrained to be
transverse:

ð3ÞraEab ¼ 0; ð3ÞraBab ¼ 0;

ð3Þra	ab ¼ 0; ð3Þra�ab ¼ 0: (95)

And they can be expanded in electric and magnetic parity
tensor harmonics:

Eab ¼ X
k

k2

S2
ðEkQ

ðkÞ
ab þ �Ek

�QðkÞ
abÞ; (96)
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Bab ¼ X
k

k2

S2
ðBkQ

ðkÞ
ab þ �Bk

�QðkÞ
abÞ; (97)

	ab ¼
X
k

k

S
ð	kQ

ðkÞ
ab þ �	k

�QðkÞ
abÞ; (98)

�ðiÞ
ab ¼ �ðiÞX

k

ð�ðiÞ
k QðkÞ

ab þ ��ðiÞ
k

�QðkÞ
abÞ: (99)

Substituting these into the equations in Sec. III B,
we obtain the Ek and 	k propagation equations:

k2E0
k þ k2Ek

�
H þ 1

2

’0

’

�
� k3

�
1þ 3

K

k2

�
	k

þ �S2

2’
ð�þ PÞk	k þ ’02

2’2

�
!þ 3

2

�
k	k þ �S2��k

’
H

þ 3

2

�S2P�k

’
H þ 3

4

’0

’2
�S2��k � 1

2’
�S2��0

k ¼ 0;

(100)

	0
k ¼ �H	k � kEk � �

2k

S2��k

’
� 1

2

’0

’
	k: (101)

IV. NUMERICAL IMPLEMENTATION

We carry out our numerical study by modifying the
CAMB code. The original CAMB code, written by Antony

Lewis and Anthony Challinor [53], is a FORTRAN 90 pro-
gram which calculates CMB anisotropies in the standard
Einstein general relativity, by solving the Boltzmann-
Einstein equations for various components in the
Universe. Most of the equations to be solved are in the
file equations.f90, which can be modified conveniently.
The background evolution equation d=da is written in
the function dtauda, and it can be modified for different
backgrounds. The Boltzmann-Einstein equation group is
listed in the functions fderivs (scalar mode for the flat
universe), fderivst (tensor mode for the flat universe),
derivs (scalar mode for the nonflat universe) and derivst
(tensor mode for the nonflat universe). This equation group
includes the propagation equations of the scalar factor S,
the three-Ricci scalar perturbation �, the cold dark matter
perturbation Xc, the baryon perturbations Xb and vb, pho-
ton multipole moments, and neutrino multipole moments
in the covariant approach. The CAMB code uses the Runge-
Kutta method (subroutine dverk in file subroutines.f90) to
solve these equations. To speed up the calculation, the line-
of-sight integration method first developed by Seljak and
Zaldarriaga [54] is used: the differential equation for
the photon temperature perturbation is integrated along
the line of sight to obtain �T=T. The multipoles today
are definite integrals of the source term multiplied by the
spherical Bessel functions from early times to today. The
source term of the scalar perturbation at a given time for a

given wave number is encoded in the subroutine output.
The subroutine evolves the perturbation equations and does
the integration in the cmbmain.f90 file. The main routine
for running CAMB is wrapped in the file camb.f90. Using
these equations, we modify the code for calculation in
Brans-Dicke theory. The three most important parts of
the modifications are the background evolution, the
Boltzmann-Einstein differential equations, and the source
term in the line-of-sight integration.
For the background evolution, we implement the proce-

dure described in the Appendix of Ref. [14]. To satisfy the
end point condition Eq. (10), we start from an epoch which
is deemed early enough. We then evolve the model for-
wards (to avoid numerical instability, we do not evolve
backwards) to obtain the ’ value today. The procedure is
repeated with a Brent algorithm (see e.g. [55]) to find the
initial value of ’ at that epoch. In doing this we set ’0 ¼ 0
and V k ¼ V 0

k ¼ 0 at the initial point. The initial condi-
tion ’0 ¼ 0 can be justified by Eq. (8): in the radiation
dominated era, the right-hand side of Eq. (8), �� 3P, is
negligible compared with other terms. Then

’0 ¼ c1 þ c2S
�2: (102)

This mean that any initial velocity quickly dies out in a few
Hubble times and approaches a terminal velocity c1; this
velocity is constrained by nucleosynthesis, so it should
be very small. The initial condition V k ¼ V 0

k ¼ 0 is the
simplest choice which matches the requirement of Eq. (87).
Initial perturbations in ’ are damped during the radiation
dominated era, so the choice of the initial condition ofV k

has little impact on CMB anisotropy in the adiabatic
perturbation case.
To realize the background evolution described above, we

write a separate module. The function of this module is
that, for a given value of ’ today which is determined by
the Brans-Dicke parameter !, we first find out the initial
value of ’ at a sufficiently early time which can evolve the
given value of ’ today. Then we could calculate ’ and ’0
at each scale factor S and store them into arrays for
interpolation in subsequent processes. Therefore, if one
wants to use ’ and ’0 in the code, one must simply use
this module first.
To be consistent with modified Friedmann equation (7),

in the code we define the critical density as

�cr ¼ 3’0

�
H2

0 ; (103)

whereH0 is the Hubble parameter today and ’0 is given in
Eq. (10). This definition differs from the conventional one
by an additional factor ’. The definition of the fractional

density is the same as the traditional one: �ðiÞ ¼ �ðiÞ
0 =�cr.

Because’0 approximately vanishes today (cf. Fig. 2), from
Eq. (7) we find �total ’ 1 for the flat geometry. This
definition is convenient in studying the nonflat universe.
We also should note that the difference from the traditional
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one is very small, in most case, less than 1%, because
’0 ¼ 1:001 when ! ¼ 50.

In this work we adopt the cosmological constant as dark
energy; this is equivalent to setting the potential of the
Brans-Dicke field to a constant. The more general case
of extended quintessence [56–62] will be dealt with in
future studies. Below, we adopt the �CDM model with
Einstein gravity, which best fits the Wilkinson Microwave
Anisotropy Probe five-year data [63], as our fiducial
model, i.e. �bh

2 ¼ 0:022 65, �ch
2 ¼ 0:1143, H0 ¼

70:1 km s�1 Mpc�1, ns ¼ 0:960, �2
R ¼ 2:457� 10�9 at

k ¼ 0:002 Mpc�1,  ¼ 0:084, and the dark energy equa-
tion of state, w ¼ �1.

For the Boltzmann-Einstein differential equations, we
modified the scale factor evolution equation and �k

propagation equation according to Eqs. (7) and (83),
respectively, in the functions fderivs and fderivst in
equations. f90. Some other complementary equations,
such as the constraint equations, have also been modified
correspondingly.

To speed up the calculation, the CAMB code integrates
the system of differential equations by using the line-of-
sight integration method, first developed by Seljak and
Zaldarriaga for the CMBFAST code [54]. In this method,

the multipole moment of photon intensity IðlÞk could be

express as [41,64]

IðlÞk ¼ 4
Z �0

d�Se�

��
k

S
	k þ 1

4
ne	T�

�1
2

�
3

4
Ið2Þk þ 9

2
Eð2Þ
k

��

�
�
1

3
��

l ðxÞþ
1

k2r2
d2

dx2
��

l ðxÞ
�
þ	Tvk

1

kr

d

dx
��

l ðxÞ

�
�
1

3

k

S
Zk� 1

4
ne	TI

ð0Þ
k

�
��

l ðxÞ
�
; (104)

where �0 is the conformal time today, x ¼ ð�0 � �Þ=r,
r ¼ 1=

ffiffiffiffiffiffiffijKjp
, and  is the zero-order optical depth back to

x. Here,

��
l ðxÞ ¼

l!

ðl� �Þ!
jlðxÞ
x�

(105)

are the ultraspherical Bessel functions, �2 ¼ ð1�
3K=k2Þ1=2, and Eð2Þ

k is the quadrupole of the E-like polar-

ization of the CMB photons. After integration by parts, one
could eliminate the derivatives of ultraspherical Bessel
functions and write temperature anisotropies as a time
integral over a geometrical term ��

l ðxÞ and a source term:

IðlÞk ¼ 4
Z �0

d��0
l ðxÞ � S; (106)

where the source term is given by

S ¼ 1

12k2�2

½12k	00
ke

��2 þ 24k	0
kgð�Þ�2

þ 12k	kg
0ð�Þ�2 þ 3g00ð�Þ�k þ 6g0ð�Þ� 0k þ 3gð�Þ� 00k

þ 12k�2g
0ð�Þvk þ 12k�2gð�Þv0

k þ 4k3	ke
��2

þ k2gð�Þ�k � 4k3e�Zk�2 þ 3k2gð�ÞIð0Þk �2�; (107)

in which

�k ¼ 3
4I

ð2Þ
k þ 9

2E
ð2Þ
k ; (108)

gð�Þ ¼ �0e� ¼ ne	TSe
�; (109)

where gð�Þ is the visibility function. Using the first-order
derivative perturbation equations described in Sec. III, 	00

k

and � 00k in the source terms could be further expanded to the

zeroth- and first-order derivative terms which are expressed
in variables used in the output subroutine in the CAMB code.

V. RESULTS

In Fig. 1, we show the time evolution of the Brans-Dicke
field ’. For models with !> 0, the value of ’ increases
with time, whereas for models with !< 0, ’ decreases
with time. During the radiation dominated era, the varia-
tion of ’ is very small, almost zero. When entering the
matter dominated epoch, ’ begins to increase or decrease.
After the domination of the dark energy, ’ changes more
rapidly. We also plot the time evolution of ’0 in Fig. 2; as
can be seen from that figure, j’0j reaches a terminal
velocity in the radiation dominated era, and then begins
to decay in the matter dominated epoch, but as the dark
energy becomes dominant, it increases again, and its
present-day value for this particular model is of the
order 10�6.
The effective Newtonian gravitational coupling Geff is

the inverse of ’ in units of G. The time evolutions of Geff

are shown in Fig. 3. We can see thatGeff changes rapidly at

FIG. 1 (color online). The time evolution of the Brans-Dicke
field ’.
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low redshift, so it may not be reliable to use the type Ia
supernovae (SNe Ia) data to constrain Brans-Dicke theory:

the Chandrasekhar mass MCh / G�3=2, so the variation of
the gravitational coupling G means that the peak luminos-
ity of SNe, which is approximately proportional to the
Chandrasekhar mass, may also change, making it unreli-
able as a standard candle.

The CMB angular power spectra for the Brans-Dicke
theory with ! ¼ 1 (i.e. general relativity) and �75 are
plotted in Fig. 4, and the resulting differences are plotted in
Fig. 5. As can be seen, compared with the general relativity
theory with the same cosmological parameters, both the
location and the height of the CMB acoustic peaks are
changed. The Brans-Dicke model with a positive ! has
broader and lower acoustic peaks for this set of parameters.
As j!j increases, the difference in CMB angular spectra
between Brans-Dicke theory and general relativity dimin-
ishes. The difference is more apparent at large l (small
angular scale), so high resolution CMB data would be very
useful in distinguishing the different models. From Fig. 4,
it is also very clear that the polarization spectra have
a strong discriminating power. With the higher angular
resolution and polarization data that we expect in the
near future, we should be able to lift the degeneracy of
parameters and place a more stringent constraint on the
Brans-Dicke models.

We compare the result of our new code with those
obtained with the CMBFAST code in the synchronous gauge1

in Ref. [14]. We find that the difference in the CMB power
spectra is typically less than 1% and is due primarily to the
difference in the original (Einstein gravity) codes—for

really making highly precise constraints on cosmological
parameters with the CMB data, the precision of the CMB
Boltzmann code needs to be further improved. The new
code of course has better program architecture and runs
faster. Particularly, if one calculates @Cl=@!, which re-
flects the impact of the gravity model on the CMB angular
power spectrum, the results of the two codes agree with
each other at high precision, as shown in Fig. 5. The result
on �Cl ¼ Clð! ¼ 1Þ � Clð! ¼ 75Þ for TT, TE, and EE
correlations are very consistent in the two codes, and the
two curves are almost indiscernible in Fig. 5.
We also plot the CMB temperature and polari-

zation spectra yielded by tensor modes in Fig. 6.

FIG. 2 (color online). The evolution of the time derivative of
the Brans-Dicke field ’0.

FIG. 3 (color online). The time evolution of the effective
Newtonian gravitational coupling Geff .

FIG. 4 (color online). CMB temperature and polarization
power spectra for Brans-Dicke theories with ! ¼ 1, �75 in
the scalar mode.

1There are some typos in Eqs. (19) and (20) of Ref. [14]. A
prime 0 was missed in the last term of Eq. (19); i.e. it should
read 3a0�0

a� . A factor of 2 in the denominator was missed in the last
term of Eq. (20); i.e., it should read �1

2� ð�0 � a0�
a Þ. Most con-

clusions of that paper were not affected, but at small ‘ the C‘ was
slightly overestimated.
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The tensor-to-scalar ratio is set to 0.1. The primordial
gravitational wave produces large temperature fluctuations
at large scales, as well as a unique B mode polarization. In
contrast to scalar modes, when compared with the result of

general relativity, the peaks are higher for positive !.
Similar to the scalar mode, positive ! shifts the peaks to
smaller scales. At both the very large scales and very small
scales, the differences in spectra between Brans-Dicke
theory and general relativity are very small, almost invis-
ible, and the differences are only sensitive at l� 80.
Figure 7 shows the impact of the Brans-Dicke field on

the matter power spectra at z ¼ 0. For! ¼ 75, the bend of
the matter power spectrum occurs at short wavelengths,
and there is thus more small scale power, in agreement with
the prediction of Ref. [65].

VI. INTEGRATED SACHS-WOLFE EFFECTAND
GRAVITATIONAL LENSING

The ISWeffect is the secondary CMB anisotropy caused
by the time-varying gravitational potential �. The CMB
temperature fluctuation of the ISWeffect in the direction n̂
is given by

�ISW
T ðn̂Þ � �ISW

T ðn̂Þ
T0

¼ �2
Z zLS

0
dz

@�

@z
ðn̂; zÞ; (110)

where T0 ¼ 2:725 K is the CMB temperature at the
present time, and zLS is the redshift at the surface of last
scattering. Despite its small size, the ISW effect provides
an independent test of dark energy, and as the effect is
produced by a change in the gravitational potential, it could
potentially be a new probe of modified gravity. We exam-
ine its impact on two observables: the CMB temperature
anisotropy autocorrelation power spectrum, and the cross
correlation between CMB anisotropy and the galaxy over-
density along the line of sight.
First we look at the CMB TT correlation. The CISW

l

spectra shown in Fig. 8 are the temperature anisotropy
power spectra produced by the ISW effect; i.e. these are

calculated by including only the _� and _� (Newtonian gauge

FIG. 6 (color online). CMB temperature and polarization
power spectra for the Brans-Dicke theories in the tensor mode.
The solid, dotted, and dashed curves represent the Brans-Dicke
model with ! ¼ 1, 75, and �75, respectively. The tensor-to-
scalar ratio R is set to 0.1.

FIG. 5 (color online). �Cl ¼ Clð! ¼ 1Þ � Clð! ¼ 75Þ for
TT, TE, and EE correlations.

FIG. 7 (color online). The matter power spectra at z ¼ 0. The
solid, dotted, and dashed curves represent the Brans-Dicke
model with ! ¼ 1, 75, and �75, respectively.
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variables) terms in the line-of-sight integration with differ-
ent models. According to the timewhen it occurred, the ISW
effect can usually be divided into two types: the early ISW
effect during the radiation dominated to matter dominated
transition, and the late ISW effect during the matter domi-
nated to dark energy dominated transition. The peaks of
their contribution to the angular power spectrum have posi-
tions corresponding to the respective horizon sizes. Thus,
the early ISWeffect produces the peak at l� 150, while the
late ISW effect produces the slope at small l.

In the bottom panel of Fig. 8, we plot �CISW
l =CTT

l

ð! ¼ 1Þ, i.e. the ratio of the ISW modification in Brans-
Dicke gravity to the total TT power spectrum of CMB in
GR, where �CISW

l � CISW
l ð! ¼ 75Þ � CISW

l ð! ¼ 1Þ is

plotted with the red dotted curve, while ! ¼ �75 is plot-
ted with the blue dashed curve. Here CTT

l ð! ¼ 1Þ is the
TT power spectrum including all effects with ! ¼ 1
(the GR case). The correction of the late ISW effect (at
the lowest l) caused by Brans-Dicke theory is of the order
of 1% of the total TT power spectrum, and the correction
from the early ISWeffect (at l� 150) is only about half of
that size. This correction is buried in the cosmic variance,
and it would be hard to distinguish Brans-Dicke gravity
from general relativity with this effect.

The cross correlation between CMB temperature and
galaxy overdensity along the line of sight can also be
used to measure the ISW effect. To calculate this effect,
we consider the observed galaxy density contrast in the
direction n̂,

�gðn̂Þ ¼
Z

bgðzÞdNdz ðzÞ�mðn̂; zÞdz: (111)

We assume that the bias is a constant, bgðzÞ ¼ 1:3. The

selection function dN=dz describes the redshift distribu-
tion of the galaxy sample; here we adopt the analytic
function from Ref. [66]:

dN

dz
/ z2e�ðz=z0Þ3=2 ; (112)

where z0 ¼ zm=1:412. zm is the median redshift of the
survey, which we set as zm ¼ 0:33, and this galaxy redshift
distribution is shown in Fig. 9, with the normalization of
the distribution satisfying

R
dN=dz ¼ 1. The gravitational

potential� is related to the matter density fluctuation � via
the Poisson equation:

r2�ðn̂; zÞ ¼ 4�Ga2�mðzÞ�ðn̂; zÞ (113)

or

�ðk; zÞ ¼ � 3

2
�m

�
H0

ck

�
2 �ðk; zÞ

a
; (114)

where �m ¼ �0
ma

�3.
The angular cross correlation of the CMB temperature

and galaxy fluctuation is given by

wISW
gT ð
Þ � h�gðn̂1Þ�Tðn̂2Þi (115)

¼ h�gðn̂1Þ�ISW
T ðn̂2Þi; (116)

where n̂1 � n̂2 ¼ cos
. Note that �Tðn̂Þ is the total tem-
perature fluctuation in a given direction n̂, while�ISW

T ðn̂Þ is
the temperature fluctuation caused only by the ISW effect
[see Eq. (110)]; the identities hold because the CMB
temperature fluctuations caused by other effects do not
correlate with galaxy overdensity. Expand �mðn̂; zÞ in
Eq. (111) into Fourier modes:

�mðn̂; zð�ÞÞ ¼ �mðn̂�; zÞ (117)

¼
Z d3k

ð2�Þ3 �mðk; zÞe�ik�n̂�; (118)

where � is the comoving distance from redshift 0 to z; then
further expand e�ik�n̂� as

e�ik�n̂� ¼ 4�
X
lm

ð�iÞljlðk�ÞYlmðn̂ÞY�
lmðk̂Þ; (119)

FIG. 8 (color online). The ISW effect of the TT power spectra
in the scalar mode for Brans-Dicke gravity. CISW

l is the CMB TT

power spectrum only considering the ISW effect. �CISW
l ¼

CISW
l ð!0Þ � CISW

l ð! ¼ 1Þ, !0 ¼ 75 for the red dotted curve,

and !0 ¼ �75 for the blue dashed curve.

FIG. 9. The redshift distribution of the assumed sample with
median redshift zm ¼ 0:33.
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where jlðxÞ is the spherical Bessel function of the first kind
of rank l and Ylmðk̂Þ is the spherical harmonic function.
Substituting Eqs. (118) and (119) into Eq. (111), we obtain

�gðn̂Þ ¼
X
lm

�g;lmYlmðn̂Þ; (120)

where

�g;lm ¼ ð�iÞl
Z d3k

ð2�Þ3
Z

dz4�jlðk�ÞY�
lmðk̂ÞbgðzÞ

� dN

dz
ðzÞ�ðk; zÞ: (121)

Similarly,

�ISW
T ðn̂Þ ¼ X

lm

�ISW
T;lmYlmðn̂Þ; (122)

where

�ISW
T;lm ¼ ð�iÞl

Z d3k

ð2�Þ3
Z

dz4�jlðk�ðzÞÞY�
lmðk̂Þ3�mT0

�
�
H0

kc

�
2 @

@z

�
�ðk; zÞ
aðzÞ

�
: (123)

The angular cross-correlation power spectrum of the gal-
axy overdensity and ISW temperature perturbation is then

CISW
gT ðlÞ � �ll0�mm0 h�g;lm�

�
T;l0m0 i: (124)

Using the small angle (large l, l 	 1) approximation for
the spherical Bessel functions [67],

jlðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2lþ 1

r �
�Dirac

�
lþ 1

2
� x

�
þOðl�2Þ

�
; (125)

we have [68]

2

�

Z
k2dkjlðk�Þjlðk�0Þ ¼ 1

�2
�ð�� �0Þ: (126)

Another useful relation will be the definition of DðzÞ:
�ðk; zÞ ¼ DðzÞ�ðk; 0Þ. Under the Limber approximation
[69,70], we have

CISW
gT ðlÞ ¼ 4

ð2lþ 1Þ2
Z

dzPðkÞWISWðzÞWgðzÞHðzÞ
c

; (127)

where PðkÞ is the linear power spectrum at redshift zero,
k 
 ðlþ 1=2Þ=�ðzÞ obtained from Eq. (125), and WISWðzÞ
and WgðzÞ are the ISW and galaxy window functions

defined as

WISWðzÞ � 3�mT0

�
H0

c

�
2 d

dz

�
DðzÞ
aðzÞ

�
(128)

and

WgðzÞ � bgðzÞdNdz ðzÞDðzÞ: (129)

Finally, wISW
gT ð
Þ is related to the cross-power spectrum by

the Legendre polynomials,

wISW
gT ð
Þ ¼ X1

l¼2

2lþ 1

4�
Plðcos
ÞCISW

gT ðlÞ: (130)

This summation does not include the monopole (l ¼ 0) and
dipole (l ¼ 1) terms, as in the Wilkinson Microwave
Anisotropy Probe analysis [71].
We plot the result in Fig. 10. The upper panel shows the

angular power spectrum, while the bottom panel is the
angular correlation function. For the angular power spectra,
Brans-Dicke theorywith! ¼ �75 differs from the GR case
by about 3%–8% on large scales (l < 14); for the angular
correlation function, there is a difference of 3%–4% for 
 <
100 arcmin, and on larger angles (
 > 100 arcmin) the
difference is even larger. At present the CMB-galaxy corre-
lation data could merely confirm the ISWeffect up to about
the 3	 level, and the data are often plagued by systematic
errors which are not well understood yet, as the observatio-
nal results are often in conflict with each other [68,71–73].
Recently, it has been noted that for models in which the
gravitational constant has drastic changes at low redshift, the
ISW effect could be significant and thus provide a sensitive
probe of modified gravity [74–76]. However, for the models
discussed here, the variation of the gravitational potential at
low redshift is actually not that large; thus, including the
ISW effect does not yield any significant difference.
How is the weak gravitational lensing effect modified in

Brans-Dicke theory? We investigate this problem by mod-
ifying the CAMB code to include the lensing effect for

FIG. 10 (color online). The ISW effect from the CMB tem-
perature and galaxy overdensity correlation. The upper panel is
the angular power spectrum, while the bottom panel is the
angular correlation function.
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Brans-Dicke theory. The CMB lensing effect in Brans-
Dicke gravity is similar to that in general relativity; it
smooths the CMB power spectra at small scales. The result
is shown in Fig. 11, for ! ¼ 75. At l > 500, we begin to
see corrections due to Brans-Dicke theory at the percent
level, so in the future when the Planck data become
available, this effect should be included in the calculation.
At l > 2000, the correction could reach as high as the
10% level, but there the CMB primordial anisotropy is
strongly damped and the anisotropy is dominated by the
Sunyaev-Zel’dovich effect.

VII. CONCLUSION AND SUMMARY

Compared with Einstein’s general relativity, there is an
additional scalar field coupled with the Ricci scalar in
Brans-Dicke gravity, which makes the perturbation theory
more complicated. With a covariant 1þ 3 approach, we
have developed a full set of covariant and gauge-invariant
formalism for calculating the cosmic microwave back-
ground temperature and polarization anisotropies in
Brans-Dicke gravity. Instead of using the components of
the metric as basic variables, the covariant formalism per-
forms a 1þ 3 split of the Bianchi and Ricci identities, using
the kinematic quantities, energy-momentum tensors of the
fluid(s), and the gravito- electromagnetic parts of the Weyl
tensor to study how perturbations evolve. Adopting cova-
riantly defined, gauge-invariant variables throughout en-
sures that, in our discussion, the gauge ambiguities are
avoided and that all variables have a clear, physical inter-
pretation. Since the definition of the covariant variables
does not assume any linearization, exact equations can be
found for their evolution, which can then be linearized
around the chosen background model. Furthermore, unified
treatment of scalar, vector, and tensor modes does not
require decomposing the different modes from the begin-

ning as done in the metric method. The price we have to pay
is that with this method the calculation is more complicated.
We then calculate the CMB temperature and polarization

spectra for the Brans-Dicke models using a modified CAMB

code. In this paper we consider both the scalar modes and
the tensor modes as the adiabatic initial condition, and adopt
’0 ¼ ð2!þ 4Þ=ð2!þ 3Þ at the current epoch and ’0 ¼ 0
at early times as initial conditions of the Brans-Dicke field.
Compared with the general-relativistic model with the same
cosmological parameters, both the amplitude and the width
of the acoustic peaks are different in the Brans-Dicke mod-
els. We find that the small scale spectra and the polarization
spectra will provide a sensitive and vigorous constraint on
the different Brans-Dicke models in the scalar mode. For
tensor modes, the largest difference in CMB spectra for
various Brans-Dicke models is located at l� 80. The struc-
ture formation process in Brans-Dicke theory is also studied.
The matter power spectrum is shown in Fig. 7. For the
positive! case, the bend of the matter power spectra occurs
at shorter wavelengths, and there is thus more small scale
power compared with the general relativity case.
The ISW effect of Brans-Dicke theory is investigated

(see Figs. 8 and 10). The corrections to the total TT power
spectra that come from the early ISW effect caused by
Brans-Dicke theory are proved to be of the order of 1%,
and the late ISWeffect is only half of the early ISWeffect.
Because of the large cosmic variance at large scales, this
effect is not significant in the observational constraint. For
CMB-galaxy cross correlation, the differences between the
GR case and the Brans-Dicke case with ! ¼ �75 are at
the 3%–8% level on large scales (l < 14) in angular power
spectra, or 3%–4% in the angular correlation function for

 < 100 arcmin; on even larger angular scales (
 >
100 arcmin) the difference is still larger. Nevertheless,
for the modified gravity model considered here, where
the variation in the gravitational potential at low redshift
is not very large, the ISW effect does not provide a very
sensitive probe due to the large cosmic covariances.
The CMB lensing effect is plotted in Fig. 11. This effect

only appears significantly at l > 2000. The lensed CMB
power spectra look smooth at small scales compared with
the unlensed power spectra in Brans-Dicke gravity, which
is very similar to the case of general relativity.
Our covariant calculation for the Brans-Dicke model is

generally in agreement with the previous results obtained
in particular gauges (e.g. the synchronous gauge [14]).
Furthermore, we have also obtained for the first time the
temperature and polarization spectra for tensor mode per-
turbations, the ISW effect, and the CMB lensing effect in
Brans-Dicke theory. The structure and speed of the code
are greatly improved, thus providing a more powerful and
convenient tool for further studies. In paper II, we use the
Markov-Chain Monte Carlo algorithm to derive the con-
straint on the Brans-Dicke parameter ! with the latest
CMB and large scale structure observational data.

FIG. 11 (color online). Comparison of unlensed and lensed
CMB TT power spectra in the scalar mode for Brans-Dicke
gravity with! ¼ 75. �CTT

l =CTT
l is the relative difference, where

�CTT
l ¼ CTT

l ðlensedÞ � CTT
l ðunlensedÞ, and CTT in the denomi-

nator is the unlensed TT power spectrum.
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As a final remark, the covariant approach and corre-
sponding CMB code for the Brans-Dicke theory developed
in this paper, together with the synchronous gauge ap-
proach and the corresponding code developed in the pre-
vious paper [14], provide consistent, systematic, and
complete methods to study Brans-Dicke theory. These
methods and codes could be generalized to study more
general scalar-tensor theories, as well as more complex
initial conditions; we plan to carry out such a general-
ization in subsequent studies.
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Not. R. Astron. Soc. 381, 1347 (2007).

[67] N. Afshordi, Y.-S. Loh, and M.A. Strauss, Phys. Rev. D
69, 083524 (2004).

[68] S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, and N.
Bahcall, Phys. Rev. D 78, 043519 (2008).

[69] D. N. Limber, Astrophys. J. 117, 134 (1953).
[70] M. LoVerde and N. Afshordi, Phys. Rev. D 78, 123506

(2008).
[71] U. Sawangwit et al., Mon. Not. R. Astron. Soc. 402, 2228

(2010).
[72] M. Lopez-Corredoira, F. S. Labini, and J. Betancort-Rijo,

Astron. Astrophys. 513, A3 (2010).
[73] C. Hernandez-Monteagudo, arXiv:0909.4294.
[74] G.-B. Zhao et al., Phys. Rev. D 81, 103510 (2010).
[75] T. Giannantonio, M. Martinelli, A. Silvestri, and A.

Melchiorri, J. Cosmol. Astropart. Phys. 04 (2010) 030.
[76] S. F. Daniel et al., Phys. Rev. D 81, 123508 (2010).

COSMIC MICROWAVE . . .. I. COVARIANT FORMULATION PHYSICAL REVIEW D 82, 083002 (2010)

083002-17

http://dx.doi.org/10.1088/0264-9381/14/5/023
http://camb.info/
http://dx.doi.org/10.1086/177793
http://dx.doi.org/10.1086/177793
http://dx.doi.org/10.1103/PhysRevD.59.123510
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://dx.doi.org/10.1103/PhysRevD.60.083508
http://dx.doi.org/10.1103/PhysRevD.61.023507
http://dx.doi.org/10.1103/PhysRevD.61.023507
http://dx.doi.org/10.1103/PhysRevD.61.043506
http://dx.doi.org/10.1103/PhysRevD.61.043506
http://dx.doi.org/10.1103/PhysRevD.62.123510
http://dx.doi.org/10.1103/PhysRevD.62.123510
http://dx.doi.org/10.1103/PhysRevD.63.123504
http://dx.doi.org/10.1103/PhysRevD.63.123504
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1103/PhysRevD.58.027302
http://dx.doi.org/10.1103/PhysRevD.58.027302
http://dx.doi.org/10.1111/j.1365-2966.2007.12280.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12280.x
http://dx.doi.org/10.1103/PhysRevD.69.083524
http://dx.doi.org/10.1103/PhysRevD.69.083524
http://dx.doi.org/10.1103/PhysRevD.78.043519
http://dx.doi.org/10.1086/145672
http://dx.doi.org/10.1103/PhysRevD.78.123506
http://dx.doi.org/10.1103/PhysRevD.78.123506
http://dx.doi.org/10.1111/j.1365-2966.2009.16054.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16054.x
http://dx.doi.org/10.1051/0004-6361/200912763
http://arXiv.org/abs/0909.4294
http://dx.doi.org/10.1103/PhysRevD.81.103510
http://dx.doi.org/10.1088/1475-7516/2010/04/030
http://dx.doi.org/10.1103/PhysRevD.81.123508

