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We constrain the parameterized post-Einsteinian framework with binary pulsar observations of orbital

period decay due to gravitational wave emission. This framework proposes to enhance the amplitude and

phase of gravitational waveform templates through post-Einsteinian parameters to search for generic

deviations from general relativity in gravitational wave data. Such enhancements interpolate between

general relativity and alternative theory predictions, but their magnitude must be such as to satisfy all

current experiments and observations. The data that currently constrains the parameterized post-

Einsteinian framework the most is the orbital period decay of binary pulsars. We use such observations

to bound the magnitude of post-Einsteinian parameters, which will be critical when gravitational waves

are detected and this framework is implemented.

DOI: 10.1103/PhysRevD.82.082002 PACS numbers: 04.80.Cc, 04.30.�w, 04.50.Kd

I. INTRODUCTION

Gravitational waves (GWs) will allow us to learn about
the gravitational interaction in regimes that are currently
inaccessible by more conventional, electromagnetic
means. Binary black hole and neutron star mergers, for
example, lead to gravitational fields that are intensely
strong and highly dynamical, a regime where general
relativity (GR) has not yet been tested. GW theorists and
data analysts will need to be able to make quantitative
statements about the confidence that a certain event is not
just a GW detection but one consistent with GR.

The parameterized post-Einsteinian (ppE) framework
[1] was devised precisely for this purpose: to search for
statistically significant GR deviations or anomalies in
GW data and, in their absence, to quantify the degree
of belief that a GW event is purely described by GR. This
framework enhances the waveform templates used in
matched-filtering through parameters that characterize
GR deformations. In practice, this is achieved by adding
to GR templates amplitude and phase corrections, with
magnitudes depending on certain ppE parameters.

Any framework that modifies GR must comply with
Solar System and binary pulsar observations. These mea-
surements already strongly constrain GR deviations in
weak and moderately strong fields. The ppE framework
was constructed on a maxim of compliance with current
observations, which can be enforced by requiring that the
magnitude of the ppE correction be such as to satisfy
current constraints. Until now, this maxim had not been
quantitatively enforced because it was thought that it
would be difficult to relate the ppE deformations to Solar
System or binary pulsar observations.

We have here found a relatively simple way to relate the
ppE framework to current experiments. As shown in [1],
modifications to the dissipative and conservative sectors of
the theory lead structurally to similar ppE corrections to

the waveform. We find that to constrain the ppE framework
with current experiments, at least initially, it suffices to
consider dissipative corrections only, while keeping the
conservative sector unmodified. Such dissipative correc-
tions modify the amount of orbital binding energy carried
away by GWs, which affects directly the orbital period
decay in binary pulsars.
The relatively recent discovery of the binary pulsar PSR

J0737-3039 [2] has provided particularly powerful GR tests
[3]. This pulsar is highly relativistic, with an orbital period
of about 2 hours, and has an orbital geometry favorable for
measuring quantities such as the Shapiro delay with sub-
percent precision. Such data has been recently used to
constrain alternative theories of gravity to new levels [4].
In this paper, we relate such subpercent accurate mea-

surements of the orbital decay of PSR J0737-3039 to
constrain the ppE framework and its templates. Because
of the structure of the ppE correction to GWs, these con-

straints are relational, i.e., they are of the form j�jfc �
Fð�; ~�Þ, where ð�; cÞ are ppE parameters, and f is the GW

frequency. The quantity Fð�; ~�Þ is some function of the
accuracy � to which the orbital decay has been measured

and of system parameters ~�, such as the mass ratio and total
mass of the binary. Thus, given a value for c, the magnitude
of � is constrained by binary pulsar observations to be less

than some number related to �, f, and ~�. The relational
constraint found in this paper will be crucial in the imple-
mentation of the ppE framework in a realistic data analysis
pipeline once GWs are detected. In the rest of this paper,
we follow mostly the conventions of [5] with geometric
units G ¼ c ¼ 1.

II. BASICS OF THE PPE FRAMEWORK

The main GWobservable is the so-called response func-
tion, which describes how an interferometer reacts to an
impinging GW. In GR, this function is given by
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hGRðtÞ � FþhGRþ ðtÞ þ F�hGR� ðtÞ; (1)

where Fþ;� are beam-pattern functions, and hGRþ;� are the

plus and cross GW polarizations, built from contractions of
the metric perturbation with certain polarization tensors
[5]. For quasicircular binaries, these polarizations can be
Fourier transformed in the stationary-phase approximation
[6–8] and leading order in the amplitude to yield

~hGRþ ¼ �M
DL

u2=3
ffiffiffiffiffiffi

2 _F
p ð1þ cos2�Þe�ið�GRþ�=4�2�Þ;

~hGR� ¼ �M
DL

u2=3
ffiffiffiffiffiffi

2 _F
p ð2 cos�Þe�ið�GR��=4�2�Þ; (2)

where ð�; �Þ are the inclination and polarization angles,DL

is the luminosity distance from source to observer, and _F is
the rate of change of the orbital frequency due to GW

emission. This frequency is defined as F � ð1=2�Þ _�,
where � is the orbital phase, and it is also equal to half
the Fourier or GW frequency f, i.e., F ¼ f=2. The quantity
�GR is the GR GW phase in the Fourier domain, which can
be computed via

�GRðfÞ ¼ 2�
Z f=2 F0

_F0

�

2� f

F0

�

dF0: (3)

The quantity u � �Mf is a dimensionless frequency

parameter, whereM ¼ �3=5m is the chirp mass, with � ¼
m1m2=m

2 the symmetric mass ratio, andm ¼ m1 þm2 the
total mass. From Eq. (1), it follows that the Fourier
transform of the response function in the stationary-phase

approximation is simply ~hGR ¼ Fþ ~hGRþ þ F� ~hGR� .
The ppE framework proposes that one enhances the GR

response function via an amplitude and a phase correction.
In the Fourier domain and in the stationary-phase approxi-
mation, one can parameterize the response function for a
GW from an unequal-mass, binary, quasicircular inspiral
as [1,9]

~h ¼ ~hGR½1þ �ð4�Þcua�ei�ð4�Þdub ; (4)

where ð�; c; aÞ are ppE amplitude parameters and ð�; d; bÞ
are ppE phase parameter. One could have parameterized
the � dependance without the factor of 4, but we find this
convenient for systems where 4�� 1 as with binary
pulsars. This type of correction arises generically if one
modifies _F ¼ _EðdEb=dFÞ�1, which in turn can arise either
due to a modification to the GW luminosity _E (the dis-
sipative sector) or to the orbital binding energy Eb (the
conservative sector). As explained in [1], this degeneracy
breaks the one-to-one mapping from a ppE waveform
modification to a specific alternative theory, as one cannot
tell whether the change arose in the dissipative or conser-
vative sector.

III. GRAVITATIONALWAVE LUMINOSITY

We now compute the energy carried by ppE GWs. As is
clear from Eq. (2), the GWamplitude depends on _F, which
by the chain rule can be related to _E, as explained below
Eq. (4). We can construct _E directly from hþ or h� via

_E ¼ �

2
f2D2

L
_fGR

Z

d�ðj~hþj2 þ j~h�j2Þ; (5)

where _fGR is the rate of change of the GW frequency, and
d� ¼ sin�d�d� integrates over the ð�; �Þ dependence of
the waveform. Notice that Eq. (5) agrees with equa-

tion (2.38) in [6]. Substituting for ~h using Eq. (4), we find

_E ¼ _EGRj1þ �ð4�Þcuaj2; (6)

where _EGR is the GR expectation for the GW luminosity:

_E GR ¼ �

2
_fGRf

2D2
L

Z

d�ðj~hGRþ j2 þ j~hGR� j2Þ: (7)

One can also obtain an expression for the GW luminos-
ity in terms of the GW phase only, as this also depends on _F
as shown in Eq. (3). Noting that d2�=df2 ¼ � _F�1, we can
write the GW luminosity as

_E ¼ � 1

6
_f2GRM

2u�1=3 d
2�

df2
: (8)

Since � ¼ �GR þ �ð4�Þdub, we find that

_E ¼ _EGR

�

1þ �2M2�ð4�Þdbðb� 1Þub�2

�

d2�GR

df2

��1
�

;

(9)

where _EGR can be written in terms of the GW phase as

_E GR ¼ � 1

6
_f2GRM

2u�1=3 d
2�GR

df2
: (10)

Eccentricity can be explicitly included into this analysis
by modifying _EGR and the second terms inside squared
brackets in both Eqs. (6) and (9). The dominant effect, of
course, comes from the _EGR piece, which for an eccentric
orbit is given by [10]

_E GR ¼ � 32

5
�2 m

5

a5
ð1� e2Þ�7=2

�

1þ 73

24
e2 þ 37

96
e4
�

:

(11)

This is equivalent to generalizing ~hGR to the Fourier trans-
form of eccentric inspiral waveforms, as given, for ex-
ample, in [10–12]. On the other hand, modifying the ppE
deformations (terms proportional to � or �) in Eqs. (6) and
(9) to include eccentricity explicitly would require a study
of eccentric inspirals in alternative theories of gravity,
which has not yet been considered. However, using equa-
tions (4.28)–(4.31) in [8], one can see that these terms are
subleading; they are of Oð�e2Þ or Oð�e2Þ and, thus, of
Oðe2Þ relative to the � and � terms in Eqs. (6) and (9). In
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this paper, we include eccentricity in _E through _EGR in
Eq. (11) but neglect any eccentricity terms that are propor-
tional to � or �. These will not strongly affect the
constraints we place on the ppE framework.

IV. ORBITAL PERIOD DECAY

The GW luminosity enters into binary pulsar observ-
ables through the orbital decay: _P=P ¼ ð3=2Þ _Eb=Eb ¼
�ð3=2Þ _E=Eb, where in the second equality we used energy
balance: the amount of binding energy lost by the system is
equal to minus the amount of energy carried away by GWs
_Eb ¼ � _E. Using Eq. (6) and (9), we then find that the _P
corrected by amplitude ppE parameters is

_P

P
¼

� _P

P

�

GR
½1þ 2�ð4�Þcua�; (12)

while that corrected by phase ppE parameters is

_P

P
¼

� _P

P

�

GR

�

1þ 48

5
�ð4�Þdbðb� 1Þubþ5=3

�

: (13)

The quantity ð _P=PÞGR stands for the orbital decay in GR
for an eccentric inspiral, namely, [10]

� _P

P

�

GR
¼ � 96

5

�m3

a4
ð1� e2Þ�7=2

�

1þ 73

24
e2 þ 37

96
e4
�

:

(14)

Recall again that the ppE corrections [the second terms
inside the parenthesis of Eqs. (12) and (13)] are only valid
to leading order in the post-circular approximation. In
deriving these expressions, we have used the fact that
the observed _P=P is very close to the GR value:
ð _P=PÞobs ¼ ð _P=PÞGRð1þ �Þ. The observational error � �
ð� _PÞ= _P � 1, meaning that the error on _P dominates over
the error on P.

Since binary pulsar observations have confirmed GR up
to observational error, we can now place relation con-
straints on the ppE framework. Focusing first on the
amplitude ppE parameters, we find that

j�j � 1

2

�

ð4�Þcua : (15)

For the phase ppE parameter,

j�j � 5

48jbjjb� 1j
�

ð4�Þdubþ5=3
: (16)

A binary pulsar measurement of _P to an accuracy � allows
us to constrain � and �, given some value for ða; b; c; dÞ,
the symmetric mass ratio and the GW frequency or, equi-
valently, the orbital period.
Before proceeding, let us first discuss the apparent de-

generacy between the amplitude and the phase correction.
Comparing Eqs. (12) and (13), one realizes that if changes
to the GWamplitude and phase are due to the samemecha-
nism (for example, if only _E ismodified), thenwemust have
a ¼ bþ 5=3, c ¼ d, and � ¼ 5�=½48bðb� 1Þ�. The ppE
scheme, however, allows for modifications to both the dis-
sipative ( _E) sector and the conservative (Eb) sector.
Although each of these sectors introduces modifications
to both the GW amplitude and the phase, if both sectors
are modified simultaneously, there will be two sets of
independent modifications: one to the phase and one to
the amplitude. If a ppE correction is introduced to the GW
amplitude, then it is constrained by Eq. (12); if a ppE
correction is introduced to the GW phase, then it is con-
strained by Eq. (13). These constraints on the amplitude and
phase ppE parameters are thus independent from each other,
even though a constraint or measurement of them would
not allow a one-to-one mapping to a conservative or dis-
sipative modification. Thus, conservative and dissipative
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FIG. 1. Left: Constraint or exclusion plot of j�j as a function of a for fixed c. Right: Constraint or exclusion plot of j�j as a function
of b for fixed d. The area below the curves is allowed, while the area above is ruled out.
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modifications are in fact degenerate, even though the phase
and amplitude measurements are independent.

V. BINARY PULSAR CONSTRAINT

Let us now employ the recent measurements of [2,3] on
PSR J0737-3039 to constrain ð�;�Þ. This binary consists
of two neutron stars with component masses m1 ¼
1:3381ð7ÞM� andm2 ¼ 1:2489ð7ÞM� in an almost circular
orbit with eccentricity e ¼ 0:0877775ð9Þ and period P ¼
8834:535000ð4Þ s. The symmetric mass ratio is � ’
0:24970, the chirp mass is M ’ 5:5399� 10�6 s, the
GW frequency is f ¼ 2=P ’ 2:263842976� 10�4 Hz,
and the reduced frequency is u ’ 3:940046595� 10�9.
The time derivative of the period is measured to be _P ¼
�1:252ð17Þ � 10�12, which implies an uncertainty of
� ¼ 0:017� 10�12=ð1:252� 10�12Þ ’ 10�2, as reported
in [2,3].

The constraints placed in Eqs. (15) and (16) assumed
that the ppE deformation (the terms proportional to �
and �) could be modeled as eccentricity independent. As
already emphasized, however, this does not imply that
we have here considered circular binaries. On the con-
trary, in Eqs. (6) and (9), the GR sector is properly
eccentric [ _EGR is given by Eq. (11)], so that, in the limit
� ¼ 0 ¼ �, _P agrees exactly with the measured one up
to an accuracy of �. What has been neglected in Eqs. (6)
and (9) are terms proportional to �e2 or �e2. The
neglect of these terms introduces a fundamental error
in our constraints of Oðe2Þ & 1% relative to the numeri-
cal bounds and figures we present below. Improving such
bounds further would not only require a better measure-
ment of _P to reduce � but also a more accurate model-
ing of the ppE deformation to include eccentricity
corrections.

Figure 1 plots the double binary pulsar constraints on
ðj�j; j�jÞ as a function of the exponent ppE parameters
ða; bÞ for fixed ðc; dÞ. The area above the curves is excluded
by binary pulsar observations, forcing ð�;�Þ to be smaller
than a value which depends on ða; b; c; dÞ. Observe, how-
ever, that the bound is insensitive to c and d, essentially
because 4� ¼ 0:9988� 1 for PSR J0737-3039, and thus
ð4�Þc � 1 or ð4�Þd � 1. Generally, if a <�0:4, then
j�j< 10�6 for all plotted values of c, while if b <
�1:95, then j�j< 10�6 for all plotted values of d. For a >
0:2 and b >�4=3,� and� can be greater than unity for all
plotted values of ðc; dÞ. This makes sense; as ða; bÞ become
large and positive, the ppE correction becomes smaller for
low reduced frequency sources.

These constraints are consistent with other constraints
on GR deviations from binary pulsars. For example, one
can place a generic constraint on the time-variation of
Newton’s constant G with a binary pulsar observation
[13,14]: _G=G � ð�PÞ=ð2PÞ, where �P is whatever part
of _P that is otherwise unexplained. Using PSR J0737-
3039 [2,3], one infers that _G=G< 3� 10�11 yr�1.

Allowing for Newton’s constant to be a linear function of
time leads to a modification that can be mapped to Eq. (4)

with j�j ¼ ð5=512Þ4�3=5ð _G=GÞM, c ¼ 3=5, and a ¼
�8=3 for the amplitude parameters and j�j ¼
ð25=65536Þ4�3=5ð _G=GÞM, d ¼ 3=5, and b ¼ �13=3 for
the phase parameters [15]. From the binary pulsar con-
straint on _G=G, we then infer that j�j & 10�25 and j�j &
10�27, which is consistent with Eqs. (15) and (16) and
Fig. 1.
Our constraints on� look extremely strong (e.g., for a <

�2, then j�j & 10�20). However, this does not imply that
the unconstrained region (below the curves in Fig. 1) is
uninteresting. For example, constraining _G=G below
10�12 yr�1 or 10�13 yr�1 implies constraining j�j below
10�25. This is interesting as there are GR modifications
that suggest _G=G deviations of this order may be present
[16]. On the other hand, the smallness of the y axis of Fig. 1
does suggest that � and � are perhaps not the best ‘‘coor-
dinates’’ with which to measure GR deviations when a and
b are sufficiently negative.
We conclude this discussion with some caveats on the

constraints we have found. First, although we have in-
cluded eccentricity in the modeling of the GR sector
through _EGR in Eq. (11), we have neglected the effect of
eccentricity in the ppE correction, i.e., in the � and �
dependent terms in Eqs. (6) and (9). We have not consid-
ered eccentric ppE deformations because these have not
yet been investigated. This is due to the difficulty in
constructing analytically simple Fourier transforms of ec-
centric inspiral waveforms in the stationary-phase approxi-
mation [8]. Second, we have here assumed that only
dissipative GR corrections are present, so that we could
use the GR measured values for the component masses.
These quantities are obtained, for example, by measuring
the Shapiro time delay and periapsis precession, which
depend on the conservative sector. A more detailed analy-
sis that considered both conservative and dissipative cor-
rections could use all binary pulsar observables to
constrain the ppE framework further. Since the constraints
in Eqs. (15) and (16) are upper limits, though, these will
still hold and will not be invalidated by such a more
detailed analysis. Finally, notice that we could have studied
constraints on the ppE scheme from Solar System obser-
vations. However, the exquisite accuracy of the double
binary pulsar measurements, and the fact that this is a
much stronger-field source than any Solar System one,
means that Solar System constraints will not be as stringent
as the ones discussed here for dissipative modifications
to GR.

VI. IMPLICATIONS FOR GW DATA ANALYSIS

Once GWs are detected, one would like to implement
the ppE framework in a realistic data analysis pipeline.
Such a pipeline will likely employ techniques from
Bayesian analysis [17], which relies heavily on the priors
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chosen for the parameters searched over. The prior tells
us whether certain regions of parameter space are al-
lowed or likely to occur in Nature. The priors for the
ppE parameters should be constructed following current
Solar System and binary pulsar constraints. Equations.
(15) and (16) represent the most stringent prior found
to date for these parameters using binary pulsar
observations.
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