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The requirements for stability of a Lorentz violating theory are analyzed. In particular we conclude that

Einstein-aether theory can be stable when its modes have any phase velocity, rather than only the speed of

light as was argued in a recent paper.
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The purpose of this paper is to argue for the appropriate
notion of stability in a theory with broken Lorentz sym-
metry that supports modes with phase velocities different
from the speed of light. In particular we are motivated by
the example of Einstein-aether theory, but our considera-
tions are quite general. More specifically, we shall argue
that the stability criteria imposed on this theory in Ref. [1]
are overly restrictive. The conclusion is that the theory is
actually stable for an open set in the four dimensional
coupling parameter space rather than for only a one di-
mensional subspace. The issue of stability in Lorentz
violating theories was also addressed in Refs. [2,3], which
include arguments closely related to those advanced here.

Einstein-aether theory is an example of a theory where
Lorentz symmetry is dynamically broken. Aside from
matter, the fundamental fields are the spacetime metric
gab and a timelike unit vector field ua, the ‘‘aether’’ (see
Ref. [4] for a review). Flat spacetime with a constant aether
is a solution to the theory, and linearized perturbations of
this solution satisfy second order hyperbolic equations.
There are modes with five different polarizations: two
spin-2, two spin-1, and a single spin-0 mode. For all these
modes, the frequency ! and spatial wave vector k defined
relative to the rest frame of the aether satisfy a gapless
dispersion relation, !2 ¼ v2

i k
2, where i labels the spin.

The squared velocities v2
i depend on the coupling parame-

ters in the Lagrangian, and are generally different from
each other and different from the ‘‘speed of light’’ c
defined by the null cone of the metric gab. The conditions
v2
i > 0 impose inequalities on the coupling parameters,

guaranteeing that the frequency is real, so the perturbations
do not grow exponentially in time if the spatial wave vector
is real [5]. Another set of inequalities implies that the
energy carried by these modes is positive [6–8], and these
inequalities can be satisfied simultaneously with the former
stability inequalities. (As of yet, no nonlinear extension of
this positive energy result is known, except in the special
case of static spherical symmetry [9].)

It was recently argued in Ref. [1] that one should require
the above stability criteria, i.e., real frequency and positive

energy, not only for modes with a real wave vector in the
aether frame, but more generally for modes with a real
wave vector in any Lorentz frame defined with respect to
the metric gab, and for energy defined in any Lorentz
frame. In a non-Lorentz invariant theory this is obviously
a much stronger requirement, and in fact it was concluded
that Einstein-aether theories are unstable except for a small
number of special cases in which all modes propagate at
exactly the speed of light.1 We shall now argue, however,
that these stronger conditions are not required by the
stability of the theory, and are not justified given the
structure of the theory.
In fact the reasoning of Ref. [1] applies to any linear

theory with modes propagating at different speeds, not
only to Einstein-aether theory. Also, the dynamics of the
metric and aether themselves play no essential role except
to define those modes. Hence we will discuss the simpler
setting of fields on a spacetime with a fixed Minkowski
metric�ab [with signature ðþ ���Þ] and a fixed timelike
unit vector ua. A free scalar field’ that propagates at speed
v with respect to the rest frame of ua is minimally coupled
to the effective (inverse) metric

gabðvÞ ¼ uaub þ v2ð�ab � uaubÞ; (1)

with Lagrangian density

L ¼ 1
2

ffiffiffiffiffiffiffiffi��
p

gabðvÞ@a’@b’ ¼ 1
2ð@2t ’� v2@2i ’Þ; (2)

where the second expression is written in the Minkowski
coordinate system ðt; xiÞ of the metric �ab, adapted to the
rest frame of ua. We consider this model with arbitrary
positive values of v.
In the context of Einstein-aether theory, there is good

reason to allow v to be greater than c. If the coupling
constants are chosen so that the post-Newtonian preferred
frame parameters of the theory are in agreement with
observational constraints, then the positivity of the energy
(in the aether frame) requires v � c. Also, to satisfy the
vacuum Cherenkov constraint for ultra high-energy cosmic
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1Actually, in Ref. [1] the decoupling limit was taken. That is,
the metric was fixed to the Minkowski metric and not varied in
finding the field equations.
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rays, all v > c are allowed, but any v less than c must be
extremely close to c [4].

The dispersion relation for a scalar field with Lagrangian
density (2) is !2 ¼ v2k2 when expressed in terms of com-
ponents of the wave 4-covector ka in the aether frame.
More precisely, the wave phase is k�x

� ¼ !tþ kix
i, and

k2 ¼ P
ikiki. For real spatial wave vectors ki, the stability

requirement that the frequency be real amounts to the
condition v2 > 0. This condition guarantees that any
solution that is a superposition of plane waves on a con-
stant t surface is stable.

One of the further stability criteria of Ref. [1] is the
demand that the frequency be real also for plane waves on
any Lorentz-boosted constant time surface. To determine
what that implies, we may reexpress the dispersion relation
in terms of the components of the wave 4-vector in the
boosted frame as follows.

The metric �ab can be used to define a set of frames,
related in the usual way by Lorentz transformations. With
respect to such a frame moving with velocity �, the new
time and space coordinates are given by

t0 ¼ �ðt� �xkÞ; (3)

x0k ¼ �ðxk � �tÞ; (4)

x0? ¼ x?; (5)

where k and ? refer to the components parallel and per-
pendicular to the boost direction, and we use units with the
metric speed of light equal to unity, c ¼ 1. The frame
velocity will be taken to be positive, and is assumed to
be less than the speed of light, 0 � �< 1.

The covariant (as opposed to contravariant) frequency
and wave 4-vector components in the boosted frame are
given by

!0 ¼ �ð!þ �kkÞ; (6)

k0k ¼ �ðkk þ �!Þ; (7)

k0? ¼ k?: (8)

The dispersion relation in terms of these boosted compo-
nents takes the form

ð1� v2�2Þ!02 þ 2�k0kð1� v2Þ!0 þ ð�2 � v2Þk02k
� v2ð1� �2Þk02? ¼ 0; (9)

where we have multiplied by a factor ð1� �2Þ ¼ ��2 for
convenience. This is a quadratic equation for !0, so the
roots are real for real k0 if and only if the discriminant is
positive,

v2ð1� �2Þ2k02k þ v2ð1� v2�2Þð1� �2Þk02? � 0: (10)

Since �< 1, this can be negative only if the term
(1� v2�2) is negative, which occurs only if v > 1 and

�> 1=v. We note that this is just the condition for the
constant t0 surfaces to be timelike with respect to gðvÞab (1).
The frequency !0 then has a nonzero imaginary part when
k0?=k

0
k is sufficiently large.

Thus for v > 1 and �> 1=v there exist solutions with
real wave vectors and complex frequencies in the boosted
frame. Such modes grow exponentially in the time coor-
dinate t0 of that frame. Whether or not this indicates an
instability comes down to the question of whether or not
these solutions are part of the physical phase space of
the theory.
As pointed out in Ref. [1], the wave vector kk ¼ �ðk0k �

�!0Þ in the rest frame of the aether will be complex for
such modes, so on a constant t surface the solution will
blow up exponentially at spatial infinity. These solutions
therefore do not satisfy the usual boundary conditions that
define the phase space of the theory on the constant t slices.
A consistent theory can be defined by adopting a regular
boundary condition on the constant t slices, excluding
these solutions. This is what is ordinarily done in a
Lorentz invariant theory. For example, one could require
that the solutions have compact support, or that they be
Fourier transformable on those slices. Moreover, since
these boundary conditions are preserved by t evolution,
the theory so defined preserves the time translation
symmetry of the background. Also, one would define the
same phase space imposing these boundary conditions
on any other surface that is spacelike with respect
to gðvÞab.
One may ask whether a consistent theory could instead

be defined by adopting a regular boundary condition on the
constant t0 slices. If so, this would raise the question of
which is the correct phase space. But it appears that
this can not be done in a natural way. For certain regular
initial data on a given constant t0 surface the corresponding
solution grows exponentially with t0. In any other frame
this solution will contain complex wave vectors and will
therefore diverge asymptotically on the constant time
slices of that frame. This means that, unlike the case for
surfaces which are spacelike with respect to gðvÞab, the
phase space defined by regular data on constant t0 surfaces
is different for every value of � greater than 1=v.
Moreover, for � greater than 1=v, the phase space

obtained by requiring regular initial data on a fixed t0 slice
depends not only on the particular value of �, but on the
particular choice of slice. For example, suppose the initial
data on a particular surface t0 ¼ t00 possesses a well-defined
Fourier transform. In Fourier space, the wave equation
then reduces to an infinite number of uncoupled ordinary
differential equations that may be solved to obtain the
Fourier transform of the solution on a different slice t0 ¼
t01. For modes with sufficiently large k?, the solutions to

the differential equation grow exponentially with k?. The
solution at t01 in Fourier space therefore does not in general
have a convergent inverse Fourier transform. Such initial
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data on the t00 surface do not correspond to any choice of

initial data on the t01 surface. This means that the phase
space defined in this way depends not only on the choice
of time coordinate t0 but also on the arbitrary value t00 of

that coordinate, breaking the time translation symmetry of
the theory.

Another reason to reject a ‘‘t0-phase space’’ formulation
is that allowing for arbitrary initial data at t0 ¼ t00 is un-

justified in the context of a causal theory in which the ’
field interacts with other degrees of freedom. A simple way
to see the problem is to allow for an external source term in
the field equation for ’. One can then ask whether the
source could generate data at t00 that would lead to an

exponentially growing solution. The answer is no unless
(perhaps) if the source is turned on in the infinite past.
As explained above, any such solution will blow up ex-
ponentially at spatial infinity on all constant t surfaces.
If the source is turned on at a finite time, its effects
cannot propagate any faster than v in the aether frame,
and so the solution can not blow up at spatial infinity at any
finite time.

The preceding argument depends on a choice of bound-
ary condition for the solution generated by the source,
which is equivalent to the choice of Green’s function for
the wave equation. We implicitly adopted the retarded
Green’s function, which vanishes for t < 0. One might
ask whether the argument would continue to hold using a
t0-retarded Green’s function that would vanish for t0 < 0.
It appears, however, that no such Green’s function exists
for �> 1=v. This can be seen as follows. A standard
method for constructing Green’s functions is via the
Fourier transform

Gðt0; x0Þ /
Z

d3k0d!0 eik
0�x0e�i!0t0

ð!0 �!0�Þð!0 �!0þÞ
; (11)

where !0� are the roots of the dispersion relation (9). This
integral can be performed along any contour that begins at
�1 and ends at þ1 along the real axis. If the integral
converges, then the wave operator acting on Gðt0; x0Þ can
be moved inside the integral, canceling the denominator.
The remaining integrand has no poles, so the contour can
be freely deformed to lie along the real axis, yielding a
representation of the Dirac delta function. To obtain the
retarded Green’s function, the !0 integral is performed
along a contour that passes above all the poles, so that
for t0 < 0 the integral vanishes. For t0 > 0, both poles are
enclosed by the contour that can be closed in the lower half
plane, and the !0 integral yields

Gðt0; x0Þ /
Z

d3k0eik0�x0
e�i!0

þt � e�i!0�t

!0þ �!0�
: (12)

For large k0?, the roots behave as !
0� � �ik0?, so that the

integrand in (12) grows exponentially with k0? and the

integral does not converge. A t0-retarded Green’s function
therefore cannot be found by this standard method, which

strongly suggests that such a Green’s function does not
exist.2

A second sign of possible instability discussed in
Ref. [1] is that the Hamiltonians generating t0 translations
can be unbounded below whenever v � 1. In particular the
Hamiltonian of linear perturbations is unbounded below
precisely when �> v or �> 1=v (the condition in
Ref. [1] was expressed in terms of the coupling constants
of the theory rather than the mode speeds, nevertheless the
two conditions are equivalent). This can be understood in a
simple way as follows.
Let �a denote the t0 translation 4-vector. The

Hamiltonian generating �a translations can be written as
an integral over an initial data surface �,

H� ¼
Z
�
Tb

a�
anbd

3�; (13)

where Tb
a is the canonical energy-momentum tensor

ffiffiffiffiffiffiffiffi��
p

Tb
a ¼ @L

@ð@b’Þ@a’�L�b
a; (14)

nb is the unit normal covector, and d3� is the surface
volume element, both normalized with respect to �ab.
Positivity of H� is ensured when Tb

a�
anb is positive. In

the case v < 1 the ’ field is ‘‘subluminal’’ relative to �ab,
so for �> v the vector �a can be timelike relative to �ab

but spacelike relative to the effective metric gðvÞab for the’
field. In this case H� is in effect a component of the

momentum, not the energy of ’, which is clearly not
bounded below. In the case v > 1, for �> 1=v the t0
translation vector �a remains timelike with respect to
gðvÞab, but the constant t0 surface becomes timelike with

respect to gðvÞab. In this case H� is the flux of energy

through a timelike surface, and is no longer expected to
be bounded below. Moreover, if the surface � is timelike
with respect to gðvÞab there is no guarantee that H� is

conserved under t0 translation, because the current Tb
a�

a

can flow out through the boundaries.
In conclusion, while we take no issue with the compu-

tations of Ref. [1], the inference of instabilities in Einstein-
aether theory when the mode velocities differ from c is
unwarranted. A proper identification of the phase space of
the theory eliminates the exponentially growing solutions.
The Hamiltonians that were found to be unbounded below
actually correspond either to momenta or to energy fluxes
across timelike surfaces. The Hamiltonian generating time
translations in the aether frame is bounded below and
plays the usual role of the energy in governing stability.
It is therefore sufficient for stability to impose the

2Note that the exponential instability alone does not account
for the absence of a retarded Green’s function. For example, in
the case of a tachyonic scalar field with a negative m2, the
instability occurs only at low k, so the convergence of the
Green’s function is not spoiled, and a retarded Green’s function
exists.
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conditions of real frequencies and positive energy in the
aether frame. The opposite conclusion was reached in
Ref. [1] by considering the Lorentz symmetry of the back-
ground metric to be a physical symmetry of the phase
space of linear perturbations. Since the background aether
breaks this symmetry, that viewpoint is untenable.
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