Erratum: Baryon and lepton number as local gauge symmetries [Phys. Rev. D 82, 011901 (2010)]

Pavel Fileviez Pérez and Mark B. Wise (Received 9 September 2010; published 12 October 2010)

DOI: 10.1103/PhysRevD.82.079901

PACS numbers: 11.30.Fs, 11.30.Qc, 12.60.-i, 99.10.Cd

Section III.B of our paper contained a number of errors. It should be replaced with the following version.

B. Leptonic sector

The interactions that generate masses for the new charged leptons in case 1) are:

$$-\Delta \mathcal{L}_l^{(1)} = Y'_E \bar{l}'_L H e'_R + \text{h.c.}$$
(1)

while for the neutrinos they are

$$-\Delta \mathcal{L}_{\nu}^{(1)} = Y_{\nu} l H \nu^{C} + Y_{\nu}' l' H N + \frac{\lambda_{a}}{2} \nu^{C} S_{L} \nu^{C} + \lambda_{b} \nu^{C} S_{L}^{\dagger} N + \text{h.c.}, \qquad (2)$$

where $S_L \sim (1, 1, 0, 0, 2)$ is the Higgs that breaks $U(1)_L$, generating masses for the right-handed neutrinos and the quarkphobic Z'_L . We introduce the notations $\nu^C = (\nu_R)^C$ and $N = (\nu'_R)^C$. After symmetry breaking the mass matrix for neutrinos in the left-handed basis, (ν, ν', N, ν^C) , is given by the eight by eight matrix

$$\mathcal{M}_{N} = \begin{pmatrix} 0 & 0 & 0 & M_{D} \\ 0 & 0 & M'_{D} & 0 \\ 0 & (M'_{D})^{T} & 0 & M_{b} \\ M^{T}_{D} & 0 & M^{T}_{b} & M_{a} \end{pmatrix}.$$
(3)

Here, $M_D = Y_{\nu}v_H/\sqrt{2}$ and $M_a = \lambda_a v_L/\sqrt{2}$ are 3 × 3 matrices, $M_b = \lambda_b v_L^*/\sqrt{2}$ is a 1 × 3 matrix, $M'_D = Y'_{\nu}v_H/\sqrt{2}$ is a number and $\langle S_L \rangle = v_L/\sqrt{2}$. Let us assume that the three right-handed neutrinos ν^C are the heaviest. Then, integrating them out generates the following mass matrix for the three light-neutrinos:

$$\mathcal{M}_{\nu} = M_D M_a^{-1} M_D^T. \tag{4}$$

In addition, a Majorana mass M' for the fourth generation right-handed neutrino N,

$$M' = M_b M_a^{-1} M_b^T, (5)$$

is generated. Furthermore, suppose that $M' \ll M'_D$, then the new fourth generation neutrinos ν' and N are quasi-Dirac with a mass equal to M'_D . Of course we need this mass to be greater than $M_Z/2$ to be consistent with the measured Z-boson width. In this model, we have a consistent mechanism for neutrino masses which is a particular combination of Type I seesaw.

The interactions that generate masses for the new leptons in case 2) are:

$$-\Delta \mathcal{L}_{l}^{(2)} = Y_{E}^{\prime\prime} \bar{l}_{R}^{\prime} H e_{L}^{\prime} + \text{h.c.}$$
(6)

$$-\Delta \mathcal{L}_{\nu}^{(2)} = Y_{\nu} l H \nu^{C} + Y_{\nu}^{\prime\prime} \bar{l}_{R}^{\prime} \tilde{H} \nu_{L}^{\prime} + \frac{\lambda_{a}}{2} \nu^{C} S_{L} \nu^{C} + \lambda_{c} \nu^{C} S_{L}^{\dagger} \nu_{L}^{\prime} + \lambda_{l} \bar{l}_{R}^{\prime} l_{L} S_{L} + \lambda_{e} \bar{e}_{R} e_{L}^{\prime} S_{L}^{\dagger} + \text{h.c.}$$
(7)

Notice that in this case, S_L does not get a vacuum expectation value (VEV) in order to avoid tree level lepton flavor violation. Then, the neutrinos can be Dirac fermions and one has to introduce a new scalar field to break $U(1)_L$. Let us say $S'_L \sim (1, 1, 0, 0, n_L)$, where $n_L \neq \pm 2, \pm 6$. Notice that if in this case we do not introduce S_L , the heavy extra Dirac neutrino is stable and it is difficult to satisfy the experimental bounds from dark matter direct detection in combination with the collider bounds on a heavy stable Dirac neutrino.

In order to complete the discussion of symmetry breaking we introduce a new Higgs, S_B , with nonzero baryon number (but no other gauge quantum numbers) which gets the VEV, v_B , breaking $U(1)_B$ and giving mass to the leptophobic Z'_B . In summary, the Higgs sector in case 2) is composed of the standard model (SM) Higgs, S_L , S'_L , S_B and X. This is the minimal Higgs sector needed to have a realistic renormalizable theory where B and L are both gauged, and have a dark matter (DM) candidate. Notice that in case 1), one could have a viable DM candidate if one introduces the interaction $c(H^{\dagger}\phi)^2S_B + h.c.$