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The generalized Gerasimov-Drell-Hearn sum rule is known to be very sensitive to QCD radiative and

power corrections. We improve the previously developed QCD-inspired model for the Q2 dependence of

the Gerasimov-Drell-Hearn sum rule. We take into account higher order radiative and higher-twist power

corrections extracted from precise Jefferson Lab data on the lowest moment of the spin-dependent proton

structure function �p
1 ðQ2Þ and on the Bjorken sum rule �p�n

1 ðQ2Þ. By using the singularity-free analytic

perturbation theory we demonstrate that the matching point between chiral-like positive-Q2 expansion

and QCD operator product 1=Q2 expansion for the nucleon spin sum rules can be shifted down to

rather low Q ’ �QCD leading to a good description of recent proton, neutron, deuteron, and Bjorken sum

rule data at all accessible Q2.
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I. INTRODUCTION

The problem of the nucleon spin structure and the pecu-
liarities of its underlying QCD description has attracted a
lot of attention over the recent years [1,2]. In particular,
this is due to an enormous progress in experimental studies
of the spin sum rules at low momentum transfer Q2, from
the very accurate Jefferson Lab data on the lowest moment
of the spin-dependent proton structure function �p

1 ðQ2Þ
and on the Bjorken sum rule �p�n

1 ðQ2Þ in the range

0:05<Q2 < 3 GeV2 [3]. This data provided a good test-
ing ground for combining both the perturbative and non-
perturbative QCD contributions.

The theoretical description of the nucleon spin structure
functions gp;n at large Q2 relies on the operator product
expansion, and at moderate Q2 their sensitivity to the
radiative and higher-twist power corrections becomes sig-
nificant [4]. Because of such a sensitivity the transition to
the entirely nonperturbative Q2 region is rather cumber-
some. This transition was earlier addressed in the QCD-
motivated model [5] for the Q2 dependence of the gener-
alized Gerasimov-Drell-Hearn (GDH) sum rule [6] making
use of the relation to the Burkhardt-Cottingham sum rule
[7] for the structure function g2, whose elastic contribution
is the main source of a strong Q2 dependence, while the
contribution of the transverse structure function, gT ¼
g1 þ g2, is smooth. The successful prediction of this model
was the distinct ‘‘crossover’’ point of the proton data for
�p
1 ðQ2Þ at low Q2 � 200–250 MeV2. Its subsequent modi-

fication [8], including radiative and power QCD correc-
tions, made the description far more accurate, which was
required by the increased accuracy of the data.
Now we enter a new level of increasing experimental

accuracy, obtained in the recently published proton

JLab data [3]. They lie above the model inputs at Q2 *
1:5 GeV2 (while displaying quite a similar shape) due to a

noticeable sensitivity of the pQCD part of �p;nðQ2Þ and to

poorly known higher-twist contributions �4;6;..., as well as

the axial singlet charge a0.
Our present goal is to improve the model for the gener-

alized GDH sum rule for proton and neutron using the

values of the power corrections �4;6;... and singlet axial

charge a0, systematically extracted from the JLab data

[9,10] and by performing a similar program of the smooth

interpolation between largeQ2 andQ2 ¼ 0. As we will see
we are able to achieve a rather good description of the data

at all Q2 values.
The JLab data were obtained in the low Q2 region and,

therefore, a special attention is needed to the QCD cou-
pling in this domain. While the 1=Q2 term in the OPE
works at relatively high scales Q2 * 1 GeV2, higher-twist
power corrections 1=Q4, 1=Q6, etc., start to play a signifi-
cant role at lower scales, where the influence of the ghost
singularities in the coefficient functions within the standard
perturbation theory (PT) becomes more noticeable. It af-
fects the results of extraction of the higher twists from the
precise experimental data leading to unstable OPE series
and huge error bars [9]. It seems natural that the weakening
or elimination of the unphysical singularities of the QCD
coupling would allow shifting the perturbative QCD
(pQCD) frontier to a lower energy scale and to get more
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exact information about the nonperturbative part of the
process described by the higher-twist series [10].

In this investigation, in order to avoid the influence
of unphysical singularities at Q ¼ �QCD � 400 MeV, we
deal with the ghost-free analytic perturbation theory (APT)
[11] (for a review on APT concepts and algorithms, see
also Ref. [12]), which was recently proven to be an in-
triguing candidate for a quantitative description of light
quarkonia spectra within the Bethe-Salpeter approach [13],
as well as in the recent higher-twist analysis of the deep
inelastic scattering data on the F2 structure function [14].
For completeness, we compare our results obtained with
conventional PT and APT couplings and, finally, discuss
the related uncertainties and stability issues.

II. FORMALISM

A. OPE regime Q2 >�2
QCD

To recall the basic ideas of the approach let us consider
the lowest moments of spin-dependent proton and neutron
structure functions gp;n1 defined as

�p;n
1 ðQ2Þ ¼

Z 1

0
dxgp;n1 ðx;Q2Þ: (2.1)

From now on, it is understood that the elastic contribution
at x ¼ 1 is excluded from the moments, since it is the
‘‘inelastic’’ contribution which can be matched with the
GDH sum rule.

At large Q2 the moments �p;n
1 ðQ2Þ are given by the OPE

series in powers of 1=Q2 with the expansion coefficients
(see, e.g., Ref. [15]). In the limit Q2 � M2 the moments
are dominated by the leading twist contribution, �p;n

2 ðQ2Þ,
which can be decomposed into flavor singlet and nonsing-
let contributions:

�p;n
1 ðQ2Þ ¼ 1

12

��
�a3 þ 1

3
a8

�
ENSðQ2Þ þ 4

3
a0ESðQ2Þ

�

þX1
i¼2

�p;n
2i ðQ2Þ
Q2i�2

; (2.2)

where ES and ENS are the singlet and nonsinglet Wilson
coefficients, respectively, calculated as a series in powers
of �s [16]. These coefficient functions for nf ¼ 3 active

flavors in the MS scheme are

ENSðQ2Þ ¼ 1��s

�
�3:558

�
�s

�

�
2�20:215

�
�s

�

�
3�Oð�4

sÞ;
(2.3)

ESðQ2Þ ¼ 1� �s

�
� 1:096

�
�s

�

�
2 �Oð�3

sÞ: (2.4)

The triplet and octet axial charges a3 � gA ¼ 1:267�
0:004 [17] and a8 ¼ 0:585� 0:025 [18], respectively, are
extracted from weak decay matrix elements. As for the
singlet axial charge a0, it is convenient to work with its

renormalization group (RG) invariant definition in the MS

scheme a0 ¼ a0 (Q2 ¼ 1), in which all the Q2 depen-
dence is factorized into the definition of the Wilson coef-
ficient ESðQ2Þ. For a detailed discussion of the higher-loop
stability of the coefficient functions and prescriptions used
in actual calculations, see Ref. [10].
We address both proton and neutron spin sum rules

(SSRs), and the singlet and octet contributions are canceled
out in their difference �p

1 � �n
1 resulting in the Bjorken

sum rule [19]

�p�n
1 ðQ2Þ ¼ gA

6
ENSðQ2Þ þX1

i¼2

�p�n
2i ðQ2Þ
Q2i�2

: (2.5)

The unphysical singularities at Q��QCD in the PT

series for the coefficient functions ESðQ2Þ (2.4) and
ENSðQ2Þ (2.3) strongly affect the analysis of the spin sum
rules at low Q2 [10]. Their influence becomes essential
at Q< 1GeV where the higher-twist terms start to play an
important role. The ‘‘soft-frozen’’ �s models are free of
such a problem, thus providing a more reliable tool of
investigating the behavior of the spin sum rules in the
low-energy domain.
The moments of the structure functions are analytic

functions in the complex Q2 plane with a cut along the
negative real axis, as demonstrated in Refs. [20,21]. On the
other hand, the standard PT approach does not support
these analytic properties. The APT method [11] gives the
possibility of combining the RG resummation with correct
analytic properties of the QCD corrections. The conse-
quence of requiring these properties to hold in the deep
inelastic scattering description was studied previously in
Refs. [22,23].
Let us recall that the expression for �p;n

1 ðQ2Þ in the

framework of the analytic approach is completely similar
to the one in the standard PT (2.2):

�p;n
1;APTðQ2Þ ¼ 1

12

��
�a3 þ 1

3
a8

�
EAPT
NS ðQ2Þ

þ 4

3
ainv0 EAPT

S ðQ2Þ
�
þX1

i¼2

�APT
2i;p;nðQ2Þ
Q2i�2

: (2.6)

The corresponding next-to-next-to-leading order APT
modification of the singlet and nonsinglet coefficient func-
tions is

EAPT
NS ðQ2Þ ¼ 1� 0:318Að3Þ

1 ðQ2Þ � 0:361Að3Þ
2 ðQ2Þ � . . . ;

EAPT
S ðQ2Þ ¼ 1� 0:318Að3Þ

1 ðQ2Þ � 0:111Að3Þ
2 ðQ2Þ � . . . ;

(2.7)

whereAð3Þ
k is the analyticized k-th power of three-loop PT

coupling in the Euclidean domain and defined as

A ðnÞ
k ðQ2Þ ¼ 1

�

Z þ1

0

Imð½�ðnÞ
s ð��;nfÞ�kÞd�
�þQ2

; n¼ 3:

(2.8)

In the one-loop case, the APT Euclidean functions are
simple enough [11]:
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A ð1Þ
1 ðQ2Þ ¼ 1

�0

�
1

L
þ �2

�2 �Q2

�
; L¼ ln

�
Q2

�2

�
;

Að1Þ
2 ðlÞ ¼ 1

�2
0

�
1

L2
� Q2�2

ðQ2 ��2Þ2
�
;

Að1Þ
kþ1 ¼� 1

k�0

dAð1Þ
k

dL
:

(2.9)

Analogous two- and three-loop level expressions are more
involved. However, according to the ‘‘effective log’’ ap-
proach [24] in the region Q< 5 GeV one may use simple
one-loop expressions (2.9) with the effective logarithm L�:

A ð3Þ
1;2;3ðLÞ ! Amod

1;2;3 ¼ Að1Þ
1;2;3ðL�Þ;

L� ’ 2 lnðQ=�ð1Þ
effÞ; �ð1Þ

eff ’ 0:50�ð3Þ:
(2.10)

Thus, instead of the exact three-loop expressions for the
APT functions, in Eq. (2.7) one can use the one-loop

expressions (2.9) with the effective � parameter �mod ¼
�ð1Þ

eff whose value is given by the last relation (2.10). This

model was successfully applied for the higher-twist analy-
sis of low-energy JLab data in Refs. [9,10], and also in the
� decay analysis in Ref. [25]. Note also that the APT
couplings are stable with respect to different loop orders
at low-energy scales Q2 & 1 GeV2 [12], contrary to the
standard PT approach.

The APT functions Ak contain the ðQ2Þ�k power
contributions, which effectively change the values of the
�-terms, when going from the PT to the APT framework.
In particular, by subtracting an extra ðQ2Þ�1 term induced
by the APT series for the Bjorken sum rule

�p�n
1;APTðQ2Þ ’ gA

6
þ f

�
1

lnðQ2=�ð1Þ2
eff Þ

�
þ ß

�ð1Þ2
eff

Q2
þO

�
1

Q4

�
;

where ß ’ 0:43 and �ð1Þ
eff � 0:18 GeV is the effective one-

loop �QCD parameter, we get the relation between �p�n
4;APT

coming into the APT expression (2.6) and the conventional
�p�n

4 from Eq. (2.2):

�p�n
4 ð1 GeV2Þ

M2
’ �p�n

4;APT þ ß�ð1Þ2
eff

M2
: (2.11)

Along with the conventional PT scheme, we will also
apply the APT approach based on Eqs. (2.6) and (2.7) to
construct the improved model for smooth continuation
of perturbative expressions for �p;n

1 ðQ2Þ and its nonsinglet

combination �p�n
1 ðQ2Þ down to the nonperturbative

region Q2 ! 0.

B. ‘‘Chiral’’ regime Q2 & �2
QCD

For the purpose of a smooth continuation of �p;n
1 ðQ2Þ to

the nonperturbative region 0 � Q2 & �2
QCD [5], we con-

sider first the Q2 evolution of the integral

I1ðQ2Þ � 2M2

Q2
�1ðQ2Þ ¼ 2M2

Q2

Z 1

0
dxg1ðx;Q2Þ; (2.12)

which is equivalent to the integral over all energies of the
spin-dependent photon-nucleon cross section, whose value
at Q2 ¼ 0 is defined by the GDH sum rule [6]

I1ð0Þ ¼ ��2
A

4
; (2.13)

where �A is the nucleon anomalous magnetic moment.
Then, the function I1ðQ2Þ can be written as a difference

I1ðQ2Þ ¼ ITðQ2Þ � I2ðQ2Þ; (2.14)

where

ITðQ2Þ ¼ 2M2

Q2

Z 1

0
dxgTðx; Q2Þ;

I2ðQ2Þ ¼ 2M2

Q2

Z 1

0
dxg2ðx;Q2Þ:

(2.15)

The well-known Burkhardt-Cottingham (BC) sum rule
[7] provides us with an exact expression for I2ðQ2Þ, in
terms of familiar electric GE and magnetic GM Sachs
form factors as

I2ðQ2Þ ¼ 1

4
�GMðQ2Þ�GMðQ2Þ �GEðQ2Þ

1þQ2=4M2
; (2.16)

where � is the nucleon magnetic moment. As a conse-
quence of the strong Q2 behavior of the right-hand side
of Eq. (2.16), we get for large Q2

Z 1

0
g2ðx;Q2ÞdxjQ2!1 ¼ 0; (2.17)

so I2 is much smaller than I1 for large Q2. Now from the
BC sum rule (2.16), it follows that

I2ð0Þ ¼ �2
A þ�Ae

4
; (2.18)

where e is the nucleon charge. Then the GDH value (2.13)
is reproduced with

ITð0Þ ¼ �Ae

4
: (2.19)

To summarize, from the above equalities (2.16), (2.17), and
(2.19), we can conclude that the BC and GDH sum rules
together, lead to positivity of ITðQ2Þ for allQ2 in the proton
case and a vanishing difference between ITðQ2Þ and I1ðQ2Þ
for large Q2. Thus, IpT ðQ2Þ is a smooth and monotonous
function, and it is possible to obtain its smooth interpola-
tion between large Q2 and Q2 ¼ 0 [5].

III. IMPROVED MODEL FOR SMOOTH
INTERPOLATION OF ITðQ2Þ

To improve the agreement between the model predic-
tions and the experimental data, we consider the general
asymptotic expression
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Ip;n1;pertðQ2Þ ¼ 2M2

Q2

�
1

12

�
�a3 þ 1

3
a8

�
ENSðQ2Þ

þ 1

9
a0ESðQ2Þ þX1

i¼2

�p;n
2i ðQ2Þ
Q2i�2

�
; (3.1)

where the nonsinglet ENS and singlet ES coefficient
functions are defined in Eqs. (2.3) and (2.4), respectively.
Then, the perturbative expression for IT , defined above the
matching point Q2

0, is

IT;pertðQ2Þ ¼ �ðQ2 �Q2
0Þ½I1;pertðQ2Þ þ I2ðQ2Þ�; (3.2)

where I1;pertðQ2Þ is calculated from Eq. (3.1), while I2ðQ2Þ
is known from the BC sum rule (2.16). The smooth inter-
polation to the GDH value at Q2 ¼ 0 (2.19) is difficult and
cannot be performed analytically. Following the procedure
developed in Ref. [5], we instead make use of the smooth
extrapolation of the perturbative expression (3.2), to the
nonperturbative domain Q2 <Q2

0 defining the polynomial

in positive powers of Q2 as

IT;nonpertðQ2Þ ¼ �ðQ2
0 �Q2Þ

	 XN
n¼0

1

n!

@nIT;pert

@ðQ2Þn
��������Q¼Q0

ðQ2 �Q2
0Þn; (3.3)

where N is the number of derivatives, which is a free
parameter of the model, together with the matching point
Q ¼ Q0, which have to be chosen to satisfy

IT;nonpertð0Þ ¼ �Ae

4
: (3.4)

In practice, the easiest way to solve the problem is to fix the
number of derivatives N and then to vary theQ0 value until
the relation (3.4) is satisfied. It is interesting to note that
taking N ¼ 1 does not allow for such a solution.

Such a procedure can be considered as a matching of the
‘‘twistlike’’ expansion in negative powers of Q2 and the
‘‘chiral-like’’ expansion in positive powers of Q2 [5],

which is similar to the matching of the expansions in direct
and inverse coupling constants.
Once we have obtained the parameters N and Q2

0, then

the all-Q2 expressions for the moments �p;n
1 can be re-

stored from ITðQ2Þ defined by Eqs. (3.1), (3.2), and (3.3),
by using Eqs. (2.12) and (2.14). As we will see below, this
can be done within both the standard PT and singularity-
free APT in the same way, leading to rather similar curves
for Q2 evolution, except that in the APT case the matching
point Q2

0 playing a role of the ‘‘pQCD frontier’’ in this

interpolation scheme is noticeably shifted down to lower
Q2 scales (see the next section).

V. HIGHER-TWIST ANALYSIS

A detailed higher-twist analysis of the recent Jefferson
Lab data [3] on the lowest moments of the spin-dependent
proton and neutron structure functions �p;n

1 ðQ2Þ and

�p�n
1 ðQ2Þ in the range 0:05<Q2 < 3 GeV2 was per-

formed in Refs. [9,10]. In particular, including only three
terms of the OPE expansion �4;6;8 in Eq. (2.2), a satisfac-

tory description of the data has been achieved down to
Q2 ’ 0:17 GeV2 in conventional PT and down to Q2 ’
0:10 GeV2 in the APT.
When the lower Q2 is involved, the higher-twist contri-

bution is needed to describe the data. As was shown in
Ref. [10], there is some sensitivity of fitted values of �4 to
the minimal scale Qmin variations, namely, it increases in
magnitude when one incorporates into the fit the data
points at lower energies. This property of the fit was treated
as the slow (logarithmic) evolution �4ðQ2Þ [and a0ðQ2Þ in
the singlet case] with Q2 which becomes more noticeable
for broader fitting ranges in Q2, as discussed above.
Indeed, fit results for �4, taking into account the RG
evolution with Q ¼ 1 GeV, as a normalization point be-
come more stable with respect to Qmin variations.
However, there is still a problem with how to treat

the evolution of higher-twist terms �6;8;...ðQ2Þ which

again may turn out to be important when one goes to lower

TABLE I. Combined fit results of JLab and SLAC data on the Bjorken SR and proton SSR for
the singlet axial charge a0, and the higher-twist terms �4 and �6 defined at the normalization
point Q2 ¼ 1 GeV2 in the APT and the standard PT approaches, along with the matching value
Q2

0. Corresponding curves for �p
1 ðQ2Þ and �p�n

1 ðQ2Þ are shown in Figs. 1 and 2, respectively.

Typical values of �2=D:o:f are close to unity.

Method Target Q2
min, GeV

2 a0 �4=M
2 �6=M

4 Q2
0, GeV

2

NLO PT p-n 1.0 
 
 
 �0:060ð3Þ 0 1.1(2)

0.3 
 
 
 �0:060 0.010(2) 0.8(2)

proton 1.0 0.34(3) �0:056ð3Þ 0 1.0(1)

0.5 0.34 �0:056 0.010(2) 0.8(2)

NLO APT p-n 1.0 
 
 
 �0:058ð3Þ 0 1.0(1)

0.2 
 
 
 �0:058 0.010(1) 0.3(1)

proton 1.0 0.37(2) �0:063ð2Þ 0 1.0(1)

0.3 0.37 �0:063 0.011(1) 0.3(1)
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Q2, since the fit becomes more sensitive to very small
variations of �6;8;... with Q2. Since the evolution of the

higher twists �6;8 is still theoretically unknown, they can

be taken as free parameters [26]. This procedure leads to
rather small �2

D:o:f � 0:1 since more free parameters come

into a fit at lower Q2. On the other hand, by including
�6;8;... into the fit, one observes only a small change in

�4ð1 GeV2Þ [10], which demonstrates its stability down to
lower Q2. Taking this into account, in order to reduce the
number of free parameters, in the current work we apply
another fitting procedure and determine, first, �4 and a0 at
higher scale Q ¼ 1 GeV. Then we extract �6 applying the
known QCD evolution for �4ðQ2Þ and a0ðQ2Þ and fixing
them at 1 GeV from the previous fit. The number of free
parameters does not grow in this case. The fitting domain is
restricted from below by Qmin defined by the condition
�2=D:o:f � 1. The corresponding results are listed in
Table I. Because of the unknown evolution of �6ðQ2Þ,
which tends to be quite noticeable at lower Q2, we do
not go below Qmin and do not take into account the
�8-term here.

The advantage of the APT analysis is the infrared and
higher-loop stability of the radiative corrections, as well as
the stability with respect to �QCD variations, leading to the

stability and convergence of the higher-twist series ex-
tracted from the data. Indeed, as we see from Table I, in
the APT case the applicability of the perturbative expan-
sion (2.6) is somewhat shifted down to lowerQ2, due to the
absence of Landau singularities (see also Ref. [10] and
references therein).

V. ALL-Q2 SPIN SUM RULES

In the perturbative expression (3.1) we take into account
the two-loop perturbative correction in the singlet ES and
nonsinglet ENS coefficient functions, as well as the twist-
4,6 contributions discussed in the previous section. To
explore the infrared sensitivity of the model of the smooth

continuation to Q ¼ 0, we used two different sets of
higher-twist terms (with �4 and �4;6, respectively) and

the corresponding singlet axial charge extracted from the
data above a certain minimal scale Q2

min.

In Fig. 1 we present the proton spin sum rule function
�p
1 ðQ2Þ obtained by the smooth interpolation of the per-

turbative part IpT;perpðQ2Þ to the nonperturbative region

Q2 ! 0 as described in Section III. Calculations taking
into account one twist-4 term (left panel) and two twist-4,6
terms (right panel) listed above are performed within the
conventional PT and APT. In Fig. 2 we show the Bjorken
sum rule function �p�n

1 ðQ2Þ calculated at any Q2 in the

similar way as �p
1 ðQ2Þ.

The all-Q2 model functions �p
1 ðQ2Þ and �p�n

1 ðQ2Þ in

both versions of the perturbation theory (dash-dotted and
solid lines) are rather close to each other demonstrating the
agreement between the singularity-free APT analysis at
lower Q2 and the usual PT one at relatively higher Q2.
Also, as one can see from the comparison of the left and
right panels the results of the interpolation do not strongly
depend on the number of higher twists included and, hence,
on the borderQ2

0 between perturbative and nonperturbative

regimes. This exhibits a sort of duality between them
implying that the experimental data in the wide inter-
mediate region �2

QCD & Q2 � 1 GeV2 can be described

equally well either by OPE 1=Q2 series or by ‘‘chiral-
like’’ Q2 series.
We studied the sensitivity of above results with respect

to variations of the number of derivatives N in Eq. (3.3)
being the number of positive �Q2i power terms. As
mentioned above, at lower Q2 we need more higher
1=Q2-power twist terms. In the same way, going up from
very low Q2 we observe analogously that to describe the
data at higher Q2 we need more �Q2i power terms, i.e.,
a higher value N.
The minimal number of derivatives Nmin, which is nec-

essary to perform the smooth extrapolation according to

0.2 0.4 0.6 0.8 1.0 Q2

-0.02

0.02

0.04

0.06

0.08

Q  =1.0 GeV   (PT&APT)22
0

Γ  (     )p Q2

0.2 0.4 0.6 0.8 1.0 Q2

-0.02

0.02

0.04

0.06

0.08

Γ  (     )p Q2

Q  =0.3 GeV   (APT)2 2
0

Q  =0.8 GeV   (PT)2 2
0

FIG. 1 (color online). Proton spin sum rule function �p
1 ðQ2Þ with respect to the combined set of JLab and SLAC data. Results are

shown with an account of the twist-4 term (left panel) and the twist-4,6 terms (right panel). Corresponding perturbative parts are
calculated in the framework of conventional PT (dotted lines) and APT (dashed lines). The all-Q2 model function obtained by the
smooth interpolation of IpT ðQ2Þ is also presented in PT (dash-dotted lines) and APT (solid lines).
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Eq. (3.3) in the conventional PT case and with one�4 term
only, is Nmin ¼ 4. The corresponding matching value be-
tween perturbative and nonperturbative domains in this
case is found to be Q2

0 ¼ 1:0� 0:1 GeV2 for the proton

SSR and Q2
0 ¼ 1:1� 0:2 GeV2 for the Bjorken SR

(see Table I). However, if one increases the number
of Q2-power terms up to N ¼ 6, the applicability of the
‘‘chiral-like’’ expansion raises up toQ2

0 ’ 1:4 GeV2 for the

proton SSR and Q2
0 ’ 1:5 GeV2 for the Bjorken SR. A

similar observation was made earlier in Ref. [5].
In the framework of APT the minimal number of de-

rivatives Nmin ¼ 3 is even smaller than in the conventional
PT. In this case, if only one �4 term is included then the
matching value turned out to be same as in PT: Q2

0 ’
1:0 GeV2 for both the proton SSR and p� n demon-
strating the similarity of the APT and PT predictions at
Q * 1 GeV.

However, an analysis at lower Q2 including two �4;6

terms leads to quite different Q0 values for PT and APT.
In this case, for the proton SSR and Bjorken SR we
have Q2

0 ’ 0:8� 0:2 GeV2 (PT, Nmin ¼ 3) and Q2
0 ’

0:32� 0:1 GeV2 (APT, Nmin ¼ 2). Such a shift of the

border between perturbative and nonperturbative domains
in the APT is a direct consequence of the disappearance of
the unphysical singularities in the radiative corrections,
and confirms the similar conclusion made in Refs. [9,10].
Finally, in Fig. 3 we show the neutron spin sum rule

function �n
1ðQ2Þ, which is simply obtained from the differ-

ence �p
1 ðQ2Þ � �p�n

1 ðQ2Þ, and the deuteron spin sum rule

�d
1ðQ2Þ. We also present its perturbative PT and APT parts

together with less precise data. Both versions of the per-

turbation theory predict monotonous curves for �n;d
1 ðQ2Þ at

any Q2. A comparison between them and the results
of Ref. [10] demonstrates the consistence of the direct
fits to the data and the predictions of the generalized
GDH sum rule.

VI. CONCLUSION

In the current paper we have considered the all-Q2

model for the generalized GDH sum rule, constructed by
the smooth interpolation of ITðQ2Þ between large Q2 and
Q2 ¼ 0, in the framework of both the conventional PT and
the ghost-free analytic perturbation theory. We used the
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FIG. 3 (color online). Neutron (left) and deuteron (right) spin sum rule functions, �n
1ðQ2Þ and �d

1ðQ2Þ, with respect to the combined
set of JLab and SLAC data. Results are shown with an account of twist-4,6 terms. The meaning of curves here is the same as in Fig. 1.
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FIG. 2 (color online). Bjorken sum rule function �p�n
1 ðQ2Þ with respect to the combined set of JLab and SLAC data. The meaning of

curves here is the same as in Fig. 1.
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values of the power corrections �4;6;... and singlet axial

charge a0, systematically extracted from the precise JLab
data. We achieve a rather good description of the proton
data on �p

1 ðQ2Þ at any Q2 values. We also present an

improved description of the neutron data, as well as the
Bjorken sum rule data at all experimentally accessed Q2.

The results of the smooth interpolation �p
1 ðQ2Þ and

�p�n
1 ðQ2Þ do not strongly depend on the number of

higher-twist terms, and on the border Q2
0 between pertur-

bative and nonperturbative regimes. This exhibits a sort of
duality between them implying that the experimental data
in the wide intermediate region�2

QCD & Q2 � 1 GeV2 can

be described equally well either by OPE 1=Q2 series or by
nonperturbative ‘‘chiral-like’’ Q2 series. Within the ana-
lytic PT the ‘‘pQCD frontier’’ being the matching value
between Q2- and 1=Q2-power series naturally decreases
from 1:0 GeV2 with single �4 down to 0:3 GeV2 with

an extra �6-term included, which is significantly lower
than the corresponding value in conventional PT Q2

0 ’
0:8 GeV2. Such a shift of the border between perturbative
and nonperturbative domains in the APT is a direct con-
sequence of the disappearance of the unphysical singular-
ities in the radiative corrections.
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