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The B0
s ! J=c� and B0

s ! J=c f0ð980Þ decays are analyzed within generalized QCD factorization

including all leading-order corrections in �s: We point out that the ratio of our calculated widths, �ðB0
s !

J=c f0ð980Þ, f0ð980Þ ! �þ��Þ=�ðB0
s ! J=c�;� ! KþK�Þ, strongly indicates that S-wave effects in

the f0ð980Þ’s daughter pions or kaons cannot be ignored in the extraction of the Bs � �Bs mixing angle,

�2�s, from the B0
s ! �J=c decay amplitudes.
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I. INTRODUCTION

In the standard model, CP violation is predicted in weak
decays thanks to the single phase of the Cabibbo-
Kobayashi-Maskawa matrix. It is also well known that
such a weak phase is not sufficient to generate a CP
violating decay amplitude. Strong phases are necessary
and their strength may significantly enhance the effect of
the weak phase. Therefore, hadronic effects, such as reso-
nances of daughter particles in S and higher waves, require
a careful analysis in the determination of CP violating
phases in hadronic two- and three-body decays [1–4].

The antimatter-matter asymmetry is expected to be very
small in weak decays of Bs mesons; any observed deviation
may well be a signal of physics whose origins lie beyond
the standard model. In the B0

s ! J=c� channel, recent
measurements by the CDF [5] andD; [6,7] Collaborations
of the Bs � �Bs mixing phase, �2�s, while not definitive,
are considerably larger than standard model predictions.
Taking advantage of the fact that the B0

s ! J=c f0ð980Þ
channel does not require any angular analysis, one can
compute the ratio between the B0

s ! J=c� and B0
s !

J=c f0ð980Þ decay widths in order to estimate the �þ��
S-wave effect on the value of �s. A first qualitative attempt
to predict the ratio,

R f0=� ¼ �ðB0
s ! J=c f0ð980Þ; f0ð980Þ ! �þ��Þ
�ðB0

s ! J=c�;� ! KþK�Þ ; (1)

was made by Stone and Zhang [8] and gives a result of the
order of 20%–30%. Their estimate relies on experimental
data on Dþ

s ! f0ð980Þ�þ and Dþ
s ! ��þ decays and

seems to indicate that the S-wave contribution of

f0ð980Þ ! KþK� cannot be ignored when analyzing the
angle �s in B0

s ! J=c�. Likewise, Xie et al. found the
effect of an S-wave component on 2�s to be of the order of
10% in the � resonance region [9].
Based on the QCD factorization (QCDF) formalism, we

perform a first robust calculation of the ratio Rf0=�. To

this end, all the available observables (polarizations and
branching ratio in B0

s ! J=c�) are used to effectively
constrain the analysis of the B0

s ! J=c� channel. The
branching ratio and CP asymmetry are then predicted for
B0
s ! J=c f0ð980Þ, where we assume that merely the s�s

component of the f0ð980Þ is involved in the hadronic Bs !
f0ð980Þ transition matrix element.
In Sec. II we introduce the general expressions for the

B0
s ! J=c� and B0

s ! J=c f0ð980Þ weak decay ampli-
tudes; whereas, Secs. III and IV provide the details on
the leading-order corrections in �s for both these ampli-
tudes, respectively. In Sec. V, we list all numerical values
of input parameters and briefly recall our model for the
Bs ! f0ð980Þ transition form factor [10] on which the ratio
Rf0=� directly depends; we also define the parametrization

for the Bs ! � form factor. Section VI is devoted to our
results, and finally, conclusions are drawn in Sec. VII.

II. GENERAL FORM OF THE B0
s ! �J=c AND

B0
s ! f0ð980ÞJ=c DECAYAMPLITUDES

It is important to realize beforehand that the application
of QCDF, following Refs. [11–14], to B0

s decays into a
heavy-light final state is not self-evident. In both final
states, �J=c and f0ð980ÞJ=c , the s-spectator quark is
absorbed by the light meson while the emitted meson is
heavy, in which case QCDF is not reliable [11].
Nonetheless, as argued in Refs. [15,16] and more recently
in Ref. [17], the production of a heavy charmonium �qq pair
bears ‘‘color transparency’’ properties similar to those of a
light meson, provided this color-singlet pair is small com-
pared to the inverse strong interaction scale, 1=�QCD. This
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was explicitly demonstrated in next-to-leading order cal-
culations for exclusive B decays to J=c final states
(J=cK; J=cK�), where infrared divergences were shown
to cancel [15,16].

In the following, we present the B0
s decay amplitudes in

which the short- and long-distance contributions are fac-
torized in the approximation of a quasi two-body state,
M1M2, where either M1M2 ¼ f0ð980ÞJ=c or M1M2 ¼
�J=c . We begin with the B0

s ! �J=c amplitude which
can be written for each helicity, h ¼ �1, 0, 1, as [14]

A h
B0
s!�J=c

¼ X
q¼u;c

�qfAh
�J=c ½�qcðaq;h2 ðmbÞ þ �hÞ

þ aq;h3 ðmbÞ þ aq;h5 ðmbÞ þ aq;h7 ðmbÞ
þ aq;h9 ðmbÞ�g�J=c : (2)

Summing over all the possible helicities, the squared
modulus of the total amplitude reads

jAB0
s!�J=c j2 ¼ jAh¼�1

B0
s!�J=c

j2 þ jAh¼0
B0
s!�J=c

j2

þ jAh¼þ1
B0
s!�J=c

j2: (3)

The �B0
s ! �J=c decay amplitude is obtained by exchange

of helicity signs, h ¼ þ1 ! h ¼ �1, and replacing �q by

its complex conjugate. TheB0
s ! f0ð980ÞJ=c amplitude is

AB0
s!f0J=c

¼ X
q¼u;c

�qfAf0J=c ½�qcðaq2ðmbÞ þ �Þ þ aq3ðmbÞ

þ aq5ðmbÞ þ aq7ðmbÞ þ aq9ðmbÞ�gf0J=c : (4)

The different elements entering in the amplitudes (2) and
(4) are defined in Eqs. (6), (7), (15), (22), and (24). The CP
conjugate �B0

s decay amplitude is again found by replacing
�q by its complex conjugate.

With the generic amplitude, AB0
s!M1J=c

, the branching

ratio,

BðB0
s!M1J=c Þ

¼ 1

�B0
s

1

16�mB0
s

�1=2ð1;m2
M1
=m2

B0
s
;m2

J=c =m
2
B0
s
ÞjAB0

s!M1J=c
j2;

(5)

can be computed. The J=c mass is noted mJ=c , while

mM1
¼ mf0ð980Þ or m� denote the f0ð980Þ and � masses;

the triangle function is �ðx; y; zÞ ¼ ðxþ y� zÞ2 � 4xy. In
Eq. (5), �B0

s
¼ 1=�B0

s
is the B0

s decay width with �B0
s
¼

ð1:470� 0:026Þ ps [18] and mB0
s
is the B0

s mass. For the

Cabibbo-Kobayashi-Maskawa elements in Eqs. (2) and (4),
we use the Wolfenstein parametrization,

�u ¼ V?
ubVus ¼ A�4ð	þ i
Þ;

�c ¼ V?
cbVcs ¼ A�2

�
1� �2

2

�
;

(6)

with the Wolfenstein parameters A ¼ 0:814, 	 ¼ 0:1385,

 ¼ 0:358, and � ¼ 0:2257 [18].

A. Nonperturbative amplitude

1. The case of the scalar-vector decay

The scalar-vector factor, Af0J=c , in Eq. (4) is given by

Af0J=c ¼ hf0ðpf0Þj �b��ð1� �5ÞsjB0
sðpB0

s
Þi

� hJ=c ðpJ=c ; "
�
J=c Þj �c��cj0i; (7)

where the hadronic matrix element which describes the
transition between the B0

s and a scalar meson, f0, with the
respective four-momenta pB0

s
and pf0 is [19]

hf0ðpf0Þj �b��ð1� �5ÞsjB0
sðpB0

s
Þi

¼
�
pB0

s
þ pf0 �

m2
B0
s
�m2

f0

q2
q

�
�
FB0

s!f0
1 ðq2Þ

þ
m2

B0
s
�m2

f0

q2
q�F

B0
s!f0

0 ðq2Þ; (8)

with q ¼ pB0
s
� pf0 , q

2 ¼ m2
J=c and where FB0

s!f0
1 ðq2Þ and

FB0
s!f0

0 ðq2Þ are the vector and scalar form factors, respec-

tively. In Eq. (7), the leptonic decay constant, fJ=c , of

the J=c vector meson, with four-momentum, pJ=c , and

polarization, "�J=c , is defined as

hJ=c ðpJ=c ; "
�
J=c Þj �c��cj0i ¼ �ifJ=cmJ=c "

��
J=c : (9)

The scalar-vector factor, given by the product of Eqs. (8)
and (9), is then obtained as

Af0J=c ¼ �i
GFffiffiffi
2

p 2mJ=c 
�
J=c � pB0

s
F
B0
s!f0

1 ðm2
J=c ÞfJ=c ;

(10)

with 4m2
J=c j�J=c � pB0

s
j2 ¼ m2

B0
s
�1=2ðm2

B0
s
; m2

J=c ; m
2
f0
Þ and

the Fermi constant, GF ¼ 1:16� 10�5GeV�2. The

B0
s ! f0 transition form factor FB0

s!f0
1 ðm2

J=c Þ will be dis-

cussed in Sec. V.

2. The case of the vector-vector decay

For the case of two vector mesons, M1 and M2, the
helicity formalism requires the introduction of three
polarization four-vectors, Mj;k (j ¼ 1, 2 and k ¼ 1, 2, 3)

for each spin-1 particle, Mj,

Mj;1 ¼ ð0; ~Mj;1Þ; Mj;2 ¼ ð0; ~Mj;2Þ;
Mj;3 ¼ ðj ~pMj

j=mMj
; EMj

p̂Mj
=mMj

Þ; (11)

where mMj
, pMj

and EMj
are the mass, the momentum and

the energy of the vector meson, Mj, respectively. The

energies EM1
, EM2

are given by
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EM1;2
¼ 1

2mM2;1

ðm2
B0
s
�m2

M1
�m2

M2
Þ: (12)

In Eq. (11), p̂Mj
is defined as the unit vector along the

momentum: p̂Mj
¼ ~pMj

=j ~pMj
j.

The three polarization four-vectors, Mj;k, also satisfy

the following relations:

Mj;k
2 ¼ �1; and Mj;k � Mj;l ¼ 0; for k � l:

(13)

The vectors ~Mj;1, ~Mj;2, and ~Mj;3 form an orthogonal basis

in which ~Mj;1 and ~Mj;2 describe the transverse polariza-

tions while ~Mj;3 is the longitudinal polarization vector.

With these three vectors, one builds up the helicity basis,

Mj;þ ¼ 1ffiffiffi
2

p ðMj;1 þ iMj;2Þ ¼
1ffiffiffi
2

p ð0;þ1; i; 0Þ;

Mj;� ¼ 1ffiffiffi
2

p ðMj;1 � iMj;2Þ ¼
1ffiffiffi
2

p ð0;�1; i; 0Þ;

Mj;0 ¼ Mj;3; (14)

and M1;� ¼ M2;�. In Eq. (14), the new four-vectors

Mj;þ; Mj;�, and Mj;0 are eigenvectors of the helicity

operator corresponding to the eigenvalues h ¼ þ1, �1,
and 0, respectively.

The vector-vector factor, Ah
M1M2

, in Eq. (2) is

Ah
M1M2

¼ hM1ðpM1
; "�M1

Þj �b��ð1� �5ÞqjB0
sðpB0

s
Þi

� hM2ðpM2
; "�M2

Þj �q��q0j0i; (15)

where, in the B0
s rest-frame, the vector mesons M1 and M2

have opposite momentum ~pM1
¼ � ~pM2

along the z direc-

tion and Mj;0 � pMj
¼ 0.

The matrix hadronic element of a P ! V transition can
be decomposed into Lorentz invariants as [16,19,20]

hMjðpMj
; "�Mj

Þj �b��ð1� �5ÞqjB0
sðpB0

s
Þi

¼ "�Mj;�
ðmB0

s
þmMj

ÞAB0
s!Mj

1 ðq2Þ

� ðpB0
s
þ pMj

Þ�ð"�Mj
� pB0

s
ÞA

B0
s!Mj

2 ðq2Þ
mB0

s
þmMj

� q�ð"�Mj
� pB0

s
Þ 2mMj

q2
½AB0

s!Mj

3 ðq2Þ � A
B0
s!Mj

0 ðq2Þ�

þ i����"
��
Mj
p�
B0
s
p�
Mj

2VB0
s!Mjðq2Þ

mB0
s
þmMj

; (16)

where the form factors A
B0
s!Mj

0 ðq2Þ, A
B0
s!Mj

1 ðq2Þ,
A
B0
s!Mj

2 ðq2Þ, and A
B0
s!Mj

3 ðq2Þ obey the following exact

relations:

A
B0
s!Mj

3 ðq2Þ ¼ mB0
s
þmMj

2mMj

A
B0
s!Mj

1 ðq2Þ

�mB0
s
�mMj

2mMj

A
B0
s!Mj

2 ðq2Þ; (17)

as well as for q2 ¼ 0, A
B0
s!Mj

3 ð0Þ ¼ A
B0
s!Mj

0 ð0Þ.
Specifically for M1 ¼ �, and M2 ¼ J=c , the helicity

dependent vector-vector factor Ah
�J=c in Eq. (2) has thus

the following form:

Aðh¼0Þ
�J=c ¼ i

GFffiffiffi
2

p fJ=c ½�m�ðmB0
s
þm�ÞAB0

s!�
1 ðm2

J=c Þ

þ ðm2
B0
s
þm2

� �m2
J=c ÞAB0

s!�
0 ðm2

J=c Þ�; (18a)

Aðh¼�1Þ
�J=c ¼ i

GFffiffiffi
2

p mB0
s
mJ=c fJ=cF

B0
s!�

� ðm2
J=c Þ: (18b)

In Eq. (18b), the transition form factors F
B0
s!�

� ðq2 ¼
m2

J=c Þ are

F
B0
s!�

� ðm2
J=c Þ ¼

�
1þ m�

mB0
s

�
A
B0
s!�

1 ðm2
J=c Þ

� 2j ~pB0
s
j

mB0
s
þm�

VB0
s!�ðm2

J=c Þ; (19)

where the center-of-mass momentum j ~pB0
s
j is defined as

j ~pB0
s
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B0
s
�M2þÞðm2

B0
s
�M2�Þ

q
2mB0

s

; (20)

with M� ¼ mJ=c �m�. We note that a somewhat differ-

ent form for Aðh¼0Þ
�J=c was derived in Ref. [20], which seems

to approximate the vector mesons as light mesons. The

form factors AB0
s!�

0 ðm2
J=c Þ and AB0

s!�
1 ðm2

J=c Þ in Eqs. (18a)

and (19), as well as VB0
s!�ðm2

J=c Þ in Eq. (19) are defined in
Sec. V. Reference [14] asserts that when neglecting vector
meson masses, Eq. (18a) reduces to

Aðh¼0Þ
�J=c ¼ i

GFffiffiffi
2

p fJ=cm
2
B0
s
A
B0
s!�

0 ðm2
J=c Þ: (21)

The numerical effects in the calculated values of B0
s !

J=c� and B0
s ! J=c f0ð980Þ branching ratios are too

important to justify such an approximation.

B. Perturbative amplitude

The aq;hn ð�Þ coefficients that appear in Eqs. (2) and (4)
are linear combinations of Wilson coefficients, Cnð�Þ,
either at the scale � ¼ mb or mb=2 (see below):
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aq;hn ðmbÞ ¼
�
CnðmbÞ þ Cn�1ðmbÞ

Nc

�
NnðJ=c Þ þ Pq;h

n ðJ=c Þ

þ Cn�1ðmbÞ
Nc

CF

4�
�sðmbÞVh

n ðJ=c Þ

þ �CF�sðmb=2ÞCn�1ðmb=2Þ
N2

c

Hh
nðM1J=c Þ:

(22)

The superscript (h) refers to the helicity dependence of

aq;hn ð�Þ in the case where B0
s decays into two vector me-

sons. This superscript is dropped in the scalar-vector case.

There is no flavor dependence in aq;hn ð�Þ for n ¼ 1, 2. In
Eq. (22), the upper (lower) signs in Cn�1ð�Þ apply when n
is odd (even) and

NnðJ=c Þ ¼ 0; n 2 f6; 8g; else NnðJ=c Þ ¼ 1:

(23)

The Wilson coefficients, Cnð�Þ, in the naive dimensional
regularization scheme are taken at the hard scalemb for the

vertex, Vh
n ðJ=c Þ, and penguin, Pq;h

n ðJ=c Þ, corrections;
whereas, in the hard scattering, Hh

nðM1J=c Þ, amplitudes
they are evaluated at mb=2 since those contributions in-
volve the spectator quark. The strong coupling constants at
these scales are �sðmbÞ ¼ 0:224 and �sðmb=2Þ ¼ 0:286
[18], while the number of active flavors is nF ¼ 5, the
color number Nc ¼ 3 and CF ¼ ðN2

c � 1Þ=2Nc.

C. Suppressed higher order corrections
and possibility of new physics

There are no contributions, such as given by the annihi-
lation operators derived in Ref. [13], to the two decays
considered here. This is because for the final states, J=c�
and J=c f0ð980Þ, both mesons are simultaneously flavor
and color singlets. At tree level, for instance, the W�
exchange diagram produces the charmonium �cc, yet the
creation of the �ss which hadronizes to an f0ð980Þ or �
must proceed via multiple gluons or by means of photon/Z
exchange. The annihilation is thus either strongly (Zweig)
suppressed in �s or the suppression is in the electromag-
netic coupling constant �em.

On the other hand, as will be discussed in Sec. VI, if we
account for vertex, penguin and hard-scattering corrections
only, the B0

s ! J=c� observables are only moderately
well reproduced. As can be seen in Table IX, the branching
ratio, for instance, is about 20% too large (although still
within the experimental errors). We therefore allow for
additional phenomenological amplitudes that mock up
‘‘other’’ contributions, be it from annihilation topologies
expected to be strongly suppressed or possible physics
beyond the standard model [21]. These are included in
Eqs. (2) and (4) with the amplitudes, �h and � , conven-
iently scaled as

� ðhÞ ¼ BM1J=c

AðhÞ
M1J=c

XC: (24)

The factor BM1J=c is chosen to be a product of decay

constants, either

Bf0J=c ¼ �i
GFffiffiffi
2

p fB0
s

�ff0fJ=c ; (25)

if M1 ¼ f0ð980Þ or

B�J=c ¼ i
GFffiffiffi
2

p fB0
s
f�fJ=c ; (26)

if M1 ¼ �, while the factor XC is a complex parameter
discussed in Sec. VC. We note that the decay constant, ff0 ,

vanishes due to charge conjugation invariance, wherefore
the scalar light cone distributions amplitude (LCDA) is
normalized to �ff0 ¼ ff0mf0=ðmu;dð�Þ �mu;dð�ÞÞ, which
is finite [22]. We shall return to this issue in Sec. IV.

D. The ratio Rf0=�

Prior to discussing the various �sð�Þ corrections to the

amplitudes, ap;hn ð�Þ, it may be of interest to observe the
qualitative behavior of the ratio, Rf0=�, in terms of the

scales�QCD andmb. A naive factorization analysis yields a

hierarchy of helicity amplitudes for B into vector-vector
decays [14],

A ðh¼0Þ
B0
s!�J=c

:Aðh¼þ1Þ
B0
s!�J=c

:Aðh¼�1Þ
B0
s!�J=c

()1:
�QCD

mb

:

�
�QCD

mb

�
2
;

(27)

while for �Bs mesons the signs are exchanged (h ¼ þ1 !
h ¼ �1). Furthermore, the amplitudes Aðh¼0Þ

B0
s!�J=c

and

AB0
s!f0J=c

are of same order in �QCD=mb. With this

estimation, the ratio Rf0=� we are interested in becomes

Rf0=� ¼ jAB0
s!f0J=c

j2
jAðh¼0Þ

B0
s!�J=c

j2 þ jAðh¼�1Þ
B0
s!�J=c

j2 þ jAðh¼þ1Þ
B0
s!�J=c

j2

’ Oð1Þ þO
�
�QCD

mb

�
2 þO

�
�QCD

mb

�
4
: (28)

Hence, Rf0=� is Oð1Þ for �QCD=mb corrections.

Nonetheless, nonperturbative hadronic effects can spoil
the naive factorization and violate the hierarchy in Eq. (27)
; so do electromagnetic penguin contributions where a
photon with small virtuality subsequently converts into a
vector meson [23].

III. QCDF CORRECTIONS FOR B0
s ! �J=c

DECAYAMPLITUDES

Because of the structure of the four-quark operators in
heavy quark effective theory and the conservation of the
flavor quantum numbers, the final state M1M2 ¼ �J=c is
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created from the transition B0
s ! � and the production of

J=c from vacuum. As discussed in Sec. II, the decay
amplitudes at leading order in �QCD=mb and �sðmbÞ are
given by the factorized product of a transition form factor
and a decay constant. Following Ref. [14], we only give
QCD corrections that explicitly appear in the amplitude
Ah

B0
s!�J=c

of Eq. (2).

We discard terms proportional to r ¼ ðmJ=c =mBs
Þ2 ’

1=3 in vertex corrections which stem from the presence
of the charm quark in the loop diagram; we have numeri-

cally checked that their contributions to the aq;hn ð�Þ coef-
ficients are negligible, all the more so when seen in the
light of the large hadronic uncertainties of the form factors
[see Secs. VA and VB]. We note that in the limit r ! 0,
one recovers the vertex correction known from, for
example, B ! �� which is of course infrared safe.

Since the coefficients in the Gegenbauer expansion of
the LCDA are poorly known for the scalar mesons, and
only with non-negligible errors for the vector mesons V ¼
� and V ¼ J=c , we limit ourselves to leading terms in the
expansion. The leading twist-2 distribution and twist-3
two-particle distribution amplitudes are approximated by

�VðxÞ ¼ 6xð1� xÞ (29)

and

’VðxÞ ¼ 3ð2x� 1Þ; (30)

respectively. In the annihilation and hard-scattering ampli-
tudes, the chiral coefficient, rV�ð�Þ, is defined as

rV�ð�Þ ¼ 2mV

mbð�Þ
f?V ð�Þ
fV

’ 2mV

mbð�Þ ; (31)

where f?V ð�Þ is the transverse decay constant for any
vector V and � ¼ mb=2.

A. Penguin contributions

The penguin contributions to the amplitude in Eq. (2)
stems from the positive helicity, h ¼ þ1, amplitudes

Pq;h¼þ1
7;9 ðJ=c Þ given in Ref. [14],

Pq;h¼þ1
7;9 ðJ=c Þ ¼ � �e

3�
Ceff
7�ð�ÞmB0

s
mb

m2
J=c

þ 2�e

27�
ðC1ð�Þ

þ NcC2ð�ÞÞ
�
�qc ln

m2
c

�2
þ �qu ln

�2

�2
þ 1

�
;

(32)

whereas Pq;h¼�1
7;9 ðJ=c Þ ¼ 0. In Eq. (32), � ¼ mb,

Ceff
7�ð�Þ ¼ C7�ð�Þ � C5ð�Þ=3� C6ð�Þ, �e ¼ 1=129 is

the electromagnetic coupling constant and the scale �
refers to the fJ=c decay constant scale. One also has

Pq;h¼�1
3;5 ðJ=c Þ ¼ 0 as well as Pq;ðh¼0Þ

3;5;7;9 ðJ=c Þ ¼ 0.

B. Vertex contributions

In B0
s ! �J=c , the electroweak vertex receives �sð�Þ

corrections to all aq;hn ð�Þ in the amplitudesAh
B0
s!�J=c

. For

h ¼ 0, these are, with � ¼ mb,

Vh¼0
n ðJ=c Þ ¼

8>>>>><
>>>>>:

12 ln

�
mb

�

�
� 3i�� 27

2 ;

for n 2 f2; 3; 9g;
�12 ln

�
mb

�

�
þ 3i�þ 13

2 ;

for n 2 f5; 7g;

(33)

whereas for h ¼ �1, one has

Vh¼�1
n ðJ=c Þ ¼

8>>>>><
>>>>>:

12 ln

�
mb

�

�
þ �2 � 143

4 ;

for n 2 f2; 3; 9g;
�12 ln

�
mb

�

�
� �2 þ 95

4 ;

for n 2 f5; 7g;

(34)

and for h ¼ þ1, one has

Vh¼þ1
n ðJ=c Þ ¼

8>>>>><
>>>>>:

12 ln

�
mb

�

�
þ �2

2 � 6i�� 71
4 ;

for n 2 f2; 3; 9g;
�12 ln

�
mb

�

�
� �2

2 þ 6i�þ 23
4 ;

for n 2 f5; 7g:

(35)

C. Hard-scattering contributions

The gluon exchange between a J=c meson and the
spectator s-quark leads to the hard-scattering amplitudes,

Hh¼0
n ð�J=c Þ ¼ �3

B�J=c

Ah¼0
�J=c

mB0
s

�B0
s

ðr�� ð�ÞXH þ 3Þ; (36)

for h ¼ 0, � ¼ mb=2, and �B0
s
¼ 0:350 GeV [13]. The

plus sign is for n ¼ 2, 3, 9, and the minus sign for n ¼
5, 7. The phenomenological amplitude, XH, parametrizes
the end point divergence of the scalar meson’s LCDA
and is defined in Eq. (54). For the helicity, h ¼ þ1, the
correction reads

Hh¼þ1
n ð�J=c Þ ¼ �18

B�J=c

Ah¼þ1
�J=c

f?�
f�

mJ=c

�B0
s

ðXH � 1Þ; (37)

where the minus sign applies to n ¼ 2, 3, 9 and the plus
sign to n ¼ 5, 7. The helicity, h ¼ �1, contribution is
simply

Hh¼�1
n ð�J=c Þ ¼ 0 for n ¼ 2; 3; 5; 7; 9: (38)

IV. QCDF CORRECTIONS FOR B0
s ! f0ð980ÞJ=c

DECAYAMPLITUDES

We now turn to the B0
s ! J=c f0ð980Þ transition for

which the �sð�Þ corrections are all included following
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Ref. [13] applied to an SV final state. For previously
mentioned reasons, we solely employ the first nonvanish-
ing leading term in the LCDA,

�f0ðxÞ ¼ 6xð1� xÞ½3B1ð�Þð2x� 1Þ�; (39)

where B1ðmb=2Þ ¼ �0:54 [22] is the f0ð980Þ’s first
Gegenbauer moment and we remind that only odd mo-
ments contribute in case of charge-neutral scalar mesons.
In particular, contrary to the pseudoscalar LCDA, the
leading term 6xð1� xÞB0 vanishes since B0 ¼ ðm1ð�Þ �
m2ð�ÞÞ=mS, where mS is the scalar meson mass and
m1;2ð�Þ its running quark masses. The scalar twist-3 two-

particle distribution is given by

’f0ðxÞ ¼ 1: (40)

The asymptotic forms of the LCDA, �J=c ðxÞ [Eq. (29)]
and ’J=c ðxÞ [Eq. (30)], are used. As in the B0

s ! �J=c
decay, the J=c meson is created from vacuum whereas the
transition B0

s ! f0ð980Þ produces the scalar meson. Here,
we only consider the s�s component of the f0ð980Þ since the
flavor of the spectator quark in the tree and penguin top-
ologies of B0

s decays is strange. There are no penguin
corrections [13] to the B0

s ! f0ð980ÞJ=c decay amplitude
in Eq. (4).

A. Vertex contributions

At the order of �sð�Þ, the vertex correction, VnðJ=c Þ,
involves the leading twist distribution, �J=c ðxÞ, and a

gluon kernel given in [13]. We derive from this the ex-
pressions

VnðJ=c Þ ¼

8>>>>><
>>>>>:

12 ln

�
mb

�

�
� 3i�� 37

2 ;

for n 2 f2; 3; 9g;
�12 ln

�
mb

�

�
þ 3i�þ 13

2 ;

for n 2 f5; 7g

(41)

with � ¼ mb.

B. Hard-scattering contributions

The hard-scattering correction in case of an f0J=c final
state reads

Hnðf0J=c Þ ¼ �3
Bf0J=c

Af0J=c

mB0
s

�B0
s

ð �rf0� ð�ÞXH þ 3B1ð�ÞÞ;
(42)

where the plus sign applies to n ¼ 2, 3, 9, the minus sign to
n ¼ 5, 7 and XH is given, as in the case of the �J=c final
state, by Eq. (54).

The chiral coefficient, �r
f0
� ð�Þ, enters Eq. (42) rather than

r
f0
� ð�Þ defined as

rf0� ð�Þ ¼ 2m2
f0

mbð�Þðm1ð�Þ �m2ð�ÞÞ : (43)

The reason is that in case of neutral scalar mesons,

m1ð�Þ ¼ m2ð�Þ and r
f0
� ð�Þ diverges. On the other hand,

it is known from C-conjugation invariance that the vector-
decay constant of the neutral scalar meson must vanish.
However, the quark equations of motions yield a relation
between the scalar- and vector-decay constants, �ff0 and

ff0 , respectively:

�f f0 ¼
mf0

m1ð�Þ �m2ð�Þ ff0 ; (44)

where mf0
�ff0 ¼ h0j �q2q1jf0i. Since �ff0 is nonzero, the

product ff0mf0=ðm1ð�Þ �m2ð�ÞÞ is finite in the limit

m1ð�Þ ! m2ð�Þ. We thus recombine, ff0r
f0
� ¼ �ff0 �r

f0
� , with

�r
f0
� ð�Þ ¼ 2mf0

mbð�Þ : (45)

V. NUMERICAL PARAMETERS

This section serves to summarize all parameter values
required for numerical applications. The Wilson coeffi-
cients at the scales � ¼ mb and � ¼ mb=2 used in this
work are listed in Table I. For the meson masses, we refer
to the latest PDG values [18], which are (in GeV):

mB0
s
¼ 5:366; mB?

s
¼ 5:412; mf0 ¼ 0:980;

mJ=c ¼ 3:096; m� ¼ 1:019: (46)

The running quark masses at � ¼ mb ¼ 4:2 GeV are (in
GeV),

mb ¼ 4:2; mc ¼ 1:3;

ms ¼ 0:07; mu;d ¼ 0:003; (47)

and those at � ¼ mb=2 ¼ 2:1 GeV are

mb ¼ 4:95; mc ¼ 1:51;

ms ¼ 0:09; mu;d ¼ 0:005: (48)

We take the � decay constant values from Ref. [14]:
f� ¼ ð221� 3Þ MeV and f?� ¼ ð175� 25Þ MeV. For the

J=c meson, we use fJ=c ¼ ð416� 6Þ MeV [24] and

f?J=c ¼ ð405� 5Þ MeV [16]. In the Bs ! J=c f0ð980Þ
channel, the s�s component of the f0ð980Þ is involved which
implies the poorly known scalar decay constant �ff0 : one

theoretical estimate yields �ffs
0
¼ ð180� 15Þ MeV [25]

whereas a much larger value �ffs
0
ð1 GeVÞ ¼ ð370�

20Þ MeV [ �ffs
0
ð2:1 GeVÞ ¼ ð460� 25Þ MeV] is found in

Ref. [22], both from coupling to the scalar �ss current only
(denoted by the superscript s in fs0, which we use hence-

forth). Similarly, several theoretical predictions exist for
the leptonic Bs decay constants of which we select three
values from unquenched lattice QCD: fB0

s
¼ ð204�

12þ24
�23Þ MeV [26], fB0

s
¼ ð259� 32Þ MeV [27], and fB0

s
¼

ð231� 15Þ MeV [28].
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To illustrate the sensitivity of the ratio Rf0=� to the

hadronic uncertainties, we exemplarily choose three differ-
ent values for each decay constant: fB0

s
¼ 230, 260,

290 MeV and �ffs
0
¼ 340, 380, 420 MeV.

A.B ! V transition form factor

Values for the B0
s ! � transition form factors are taken

from the pole-extrapolation model by Melikhov [19]:

A0ðq2ÞB0
s!� ¼ a0ð0Þ

ð1� q2

m2

B0s

Þð1� �1
q2

m2

B0s

þ �2
q4

m4

B0s

Þ
: (49)

The form factor Vðq2ÞB0
s!� is given by a similar expression

in which a0ð0Þ is replaced by vð0Þ and mB0
s
by mB?

s
[19].

Next, the A1ðq2ÞB0
s!� form factor is parametrized by

A1ðq2ÞB0
s!� ¼ a1ð0Þ

ð1� �1
q2

m2

B?s

þ �2
q4

m4

B?s

Þ
: (50)

Finally, A2ðq2ÞB0
s!� has the same functional form as

A1ðq2ÞB0
s!� where a1ð0Þ is replaced by a2ð0Þ. In both,

Eqs. (49) and (50), the momentum transfer is q2 ¼ m2
J=c .

In Eqs. (49) and (50), the form factors at q2 ¼ 0 are
a0ð0Þ ¼ 0:42 (vð0Þ ¼ 0:44) and a1ð0Þ ¼ 0:34 (a2ð0Þ ¼
0:31). The extrapolation parameters are, for A0ðq2ÞB0

s!�,

�1 ¼ 0:55 and �2 ¼ 0:12; for Vðq2ÞB0
s!�, �1 ¼ 0:62 and

�2 ¼ 0:20; for A1ðq2ÞB0
s!�, �1 ¼ 0:73 and �2 ¼ 0:42 and

finally for A2ðq2ÞB0
s!�, �1 ¼ 1:30 and �2 ¼ 0:52. The

respective values for the form factors at the value

q2 ¼ m2
J=c are A0ðq2ÞB0

s!� ¼ 0:76, A1ðq2ÞB0
s!� ¼ 0:42,

A2ðq2ÞB0
s!� ¼ 0:49, and Vðq2ÞB0

s!� ¼ 0:80.

B. B ! S transition form factor

We studied the transition form factor, F
B0
s!fs

0

0;1 ðq2Þ, in a

comparative calculation using a dispersion relation and a
covariant light front dynamics model [10]. To our knowl-
edge, this form factor has only been calculated recently in
QCD sum rules [29,30] and perturbative QCD [31] for
q2 ¼ 0 and must be extrapolated to the value

F
B0
s!fs

0

0;1 ðm2
J=c Þ.

In our work [10], the transition form factors are
derived from the constituent quark three-point function,
the vertices of which are the weak interaction coupling,
��ð1� �5Þ, and two phenomenological Bethe-Salpeter

amplitudes for the BðsÞ and f0ð980Þ mesons. While the Bs

can be parametrized with the leptonic decay constant
(known from lattice-QCD simulations), the latter is more
problematic since the �ffs

0
is poorly determined. In an

attempt to formulate a suitable scalar f0ð980Þ vertex func-
tion, we constrained its parameters by means of experi-
mental quasi two-body branching fractions, DðsÞ !
f0ð980ÞP, P ¼ �, K. The advantage is that the F

B0
s!fs

0þ ðq2Þ
and FB0

s!fs
0� ðq2Þ form factors,

hfs0ðp2Þj�s��ð1� �5ÞbjB0
sðp1Þi

¼ F
B0
s!fs

0þ ðq2Þðp1 þ p2Þ� þ FB0
s!fs

0� ðq2Þðp1 � p2Þ�;
(51)

can be calculated for any physical timelike momentum
transfer q2 ¼ ðp1 � p2Þ2. The superscript s is a reminder
that the transition is to the �ss component of the scalar
meson andp1 andp2 are theB

0
s and f0ð980Þ four-momenta,

respectively. We do stress that the Bs ! f0ð980Þ form
factor calculated by us in Ref. [10] does not assume a
pure �ss state of the f0ð980Þ. Instead, it was treated as a
mixture of strange and nonstrange �qq components related
by a mixing angle which also yields the related form factor

F
B!fu;d

0

0;1 ðq2Þ. This angle was determined with experimental

constraints [10] and the overall normalization of the tran-
sition form factor receives contributions from both states.
The form factors F�ðq2Þ (we suppress the flavor super-

scripts) are related to the set of vector and scalar form
factors as

F1ðq2Þ ¼ Fþðq2Þ; (52)

F0ðq2Þ ¼ Fþðq2Þ þ q2

m2
B0
s
�m2

f0

F�ðq2Þ: (53)

The form factor F1ðq2Þ we obtain in both the dispersion
relation and covariant light front dynamics approaches
agree at the maximum recoil point q2 ¼ 0. At large
four-momentum transfer, specifically for q2 ¼ m2

J=c ’
10 GeV2, our model predictions differ significantly which
is also known to occur for B ! � transition form factors
[32]. This is not surprising, as for large momentum trans-
fers the final-state meson is less energetic and the soft
physics of the bound states becomes more relevant.
Since the models differ in their parametrization of the
bound-state wave functions, it is clear that their inaccura-
cies are revealed in the form-factor predictions at large q2.

TABLE I. Wilson coefficients at the � ¼ mb and � ¼ mb=2 scales in the naive dimensional regularization scheme [12]. The
coefficients C7ð�Þ � C10ð�Þ must be multiplied by �e.

C1ð�Þ C2ð�Þ C3ð�Þ C4ð�Þ C5ð�Þ C6ð�Þ C7ð�Þ C8ð�Þ C9ð�Þ C10ð�Þ C7�ð�Þ
� ¼ mb 1.081 �0:190 0.014 �0:036 0.009 �0:042 �0:011 0.06 �1:254 0.233 �0:318
� ¼ mb=2 1.137 �0:295 0.021 �0:051 0.010 �0:065 �0:24 0.096 �1:325 0.331 �0:364
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In Ref. [30], we deduce from the author’s extrapolation

parametrization that F
B0
s!fs

0

1 ðm2
J=c Þ ’ 0:3, which is com-

patible with our dispersion-relation prediction ’ 0:4within
the errors. In Sec. VI, we will account for this rather large
window of values and plot the ratio Rf0=� as a function of

F
B0
s!fs

0

1 ðm2
J=c Þ.

C. Model parameters

The hard-scattering contributions involve end point
divergences, which we choose to parametrize by

XH ¼ ð1þ 	H expði�HÞÞ ln
mB0

s

�h

: (54)

In case of a possible annihilation or other contribution, we
simply write,

XC ¼ 	C expði�CÞ (55)

which introduces four parameters, 0< 	C;H and 0<
�C;H < 360�. We assume that Xh¼0

C;H ¼ Xh¼�1
C;H ¼ Xh¼þ1

C;H ¼
XC;H, as the vector � and scalar f0ð980Þ mesons have

similar masses and we consider the s�s component only.
The hard-scattering corrections are expected to be of the
order of mB0

s
=�h in Eq. (54), with �h ¼ 0:5 GeV. The

parameters 	C;H and �C;H are chosen so as to reproduce

the experimental data discussed in Sec. VI. We insert their
values in the B0

s ! J=c f0 decay amplitude (4) and then
predict the branching ratio BðB0

s ! f0J=c Þ.

VI. RESULTS AND EXPERIMENTAL DATA

In the B0
s ! �J=c decay, one can define five observ-

ables: a longitudinal, parallel, and perpendicular polariza-
tion fraction, fL,fk, and f?, respectively,

fk ¼ jAkj2
jALj2 þ jAkj2 þ jA?j2

; k ¼ L; k;? (56)

as well as two relative phases, �k and �?,

�k ¼ arg

�
Ak

AL

�
; k ¼k;?; (57)

where we have abbreviated, L ¼ Aðh¼0Þ
s0!�J=c , A k¼

½Aðh¼þ1Þ
s0!�J=c þAðh¼�1Þ

s0!�J=c �=
ffiffiffi
2

p
, and A? ¼ ½Aðh¼þ1Þ

s0!�J=c�
Aðh¼�1Þ

s0!�J=c �=
ffiffiffi
2

p
.

The CP average is defined in terms of the polarization
fractions, fk,

Ak
CP ¼ f

�B0
s

k � f
B0
s

k

f
�B0
s

k þ f
B0
s

k

: (58)

Similarly, for B0
s ! f0ð980ÞJ=c , the CP average is

defined as,

ACP ¼ Bð �B0
s ! f0J=c Þ �BðB0

s ! f0J=c Þ
Bð �B0

s ! f0J=c Þ þBðB0
s ! f0J=c Þ : (59)

We use data from CDF and D; for the B0
s ! �J=c

decay, whereas there is no available data on the channel
B0
s ! f0J=c . Our data compilation consists of the D;

values for the amplitudes, jALj2 ¼ 0:555� 0:027�
0:006, jAkj2 ¼ 0:244� 0:032� 0:014 and the relative

phase �k ¼ 2:72þ1:12�0:27 rad [7]. The CDF values [33] are

compatible, jALj2 ¼ 0:530� 0:021� 0:007 and
jAkj2 ¼ 0:230� 0:027� 0:009, and the PDG data book

quotes the branching fraction, BðB0
s ! J=c�Þ ¼ ð9:3�

3:3Þ � 10�4 [18].
The ratio Rf0=� has been argued [8] to be of the order

0.2–0.3, based on the knowledge of the experimental ratio
of decay rates [34],

�ðDþ
s ! f0�

þ ! KþK���Þ
�ðDþ

s ! ��þ ! KþK���Þ ¼ 0:28� 0:12; (60)

and an estimate of the semileptonic, integrated branching
fraction ratio BðDþ

s ! f0e
þ�; f0 ! �þ��Þ=BðDþ

s !
�eþ�;� ! KþK�Þ ¼ ð13� 4Þ% from CLEO [35]. The
ratio Rf0=� was reassessed in terms of the differential

decay ratio [36],

R f0=� ¼
d�
dq2

ðDþ
s ! f0e

þ�; f0 ! �þ��Þjq2¼0

d�
dq2

ðDþ
s ! �eþ�;� ! KþK�Þjq2¼0

¼ 0:42� 0:11: (61)

If we combine the above three experimental estimates, we
propose a window of 0:2 & Rf0=� & 0:5 for the ratio

based on Ds decays.
With the experimental data listed under Eq. (55) as

constraint, we find optimal values for XC and XH. In
principle, we deal with a system of four coupled nonlinear
equations for jALj2, jAkj2, �k and BðB0

s ! �J=c Þ and
four variables, which does not put tight constraints on the
phenomenological part of our B0

s ! J=c� amplitude.
When solving numerically we find, depending on the fB0

s

values, two solutions among which only one yields a
reasonable value for the branching fraction BðBs !
f0J=c Þ not too different from that in a naive quark model.
We list the parameters 	C;H and �C;H independent of �ffs

0

for three values of fB0
s
in Table II, from which it is plain

TABLE II. Values of the higher order correction (	C, �C) and
hard-scattering (	H, �H) parameters as function of the B0

s decay
constant.

fB0
s

[MeV] 	C �C (�) 	H �H (�)

230 4:52� 2:24 173:8� 37:6 1:90� 0:20 266:0� 21:6
260 6:16� 2:03 176:1� 53:6 1:70� 0:16 260:6� 19:3
290 7:33� 1:63 176:0� 57:6 1:54� 0:15 255:6� 17:3

LEITNER et al. PHYSICAL REVIEW D 82, 076006 (2010)

076006-8



that the uncertainties on the magnitude of the modulus 	C

as well as the phase �C are substantial. The experimental
errors on the observables are clearly not constraining
enough. Yet, we observe that the variations of XC and XH

are smooth as a function of the decay constant fB0
s
.

Likewise, we present numerical values for aq;hn ðmbÞ for
the three helicities in B0

s ! J=c� in Tables III, IV, and V
and for B0

s ! J=c f0 in Table VI as functions of fB0
s
to

illustrate one facet of the hadronic uncertainty. In these

tables, we list the decomposition of aq;hn ðmbÞ for each value
of fB0

s
; in the first column, the values of aq;hn ðmbÞ are for the

calculated leading-order (LO), vertex (V), and penguin (P)
amplitudes only. These are independent of fB0

s
and corre-

spond to the predictions in Fig. 1. Next, the aq;hn ðmbÞ that
contain the LO, V, P and the hard-scattering (H) ampli-
tudes, where only 	H and �H are fitted to reproduce the
B0
s ! �J=c observables while XC ¼ 0. For fB0

s
¼

260 MeV, one obtains 	H ¼ 1:85� 0:07 and �H ¼

255:9� 24:6. These values are not very different from
those given in the second line of Table II. This case
corresponds to Fig. 2. At last, denoted by LOVPH þ C,

we give the values for aq;hn ðmbÞ for the case that the � ðhÞ
amplitudes are included, which corresponds to the 	C;H

and �C;H values in Table II and to Fig. 3. We remind that

the dependence on fB0
s
enters the short-distance coeffi-

cients via the hard-scattering contribution Hh
nðM1J=c Þ in

Eq. (22) and that the phenomenological amplitudes, XH

and XC, are in competition with each other. Therefore, the

hard-scattering contributions to aq;hn ðmbÞ in LOVPH are
slightly different than those to LOVPH þ C.
The largest values observed in the leading amplitude,

au;c2 ðmbÞ, are for h ¼ 0. We also remark there is no varia-

tion as a function of fBs
in Table IV since

Hh¼�1
n ðM1J=c Þ ¼ 0. Moreover, penguin contractions

only contribute to aq;h¼þ1
7 ðmbÞ and aq;h¼þ1

9 ðmbÞ in the

B0
s ! �J=c amplitudes, while there are no penguin terms

in B0
s ! f0J=c . Altogether, the penguin contributions are

very small. We note that the contribution of the phenome-

nological amplitudes, � ðhÞ (Tables VII and VIII), is small,
about 6%–7% of the h ¼ 0,þ1 amplitudes in Bs ! �J=c
and 2% of the Bs ! f0J=c amplitude, yet dominant in the
h ¼ �1 amplitude devoid of penguin and hard-scattering
corrections. Thus, any contribution from new physics, and
to less an extent annihilation topologies, should occur in
the h ¼ �1 helicity amplitude.
When including all the contributions (LOVPH þ C),

we qualitatively verify the hierarchy relation,

TABLE III. Short-distance amplitudes, aq;hn ðmbÞ � 103, for the helicity h ¼ þ1 in B0
s ! J=c�, as a function of the decay constant,

fB0
s
, and with �ffs

0
¼ 380 MeV. The LOVP results are obtained with the leading-order (LO) amplitude to which vertex V and penguin

P corrections are added. In case of LOVPH, the hard-scattering contribution with the end-point parametrization XH is included.
LOVPH þ C contains additionally the purely phenomenological contribution � ðhÞ with two more parameters.

fB0
s
[MeV] 230 260 290

LOVP LOVPH LOVPH þ C LOVPH LOVPH þ C LOVPH LOVPH þ C
au;c2 ðmbÞ 60:38� i161:7 �3:77þ i148:8 �8:43þ i129:87 38:06þ i149:7 8:21þ i130:04 75:52þ i140:4 22:57þ i128:49
au;c3 ðmbÞ 5:66þ i5:39 8:54� i8:54 8:75� i7:69 6:66� i8:58 8:0� i7:70 4:98� i8:17 7:36� i7:63
au;c5 ðmbÞ �5:27� i6:28 �8:94þ i11:47 �9:21þ i10:39 �6:55þ i11:52 �8:25þ i10:40 �4:41þ i10:99 �7:43þ i10:31
au7ðmbÞ 0:12þ i0:07 0:17� i0:13 0:17� i0:12 0:14� i0:13 0:16� i0:12 0:11� i0:13 0:15� i0:12
ac7ðmbÞ 0:69þ i0:07 0:73� i0:13 0:74� i0:12 0:71� i0:13 0:73� i0:12 0:68� i0:13 0:72� i0:12
au9ðmbÞ �9:25� i0:27 �9:40þ i0:43 �9:41þ i0:39 �9:30þ i0:43 �9:37þ i0:39 �9:22þ i0:41 �9:34þ i0:38
ac9ðmbÞ �8:68� i0:27 �8:83þ i0:43 �8:84þ i0:39 �8:73þ i0:43 �8:80þ i0:39 �8:65þ i0:41 �8:77þ i0:38

TABLE IV. Short-distance amplitudes, aq;hn ðmbÞ � 103, for he-
licity h ¼ �1 and B0

s ! J=c�. Since the hard-scattering con-
tributions are zero, these amplitudes are independent of fB0

s
.

au;c2 ðmbÞ �51:72

au;c3 ðmbÞ 9.39

au;c5 ðmbÞ �9:63
au;c7 ðmbÞ 0.12

au;c9 ðmbÞ �9:49

TABLE V. As in Table III but for the helicity h ¼ 0.

fB0
s
[MeV] 230 260 290

LOVP LOVPH LOVPH þ C LOVPH LOVPH þ C LOVPH LOVPH þ C
au;c2 ðmbÞ 54:51� i80:86 160:2� i132:6 161:0� i129:4 165:7� i132:7 170:6� i129:5 171:8� i131:2 180:6� i129:2
au;c3 ðmbÞ 5:86þ i2:69 1:11þ i5:01 1:08þ i4:87 0:87þ i5:02 0:65þ i4:87 0:60þ i4:95 0:20þ i4:86
au;c5 ðmbÞ �7:17� i3:14 �1:12� i6:10 �1:08� i5:92 �0:81� i6:11 �0:53� i5:92 �0:46� i6:02 0:04� i5:90
au;c7 ðmbÞ 0:09þ i0:03 0:02þ i0:07 0:02þ i0:07 0:02þ i0:07 0:02þ i0:07 0:02þ i0:07 0:01þ i0:06
au;c9 ðmbÞ �9:31� i0:14 �9:07� i0:25 �9:07� i0:24 �9:06� i0:25 �9:05� i0:24 �9:05� i0:25 �9:03� i0:24
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jAðh¼0Þ
B0
s!�J=c

j> jAðh¼þ1Þ
B0
s!�J=c

j> jAðh¼�1Þ
B0
s!�J=c

j, in B0
s !

J=c� and jAðh¼0Þ
B0
s!�J=c

j> jAðh¼�1Þ
B0
s!�J=c

j> jAðh¼þ1Þ
B0
s!�J=c

j
in the CP conjugate decay �B0

s ! J=c�. These hierarchy
relations are also reproduced for the amplitudes when they
include, besides tree contributions, vertex, penguin and
hard-scattering corrections.

Having determined numerical values for XH and XC, we
can calculate the B0

s ! f0J=c amplitude and obtain the
associated branching fraction and CP asymmetry. We do
so for the central values of fB0

s
¼ 260 MeV and �ffs

0
¼

380 MeV discussed in Sec. V. For a transition form factor

F
B0
s!fs

0

1 ðq2 ¼ m2
J=c Þ ¼ 0:4 and for the different amplitudes

LOVP, LOVPH, and LOVPH þ C defined above, those
observables are displayed in Table IX together with a
comparison of the B0

s ! J=c� results with the corre-
sponding available experimental analysis values.
Furthermore, we obtain for a transition form factor

F
B0
s!fs

0

1 ðq2 ¼ m2
J=c Þ ¼ 0:2:

BðBs ! f0J=c Þ ¼ 3:80� 10�4;

ACPðBs ! f0J=c Þ ¼ �0:0005;

BðBs ! �J=c Þ ¼ 9:30� 10�4;

Rf0=� ¼ 0:42;

for F
B0
s!fs

0

1 ðq2 ¼ m2
J=c Þ ¼ 0:3,

BðBs ! f0J=c Þ ¼ 4:37� 10�4;

ACPðBs ! f0J=c Þ ¼ �0:0008;

BðBs ! �J=c Þ ¼ 9:30� 10�4;

Rf0=� ¼ 0:48;

and for F
B0
s!fs

0

1 ðq2 ¼ m2
J=c Þ ¼ 0:5,

TABLE VI. Short-distance amplitudes, aqnðmbÞ � 103, for B0
s ! J=c f0ð980Þ as a function of the fB0

s
decay constant with �ffs

0
¼

380 MeV and F
B0
s!fs

0

1 ðm2
J=c Þ ¼ 0:4. See caption in Table III for the definition of LOVP, LOVPH, and LOVPH þ C amplitudes.

fB0
s
[MeV] 230 260 290

LOVP LOVPH LOVPH þ C LOVPH LOVPH þ C LOVPH LOVPH þ C
au;c2 ðmbÞ 11:61� i80:86�42:40� i255:5�33:35� i224:3�66:51� i234:1 �51:82� i224:4 �95:23� i229:5�69:17� i223:8
au;c3 ðmbÞ 7:29þ i2:69 9:71þ i10:53 9:30þ i9:13 10:80þ i9:57 10:13þ i9:13 12:08þ i9:36 10:91þ i9:10
au;c5 ðmbÞ �7:17� i3:14 �10:25� i13:12 �9:74� i11:34�11:63� i11:90 �10:79� i11:35�13:27� i11:64�11:78� i11:31
au;c7 ðmbÞ 0:09þ 0:03 0:13þ i0:15 0:12þ i0:13 0:14þ i0:14 0:14þ i0:13 0:16þ i0:13 0:15þ i0:13
au;c9 ðmbÞ �9:38� i0:14 �9:51� i0:53 �9:49� i0:46 �9:56� i0:48 �9:53� i0:46 �9:63� i0:47 �9:57� i0:46
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q2 mJ
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R
f 0

FIG. 1 (color online). The ratio Rf0=� as a function of the

transition form factor F
B0
s!fs

0

1 ðm2
J=c Þ. Only tree, vertex, and

penguin contributions (LOVP), independent of the decay con-
stants fB0

s
and �ff0 , are included in the decay amplitudes. The

dotted line corresponds to the central value of this ratio while the
area between the two solid lines gives its envelope due to the
uncertainties on the decay rates f0ð980Þ ! �þ�� [10,36] and
� ! KþK� [18]. The two horizontal dash-dotted lines delimit
the (shaded) area between the experimental predictions found in
Refs. [8,36].
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q2 mJ
2

R
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FIG. 2 (color online). The ratio Rf0=� as a function of the

transition form factor F
B0
s!fs

0

1 ðm2
J=c Þ where now the tree, vertex,

penguin, and hard-scattering contributions (LOVPH) are in-
cluded. The area between the two dashed lines gives the enve-
lope of this ratio when taking into account uncertainties on the
decay constants (fB0

s
¼ 260� 30 MeV and �ff0 ¼ 380�

40 MeV) while the solid lines include in addition the uncertain-
ties on the decay rates f0ð980Þ ! �þ�� [10,36] and � !
KþK� [18]. The single dotted line is our prediction for the
central values of the decay constants, fB0

s
¼ 260 MeV and �ff0 ¼

380 MeV. The horizontal dash-dotted lines correspond to the
experimental predictions of Refs. [8,36].
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BðBs ! f0J=c Þ ¼ 5:7� 10�4;

ACPðBs ! f0J=c Þ ¼ �0:0013;

BðBs ! �J=c Þ ¼ 9:30� 10�4;

Rf0=� ¼ 0:63;

and finally, the CP asymmetries in Bs ! J=c� are

AL
CPðBs ! �J=c Þ ¼ �1:66� 10�3;

Ak
CPðBs ! �J=c Þ ¼ 1:99� 10�3;

A?
CPðBs ! �J=c Þ ¼ 2:15� 10�3:

Our prediction for the time-integrated asymmetry
ACPðBs ! f0J=c Þ is about 1 order of magnitude smaller
than the standard model value, �2�s ¼ �0:036. We re-
mark that the above numerical values for this CP asym-
metry have to be interpreted with care—we choose the
parameters of the full QCDF amplitude in Table II such
that the experimental B0

s ! J=c� observables are repro-
duced. In doing so, we may deliberately include ‘‘new
physics’’ effects with just the standard model amplitude,

in particular, via the additional amplitudes � ðhÞ. Moreover,
we use the same end point parametrization, XH, in both
decay channels since the B0

s ! J=c f0 branching ratio is
not experimentally known. This approach seems reason-
able, as the physics buried in these infrared divergences
must be similar in both decays. It could also lead to an
overestimation of the hard-scattering contributions to
B0
s ! J=c f0 as well as of ACPðBs ! f0J=c Þ.
We illustrate the variation of the ratio, Rf0=�, by taking

into account the uncertainties in the decay constants fB0
s

and �ffs
0
as well as those in the decay rates, Bðf0ð980Þ !

�þ��Þ ¼ 0:50þ0:07
�0:09 [10,36] and Bð� ! KþK�Þ ¼

0:489� 0:005 [18]. The results are displayed in Figs. 1–3.

In Fig. 1,Rf0=� is plotted as a function of F
B0
s!fs

0

1 ðm2
J=c Þ

where only the tree amplitude along with vertex and pen-
guin corrections are included in both amplitudes,
Ah

B0
s!�J=c

and AB0
s!f0J=c

. The ratio is plotted with the

corresponding envelope ofRf0=� due to the uncertainty on

the decay rates. In Fig. 2, we augment this amplitude by
hard-scattering contributions, that is the full QCDF ampli-
tude given in Eq. (22). Finally, in Fig. 3,Rf0=� is plotted as

a function of F
B0
s!fs

0

1 ðm2
J=c Þ including hard-scattering cor-

rections and possible other contributions, � ðhÞ. Although
the aforementioned uncertainties are depicted in all figures,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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q2 mJ
2

R
f 0

FIG. 3 (color online). Same as in Fig. 2 but including � ðhÞ
contributions (LOVPH þ C amplitudes).

TABLE VII. The phenomenological contributions �h � 103

for h ¼ 0, �1, þ1, Eq. (22), to the B0
s ! J=c� amplitude as

a function of the fB0
s
decay constant with �ffs

0
¼ 380 MeV.

fB0
s

[MeV]

230 260 290

�h¼0 �18:11þ i1:98 �28:04þ i1:89 �37:19þ i2:63
�h¼�1 �129:26þ i14:12 �200:12þ i13:46 �265:41þ i18:77
�h¼þ1 �15:25þ i1:67 �23:61þ i1:59 �31:31þ i2:21

TABLE VIII. Same as Table VII but for the B0
s ! J=c f0ð980Þ

amplitude.

fB0
s
[MeV] 230 260 290

� �44:08þ i4:81 �68:25þ i4:59 �90:51þ i6:40

TABLE IX. Prediction for the B0
s ! J=c f0 observables for the different amplitudes LOVP, LOVPH, and LOVPH þ C along with

experimental analysis data of the B0
s ! J=c� decay. Here central values, fB0

s
¼ 260 MeV and �ffs

0
¼ 380 MeV and the transition

form factor F
B0
s!fs

0

1 ðq2 ¼ m2
J=c Þ ¼ 0:4 are used. The values in the second column are predictions. Those of the third column include

the hard-scattering corrections with the end-point parametrization 	H ¼ 1:85� 0:07 and �H ¼ 255:9� � 24:6�. The fourth column
corresponds to the reproduction of the data with the parameters 	H, �H, 	C, and �C displayed in the second line of Table II.

LOVP (Prediction) LOVPH (2 parameters) LOVPH þ C (4 parameters) Experimental data

jALj2 0.172 0.554 0.555 0:555� 0:033 [7]

jAkj2 0.404 0.219 0.244 0:244� 0:046 [7]

�kðradÞ �0:221 2.13 2.72 2:72� 1:38 [7]

BðB0
s ! J=c�Þ 0.00075 0.00115 0.00093 0:00093� 0:00033 [18]

BðB0
s ! J=c f0Þ 0.00020 0.00047 0.00050

ACPðB0
s ! J=c f0Þ �0:00013 �0:0013 �0:0011

Rf0=� 0.28 0.42 0.55
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we stress that those on the decay constants fB0
s
and �ffs

0
,

where they apply, have more impact on the Rf0=� band

than the f0ð980Þ and� decay rate incertitudes. The spread-
ing of the curves representing Rf0=� as a function of

F
B0
s!fs

0

1 ðm2
J=c Þ is larger with respect to the variation in

fB0
s
than in �ffs

0
. This points to the necessity of having an

improved experimental determination of fB0
s
. The upper

limit of the envelope is reached only for the largest values
of fB0

s
and �ffs

0
considered here.

Figure 3 shows that our central-value predictions of
Rf0=�, in absence of any phenomenological contributions,

are within the estimate by Stone and Zhang [8] for most

values of the form factor F
B0
s!fs

0

1 ðm2
J=c Þ. However, when

the additional amplitudes, � , are accounted for in the decay
amplitudes of Eqs. (2) and (4), the ratio Rf0=� exhibits

three striking features:
(i) Additional amplitudes, � , can play a major role due

to their large contributions to both the numerator and
denominator of the ratio Rf0=�, as seen from the

comparison of Figs. 2 and 3.
(ii) The predicted Rf0=� band overlaps well with the

estimates of Refs. [8,36] for F
B0
s!fs

0

1 ðm2
J=c Þ< 0:4;

beyond, our predictions are much larger, which may
indicate a larger pollution due to f0ð980Þ ! KþK�
if contributions from other than the standard model
were present.

(iii) The uncertainties on the f0ð980Þ and � decay rates
increase the width of the band considerably, though
the main uncertainty stems from the decay con-
stants fB0

s
and �ff0 .

Let us recall that the decay constant �ffs
0
only enters the

hard-scattering and additional phenomenological contribu-
tions (C) to the decay amplitude B0

s ! f0ð980ÞJ=c . If
these are turned off, as in Fig. 1, the ratio Rf0=� is still

significantly above 10% for realistic transition form factor
values. That said, for practical purposes we decide to only
consider the more recently obtained decay constants in
Ref. [22] and choose three values within the given errors,
�ffs

0
¼ 340, 380, 420 MeV. The value 180 MeV [25] yields

too low branching fractions in other decays, for example

B ! f0ð980Þ�, f0ð980Þ	, f0ð980ÞKð�Þ. Nevertheless, since
we fix the hard-scattering parameters, 	H and�H, only via
the decay B0

s ! J=c� and �ffs
0
enters the numerator in

Rf0=� linearly, the modification is straightforward: �ffs
0
¼

180 MeV is about half the value �ffs
0
¼ 380 MeV, there-

fore the central value ofRf0� in Fig. 2 decreases from 0.42

to 0.19 (for F
B0
s!fs

0

0 ¼ 0:4). This is still within the limits

predicted by the experimental estimates, 0:2 & Rf0=� &

0:5, and implies an S-wave pollution.
We infer from our numerical results that S-wave kaons

or pions under the� peak in B0
s ! J=c� are very likely to

originate from the similar decay B0
s ! J=c f0. Therefore,

the extraction of the mixing phase, �2�s, from B0
s !

J=c� may well be biased by this S-wave effect which
should be taken into account in experimental analyses. In
our interpretation of the full QCDF amplitude, we not only
confirm the influence of S-wave contamination as advo-
cated in Refs. [8,36] but also find that its effect could be
sizable.

VII. CONCLUSIVE OUTLOOK

The ‘‘phase’’ of B0
s � �B0

s mixing,�2�s, is thought to be
best measured in the golden decay, B0

s ! J=c�, and
provides an opportune place to investigate physics beyond
the standard model. Several models have been proposed to
explain the apparent discrepancy of the standard model
prediction for�2�s with recent experiments, in particular,
exploring the impact of heavy, as of yet undiscovered
particles on CP violation in weak B-meson decays. A
general analysis of possible new physics effects in the
case of B0

s � �B0
s mixing was recently given by Chiang

et al. [21]. In there, the authors investigate several beyond
standard model variations of the Bs ! J=c� decay, such

as Zð0Þ-mediated flavor changing neutral currents, two
Higgs doublets and SUSY, and find that new physics con-
tributions may only modestly contribute to the mixing
phase. However, it is also concluded, somewhat prema-
turely, that the CDF and D; results are clear signs of new
physics.
In the present paper, we have taken a different path and

studied the contamination of final-state S-waves kaons in
the B0

s ! J=c� channel by those originating from the
f0ð980Þ in the very similar B0

s ! J=c f0ð980Þ decay. We
find that this effect is strong enough already for amplitudes
including leading-order, vertex, and penguin corrections to
create a real bias in the determination of �2�s.
Of course, we are aware that the phenomenological end-

point parametrization of �s corrections in the amplitudes
HnðM1J=c Þ and Hh

nðM1J=c Þ can cloud possible new

physics contributions alongside the � ðhÞ contributions. In
this case, we suppose that any new effects should be of
comparable magnitude in B0

s ! J=c� and B0
s !

J=c f0ð980Þ. Therefore, the S-wave contamination would
be on the upper side of the estimate we propound and
future analyses of the mixing angle in Bs decays should
be concerned with this effect.
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