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We analyze a scalar potential of the minimal supersymmetric standard model (MSSM) with neutrino

mass operators along unbounded-from-below and color and/or charged breaking directions. We show

necessary conditions to avoid the potential minima which can be deeper than the realistic vacuum. These

conditions would constrain more strongly than conditions in the MSSM without taking into account

neutrino mass operators and can improve the predictive power of supersymmetric models with neutrino

mass operators.
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I. INTRODUCTION

The origin of neutrino masses is one of the unanswered
questions in particle physics. It should be addressed by new
physics that explains tininess of the neutrino masses be-
cause the masses of neutrinos are very small compared
with other fermions. Small masses are, in general, realized
by introducing heavy particles. After integrating out the
heavy particles, an effective operator which is suppressed
by the masses of the heavy particles, M, is obtained [1],

1

M
ðH � LÞðH � LÞ; (1)

where H and L are the Higgs and the left-handed lepton
doublets. Neutrinos acquire masses through the electro-
weak symmetry breaking (EWSB), and their masses can
be very small if M is much larger than the vacuum expec-
tation value (vev) of the Higgs scalar. The most famous
mechanism in this regard is the so-called seesaw mecha-
nism [2–6] in which heavy right-handed neutrinos are
introduced. One obtains the same mass term, Eq. (1), after
integrating out the right-handed neutrinos.

Supersymmetric extension of the standard model is one
of the promising candidates for physics above the weak
scale. In supersymmetric extension of the standard model
with neutrino mass operator, Eq. (1) (which we call
the �SSM), there is the following operator in the super-
potential:

cðĤ2 � L̂ÞðĤ2 � L̂Þ; (2)

and a dimension four operator in the soft supersymmetry
(SUSY) breaking term,

c0ðH2 � ~LÞðH2 � ~LÞ; (3)

where c and c0 are coupling constants, and Ĥ2ðH2Þ and
L̂ð ~LÞ are the superfield (the scalar partner) of the up-type
Higgs and the left-handed leptons. The coupling constants
can be determined theoretically once a mechanism for the
neutrino masses and the SUSY breaking is specified. The
ratio c0=c would be comparable to (or larger than) SUSY
breaking masses such as gaugino masses and soft scalar
masses. For example, in the gravity mediation scenario, the
ratio of the couplings, jc0j=jcj, would be on the order of the
gravitino mass.
In SUSY models, each of the fermions has a scalar

partner. The presence of the scalar partners generally leads
color and/or charge breaking (CCB) directions and
unbounded-from-below (UFB) directions [7–15]. Along
the CCB directions, the scalar potential has minima on
which color and/or charge symmetry is spontaneously
broken. Along the UFB directions, the potential has no
global minima and falls down to negative infinity. The
existence of these dangerous directions makes the vacuum
of the EWSB unstable, and hence these directions must be
avoided. In the minimal supersymmetric extension of the
standard model (MSSM), the scalar potential was analyzed
systematically and necessary conditions to avoid the CCB
and UFB directions were summarized in [16]. Recently, the
scalar potential of the �SSM with Dirac neutrinos or
Majorana neutrinos was analyzed when sneutrinos, scalar
partners of the neutrinos, have nonvanishing vev’s. It was
found in [17] that the UFB directions disappear and turn to
CCB directions due to the Yukawa coupling of neutrinos.
Necessary conditions to avoid the CCB directions of the
�SSM were also found in [17], which result in constraints
on the soft SUSY breaking parameters. In addition to UFB
and CCB directions, false EWSB minima appear in the
�SSM. On such false EWSB minima, either color or
charge symmetry is not broken, but Higgs scalars and
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sneutrinos develop their large vev’s. Then, such minima
would lead to too heavy gauge bosons and be excluded by
precise electroweak measurements. Here, we refer to such
false EWSB minima as CCB minima in view of incorrect
vacua.

In this article, we consider the �SSM with the neutrino
mass operators, Eqs. (2) and (3), and derive necessary
conditions to avoid the CCB and UFB directions. We
perform our analysis for tree-level potentials, although
radiative corrections can modify the conditions as dis-
cussed in [18–20]. The conditions obtained in tree-level
analysis, however, coincide with those from one-loop
analysis if the analysis is performed at a scale that the
radiative corrections is smaller enough than the tree-level
potential. We assume that our analysis is performed at this
scale. Also note that our potential is available below M,
because effective operators (1)–(3) are induced below M.

The outline of this article is organized as follows. In
Sec. II, we briefly review constraints of UFB and CCB
directions in the MSSM. Then we analyze the scalar po-
tential of the �SSM with the neutrino mass operators and
derive necessary conditions to avoid UFB and CCB direc-
tions in Secs. III and IV, respectively. We show numerical
results of constraints on the soft SUSY breaking parame-
ters in Sec. V. Finally we summarize and discuss our
analysis in the Sec. VI. The scalar potential of the �SSM
with the neutrino mass operators and notations of fields and
couplings are given in Appendix A. In Appendix B, we
give a general form of the vacuum expectation values for
CCB directions.

II. CONSTRAINTS FROM UFB AND CCB
DIRECTIONS IN THE MSSM

We start our discussion by briefly reviewing constraints
on soft SUSY breaking parameters from UFB and CCB
directions in the MSSM. According to general properties
given in [16], there are three types of the UFB and CCB
directions, respectively, which we refer to as the ‘‘MSSM’’
UFB and CCB directions. We only show constraints from
these directions for comparison with our results given in
the following sections. Details of the derivation are found
in [16]. Notations of couplings and scalar fields are sum-
marized in Appendix A.

A. The MSSM UFB directions

The MSSM UFB directions appear when positive
quartic terms in the scalar potential are vanishing or kept
under control. Along these directions, the potential falls
down to negative infinity in large values of fields, making
the EWSB vacuum unstable.

The MSSM UFB-1 direction is a direction when H1 and
H2 have an equal nonvanishing vev while other scalars
are vanishing. The scalar potential along this direction
becomes

VMSSM UFB�1 ¼ ðm2
1 þm2

2 � 2jm2
3jÞjH2j2: (4)

The potential is unbounded from below unless the coeffi-
cient in the right-hand side is positive. Thus, a necessary
condition to be satisfied is

m2
1 þm2

2 � 2jm2
3j � 0: (5)

This is the well-known constraint on the soft SUSY break-
ing masses of Higgs scalars.
Another UFB direction, the so-called the MSSM UFB-2

direction, is along which

H1; H2; ~L � 0; (6)

where ~L is chosen along ~�L. The vev’s ofH1,H2, and ~L are
chosen so that the D term potential is kept under control.
Then, the potential becomes

VMSSM UFB�2 ¼
�
m2

2 þm2
~L
� jm2

3j2
jm2

1 �m2
~L
j
�
jH2j2

� 2m4
~L

g21 þ g22
; (7)

and a necessary condition to avoid a UFB potential is

m2
2 þm2

~L
� jm2

3j2
jm2

1 �m2
~L
j � 0: (8)

The last direction, the MSSM UFB-3, is along

H2; ~L; ~Q; ~dR � 0; ~dL ¼ ~dR; (9)

where ~Q and ~L are chosen along ~dL and ~�L. The vev’s of ~dL
and ~dR are chosen so that the F term ofH1 vanishes. Then,

the vev’s of ~dL and ~dR are small compared to those of other
scalars and can be neglected in the potential. A condition to
avoid the MSSM UFB-3 direction is given by

m2
2 � j�j2 þm2

~L
� 0: (10)

The condition, (10), gives a stringent constraint sincem2
2 is

negative in a large region of parameter space of the MSSM
for the EWSB to occur.
As stressed in [17], the absence of the neutrino Yukawa

coupling plays an essential role on the MSSM UFB direc-
tions, especially the UFB-2 and the UFB-3. It was shown in
[17] that these directions become CCB directions when
there exits the neutrino Yukawa coupling and the Majorana
mass term.

B. The MSSM CCB directions

The MSSM CCB directions appear when a negative
trilinear term dominates the potential against quartic terms
in a certain value of fields.

As an example, we consider that ~Q, ~uR, ~L as well as H1

andH2 are nonvanishing. In order to show constraints from
the MSSM CCB directions, it is helpful to express vev’s of
the scalars in terms of jH2j,
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j ~Qj ¼ �jH2j; j~uRj ¼ �jH2j;
jH1j ¼ �jH2j; j ~Lj ¼ �LjH2j: (11)

In the following discussion, we consider that ~Q is almost a
vev along the ~uL direction. Then, the potential can be
written

VMSSM CCB ¼ Y2
u�

2�2F̂ð�;�; �; �LÞjH2j4
� 2Yu��Âð�ÞjH2j3
þ m̂2ð�;�; �; �LÞjH2j2; (12)

where

F̂ð�;�; �; �LÞ ¼ 1þ 1

�2
þ 1

�2
þ fð�;�; �; �LÞ

�2�2
; (13a)

fð�;�; �; �LÞ ¼ 1

Y2
u

�
1

8
g21

�
1þ 1

3
�2 � 4

3
�2 � �2 � �2

L

�
2

þ 1

8
g22ð1� �2 � �2 � �2

LÞ2

þ 1

6
g23ð�2 � �2Þ2

�
; (13b)

Âð�Þ ¼ jAuj þ j�j�; (13c)

m̂2ð�;�; �; �LÞ ¼ m2
1�

2 þm2
2 � 2jm2

3j�þm2
~Q
�2

þm2
~uR
�2 þm2

~L
�2
L: (13d)

Since the Yukawa couplings of quarks (except for the top)
are smaller than the gauge couplings, the deepest direction
appears along fð�;�; �; �LÞ ¼ 0. The extremal value of
the up-type Higgs scalar, jH2jext, can be obtained by solv-
ing @VMSSM CCB=@jH2j ¼ 0,

jH2jext ¼ 3Â

4Yu��F̂

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8m̂2F̂

9Â2

s �
: (14)

Inserting Eq. (14) into the potential, (12), the minimum of
the potential is given by

VMSSM CCBmin ¼ � 1

2
��jH2j2ext

�
ÂYujH2jext � m̂2

��

�
:

(15)

The CCB constraints can be obtained by requiring that
Eq. (15) is positive.

The MSSM CCB-1 direction is a direction along

H2; ~Q; ~uR � 0; j~dLj2 ¼ j~dRj2; (16)

where ~dL and ~dR are chosen such that the F term of H1

cancels. Similar to the MSSM UFB-3 direction, the vev’s

of ~dL and ~dR are small and can be neglected in the poten-
tial. Then, the potential is given by setting � ¼ 0, and

�2
L ¼ 1� �2 with � ¼ � for the D term potential to

vanish. The most stringent constraint to avoid the CCB
minimum is given, when m2

2 � j�j2 þm2
~L
> 0 and 3m2

~L
�

ðm2
~Q
þm2

~uR
Þ þ 2ðm2

2 � j�j2Þ> 0,

jAuj2 � 3ðm2
2 � j�j2 þm2

~Q
þm2

~uR
Þ; (17)

with � ¼ 1, and when m2
2 � j�j2 þm2

~L
> 0 and 3m2

~L
�

ðm2
~Q
þm2

~uR
Þ þ 2ðm2

2 � j�j2Þ< 0

jAuj2 �
�
1þ 2

�2

�
� ðm2

2 � j�j2 þ ðm2
~Q
þm2

~uR
Þ�2

þm2
~L
ð1� �2ÞÞ; (18)

with �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

~L
þm2

2 � j�j2Þ=ðm2
~Q
þm2

~uR
�m2

~L
Þ

q
.

When m2
2 � j�j2 þm2

~L
< 0 and 3m2

~L
� ðm2

~Q
þm2

~uR
Þ þ

2ðm2
2 � j�j2Þ< 0, the CCB constraint can not be satisfied

and the MSSM CCB-1 direction becomes the MSSM UFB-3
direction.
The MSSM CCB-2 direction appears along

H1; H2; ~Q; ~uR; ~L � 0; (19a)

sign½Au� ¼ �sign½B�; (19b)

where ~Q takes a vev along the ~uL direction. Similar to the
MSSM CCB-1 constraint, the most stringent constraint is
obtained as

ðjAuj þ j�j�Þ2 �
�
1þ 2

�2

�
ðm2

2 þ ðm2
~Q
þm2

~uR
Þ�2

þm2
1�

2 þm2
~L
ð1� �2 � �2Þ � 2jm2

3j�Þ;
(20)

with � ¼ � and �2
L ¼ 1� �2 � �2. The minimum of the

right-hand side of Eq. (20) can be found by numerical
calculation by varying � and � between 0 and 1.
The MSSM CCB-3 direction appears when the vev’s are

taken as the same as the MSSM CCB-2 direction but
sign½Au� ¼ sign½B�. The constraint is given by Eq. (20)
with the opposite sign of one of the three terms,
ðjAuj; j�j�;�2jm2

3j�Þ.

III. UFB CONSTRAINTS IN THE �SSM WITH
NEUTRINO MASS OPERATORS

In this and the following sections, we analyze the scalar
potential of the �SSM with neutrino mass operators. As
was explained in Sec. I, the neutrino mass operators consist

of the ðĤ2 � L̂ÞðĤ2 � L̂Þ operator (2) in the superpotential
and a dimension four operator (3) in the soft SUSY break-
ing term. New terms of 6th, 5th, and 4th power of scalars
arise from these mass operators and modify the structure of
the potential. The MSSM UFB directions turn to CCB
directions while the MSSM CCB directions have another
minima under certain conditions that we will discuss later.
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We focus our analysis on the new minima appearing due to
these higher power terms and show conditions to avoid
them. In the following, we assume that only one sneutrino
has nonvanishing vev and we take a basis that the couplings
of the neutrino mass operators, c and c0, are diagonal. The
full potential of the model is given in Appendix A.

A. Constraints from the MSSM UFB-2 direction

Let us first consider the MSSM UFB-2 direction which
is given by Eq. (6). The effective scalar potential along the
MSSM UFB-2 direction is given by

VUFB�2¼m2
1jH1j2þm2

2jH2j2�2Reðm2
3H1H2Þ

þm2
~L
j~�Lj2þ1

8
ðg21þg22Þðj~�Lj2þjH1j2�jH2j2Þ2

�2Reðc��H1H
�
2ð~��

LÞ2Þ�Reðc0ðH2Þ2ð~�LÞ2Þ
þjcj2j~�Lj2jH2j2ðj~�Lj2þjH2j2Þ: (21)

It is easily understood that the potential is lifted up in large
vev’s since the term of 6th power is always positive. Thus,
the MSSM UFB-2 direction becomes a CCB direction.
Note that, along the MSSM UFB-2 direction, neither color
nor electric charge symmetry is broken, but the Higgs
scalars and sneutrinos acquire large vev’s on the minima.
Such minima result in too heavy masses of the gauge
bosons and are excluded by precise electroweak measure-
ments. Hence the EWSB does not occur correctly on such
minima.
We refer to these false EWSB directions as CCB directions
in view of incorrect vacuum.

Before we start a detailed analysis, it is helpful to
parametrize vev’s as

j~�Lj ¼ �jH2j; jH1j ¼ �jH2j; (22)

and choose phases of vev’s so that terms with undermined
phases are negative. This choice of the phases is always
possible. Then, the potential, (21), is expressed as

VUFB�2 ¼ Ĉð�ÞjH2j6 � F̂ð�; �ÞjH2j4 þ m̂2ð�;�ÞjH2j2;
(23)

where

Ĉð�Þ ¼ �2ð�2 þ 1Þjcj2; (24a)

F̂ð�;�Þ ¼ 2�2�jcjj�j þ �2jc0j � fð�; �Þ; (24b)

fð�;�Þ ¼ 1
8ðg21 þ g22Þð�2 þ �2 � 1Þ2; (24c)

m̂2ð�;�Þ ¼ m2
1�

2 þm2
2 � 2�jm2

3j þ �2m2
~L
: (24d)

Differentiating the potential, (23), with respect to jH2j, the
extremal value of the up-type Higgs scalar is obtained

jH2j2ext ¼ F̂ð�; �Þ
3Ĉð�Þ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3Ĉð�Þm̂2ð�;�Þ

F̂2ð�; �Þ

vuut �
; (25)

and then the minimum of the potential becomes

VUFB�2min ¼ � 1

3
F̂ð�; �ÞjH2j2ext

�
jH2j2ext � 2m̂2ð�;�Þ

F̂ð�; �Þ
�
:

(26)

The minimum becomes the deepest when fð�; �Þ ¼ 0,
imposing �2 ¼ 1� �2. The typical order of jH2jext is

jH2jext �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSUSYM

p
; (27)

where mSUSY and M are a typical scale of the soft SUSY
breaking masses and a cutoff scale of the neutrino mass
operators. Thus, the potential could be deeper than that
of the EWSB if M is larger than mSUSY. A necessary
condition to avoid this CCB minimum requires that the
minimum of the potential, (26), becomes positive, i.e.

�jc0j
jcj þ 2j�j�

�
2 � 4ð2� �2Þ

1� �2
m̂2ð�Þ; (28)

where m̂2ð�Þ is the one inserting �2 ¼ 1� �2. Then, the
most stringent constraint is obtained by minimizing the
following function �ð�Þ with respect to �,

�ð�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2

1� �2
m̂2ð�Þ

s
� 2j�j�: (29)

That is, the extremal value, �ext, is given as a solution of
the function,

�ð�Þ ¼ �m̂2ð�Þ þ ð1� �2Þð2� �2Þððm2
1 �m2

~L
Þ�� jm2

3jÞ

� ð1� �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð2� �2Þm̂2ð�Þ

q
j�j; (30)

where �ð�Þ / @�ð�Þ=@�. One can see that the constraint,
(28), is similar to the constraint, (20).

B. Constraints from the MSSM UFB-3 direction

Next we consider the MSSM UFB-3 direction defined in
Eq. (9). Parameterizing the vev’s as

j~�Lj ¼ �jH2j; (31)

the scalar potential along this direction is given in the same
form as Eq. (23) by setting � ¼ 0 and making a replace-
ment m2

2 with m2
2 � j�j2. The minimum of the potential is

obtained for � ¼ 1 and the most stringent constraint is
given by using Eqs. (25) and (26),

jc0j2
jcj2 � 8ðm2

2 � j�j2 þm2
~L
Þ: (32)

Comparing the constraint, (32), with that in the MSSM,
(10), we can see that Eq. (32) imposes a more severe bound
on the soft SUSY breaking parameters if the ratio, jc0j=jcj,
is of order the SUSY breaking scale.
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IV. CCB CONSTRAINTS IN THE �SSM WITH
NEUTRINO MASS OPERATORS

We analyze the potential along the MSSM CCB di-
rection. We focus new minima which occur due to the
higher order terms of 6th, 5th, and 4th power of fields.
The scalar potential with the parametrization of Eq. (11)
is expressed as

V ¼ Ĉð�LÞjH2j6 � D̂ð�;�; �LÞjH2j5
þ F̂ð�;�; �; �LÞjH2j4 � Âð�;�; �ÞjH2j3
þ m̂2ð�;�; �; �LÞjH2j2; (33)

where

Ĉð�LÞ ¼ �2
Lð1þ �2

LÞjcj2; (34a)

D̂ð�;�; �LÞ ¼ �2�1���
2
LjYujjcj; (34b)

F̂ð�;�; �; �LÞ ¼ jYuj2ð�2�2 þ �2 þ �2Þ
� �2

Lð�2jc0j þ 2�3�j�jjcjÞ
þ jYuj2fð�;�; �; �LÞ; (34c)

Âð�;�; �Þ ¼ 2��jYujð�4jAuj þ �5�j�jÞ; (34d)

m̂2ð�;�; �; �LÞ ¼ �2m2
1 þm2

2 � 2�6�jm2
3j

þ �2m2
~QL

þ �2m2
~uR
þ �2

Lm
2
~L
; (34e)

and fð�;�; �; �LÞ is given in Eq. (13b). Here, �i (i ¼
1–6) denote the sign (	 ) and are defined as

�1 ¼ sign½ReðYuc
�~uL~u�RH�

2ð~��
LÞ2Þ�; (35a)

�2 ¼ sign½Reðc0ðH2Þ2ð~�LÞ2Þ�; (35b)

�3 ¼ sign½Reð�c�H1H
�
2ð~��

LÞ2Þ�; (35c)

�4 ¼ sign½ReðAuYuH2~uL~u
�
RÞ�; (35d)

�5 ¼ sign½ReðYu�
�H�

1 ~uL~u
�
RÞ�; (35e)

�6 ¼ sign½Reðm2
3H1H2Þ�: (35f)

In the following, we show possible choices of �i; ði ¼
1–6Þ for the MSSM CCB-1 and CCB-2 directions and
derive constraints from the deepest directions.

A. Constraints from the MSSM CCB-1 directions

The MSSM CCB-1 direction is defined in Eq. (16) and
the deepest minimum emerges when theD term potential is
vanishing. The scalar potential along this direction is ob-
tained from Eqs. (34) by setting � ¼ 0 and replacing m2

2

with m2
2 � j�j2,

Ĉð�Þ ¼ ð1� �2Þð2� �2Þjcj2; (36a)

D̂ð�Þ ¼ �2�1�
2ð1� �2ÞjYujjcj; (36b)

F̂ð�Þ ¼ jYuj2�2ð2þ �2Þ � �2ð1� �2Þjc0j; (36c)

Âð�Þ ¼ 2�4�
2jYujjAuj; (36d)

m̂2ð�Þ ¼ m2
2 � j�j2 þ �2ðm2

~QL
þm2

~uR
Þ

þ ð1� �2Þm2
~L
; (36e)

where � ¼ � and �2
L ¼ 1� �2 are used. By choosing

an appropriate phase of fields, the signs, �1;2;4, satisfy a

relation

�1�2�4 ¼ sign½c�sign½c0�sign½Au�; (37)

where we assumed that c, c0 and Yu, Au are real numbers.
We can find the properties from the relation according to
the following:
(1) When the right-hand side of Eq. (37) is positive, all

of or one of the three signs can be made positive.
(2) When the right-hand side of Eq. (37) is negative, all

of or one of the three signs can be made negative.

The deepest direction corresponds to the choice of signs
such that �1 is negative while �2 and �4 are positive.
Before we start our analysis, it is important to notice that

the terms of Ĉ, D̂, and F̂ except for�ð1� �2Þjc0j originate
from the F term potential, and therefore the total contri-
bution of the 6th, 5th, and 4th order terms is positive if
jc0j=jY2

uj 
 1. In this case, the condition to avoid the
MSSM CCB-1 direction is the same as the one in [16].
The situation, however, changes when jc0j=jY2

uj � 1. The
4th order term is dominated by �ð1� �2Þjc0j and the new
CCB minima emerge at large values of fields.
As shown in Appendix B, the leading terms of jH2jext are

independent of the Yukawa couplings in the case of
jc0j=jYuj2 � 1. Therefore, we can neglect the terms pro-
portional to the Yukawa coupling. Then, the scalar poten-
tial is approximated as

VCCB�1 ’ Ĉð�ÞjH2j6 þ F̂ð�ÞjH2j4 þ m̂2ð�ÞjH2j2; (38)

where

F̂ð�Þ ¼ �ð1� �2Þjc0j: (39)

The extremal value of the up-type Higgs scalar is obtained
by differentiating Eq. (38) with respect to jH2j,

jH2j2ext ¼ � F̂ð�Þ
3Ĉð�Þ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3Ĉð�Þm̂2ð�Þ

F̂2ð�Þ

vuut �
; (40)

where F̂ð�Þ must be negative for the potential to be mini-
mum. The minimum of the potential is given by

VCCB�1min ¼ 1
3jH2j2extðF̂ð�ÞjH2j2ext þ 2m̂2ð�ÞÞ; (41)

and a necessary condition to avoid the MSSM CCB-1
minimum is

F̂ 2ð�Þ< 4Ĉð�Þm̂2ð�Þ; (42)

which gives the constraint

jc0j2
jcj2 < 4

2� �2

1� �2
m̂2ð�Þ: (43)

The most stringent condition is obtained by minimizing the
right-hand side of Eq. (43).
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B. Constraints from the MSSM CCB-2 directions

The MSSM CCB-2 direction is defined in Eq. (19).
Similar to the MSSM CCB-1 direction, the deepest
direction emerges along a direction, � ¼ � and �2

L ¼ 1�
�2 � �2. Along this direction, the signs, �i; ði ¼ 1� 6Þ,
satisfy the relations,

�1�2�4 ¼ sign½c�sign½c0�sign½Au�; (44a)

�1�3 ¼ �5; (44b)

�4�5�6 ¼ sign½Au�sign½m2
3=��: (44c)

The minimum of the potential becomes the deepest
when �1 is negative while the other �’s are positive.
From Eqs. (44), we can find the following properties:

(1) �2 can be always set positive.
(2) When sign½Au� ¼ sign½m2

3=��, �4, �5, and �6 can be
made positive simultaneously, and �1 and �3 must
be positive (negative) if sign½c�sign½c0�sign½Au� is
positive (negative).

(3) When sign½Au� ¼ �sign½m2
3=��, two of �4, �5, and

�6 can be made positive and the other must be
negative.
(a) If �4 and �6 are positive, �1 and �3 must be the

opposite signs of each other.
(b) If either �4 or �6 is negative, �1 and �3 must be

the same sign.
In the following, we consider the case that �i ði ¼ 1–6Þ

are all positive. Then, the potential is given by

Ĉð�; �Þ ¼ ð1� �2 � �2Þð2� �2 � �2Þjcj2; (45a)

D̂ð�; �Þ ¼ �2�2ð1� �2 � �2ÞjYujjcj; (45b)

F̂ð�; �Þ ¼ jYuj2�2ð�2 þ 2Þ
� ð1� �2 � �2Þðjc0j þ 2�j�jjcjÞ; (45c)

Âð�; �Þ ¼ 2�2jYujðjAuj þ �j�jÞ; (45d)

m̂2ð�; �Þ ¼ �2m2
1 þm2

2 � 2�jm2
3j þ �2ðm2

~QL
þm2

~uR
Þ

þ ð1� �2 � �2Þm2
~L
: (45e)

Similar to the MSSM CCB-1 direction, a new CCB mini-
mum appears when jc0j=jYuj2 � 1. The extremal value of
jH2j at the leading order is given by Eq. (40) with

F̂ð�;�Þ ’ �ð1� �2 � �2Þðjc0j þ 2�j�jjcjÞ, and a neces-
sary condition to avoid the CCB minimum is

�jc0j
jcj þ 2�j�j

�
2
< 4

2� �2 � �2

1� �2 � �2
m̂2ð�;�Þ: (46)

In the end, we comment on other possibilities of choice
of vev’s. Since the terms proportional to the Yukawa
coupling is irrelevant in the present analysis, similar results
can be obtained when we take vev’s of squarks as

~u L ! ~dL; ~uR ! ~dR; (47)

where ~dL and ~dR are different squarks from those to cancel
the F term of H1. Along this direction, the constraint for
the MSSM CCB-1 is obtained by

jc0j2
jcj2 < 4

2þ �2

1þ �2
m̂2ð�Þ; (48)

like Eq. (43), where m̂2ð�Þ is replaced by

m̂ 2ð�Þ ¼ m2
2 � j�j2 þ �2ðm2

~QL
þm2

~dR
Þ þ ð1þ �2Þm2

~L
:

(49)

Similarly, the constraint from the MSSM CCB-2 is
obtained by�jc0j

jcj þ 2�j�j
�
2
< 4

2þ �2 � �2

1þ �2 � �2
m̂2ð�; �Þ; (50)

like Eq. (46), where m̂2ð�; �Þ is replaced by

m̂2ð�;�Þ ¼ �2m2
1 þm2

2 � 2�jm2
3j þ �2ðm2

~QL
þm2

~dR
Þ

þ ð1þ �2 � �2Þm2
~L
: (51)

V. NUMERICAL ANALYSIS

In this section, we show numerical results of the con-
straints of the MSSM UFB-2 and the MSSM UFB-3 de-
rived in the previous sections. Similar analysis can be
carried out for the MSSM CCB directions. As an illustrat-
ing example, we employ the constrainedMSSM (CMSSM)
to calculate the soft SUSY breaking parameters and the
supersymmetric Higgs masses. For the couplings of the
neutrino mass operators, we assume that c and c0 are so
small that these do not contribute to the renormalization
group equations (RGEs) of other couplings and SUSY
breaking parameters, significantly. Then, we treat the cou-
plings, c and c0, as input parameters and set values at a
scale we perform the numerical calculation. As we men-
tioned in the Sec. I, the ratio of the couplings of the
neutrino mass operators in the minimal supergravity
SUSY breaking model is expected to be

jc0j
jcj ¼ Oðm3=2Þ; (52)

where m3=2 is the gravitino mass. In the following, we

consider the case that the ratio, jc0j=jcj, is between 100
and 1000 GeV.Wewill see that the constraint of the MSSM
UFB-3 imposes more stringent bound on the soft SUSY
parameters than those by the MSSM, Eq. (10) in this case.
The CMSSM is parametrized by four parameters and a

sign,

M1=2; m0; A0; tan�; sign½��; (53)

where the first three parameters are the universal gaugino
and scalar masses, and the universal trilinear couplings
defined at the grand unified theory (GUT) scale. tan� is
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the ratio of the vev’s of the Higgs scalars and � is the
supersymmetric Higgs mass. For simplicity, we fix the
values of A0 and tan�,

A0 ¼ 0 GeV; tan� ¼ 10; (54)

and take the sign of � positive. As we mentioned in Sec. I,
radiative corrections to the scalar potential is minimized at
a scale around the extremal value of the up-type Higgs
scalar, jH2jext. Such a case would be an intermediate scale
between the weak scale and the GUT scale, because

jH2jext ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=2M

p Þ. Some of our results change signifi-

cantly around 106 GeV. Thus, we show numerical calcu-
lations for the RGE scale, �, around 105–107 GeV.

In Fig. 1(a), we plot the function, �ð�Þ, given in
Eq. (30) with m0 ¼ 300 GeV and M1=2 ¼ 500 GeV at

� ¼ 106 GeV. The function, �ð�Þ, is an increasing func-
tion of � and is always negative at � ¼ 0 while it is
positive at � ¼ 1 when the EWSB successfully occurs.
Hence, �ð�Þ has only one zero point for 0 � � � 1. The
zero point, �ext, is usually found around 0.5 unless M1=2 is

small. In the case of small M1=2, �ext is found to be 0.4 or

not found because the EWSB does not occur. The shape of

�ð�Þ is in general the same for other values of the CMSSM
parameters and the RGE scale.
The constraint from the MSSM UFB-2 direction,

Eq. (28), is shown in Fig. 1(b) for � ¼ 106 GeV. We
varied m0 and M1=2 and solved �ð�Þ at each point. The

solid (red), dashed (green), dotted (blue), and the dashed-
dotted (pink) curves represent the constraint with
jc0j=jcj ¼ 250, 500, 750, and 1000 GeV, respectively.
The inside of the curve are excluded by the constraint. It
is seen that the excluded regions expand as jc0j=jcj in-
creases. The hatched (light blue) region is also excluded
because the EWSB does not occur due to negative j�j2.
Results for other RGE scales � are also the same
qualitatively.
The constraint from the MSSM UFB-3 direction is

shown in Fig. 2(a) for� ¼ 105 GeV and Fig. 2(b) for� ¼
107 GeV. The solid (red) curve represents the constraint
with the ratio of the coefficients, jc0j=jcj ¼ 0 GeV, corre-
sponding to one in the MSSM, Eq. (10). The dashed
(green), dotted (blue), and dashed-dotted (pink) curves
correspond to the ratio of the coefficient, 400, 600, and
1000 GeV, respectively. In Fig. 2(a), the region below the
curves is excluded by the constraint. It is seen that, due to
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the presence of the neutrino mass operators, the constraint
in the �SSM is tighter than that in the MSSM. In Fig. 2(b),
the region inside the curves is excluded by the constraint.
In the case of jc0j=jcj ¼ 0 GeV, only the point, M1=2 ¼
m0 ¼ 0 GeV, is excluded. It is seen that the shape of the
excluded region is elliptic in Fig. 2(b) while it is hyperbolic
in Fig. 2(a). The difference originates from the fact that
when we write m2

H2
ð�Þ ¼ aM2

1=2 þ bm2
0, the coefficient a

is negative for � � Oð106Þ GeV but the coefficient a is
positive for � � Oð107Þ GeV. The CCB minimum along
the MSSMUFB-3 direction can be negative even if the soft
mass of the up-type Higgs scalar is positive since the
potential is lowered by the term of order 5th power, which
is proportional to jc0j. Results for other scales such as � �
Oð106Þ GeV and � � Oð107Þ GeV are the same qualita-
tively as Figs. 2(a) and 2(b), respectively.

VI. SUMMARYAND DISCUSSION

We have considered the �SSM with neutrino mass op-

erators where the ðĤ2 � L̂ÞðĤ2 � L̂Þ operator in the super-
potential and the corresponding dimension four operator in
the soft SUSY breaking terms are added to the MSSM. In
this model, the scalar potential contains new terms of order
6th, 5th, and 4th power which are absent in the minimally
supersymmetric extension of the SM. We have analyzed
the scalar potential along the MSSM UFB, and CCB
directions and found new unrealistic vacua which appear
due to the higher order term in the scalar potential.

We have found that the MSSMUFB directions disappear
and turn out to be CCB directions due to the presence of
higher power terms in the scalar potential. The minima
along these CCB directions are ofOðmSUSYMÞ2 and can be
deeper than that of the EWSB. We have derived necessary
conditions to avoid the CCB minima along the MSSM
UFB-2 and UFB-3 which impose constraints among the
soft SUSY breaking parameters and the coefficients of the
neutrino mass operators. The constraints are expressed in
terms of the ratio of the coefficients, jc0j=jcj, thus these
cannot be ignored even if c0 and c are small. The most
stringent constraint was obtained from the MSSM UFB-3
direction, which imposes bounds on the soft masses of the
up-type Higgs scalar and the left-handed sleptons. The
constraint holds even if the soft mass of the Higgs scalar
is positive; therefore, it should be always taken into ac-
count at any scale.

We have also shown that there appears new CCB min-
ima along the MSSM CCB directions in the case of
jc0j=jY2

uj � 1. We showed that the extremal value of the
Higgs scalar can be determined by neglecting the Yukawa
coupling of quarks in this case and the potential can be
deeper than that of the EWSB. Like the constraints along
the UFB directions, necessary conditions to evade the CCB
minima are expressed in terms of the ratio of the
coefficients.

In Sec. V, we have applied our results to see differences
from the constraints in the MSSM. We calculated the soft
masses at scales 105 � � � 107 GeV using the RGEs in
the CMSSM. It was shown that the constraints we derived
are more stringent than those of the MSSM. Thus, it is
important to apply these constraints to several SUSY
breaking models. We would study them elsewhere includ-
ing detailed analysis on the CMSSM.
As we have mentioned in the introduction, radiative

corrections must be included into analysis for our results
to be applied at the electroweak scale. It is also needed to
include finite temperature effects if one analyze the poten-
tial at high energy scale or for large vev’s. We leave these
for our future work. It would also be important to study our
constraints from the viewpoint of the evolution of the
Universe. (See e.g. [21].)
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APPENDIX A: SCALAR POTENTIAL

In this appendix, we give notations of scalars and the
scalar potential with the neutrino mass operators.
Throughout this article, flavor indexes are suppressed for
simplicity.
The down-type and the up-type Higgs scalars are

denoted as

H1 ¼ H1
1

H2
1

� �
; H2 ¼ H1

2

H2
2

� �
; (A1)

where H1
1 and H2

2 are electrically neutral components.
Throughout this article, we refer to H1

1 and H2
2 as H1 and

H2. The left-handed squarks and the right-handed squarks
are denoted as

~Q ¼ ~uL
~dL

� �
; ~uR; ~dR; (A2)

and the left-handed sleptons and the right-handed sleptons
are denoted as

~L ¼ ~�L

~eL

� �
; ~eR: (A3)

The superpotential is given

W ¼ WMSSM � 1
2cðĤ2 � L̂ÞðĤ2 � L̂Þ; (A4)

where c is a coefficient. WMSSM is the superpotential of
the MSSM,
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WMSSM ¼ �Ĥ1 � Ĥ2 þ YdĤ1 � Q̂D̂c
R þ YuĤ2 � Q̂Ûc

R

þ YeĤ1 � L̂Êc
R; (A5)

where� is a supersymmetric Higgs mass, and Yu;d;e are the

Yukawa couplings of up quarks, down quarks, and charged
leptons, respectively.

The scalar potential, V, is divided into three parts which
consist of F, D and the soft SUSY breaking terms,

V ¼ VF þ VD þ Vsoft: (A6)

The F term potential, VF, is given by a sum of absolute
square of all matter auxiliary fields,

VF ¼ X
i¼matter

jFij2; (A7)

where

F�
H1

1

¼ �H2
2 þ Ye~eL~e

�
R þ Yd

~dL ~d
�
R; (A8a)

F�
H2

1

¼ ��H1
2 � Ye~�L~e

�
R � Yd~uL ~d

�
R; (A8b)

F�
H1

2

¼ ��H2
1 þ Yu

~dL~u
�
R � c~eLðH1

2~eL �H2
2 ~�LÞ; (A8c)

F�
H2

2

¼ �H1
1 � Yu~uL~u

�
R þ c~�LðH1

2~eL �H2
2 ~�LÞ; (A8d)

F~eR ¼ YeðH1
1~eL �H2

1 ~�LÞ; (A8e)

F�
~eL

¼ YeH
1
1~e

�
R � cH1

2ðH1
2~eL �H2

2 ~�LÞ; (A8f)

F�
~�L

¼ �YeH
2
1~e

�
R þ cH2

2ðH1
2~eL �H2

2 ~�LÞ; (A8g)

F~dR
¼ YdðH1

1
~dL �H2

1 ~uLÞ; (A8h)

F�
~dL
¼ YdH

1
1
~d�R þ YuH

1
2 ~u

�
R; (A8i)

F~uR ¼ YuðH1
2
~dL �H2

2 ~uLÞ; (A8j)

F�
~uL

¼ �YdH
2
1
~d�R � YuH

2
2 ~u

�
R: (A8k)

The D term potential, VD, is given by a sum of square of
all gauge auxiliary fields,

VD ¼ 1
2ððDa

SUð3ÞÞ2 þ ðDa
SUð2ÞÞ2 þ ðDUð1ÞÞ2Þ; (A9)

where a runs from 1 to 8(3) for SUð3ÞðSUð2ÞÞ and summa-
tion over a should be understood. The gauge auxiliary
fields are given by

Da
SUð3Þ ¼ g3

�
~Qy 	

a

2
~Q� ~u�R

	a

2
~uR � ~d�R

	a

2
~dR

�
; (A10a)

Da
SUð2Þ ¼ g2ð ~QyTa ~Qþ ~LyTa ~LþHy

1 T
aH1

þHy
2T

aH2Þ; (A10b)

DUð1Þ ¼ g1ð16 ~Qy ~Q� 2
3
~u�R~uR þ 1

3
~d�R ~dR � 1

2
~Ly ~L

þ ~e�R~eR � 1
2H

y
1H1 þ 1

2H
y
2H2Þ; (A10c)

where giði ¼ 1; 2; 3Þ is a gauge coupling constant, and 	a

and Ta are the Gell-Mann and Pauli matrix, respectively.

The soft SUSY breaking term, Vsoft, is given as

Vsoft ¼ m2
H1
Hy

1H1 þm2
H2
Hy

2H2 þ ðB�H1 �H2 þ H:c:Þ
þm2

~Q
~Qy ~Qþm2

~uR
~u�R~uR þm2

~dR
~d�R ~dR þm2

~L
~Ly ~L

þm2
~eR
~e�R~eR þ ðAdYdH1 � ~Q~d�R þ AuYuH2 � ~Q~u�R

þ AeYeH1 � ~L~e�R þ H:c:Þ
� 1

2
ðc0ðH2 � ~LÞðH2 � ~LÞ þ H:c:Þ; (A11)

where miði ¼ H1; H2; ~Q; ~uR; ~dR; ~L; ~eRÞ are soft masses and
B� is a soft term for Higgs scalars. A symbol ‘‘dot’’
represents an inner product for SUð2Þ doublets, A � B ¼
A1B2 � A2B1. The trilinear terms, Aiði ¼ u; d; eÞ, are de-
fined to be proportional to the corresponding Yukawa
coupling. We also use the following notations:

m2
1 ¼ m2

H1
þ j�j2; (A12a)

m2
2 ¼ m2

H2
þ j�j2; (A12b)

m2
3 ¼ �B�: (A12c)

APPENDIX B: GENERAL FORM OF THE
VACUUM EXPECTATION VALUES

We give the general form of the vacuum expectation
value of H2 and show that the extremal value of jH2j is
independent of Yu at the leading order when we assume
that jc0j=jYuj2 � 1.
First, we give the general form of the vev of jH2j.

Differentiating the potential, (33) with respect to jH2j,
the equation to be solved is obtained,

6ĈjH2j4 � 5D̂jH2j3 þ 4F̂jH2j2 � 3ÂjH2j þ 2m̂2 ¼ 0;

(B1)

where the dependence of coefficients on �, �, �, and �L

are omitted. We introduce a dimensionless parameter x
which is defined by

x � jH2j
M

; (B2)

whereM is the cutoff scale of the neutrino mass operators.
Then, Eq. (B1) is written as

a4x
4 þ a3x

3 þ a2x
2 þ a1xþ a0 ¼ 0; (B3)

where

a4 ¼ 6ĈM2; (B4a)

a3 ¼ �5D̂M; (B4b)

a2 ¼ 4F̂; (B4c)

a1 ¼ �3ÂM�1; (B4d)

a0 ¼ 2m̂2M�2: (B4e)
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The equation, (B3), can be deformed to the following form
by shifting x ¼ tþ t0 with t0 ¼ �a3=ð4a4Þ,

t4 þ b2t
2 þ b1tþ b0 ¼ 0; (B5)

where

b2 ¼ 6t20 þ 3a3t0=a4 þ a2=a4; (B6a)

b1 ¼ 4t30 þ 3a3t
2
0=a4 þ 2a2t0=a4 þ a1=a4; (B6b)

b0 ¼ t40 þ a3t
3
0=a4 þ a2t

2
0=a4 þ a1t0=a4 þ a0=a4: (B6c)

We rewrite Eq. (B5) as

�
t2 þ b2

2
þ u

�
2 ¼ 2u

�
t� b1

4u

�
2 � b21

8u
þ

�
b2
2
þ u

�
2 � b0:

(B7)

The above equation has the solution

t ¼ 1

2

�
 ffiffiffiffiffiffi

2u
p 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u� 2

�
b2 þ 2u b1ffiffiffiffiffiffi

2u
p

�s �
; (B8)

if u satisfies the following equation:

� b21
8u

þ
�
b2
2
þ u

�
2 � b0 ¼ 0: (B9)

The equation, (B9), is also rewritten as

u3 þ c2u
2 þ c1uþ c0 ¼ 0; (B10)

where

c2 ¼ b2; (B11a)

c1 ¼ b22
4
� b0; (B11b)

c0 ¼ �1
8b

2
1; (B11c)

and it is deformed by shifting u ¼ sþ s0 with s0 ¼
�c2=3,

s3 þ d1sþ d0 ¼ 0; (B12)

where

d1 ¼ 3s20 þ 2c2s0 þ c1; (B13a)

d0 ¼ s30 þ c2s
2
0 þ c1s0 þ c0: (B13b)

The solutions of the equation, (B12), are well known and
given by

s ¼ pþ q; (B14)

where

ðp; qÞ ¼ ðp0; q0Þ; ðp0!; q0!
2Þ; ðp0!

2; q0!Þ; (B15)

and

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20
4
þ d31

27

s
3

vuut
; (B16a)

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20
4
þ d31

27

s
3

vuut
; (B16b)

! ¼ 1
2ð�1þ ffiffiffi

3
p

iÞ: (B16c)

Now we are in a position to show that the leading order
of jH2jext is independent of Yu. We assume that

jc0j
jYuj2

� 1; (B17)

jc0j ’ mSUSY

M
; (B18)

where mSUSY is the SUSY breaking scale and jYuj is of
order 10�5 which corresponds to the up quark mass. Then,
the coefficients, ai (i ¼ 0–3) are of order

a3 � jYuj; (B19)

a2 �mSUSY

M
; (B20)

a1 � jYujmSUSY

M
; (B21)

a0 �
�
mSUSY

M

�
2
: (B22)

Using this order estimation, we can estimate the u and t,

u� t�mSUSY

M
; (B23)

since b1 and b2 are of order

b1 � jYujmSUSY

M
; (B24)

b2 �
�
mSUSY

M

�
2
: (B25)

Thus, x can be estimated as

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mSUSY

M

r
: (B26)

The leading order of jH2jext is determined by mSUSY and
M, and independent of jYuj. This result implies that we can

neglect D̂, Â and the term proportional to jYuj in F̂ to
obtain jH2jext.
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