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We present a consistent renormalization of the top- and bottom-quark/squark sector of the minimal

supersymmetric standard model with complex parameters. Various renormalization schemes are defined,

analyzed analytically, and tested numerically in the decays ~t2 ! ~biH
þ=Wþ (i ¼ 1, 2). No scheme is

found that produces numerically acceptable results over all the parameter space, where problems occur in

most cases already for real parameters. Two schemes are identified that show the most robust behavior. A

numerical analysis of the four partial stop decay widths is performed in our ‘‘preferred’’ scheme, ‘‘mb, Ab

DR.’’ The full one-loop corrections to the corresponding partial decay widths are evaluated, including

hard QED and QCD radiation. We find mostly modest corrections at the one-loop level.
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I. INTRODUCTION

One of the main tasks of the LHC is to search for
supersymmetry (SUSY) [1]. The minimal supersymmetric
standard model (MSSM) predicts two scalar partners for all
standard model (SM) fermions as well as fermionic part-
ners to all SM bosons. Of particular interest are the scalar
partners of the heavy SM quarks, the scalar top quarks, ~ti
(i ¼ 1, 2) and scalar bottom quarks ~bj (j ¼ 1, 2) due to

their large Yukawa couplings. A scalar top quark ~ti has
many possible decay modes, depending on the mass pat-
terns of the SUSY particles. Among those decay modes are

the decays to a scalar bottom quark, ~bj, and a charged

Higgs boson, Hþ, or W boson, Wþ,

~t i ! ~bjH
þ ði; j ¼ 1; 2Þ; (1)

~t i ! ~bjW
þ ði; j ¼ 1; 2Þ: (2)

If these channels are kinematically allowed they can even
be dominant if (most of) the other decay modes are kine-
matically forbidden. Consequently, these processes can
constitute a large part of the total stop decay width, and,
in case of decays to a Higgs boson, they can serve as a
source of charged Higgs bosons in cascade decays at the
LHC.

For a precise prediction of the partial decay widths
corresponding to Eq. (1) and (2), at least the one-loop level
contributions have to be taken into account. This in turn
requires a renormalization of the relevant sectors, espe-
cially a simultaneous renormalization of the top- and
bottom-quark/squark sector. Because of the SUð2ÞL invari-
ance of the left-handed scalar top and bottom quarks, these
two sectors cannot be treated independently. Within the

framework of the MSSM with complex parameters
(cMSSM) we analyze various bottom-quark/squark sector
renormalization schemes, while we apply a commonly
used on-shell (OS) renormalization scheme for the top-
quark/squark sector throughout all the investigations.
Special attention is paid to ‘‘perturbativity,’’ i.e. the loop
corrections should not be enhanced by large counterterm
contributions resulting from an inappropriate renormali-
zation scheme. This turns out to be a constraint that is very
difficult to fulfill over the whole cMSSM parameter range,
where it is especially difficult to achieve this simulta-
neously for small and large values of tan�.
Higher-order corrections to scalar fermion decays have

been evaluated in various analysis over the last decade.
The simultaneous renormalization of the top- and the
bottom-quark/squark sector was taken into account only
in a relatively small subset. In Refs. [2,3] stop and
sbottom decays, including the ones to charged Higgs
and SM gauge bosons, have been evaluated at Oð�sÞ
within the MSSM with real parameters (rMSSM). The
numerical investigation was restricted to relatively low
tan� values. These calculations are implemented in the
program SDECAY [4]. A similar analysis in Ref. [5] in-
cluded electroweak one-loop corrections, where again
only relatively low tan� values were considered. The
decays of Higgs bosons to scalar fermions, including
the charged Higgs decays, at the full one-loop level
within the rMSSM was presented in Refs. [6,7], indicat-
ing very large one-loop corrections for large tan�. An
effective Lagrangian approach in the rMSSM for these
types of decays was given in Ref. [8], with a numerical
analysis for tan� ¼ 5.
The renormalization of the top- and bottom-quark/

squark sector has been analyzed also in the context of
other calculations in the past. A comparison of differ-
ent renormalization schemes within the rMSSM was
performed in Refs. [9,10], focusing on large tan�. One
of the renormalization schemes considered therein had
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been used before within the calculation of the two-loop
bottom-quark/squark contributions to the neutral Higgs
boson masses [11] which are important for large tan�
values. Within the cMSSM a renormalization was pre-
sented in Ref. [12], however without an analysis of its
practicability. In Refs. [9,13] the top- and bottom-quark/
squark sector was renormalized within the cMSSM, but
only the QCD part needed for the presented calculation
was considered. Thus, no complete top- and bottom-quark/
squark sector renormalization has been performed within
the cMSSM. Recently a renormalization of nearly all
sectors of the rMSSM appeared [14]. In this analysis, how-
ever, the main focus has been on gauge parameter
independence.

Complex phases, as assumed here in the cMSSM, can be
relevant for collider observables and possibly extracted
from experimental data. Scalar top-quark branching ratios
at a linear collider are discussed in Ref. [15]. Concerning
LHC measurements, triple products involving the decay of
scalar top or bottom quarks are analyzed in Refs. [16–20].
Finally, rate asymmetries are examined in Ref. [21].
Depending on assumptions about the LHC performance
it might be possible to extract information on the phases of
M1, At, and Ab at the LHC.

In this paper we analyze the renormalization of the
full top- and bottom-quark/squark sector in the cMSSM.
We show analytically (and numerically) why certain
renormalization schemes fail for specific parts of the
parameter space. Finally, we explore the one-loop effects
for the decays (1) and (2) for important parts of the
cMSSM parameter space in the favored renormalization
scheme. We present numerical results showing the size
of the one-loop corrections, especially including small
and large tan�. The evaluation of the partial decay
widths of the scalar top quarks are being implemented
into the Fortran code FEYNHIGGS [22–25]. A numerical
analysis of all scalar top-quark decay modes, involving a
renormalization of all relevant sectors will be presented
elsewhere [26].

II. THE GENERIC STRUCTURE OF
THE QUARK/SQUARK SECTOR

The decay channels (1) and (2) are calculated at the full
one-loop level (including hard QED and QCD radiation).
This requires the renormalization of several sectors of the
cMSSM as discussed below. The sectors not discussed in
detail are renormalized as follows:
(i) The gauge and Higgs sector renormalization has

been performed following Ref. [25]. The gauge bo-
son masses, MW and MZ, as well as the mass of the
charged Higgs boson,M�

H , has been defined on shell
while the sine squared of the weak mixing angle, s2w,
is defined via the gauge boson masses, s2w ¼
1�M2

W=M
2
Z. The Z factors for the W boson field

are also determined within an on-shell scheme while
the Z factors of the charged Higgs boson field are
given by a linear combination of the DR Z factors of
the Higgs doublets (see Ref. [25]). An additional
finite Z factor is introduced to fulfill on-shell con-
ditions for the external charged H� field. tan� is
defined as DR parameter.

(ii) The Higgs mixing parameter � has been renor-
malized via an OS procedure for the neutralino
and chargino sector [12,27].

(iii) For the renormalization of the electromagnetic
charge we require that the renormalized ee� vertex
in the Thomson limit is not changed by higher-
order corrections with respect to the corresponding
tree-level vertex [28].

A detailed description of our renormalization of all sectors
will be given in Ref. [26].
In the following we focus on the top- and bottom-quark/

squark sector. The bilinear part of the Lagrangian with top-

and bottom-squark fields, ~t and ~b,

L ~t=~bmass¼� ~tyL;~t
y
R

� �
M~t

~tL
~tR

� �
� ~byL; ~b

y
R

� �
M~b

~bL
~bR

� �
; (3)

contains the stop and sbottom mass matrices M~t and M~b,
given by

M ~q ¼
M2

~QL
þm2

q þM2
Zc2�ðT3

q �Qqs
2
wÞ mqX

�
q

mqXq M2
~qR
þm2

q þM2
Zc2�Qqs

2
w

 !
; (4)

with

Xq¼Aq����; �¼fcot�;tan�g for q¼ft;bg: (5)

M2
~QL

andM2
~qR
are the soft SUSY-breakingmass parameters.

mq is the mass of the corresponding quark. Qq and T3
q

denote the charge and the isospin of q, andAq is the trilinear
soft SUSY-breaking parameter. The mass matrix can be
diagonalized with the help of a unitary transformation U~q,

D ~q ¼ U~qM~qU
y
~q ¼ m2

~q1
0

0 m2
~q2

 !
;

U~q ¼ U~q11 U~q12

U~q21 U~q22

� �
:

(6)

The scalar quark masses,m~q1 andm~q2 , will always be mass
ordered, i.e. m~q1 � m~q2 :
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m2
~q1;2

¼1

2
ðM2

~QL
þM2

~qR
Þþm2

qþ1

2
T3
qM

2
Zc2��

1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

~QL
�M2

~qR
þM2

Zc2�ðT3
q�2Qqs

2
wÞ�2þ4m2

qjXqj2
q

:

(7)

The parameter renormalization can be performed as
follows:

M ~q ! M~q þ �M~q; (8)

which means that the parameters in the mass matrixM~q are

replaced by the renormalized parameters and a counter-
term. After the expansion �M~q contains the counterterm

part,

�M~q11 ¼ �M2
~QL

þ 2mq�mq �M2
Zc2�Qq�s

2
w þ ðT3

q

�Qqs
2
wÞðc2��M2

Z þM2
Z�c2�Þ; (9)

�M~q12 ¼ðA�
q���Þ�mqþmqð�A�

q��������Þ; (10)

�M~q21 ¼ �M�
~q12
; (11)

�M~q22 ¼ �M2
~qR
þ 2mq�mq þM2

Zc2�Qq�s
2
w

þQqs
2
wðc2��M2

Z þM2
Z�c2�Þ (12)

with � given in Eq. (5).
Another possibility for the parameter renormalization is

to start out with the physical parameters which corresponds
to the replacement:

U ~qM~qU
y
~q ! U~qM~qU

y
~q þ U~q�M~qU

y
~q

¼ m2
~q1

Yq

Y�
q m2

~q2

 !
þ �m2

~q1
�Yq

�Y�
q �m2

~q2

 !
; (13)

where �m2
~q1

and �m2
~q2

are the counterterms of the squark

masses squared. �Yq is the counterterm
1 to the squark mix-

ing parameter Yq [which vanishes at tree level, Yq ¼ 0, and

corresponds to the off-diagonal entries in D~q ¼ U~qM~qU
y
~q ,

see Eq. (6)]. Using Eq. (13) one can express �M~q by the

counterterms �m2
~q1
, �m2

~q2
and �Yq. Especially for �M~q12

one yields

�M~q12 ¼ U�
~q11
U~q12ð�m2

~q1
� �m2

~q2
Þ þU�

~q11
U~q22�Yq

þU~q12U
�
~q21
�Y�

q: (14)

In the following the relation given by Eq. (10) and (14) will
be used to express either �Yq, �Aq or �mq by the other

counterterms.

For the field renormalization the following procedure is
applied:

~q1
~q2

� �
!

�
1þ 1

2
�Z~q

�
~q1
~q2

� �
with

�Z~q ¼ �Z~q11 �Z~q12

�Z~q21 �Z~q22

� �
:

(15)

This yields for the renormalized self-energies

�̂~q11ðk2Þ ¼ �~q11ðk2Þ þ 1
2ðk2 �m2

~q1
Þ

� ð�Z~q11 þ �Z�
~q11
Þ � �m2

~q1
; (16)

�̂~q12ðk2Þ ¼ �~q12ðk2Þ þ 1
2ðk2 �m2

~q1
Þ�Z~q12

þ 1
2ðk2 �m2

~q2
Þ�Z�

~q21
� �Yq; (17)

�̂~q21ðk2Þ ¼ �~q21ðk2Þ þ 1
2ðk2 �m2

~q1
Þ�Z�

~q12

þ 1
2ðk2 �m2

~q2
Þ�Z~q21 � �Y�

q; (18)

�̂~q22ðk2Þ ¼ �~q22ðk2Þ þ 1
2ðk2 �m2

~q2
Þ

� ð�Z~q22 þ �Z�
~q22
Þ � �m2

~q2
: (19)

In order to complete the quark/squark sector renormaliza-
tion also for the corresponding quark (i.e. its mass,mq, and

the quark field, q) renormalization constants have to be
introduced:

mq ! mq þ �mq; (20)

!�q ! ð1þ 1
2�Z

L=R
q Þ!�q; (21)

with �mq being the quark mass counterterm and �ZL
q and

�ZR
q being the Z factors of the left-handed and the right-

handed component of the quark field q, respectively.!� ¼
1
2 ð1� �5Þ are the left- and right-handed projectors, res-

pectively. Then the renormalized self-energy, �̂q, can be

decomposed into left/right-handed and scalar left/right-

handed parts, �̂
L=R
q and �̂

SL=SR
q , respectively,

�̂ qðkÞ ¼ k!��̂
L
q ðk2Þ þ k!þ�̂

R
q ðk2Þ þ!��̂

SL
q ðk2Þ

þ!þ�̂
SR
q ðk2Þ; (22)

where the components are given by

�̂
L=R
R ðk2Þ ¼ �L=R

q ðk2Þ þ 1
2ð�ZL=R

q þ �ZL=R�
q Þ; (23)

�̂ SL
q ðk2Þ ¼ �SL

q ðk2Þ �mq

2
ð�ZL

q þ �ZR�
q Þ � �mq; (24)

�̂ SR
q ðk2Þ ¼ �SR

q ðk2Þ �mq

2
ð�ZR

q þ �ZL�
q Þ � �mq: (25)

Note that �̂
SR
q ðk2Þ ¼ �̂

SL
q ðk2Þ� holds due toCPT

invariance.

1The unitary matrix U~q can be expressed by a mixing angle �~q

and a corresponding phase ’~q. Then the counterterm �Yq can be
related to the counterterms of the mixing angle and the phase
(see Ref. [13]).
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III. FIELD RENORMALIZATION
OF THE QUARK/SQUARK SECTOR

We first discuss the field renormalization of the top- and
bottom-quark/squark sector and turn to the parameter
renormalization in the next Sec. IV.

The field renormalization, meaning the determination of
the Z factors, is done within an on-shell scheme for squarks
and quarks. We impose equivalent renormalization condi-
tions for the top as well as for the bottom-quark/squark
sector:

(a) The diagonal Z factors of the squark fields are
determined such that the real part of the residua of
propagators is set to unity,

fRe @�̂~qiiðk2Þ
@k2

��������k2¼m2
~qi

¼ 0 ði ¼ 1; 2Þ: (26)

This condition fixes the real parts of the diagonal Z
factors to

Re�Z~qii ¼ �fRe @�~qiiðk2Þ
@k2

��������k2¼m2
~qi

ði ¼ 1; 2Þ:

(27)

fRe above denotes the real part with respect to con-
tributions from the loop integral, but leaves the
complex couplings unaffected.
The imaginary parts of the diagonal Z factors are so
far undetermined and are set to zero,

Im�Z~qii ¼ 0 ði ¼ 1; 2Þ: (28)

This is possible since they do not contain
divergences.

(b) For the nondiagonal Z factors of the squark fields we
impose the condition that for on-shell squarks no
transition from one squark to the other occurs,

fRe�̂~q12ðm2
~q1
Þ ¼ 0; (29)

fRe�̂~q12ðm2
~q2
Þ ¼ 0: (30)

This yields

�Z~q12 ¼ þ2
fRe�~q12ðm2

~q2
Þ � �Yq

ðm2
~q1
�m2

~q2
Þ ;

�Z~q21 ¼ �2
fRe�~q21ðm2

~q1
Þ � �Y�

q

ðm2
~q1
�m2

~q2
Þ :

(31)

The counterterm �Yq is determined in the corre-

sponding parameter renormalization scheme. This
means the nondiagonal Z factors of the squark fields
do also depend on the choice of the parameter
renormalization scheme.

(c) The quark fields are also defined via an on-shell
condition. We impose

lim
k2!m2

q

kþmq

k2 �m2
q

fRe�̂qðkÞuðkÞ ¼ 0;

lim
k2!m2

q

�uðkÞfRe�̂qðkÞ
kþmq

k2 �m2
q

¼ 0;

(32)

where uðkÞ, �uðkÞ are the spinors of the external
fields. This yields

Re�ZL=R
q ¼ �fRef�L=R

q ðm2
qÞ þm2

q½�L0
q ðm2

qÞ
þ�R0

q ðm2
qÞ� þmq½�SL0

q ðm2
qÞ

þ�SR0
q ðm2

qÞ�g; (33)

mqðIm�ZL
q � Im�ZR

q Þ ¼ ifRef�SR
q ðm2

qÞ � �SL
q ðm2

qÞg
¼ 2 ImffRe�SL

q ðm2
qÞg; (34)

with �0ðk2Þ � @�ðk2Þ
@k2

. Choosing also Im�ZL
q ¼

�Im�ZR
q , the imaginary parts of the Z factors can

be expressed as

Im�ZL=R
q ¼ � i

2mq

fRef�SR
q ðm2

qÞ � �SL
q ðm2

qÞg

¼ � 1

mq

ImffRe�SL
q ðm2

qÞg: (35)

Note that the renormalization condition Eq. (32) can
only be fully satisfied if the corresponding quark
mass is defined as on-shell, too.
The Z factors of the quark fields are not needed for
the calculation of the considered decay modes of the
scalar top quarks (see, however, Ref. [26]).

IV. PARAMETER RENORMALIZATION OF THE
TOP- AND BOTTOM-QUARK/SQUARK SECTOR

Within the top- and bottom-quark/squark sector nine real
parameters are defined: The real soft SUSY-breaking
parameters M2

~QL
, M2

~tR
and M2

~bR
, the complex trilinear cou-

plingsAt andAb and the top- and bottom-Yukawa couplings
yt and yb which both can be chosen to be real. (� and tan�
as well as the gauge boson masses and the weak mixing
angle are determinedwithin other sectors, see the beginning
of Sec. II). Note that the soft SUSY-breaking parameter
M2

~QL
is the same in the top as well as in the bottom squark

sector due to theSUð2ÞL invariance of the left-handed fields.
As in Refs. [9,13], instead of choosing the five quantities
M2

~QL
,M2

~tR
,M2

~bR
and yt, yb the squark massesm2

~t1
,m2

~t2
,m2

~b2
as

well as the top- and bottom-quarkmassesmt,mb were taken
as independent parameters.
If a regularization scheme is applied which does not

break the symmetries of the model, it is sufficient to use
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counterterms which respects the underlying symmetries.
Such counterterms are generated by multiplicative renor-
malization of parameters and fields of the MSSM. The
parameter counterterms can be fixed by as many renormal-
ization conditions as independent parameters exist [29].
Concerning the top-and bottom-quark/squark sector we
have to set nine renormalization conditions to define all
independent parameters.

For the renormalization of the top-quark/squark sector
we follow Refs. [9,13] but we also include electroweak
contributions.

We impose five renormalization conditions, (A)–(E), to
fix the parameters of the top-quark/squark sector:

(A) The top-quark mass is determined via an on-shell
condition, yielding the one-loop counterterm �mt:

�mt ¼ 1
2
fRefmt½�L

t ðm2
t Þ þ�R

t ðm2
t Þ�

þ ½�SL
t ðm2

t Þ þ�SR
t ðm2

t Þ�g: (36)

(B), (C) The two top-squark masses are also defined on
shell, yielding the real counterterms

�m2
~ti
¼ fRe�~tiiðm2

~ti
Þ ði ¼ 1; 2Þ: (37)

(D), (E) Finally, the nondiagonal entry in the matrix of
Eq. (13) is fixed as

�Yt ¼ 1
2
fRef�~t12ðm2

~t1
Þ þ�~t12ðm2

~t2
Þg; (38)

which corresponds to two separate conditions as �Yt is
complex.

The counterterm of the trilinear coupling �At is then
given via the relation of Eqs. (10) and (14) as

�At ¼ 1

mt

½U~t11U
�
~t12
ð�m2

~t1
� �m2

~t2
Þ þU~t11U

�
~t22
�Y�

t

þU�
~t12
U~t21�Yt � ðAt ��� cot�Þ�mt�

þ ð��� cot����cot2�� tan�Þ: (39)

The definition of � tan� and �� is indicated in Sec. II.

For the bottom-quark/squark sector we are left with four
independent parameters which are not defined yet. We
choose the following four renormalization conditions,
(i)–(iv):

(i) The ~b2 mass is defined on shell:

�m2
~b2
¼ fRe�~b22

ðm2
~b2
Þ: (40)

(ii)–(iv) These three renormalization conditions are
chosen according to the different renormalization condi-
tions listed in Table I and to the corresponding Secs. IVA,
IVB, IVC, IVD, IVE, and IV F. They yield the counter-
terms �mb, �Ab and �Yb where only three of these five real
counterterms are independent (counting each of the com-
plex counterterms, �Ab and �Yb, as two real counterterms).
The two dependent counterterms can be expressed as a
combination of the other ones.
Applying these renormalization conditions fixes the

counterterms generated by multiplicative renormalization
which fulfill the symmetry relations [29].

While the ~b2 mass is defined on shell, the ~b1 mass
receives a shift due to the radiative corrections:

m2
~b1;OS

¼ m2
~b1
þ ð�m2

~b1
� fRe�~b11

ðm2
~b1
ÞÞ: (41)

The term in parentheses is the shift fromm2
~b1
to the on-shell

mass squared. The value of m2
~b1
is derived from the diag-

onalization of the sbottom mass matrix, see Eq. (6), and
�m2

~b1
is defined as a dependent quantity [10,30]. m2

~b1;OS
is

the on-shell ~b1 mass squared. In Ref. [30] the size of the
shift was analyzed while in Ref. [10] bottom squarks
appeared only as ‘‘internal’’ particles, i.e. as particles in-
side the loop diagrams. Concerning the scalar top-quark
decay, Eqs. (1) and (2), we are now dealing with scalar
bottom quarks as ‘‘external’’ particles, which are defined as
incoming or outgoing particles. These external particles
should fulfill on-shell properties. At this point there are two
options to proceed:
(O1) The first option is to use different mass values, m~b1

and m~b1;OS
, for the internal and the external particles,

TABLE I. Summary of the six renormalization schemes for the b=~b sector investigated below.
Blank entries indicate dependent quantities. ReYb denotes that only the real part of Yb is
renormalized on shell, while the imaginary part is a dependent parameter. The rightmost
columns indicates the section that contains the detailed description of the respective renormal-
ization and the abbreviated notation used in our analysis.

Scheme m~b1;2
mb Ab Yb Sec. Name

Analogous to the t=~t sector: ‘‘OS’’ OS OS OS 4.1 RS1

‘‘mb, AbDR’’ OS DR DR 4.2 RS2

‘‘mb, YbDR’’ OS DR DR 4.3 RS3

‘‘mbDR, Yb OS’’ OS DR OS 4.4 RS4

‘‘AbDR, ReYb OS’’ OS DR ReYb: OS 4.5 RS5

‘‘Ab vertex, ReYb OS’’ OS vertex ReYb: OS 4.6 RS6
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respectively, which can cause problems for charged
particles as, for instance, scalar bottom quarks (see
below).

(O2) The second option is to impose a further renormal-

ization condition which ensures that the ~b1 mass is on
shell:

�m2
~b1
¼ fRe�~b11

ðm2
~b1
Þ: (42)

In this case the input has to be chosen such that the
symmetry relations are fulfilled at the one-loop level.

As mentioned above, the option (O1) leads to a problem.
The IR divergences originating from the loop diagrams
involve the ‘‘inner’’ (i.e. tree-level) mass m~b1

. These have

to cancel with the real Bremsstrahlung IR divergences,
which are evaluated with the help of the external (i.e.
one-loop on-shell) mass m~b1;OS

, which is inserted into the

tree-level diagram (the result can, as usual, be expressed
with the help of the soft Bremsstrahlung (SB) factor �SB:
Mtree � �SB, see Ref. [28]). Because of the two different
sets of masses the IR divergences do not cancel. One way
out would be the use of tree-level masses in all diagrams
contributing to the part 2RefM�

treeMloopg, i.e. in all loop

diagrams and in the hard and soft Bremsstrahlung dia-
grams. However, this would lead to inconsistencies in the
evaluation of the complete loop corrected amplitude
squared / ðjMtreej2 þ 2RefM�

treeMloopgÞ due to the dif-

ferent masses entering the phase space evaluation. A con-
sistent phase space integration requires the use of the same
external masses for all outgoing particles in all parts of the
calculation.

To circumvent the problem of the noncancellation of IR
divergences we choose the option (O2) and impose the
further renormalization condition Eq. (42). This requires to
choose an input that restores the symmetries. Relating
ðM~qÞ11 of Eq. (4) and ðU~q

yD~qU~qÞ11 with D~q of Eq. (6)

yields an expression for the soft SUSY-breaking parameter
M2

~QL
(depending on the squark flavor),

M2
~QL
ð~qÞ ¼ jU~q11 j2m2

~q1
þ jU~q12 j2m2

~q2

�M2
Zc2�ðT3

q �Qqs
2
wÞ �m2

q (43)

with ~q ¼ f~t; ~bg. Requiring the SUð2ÞL relation to be valid at
the one-loop level induces the following shift in M2

~QL
(see

also Refs. [2,3,31]):

M2
~QL
ð~bÞ ¼ M2

~QL
ð~tÞ þ �M2

~QL
ð~tÞ � �M2

~QL
ð~bÞ; (44)

with

�M2
~QL
ð~qÞ ¼ jU~q11 j2�m2

~q1
þ jU~q12 j2�m2

~q2
�U~q22U

�
~q12
�Yq

�U~q12U
�
~q22
�Y�

q � 2mq�mq þM2
Zc2�Qq�s

2
w

� ðT3
q �Qqs

2
wÞðc2��M2

Z þM2
Z�c2�Þ: (45)

In other words, everywhere in the calculation the masses
and mixing matrix elements coming from the diagonaliza-
tion of the bottom squark mass matrix, see Eq. (6), are used

withM2
~QL
ð~bÞ including the above shift as in Eq. (44). In this

way the problems concerning UV- and IR-finiteness are
avoided. (An exception is the field renormalization of the
W-boson field: In the corresponding self-energies
the SUð2ÞL relation is needed at tree level to ensure UV
finiteness. In this case, tree-level bottom squark masses are
used.)
The various renormalization schemes, following the

general choice (O2), are summarized in Table I and out-
lined in detail in the following subsections.
Comparing with the literature, several of the renormal-

ization schemes (or variants of them) have been used to
calculate higher-order corrections to squark or Higgs de-
cays. The older calculations of the loop corrections have all
been performed in the rMSSM.
(i) A renormalization scheme employing an ‘‘OS’’ re-

normalization for mb and Yb was used in Refs. [3,5]
for the calculation of stop and sbottom decays. (The
calculation of Ref. [3] is also implemented in
Ref. [4].) In order to check our implementation given

in Sec. IVA we calculated the decay ~b1;2 ! ~t1H
�

(see Sec. VA for our setup) and found good agree-
ment with Ref. [3].

(ii) A renormalization scheme similar to the real version
of RS2, i.e. ‘‘mb, Ab DR’’ has been employed in
Ref. [7] for the calculation of Higgs decays to scalar
fermions. In the scalar top and the Higgs sector they
apply an on-shell scheme (partially based on
Refs. [32,33]), which differs in some points from
our renormalization scheme.

(iii) An on-shell scheme was also used in Ref. [34]

(based on Refs. [32,35]) to evaluate the decay ~f !
~f0V (V ¼ W�, Z).

(iv) In Ref. [36], as a starting point, an on-shell renor-
malization scheme was used for the calculation of
the electroweak corrections to �ð~t2 ! ~t1�Þ, (� ¼
h, H, A). To improve the calculation, the parame-
ters mb, mt, At and Ab have also been used as
running parameters.

(v) Other ‘‘early’’ papers considered QCD corrections
to various scalar quark decays [37–39]. They mostly
employed an on-shell scheme for the quark/squark
masses and the squark mixing angle �~q, where the

counterterm to the mixing angle is ��~q / �Yq.

(vi) The renormalization scheme ‘‘Ab vertex, ReYb

OS’’ is the complex version of the renormalization
used in Refs. [10,11] for theOð�b�sÞ corrections to
the neutral Higgs boson self-energies and thus to
the lightest MSSM Higgs boson mass, Mh.

In the following subsections we define in detail the
various renormalization schemes. As explained before
and indicated in Table I the two bottom squark masses
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are renormalized on shell in all the schemes, as in Eqs. (40)

and (42), and taking into account the shift of M2
~QL
ð~bÞ in

Eq. (44). Within the subsections only the remaining con-
ditions and renormalization constants are defined explicitly
(where �� and � tan� are defined within the chargino/
neutralino sector and the Higgs sector, respectively, in all
the different renormalization schemes and are not
discussed any further).

A. On-shell (RS1)

This renormalization scheme is analogous to the OS
scheme employed for the top-quark/squark sector.

(ii) The bottom-quark mass is defined OS, yielding the
one-loop counterterm �mb:

�mb ¼ 1
2
fRefmb½�L

b ðm2
bÞ þ �R

b ðm2
bÞ�

þ ½�SL
b ðm2

bÞ þ�SL
b ðm2

bÞ�g: (46)

(iii), (iv) We choose an OS renormalization condition for
the nondiagonal entry in the matrix of Eq. (13), analogous
to the one applied in the top-quark/squark sector, setting

�Yb ¼ 1
2
fRef�~b12

ðm2
~b1
Þ þ �~b12

ðm2
~b2
Þg: (47)

The conditions (i)–(iv) fix all independent parameters
and their respective counterterms. Analogous to the calcu-

lation of the counterterm of the trilinear coupling At,
relating Eq. (10) and (14) yields the following condition
for �Ab,

�Ab ¼ 1

mb

½U~b11
U�

~b12
ð�m2

~b1
� �m2

~b2
Þ þU~b11

U�
~b22
�Y�

b

þU�
~b12
U~b21

�Yb � ðAb ��� tan�Þ�mb�
þ ð��� tan�þ��� tan�Þ; (48)

with �m2
~b1

and �m2
~b2

given in Eqs. (42) and (40),

respectively.

B. mb DR and Ab DR (RS2)

(ii) The bottom-quark mass is defined DR, yielding the
one-loop counterterm �mb:

�mb ¼ 1
2
fRefmb½�L

b ðm2
bÞ þ�R

b ðm2
bÞ�div þ ½�SL

b ðm2
bÞ

þ�SR
b ðm2

bÞ�divg: (49)

The jdiv terms are the ones proportional to � ¼
2="� �E þ logð4	Þ, when using dimensional regulariza-
tion/reduction in D ¼ 4� " dimensions; �E is the Euler
constant.
(iii), (iv) The complex parameter Ab is renormalized

DR,

�Ab ¼ 1

mb

½U~b11
U�

~b12
ðfRe�~b11

ðm2
~b1
Þjdiv � fRe�~b22

ðm2
~b2
ÞjdivÞ þ 1

2
U�

~b12
U~b21

ðfRe�~b12
ðm2

~b1
Þjdiv þ fRe�~b12

ðm2
~b2
ÞjdivÞ

þ 1

2
U~b11

U�
~b22
ðfRe�~b12

ðm2
~b1
Þjdiv þ fRe�~b12

ðm2
~b2
ÞjdivÞ� � 1

2
ðAb ��� tan�ÞfRefmb½�L

b ðm2
bÞ þ �R

b ðm2
bÞ�div

þ ½�SL
b ðm2

bÞ þ �SR
b ðm2

bÞ�divg� þ ���jdiv tan�þ��� tan�: (50)

All independent parameters are defined by the conditions
(i)–(iv) and the corresponding counterterms are deter-
mined. Solving Eqs. (10) and (14) for �Yb yields

�Yb ¼ 1

jU~b11
j2 � jU~b12

j2 ½U~b11
U�

~b21
ð�m2

~b1
� �m2

~b2
Þ

þmbðU~b11
U�

~b22
ð�A�

b ��� tan�� tan���Þ
�U~b12

U�
~b21
ð�Ab ���� tan�� tan����ÞÞ

þ ðU~b11
U�

~b22
ðA�

b �� tan�Þ �U~b12
U�

~b21
ðAb

��� tan�ÞÞ�mb�; (51)

where �m2
~b1

and �m2
~b2

are given in Eqs. (42) and (40),
respectively.

C. mb DR and Yb DR (RS3)

(ii) The bottom-quark mass is defined DR, yielding the
one-loop counterterm �mb:

�mb ¼ 1
2
fRefmb½�L

b ðm2
bÞ þ�R

b ðm2
bÞ�div þ ½�SL

b ðm2
bÞ

þ�SR
b ðm2

bÞ�divg: (52)

(iii), (iv) The complex counterterm �Yb is determined
via a DR renormalization condition, setting

�Yb ¼ 1
2
fRef�~b12

ðm2
~b1
Þjdiv þ �~b12

ðm2
~b2
Þjdivg: (53)

As in Sec. IVA, the renormalization conditions (ii), (iii)
and (iv) fix the counterterms �mb and �Yb, respectively.
Together with the renormalization conditions for �m2

~b1
and

�m2
~b2
[see Eq. (42) and (40), respectively], �Ab is given by

the linear combination of these counterterms as

�Ab ¼ 1

mb

½U~b11
U�

~b12
ð�m2

~b1
� �m2

~b2
Þ þU~b11

U�
~b22
�Y�

b

þU�
~b12
U~b21

�Yb � ðAb ��� tan�Þ�mb�
þ ð��� tan�þ��� tan�Þ; (54)
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which, of course, shows the same analytical dependence of
the independent counterterms as�Ab inEq. (48) in Sec. IVA.

D. mb DR and Yb on-shell (RS4)

(ii) The bottom-quark mass is defined DR, yielding the
one-loop counterterm �mb:

�mb ¼ 1
2
fRefmb½�L

b ðm2
bÞ þ �R

b ðm2
bÞ�div

þ ½�SL
b ðm2

bÞ þ�SR
b ðm2

bÞ�divg: (55)

(iii), (iv) The complex counterterm �Yb is fixed by an
on-shell renormalization condition, as in Sec. IVA,

�Yb ¼ 1
2
fRef�~b12

ðm2
~b1
Þ þ �~b12

ðm2
~b2
Þg: (56)

As in Sec. IVA and in Sec. IVC, the renormalization
conditions (i)–(iv) fix the counterterms �m2

~b2
, �mb and

�Yb. The further renormalization condition Eq. (42) de-
termines the counterterm �m2

~b1
. Analogous to Sec. IVA

and to Sec. IVC, �Ab can be expressed in terms of these
counterterms,

�Ab ¼ 1

mb

½U~b11
U�

~b12
ð�m2

~b1
� �m2

~b2
Þ þU~b11

U�
~b22
�Y�

b

þU�
~b12
U~b21

�Yb � ðAb ��� tan�Þ�mb�
þ ð��� tan�þ��� tan�Þ; (57)

which, of course, has the same form as in Eqs. (48) and
(54).

E. Ab DR and Reb on-shell (RS5)

(ii) In the Secs. IVA, IVB, IVC, and IVD the second
renormalization condition defines the bottom-quark mass.
In this scheme, we choose an on-shell renormalization
condition for the real part of the counterterm �Yb which
determines Re�Yb as follows:

Re�Yb ¼ 1
2 ReffRe�~b12

ðm2
~b1
Þ þ fRe�~b12

ðm2
~b2
Þg: (58)

(iii), (iv) The complex Ab parameter is defined DR

�Ab ¼ 1

mb

½U~b11
U�

~b12
ðfRe�~b11

ðm2
~b1
Þjdiv � fRe�~b22

ðm2
~b2
ÞjdivÞ þ 1

2U
�
~b12
U~b21

ðfRe�~b12
ðm2

~b1
Þjdiv þ fRe�~b12

ðm2
~b2
ÞjdivÞ

þ 1
2U~b11

U�
~b22
ðfRe�~b12

ðm2
~b1
Þjdiv þ fRe�~b12

ðm2
~b2
ÞjdivÞ� � 1

2ðAb ��� tan�ÞfRefmb½�L
b ðm2

bÞ þ �R
b ðm2

bÞ�div
þ ½�SL

b ðm2
bÞ þ �SR

b ðm2
bÞ�divg þ ���jdiv tan�þ��� tan�: (59)

With the conditions (i)–(iv) the independent counterterms
�m2

~b2
, Re�Yb and �Ab are determined, and �m2

~b1
is given

by Eq. (42). The missing counterterms �mb and Im�Yb can
be expressed by the independent counterterms. Relating
Eq. (10), here explicitly written as

ð�M~bÞ12 ¼ ðA�
b �� tan�Þ�mb

þmbð�A�
b ��� tan�� �� tan�Þ; (60)

and Eq. (14), here with �Yb explicitly split into a real and
an imaginary part

ð�M~bÞ12 ¼ U�
~b11
U~b12

ð�m2
~b1
� �m2

~b2
Þ þU�

~b11
U~b22

ðRe�Yb

þ i Im�YbÞ þU~b12
U�

~b21
ðRe�Yb � i Im�YbÞ;

(61)

results in the two equations

RefA�
b �� tan�g�mb ¼ �mb Re�Ab � Re�S

� ImfU�
~b11
U~b22

�U~b12
U�

~b21
gIm�Yb; (62)

ImfA�
b �� tan�g�mb ¼ þmb Im�Ab � Im�S

þ RefU�
~b11
U~b22

�U~b12
U�

~b21
gIm�Yb (63)

with

�S¼�mbð��tan�þ��tan�Þ�U�
~b11
U~b12

ð�m2
~b1
��m2

~b2
Þ

�ðU�
~b11
U~b22

þU~b12
U�

~b21
ÞRe�Yb; (64)

where �m2
~b1
and �m2

~b2
are given by Eq. (42) and (40).

The above two equations, (62) and (63), can be solved
for Im�Yb and �mb, yielding

�mb ¼ brci � bicr
arbi � aibr

; (65)

Im�Yb ¼ aicr � arci
arbi � aibr

(66)

with

ar ¼ RefA�
b �� tan�g; (67)

ai ¼ ImfA�
b �� tan�g; (68)

br ¼ þImfU�
~b11
U~b22

�U~b12
U�

~b21
g; (69)

bi ¼ �RefU�
~b11
U~b22

�U~b12
U�

~b21
g; (70)

cr ¼ þmb Re�Ab þ Re�S; (71)

ci ¼ �mb Im�Ab þ Im�S: (72)
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F. Ab via vertex and ReYb (RS6)

(ii) An on-shell renormalization condition is imposed for
the real part of the counterterm �Yb which determines
Re�Yb as

Re�Yb ¼ 1
2 ReffRe�~b12

ðm2
~b1
Þ þ fRe�~b12

ðm2
~b2
Þg: (73)

(iii), (iv) The renormalization conditions introduced here
are analogous to the prescriptions used in Refs. [9–11],
but extended to the complex MSSM. The complex parame-

ter Ab is renormalized via the vertex A~by1 ~b2, denoting the

renormalized vertex as �̂ðp2
A; p

2
~b1
; p2

~b2
Þ, see Fig. 1.

The tree-level vertex A~by1 ~b2, denoted as VA~by
1
~b2
, is given

as

VA~by
1
~b2
¼ iemb

2MWsw cos�
½U~b11

U�
~b22
ð� cos�n þ A�

b sin�nÞ
�U~b12

U�
~b21
ð�� cos�n þ Ab sin�nÞ�; (74)

where �n is the mixing angle of the CP -odd Higgs boson
fields with �n ¼ � at tree level. Note that in our renormal-
ization prescription we do not renormalize the mixing
angles but only tan� appearing in the Lagrangian before
the transformation of the CP -odd Higgs boson fields into
mass eigenstate fields is performed. The renormalized
vertex reads,

�̂ðp2
A; p

2
~b1
; p2

~b2
Þ ¼ �ðp2

A; p
2
~b1
; p2

~b2
Þ þ iemb

2MWsw

�
tan�½U~b11

U�
~b22
�A�

b �U~b12
U�

~b21
�Ab� þ ½U~b11

U�
~b22
���U~b12

U�
~b21
����

þ ½U~b11
U�

~b22
ð�þ tan�A�

bÞ �U~b12
U�

~b21
ð�� þ tan�AbÞ�

�
�
�mb

mb

þ 1

2
ð� �Z�

~b11
þ � �Z~b22

þ �ZAAÞ þ sin� cos�� tan�

	

þ ½U~b11
U�

~b22
ð�þ tan�A�

bÞ �U~b12
U�

~b21
ð�� þ tan�AbÞ�

�
�Ze � �M2

W

2M2
W

� �sw
sw

�
þ i ImfU~b11

U�
~b12
ð�þ tan�A�

bÞg�Z~b12
þ i ImfU~b21

U�
~b22
ð�þ tan�A�

bÞg�Z�
~b21

� 1

2
½U~b11

U�
~b22
ðA�

b �� tan�Þ �U~b12
U�

~b21
ðAb ��� tan�Þ��ZAG



: (75)

The off-diagonal Z factors are determined according to
Eq. (31),

�Z~b12
¼ þ2

fRe�~b12
ðm2

~b2
Þ � Re�Yb � i Im�Yb

ðm2
~b1
�m2

~b2
Þ

¼: �Zc
~b12

� 2i Im�Yb

m2
~b1
�m2

~b2

;

�Z~b21
¼ �2

fRe�~b21
ðm2

~b1
Þ � Re�Yb þ i Im�Yb

ðm2
~b1
�m2

~b2
Þ

¼: �Zc
~b21

� 2i Im�Yb

m2
~b1
�m2

~b2

:

(76)

Introducing appropriate abbreviations we get

�̂ðp2
A; p

2
~b1
; p2

~b2
Þ ¼ �ðp2

A; p
2
~b1
; p2

~b2
Þ þ ie

2MWsw

� fmb tan�ðU~b11
U�

~b22
�A�

b �U~b12
U�

~b21
�AbÞ

þ �Mþ iUY Im�Yb þ ½U~b11
U�

~b22
ð�þ tan�A�

bÞ
�U~b12

U�
~b21
ð�� þ tan�AbÞ�ð�mb þ �ZdÞg þ �Zo (77)

with

�M ¼ mb½U~b11
U�

~b22
���U~b12

U�
~b21
����; (78)

UY ¼ 4imb

m2
~b1
�m2

~b2

ImfU�
~b11
U~b12

ð�� þ tan�AbÞg; (79)

�Zd ¼ mb½12ð� �Z�
~b11

þ � �Z~b22
þ �ZAAÞ þ sin� cos�� tan��;

(80)FIG. 1. The renormalized vertex �̂ðp2
A; p

2
~b1
; p2

~b2
Þ.
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�Zo ¼ iemb

2MWsw

�
½U~b11

U�
~b22
ð�þ tan�A�

bÞ �U~b12
U�

~b21
ð�� þ tan�AbÞ�

�
�Ze � �M2

W

2M2
W

� �sw
sw

�
þ i ImfU~b11

U�
~b12
ð�þ tan�A�

bÞg�Zc
~b12

þ i ImfU~b21
U�

~b22
ð�þ tan�A�

bÞg�Zc�
~b21

� 1

2
½U~b11

U�
~b22
ðA�

b �� tan�Þ �U~b12
U�

~b21
ðAb ��� tan�Þ��ZAG



: (81)

The renormalization condition reads [9,11]

fRe �̂ð0; m2
~b1
; m2

~b1
Þ þ fRe �̂ð0; m2

~b2
; m2

~b2
Þ ¼ 0; (82)

which corresponds to the two conditions

Re ffRe �̂ð0; m2
~b1
; m2

~b1
Þ þ fRe �̂ð0; m2

~b2
; m2

~b2
Þg ¼ 0; (83)

Im ffRe �̂ð0; m2
~b1
; m2

~b1
Þ þ fRe �̂ð0; m2

~b2
; m2

~b2
Þg ¼ 0: (84)

The conditions (i)–(iv), are sufficient to fix all indepen-
dent parameters and their respective counterterms. As in
Sec. IVE, relating Eqs. (60) and (61), one derives Eqs. (62)
and (63) which can also be written in the form

Re fA�
b �� tan�g�mb ¼ �mb Re�Ab � Re�S

þ ImUþ Im�Yb; (85)

Im fA�
b �� tan�g�mb ¼ þmb Im�Ab � Im�S

þ ReU� Im�Yb (86)

with

�S¼�mbð��tan�þ��tan�Þ�U�
~b11
U~b12

ð�m2
~b1
��m2

~b2
Þ

�ðReUþ� iImU�ÞRe�Yb; (87)

U� ¼ U~b11
U�

~b22
�U~b12

U�
~b21
: (88)

�m2
~b1
and �m2

~b2
are fixed by Eqs. (42) and (40).

The above four Eqs. (83)–(86), can be solved for Re�Ab,
Im�Ab, Im�Yb and �mb. Though, we still consider Re�Ab

and Im�Ab as independent counterterms we first calculate
Im�Yb and �mb in dependence of Re�Ab and Im�Ab for
economically solving the systems of equations. The solu-
tion for Im�Yb and �mb is

�mb ¼ difr � drfi
erfi � eifr

; (89)

Im�Yb ¼ drei � dier
erfi � eifr

; (90)

with

dr ¼ 2 tan�ðImUþ Im�S� ReU� Re�SÞ
þ 2Re

�
MWsw
ie

ð2�Zo þ fRe�ð0; m2
~b1
; m2

~b1
Þ

þ fRe�ð0; m2
~b2
; m2

~b2
ÞÞ þ �Mþ �ZdUm

	
; (91)

di ¼ �2 tan�ðReUþ Im�Sþ ImU� Re�S

þ 2 Im

�
MWsw
ie

ð2�Zo þ fRe�ð0; m2
~b1
; m2

~b1
Þ

þ fRe�ð0; m2
~b2
; m2

~b2
ÞÞ þ �Mþ �ZdUm

	
; (92)

er ¼ þ2 tan�½ImUþ ImfA�
b �� tan�g

� ReU� RefA�
b �� tan�g� þ 2ReUm; (93)

ei ¼ �2 tan�½ReUþ ImfA�
b �� tan�g

þ ImU� RefA�
b �� tan�g� þ 2 ImUm; (94)

fr ¼ �2 ImUY; (95)

fi ¼ 2 tan�ðjU~b11
j2 � jU~b12

j2Þ (96)

and

Um ¼ U~b11
U�

~b22
ðA�

b tan�þ�Þ �U~b12
U�

~b21
ðAb tan�þ��Þ:

(97)

From the Eqs. (85) and (86) we immediately obtain �Ab as

Re�Ab ¼ 1

mb

½þIm�Yb ImUþ � Re�S

� �mb RefA�
b �� tan�g�; (98)

Im�Ab ¼ 1

mb

½�Im�Yb ReU� þ Im�S

þ �mb ImfA�
b �� tan�g�: (99)

Finally, the �Z factors in �̂ have to be determined. The
following condition is used

fRe�̂~bii
ðm2

~b1
Þ � fRe�̂~bii

ðm2
~b2
Þ ¼ 0 ði ¼ 1; 2Þ: (100)

This condition results in the following �Z factors
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� �Z~bii
¼�

fRe�~bii
ðm2

~b1
Þ�fRe�~bii

ðm2
~b2
Þ

m2
~b1
�m2

~b2

ði¼1;2Þ; (101)

which guarantees the IR finiteness of the renormalized

vertex �̂ [11].
Another subtlety has to be explained here: due to the fact

that we have infrared divergent C functions at p1 ¼ 0 in
�ðp2

1 ¼ 0; p2; p2Þ, we must deal with vanishing gram de-
terminants. Therefore we follow Ref. [40] (and references
therein) and replace the corresponding C functions by well
behaving linear combinations of B functions. Details can
be found in the Appendix.

G. Parameter definition

The input parameters in the b=~b sector have to corre-
spond to the chosen renormalization scheme. We start by
defining the bottom-quark mass, where the experimental

input is the SM MS mass [41],

mMS
b ðmbÞ ¼ 4:2 GeV: (102)

The value of mMS
b ð�RÞ (at the renormalization scale �R) is

calculated from mMS
b ðmbÞ at the three-loop level following

the prescription given in Ref. [42].

An ‘‘on-shell’’ mass is derived from the MS mass via

mOS
b ¼ mMS

b ð�RÞ
�
1þ �MS

s ð�RÞ
	

�
4

3
þ 2 ln

�R

mMS
b ð�RÞ

�	
:

(103)

The DR bottom-quark mass is calculated iteratively from2

mDR
b ¼ mOS

b ð1þ �bÞ þ �mOS
b � �mDR

b

1þ�b

(104)

with an accuracy of j1� ðmDR
b ÞðnÞ=ðmDR

b Þðn�1Þj< 10�5

reached in the nth step of the iteration. The bottom-quark
mass of a special renormalization scheme is then obtained
from

mb ¼ mDR
b þ �mDR

b � �mb: (105)

Here we have used

�mOS
b ¼ 1

2
fRefmb½�L

b ðm2
bÞ þ �R

b ðm2
bÞ�

þ ½�SL
b ðm2

bÞ þ�SL
b ðm2

bÞ�g;
�mDR

b ¼ 1
2
fRefmb½�L

b ðm2
bÞ þ �R

b ðm2
bÞ�div

þ ½�SL
b ðm2

bÞ þ�SR
b ðm2

bÞ�divg; (106)

and �mb as given in Secs. IVA, IVB, IVC, IVD, IVE, and
IV F. The quantity �b [44,45] resums the Oðð�s tan�ÞnÞ
and Oðð�t tan�ÞnÞ terms and is given by

�b ¼ 2�sðmtÞ
3	

tan�M�
3�

�Iðm2
~b1
; m2

~b2
; m2

~gÞ

þ �tðmtÞ
4	

tan�A�
t �

�Iðm2
~t1
; m2

~t2
; j�j2Þ; (107)

with

Iða; b; cÞ ¼ �ab lnðb=aÞ þ ac lnða=cÞ þ bc lnðc=bÞ
ða� cÞðc� bÞðb� aÞ :

(108)

Here �t is defined in terms of the top Yukawa coupling

ytðmtÞ ¼
ffiffiffi
2

p
mtðmtÞ=v as �tðmtÞ ¼ y2t ðmtÞ=ð4	Þ with

v ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
GF

q
¼ 246:218 GeV and mtðmtÞ 	

mt=ð1� 1
2	�tðmtÞ þ 4

3	�sðmtÞÞ. M3 is the soft SUSY-

breaking parameter for the gluinos, with the gluino mass
given as m~g :¼ jM3j.

V. RENORMALIZATION SCHEME ANALYSIS

A. Calculation of loop diagrams

In this section we give the relevant details about the
calculation of the higher-order corrections to the decay
channels (1) and (2). Sample diagrams are shown in
Figs. 2 and 3. Not shown are the diagrams for real (hard
or soft) photon and gluon radiation (which, however, can
become numerically very important). They are obtained
from the corresponding tree-level diagrams by attaching a
photon (gluon) to the electrically (color) charged particles.
The internal, in a generical way depicted particles in
Figs. 2 and 3 are labeled as follows: F can be a SM
fermion, a chargino or neutralino or a gluino, S can be a
sfermion or a Higgs boson, V can be a photon �, a Z orW�
boson or a gluon g. Not shown are the diagrams with a
gauge boson (Goldstone G�)–Higgs self-energy contribu-
tion on the external Higgs boson leg that can appear in the

decay ~t2 ! ~biH
þ. On the other hand, in our calculation,

the wave function corrections for ~t2 ! ~biW
þ vanish as all

the external particle fields are renormalized on-shell.
The diagrams and corresponding amplitudes have been

obtained with the program FEYNARTS [46]. The further
evaluation has been performed with FORMCALC [47]. As
regularization scheme for the UV divergences we have
used constrained differential renormalization [48], which
has been shown to be equivalent to dimensional reduction
[49] at the one-loop level [47]. Thus the employed regu-
larization preserves SUSY [50,51]. It was checked that all
UV divergences cancel in the final result.
The IR divergences from diagrams with an internal

photon or gluon have to cancel with the ones from the
corresponding real soft radiation. In the case of QED we
have included the soft photon contribution following the
description given in Ref. [28]. In the case of QCD we have
modified this prescription by replacing the product of
electric charges by the appropriate combination of color
charges (linear combination of CA and CF times �s).

2In case of complex �b the replacement ð1þ�bÞ ! j1þ�bj
should be performed [43].
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More details will be given in Ref. [26]. Using the sbottom
masses at the one-loop level, see Sec. IV, we found can-
cellation beyond one-loop order of the related IR and UV

divergences for the decay ~t2 ! ~biH
þ, and a cancellation,

as required, at the one-loop level for the decay
~t2 ! ~biW

þ.3

For completeness we show here also the formulas that
have been used to calculate the tree-level decay widths:

�treeð~t2 ! ~biH
þÞ ¼

jCð~t2; ~bi; HþÞj2
1=2ðm2
~t2
; m2

~bi
;M2

H�Þ
16	m3

~t2

ði ¼ 1; 2Þ; (109)

�treeð~t2 ! ~biW
þÞ ¼

jCð~t2; ~bi;WÞj2
3=2ðm2
~t2
; m2

~bi
;M2

WÞ
16	M2

Wm
3
~t2

ði ¼ 1; 2Þ; (110)

where 
ðx; y; zÞ ¼ ðx� y� zÞ2 � 4yz and the couplings
Cða; b; cÞ can be found in the FEYNARTS model files [52].
The bottom-Yukawa couplings generically are enhanced
with tan�.

B. Numerical examples for the six
renormalization schemes

We start our analysis by showing some representative
numerical examples. We evaluate the tree-level results

and the one-loop correction for �ð~t2 ! ~b1H
þÞ including

FIG. 2. Generic Feynman diagrams for the decay ~t2 ! ~biH
þ (i ¼ 1, 2). F can be a SM fermion, a chargino or neutralino or a gluino,

S can be a sfermion or a Higgs boson, V can be a �, Z,W� or g. Not shown are the diagrams with aWþ �Hþ or Gþ �Hþ transition
contribution on the external Higgs boson leg.

FIG. 3. Generic Feynman diagrams for the decay ~t2 ! ~biW
þ (i ¼ 1, 2). F can be a SM fermion, a chargino or neutralino or a gluino,

S can be a sfermion or a Higgs boson, V can be a �, Z, W� or g.

3Using tree-level masses yields a cancellation of IR divergen-
ces beyond one-loop order also for ~t2 ! ~biW

þ.

S. HEINEMEYER, H. RZEHAK, AND C. SCHAPPACHER PHYSICAL REVIEW D 82, 075010 (2010)

075010-12



wave function corrections. The parameters are chosen
according to the two scenarios, S1 and S2, shown in
Table II.4

So far we concentrate on the rMSSM: if a scheme shows
deficiencies in the rMSSM, the same problems occur in the
cMSSM. The final numerical examples in Sec. VI will also

show complex parameters as well as results for �ð~t2 !
~b1;2W

þÞ. It should be noted that tan� & 9:6ð4:6Þ is ex-

cluded for S1 (S2) due to the MSSM Higgs boson searches
at LEP [54,55]. However, we are interested in the general
behavior of the renormalization schemes. If certain fea-
tures appear in the two numerical scenarios (S1 and S2)
only for experimentally excluded tan� values, other pa-
rameter choices may exhibit these features also in unex-
cluded parts of the MSSM parameter space. Consequently,
in order to investigate the various renormalization schemes
on general grounds, in the following we show the results
for tan�> 1. A similar reasoning applies to the limits on
the MSSM parameter space due to SUSY searches.
Nevertheless, to avoid completely unrealistic spectra, the
following exclusion limits [41] hold in our two scenarios:

m~t1 > 95 GeV; m~b1
> 89 GeV; m~q > 379 GeV;

m~e1 > 73 GeV; m~�0
1
> 46 GeV; m~��

1
> 94 GeV;

m~g > 308 GeV: (111)

A few examples of the scalar top- and bottom-quark

masses at the one-loop level5 (usingM2
~QL
ð~bÞ in Eq. (44) for

the one-loop result) in the scenarios S1 and S2 are shown in
Table III. The values ofm~t2 allow copious production of the

heavier scalar top-quark at the LHC. For other choices of
the gluino mass, m~g > m~t2 , which would leave no visible

effect for most of the decay modes of the ~t2, the heavier
scalar top-quark could also be produced from gluino de-
cays at the LHC. Furthermore, in S1 (even for the nominal
value of m~t2 as given in Table II) the production of ~t2 at the

ILC (1000), i.e. with
ffiffiffi
s

p ¼ 1000 GeV, via eþe� ! ~t2~t1
will be possible, with the subsequent decay modes (1) and
(2) being open. The clean environment of the ILC would
permit a detailed study of the scalar top-quark decays.
Depending on the combination of allowed decay channels

a determination of the branching ratios at the few percent
level might be achievable in the high-luminosity running of
the ILC (1000). More details will be discussed elsewhere
[26].
Later we will also analyze numerical results for complex

input parameters. Here it should be noted that the results
for physical observables are affected only by certain com-
binations of the complex phases of the parameters �, the
trilinear couplings Af, f ¼ fu; c; t; d; s; b; e; �; �g, the gau-
gino mass parameters M1, M2, M3 and the Higgs soft
SUSY-breaking parameter m2

12 [56,57]. It is possible, for

instance, to eliminate the phase ’M2
and the phase ’m2

12
.

Experimental constraints on the (combinations of) com-
plex phases arise, in particular, from their contributions to
electric dipole moments of heavy quarks [58], of the
electron and the neutron (see Refs. [59,60] and references
therein), and of the deuteron [61]. While SM contributions
enter only at the three-loop level, due to its complex phases
the MSSM can contribute already at one-loop order. Large
phases in the first two generations of sfermions can only be
accommodated if these generations are assumed to be very
heavy [62] or large cancellations occur [63], see however
the discussion in Refs. [64,65]. A recent review can be
found in Ref. [66]. Accordingly, using the convention that
’M2

¼ 0 and ’m2
12
¼ 0, as done in this paper, in particular,

the phase ’� is tightly constrained [65], while the bounds

on the phases of the third generation trilinear couplings are

TABLE II. MSSM parameters for the initial numerical inves-

tigation; all parameters are in GeV. We always set mMS
b ðmbÞ ¼

4:2 GeV. In our analysis we use M ~QL
ð~tÞ ¼ M~tR ¼ M~bR

¼:

MSUSY, where MSUSY is chosen such that the above value of
m~t2 is realized. For the

~b sector the shift in M ~QL
ð~bÞ as defined in

Eq. (44) is taken into account. The parameters entering the scalar
lepton sector and/or the first two generations do not play a
relevant role in our analysis. The values for At and Ab are chosen
such that charge- or color-breaking minima are avoided [53].

Scen. MH� m~t2 � At Ab M1 M2 M3

S1 150 600 200 900 400 200 300 800

S2 180 900 300 1800 1600 150 200 400

TABLE III. The top and bottom squark masses at the one-loop
level (see text) in the scenarios S1 and S2 and at different tan�
for the numerical investigation; all masses are in GeV and
rounded to 1 MeV.

Scen. tan� m~t1 m~t2 m~b1
m~b2

2 293.391 600.000 441.987 447.168

S1 20 235.073 600.000 418.824 439.226

50 230.662 600.000 400.815 449.638

2 495.014 900.000 702.522 707.598

S2 20 445.885 900.000 678.531 695.180

50 442.416 900.000 628.615 697.202

4It should be noted that we do not include any further shifts in
the parameters than the one given in Eq. (44). Correspondingly,
the values for the parameters Ab and M~bR

in Table II do not
reflect the actual values for the input parameters with respect to
the chosen renormalization scheme. For example, the ~b2 mass—
though considered as an input in the renormalization scheme and
defined as on-shell mass—receives a shift going from tree- to
one-loop level when starting out with the values in Table II and
including only the shift Eq. (44). To circumvent this shift of the
~b2 mass, additional shifts to the tree-level values of Ab and M~bR
would be required (depending on the renormalization scheme).

5For the scalar top-quark masses the tree-level and the one-
loop values are the same (according to our renormalization
conditions).
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much weaker. The phase of � enters in the combinations
ð’At;b

þ’�� ’m2
12
Þ. Setting ’� ¼ 0 (and ’M2

¼’m2
12
¼ 0,

see above) leaves us with At and Ab as complex valued
parameters. Since we are interested in the renormalization

of the b=~b sector, in our numerical analysis we will focus
on a complex Ab and keep At real (see, however, Ref. [26]).

We start our numerical examples with the evaluation of

�ð~t2 ! ~b1H
þÞ in S1 and S2 for tan� ¼ 2 and tan� ¼ 50

as shown in Table IV. The corresponding results as a
continuous function of tan� can be seen in Fig. 4. It
must be emphasized here that the table and the plots do
not constitute a comparison of the various schemes, but
‘‘only’’ individual numerical examples that are used to
exhibit certain problems of the various schemes. A numeri-
cal comparison of the schemes requires that the input

parameters are converted from one scheme into another,
see, for instance, Ref. [10], which is not performed within
this analysis. In our numerical examples the renormaliza-
tion scale, �R, has been set to the mass of the decaying
particle, i.e. �R ¼ m~t2 . In Table IV the two main columns,

labeled ‘‘tan� ¼ 2’’ and ‘‘tan� ¼ 50,’’ are divided into
three columns where ‘‘tree’’ contains the tree-level results
and ‘‘loop’’ the one-loop contribution. mb denotes the
corrected bottom-quark value corresponding to the respec-
tive renormalization, see Eq. (105).
The two values of tan� were chosen as an example of a

very low and a very high value. It should be kept in mind
that the low value is possibly already in conflict with
MSSM Higgs boson searches [54,55], but kept to show
an ‘‘extreme’’ example as explained above. It can be seen

TABLE IV. Examples for tree-level and full one-loop contributions (see text) to �ð~t2 ! ~b1H
þÞ for S1 (upper table) and S2 (lower

table); all values are in GeV (no comparison of the renormalization schemes, see text). In S1 using RS5 a divergence is reached for
tan� ¼ jAbj=j�j ¼ 2 and no value can be computed (see text below). The different renormalization schemes are listed in Table I.

�ð~t2 ! ~b1H
þÞ for S1 tan� ¼ 2 tan� ¼ 50

Renorm. scheme �R tree loop mb tree loop mb

RS1: ‘‘OS’’ m~t2 0.0017 �0:0011 3.29 2.5930 �53:3469 3.84

RS2: ‘‘mb, AbDR’’ m~t2 0.0009 0.0002 2.38 0.9653 �0:0311 2.16

RS3: ‘‘mb, YbDR’’ m~t2 0.0009 0.0004 2.38 0.9484 �1:5404 2.16

RS4: ‘‘mbDR, Yb OS’’ m~t2 0.0009 0.0000 2.38 0.9593 �0:3411 2.16

RS5: ‘‘AbDR, ReYb OS’’ m~t2 - - - 0.9399 �0:0481 2.13

RS6: ‘‘Ab vertex, ReYb OS’’ m~t2 0.0007 0.0001 2.19 0.9390 �0:0347 2.13

�ð~t2 ! ~b1H
þÞ for S2 tan� ¼ 2 tan� ¼ 50

Renorm. scheme �R tree loop mb tree loop mb

RS1: ‘‘OS’’ m~t2 2.0928 �0:0776 3.23 8.5163 �106:9700 3.70

RS2: ‘‘mb, AbDR’’ m~t2 2.2171 �0:1449 2.33 1.8173 �0:5125 2.11

RS3: ‘‘mb, YbDR’’ m~t2 0.0077 0.0582 2.33 3.1409 �11:6833 2.11

RS4: ‘‘mbDR, Yb OS’’ m~t2 2.2564 �0:1031 2.33 2.9230 �4:5506 2.11

RS5: ‘‘AbDR, ReYb OS’’ m~t2 2.2332 �0:1004 2.45 2.3018 0.2924 1.84

RS6: ‘‘Ab vertex, ReYb OS’’ m~t2 2.2925 �0:1067 2.14 2.3558 �0:0710 1.86

FIG. 4. �ð~t2 ! ~b1H
þÞ. Full one-loop corrected partial decay widths for the different renormalization schemes (no comparison, see

text). The parameters are chosen according to S1 in the left plot and S2 in the right plot. For S1 the grey region and for S2 the dark grey
region is excluded by LEP Higgs searches (see text).
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that RS1, RS3, RS4 and RS5 yield relatively large absolute
values of loop contributions with respect to the tree-level
result, either for tan� ¼ 2 or for tan� ¼ 50, at least in one
of the two numerical scenarios. This simple example shows
that (by choosing a specific scenario) already all except
two renormalization schemes fail in part of the parameter
space.

More problems of the renormalization schemes RS1,
RS3, RS4, and RS5 become visible in Fig. 4. In the left
(right) plot of Fig. 4 we show the results of S1(S2) as a
function of tan�. For S1 the grey region and for S2 the dark
grey region at low values of tan� are excluded by LEP
Higgs searches [55]. It can be seen in Fig. 4 that RS1 and
RS3 deviate strongly from the (see the end of Sec. VA)

expected behavior of increasing �ð~t2 ! ~b1H
þÞ with grow-

ing tan� that the other schemes exhibit. The same is
observed for RS4 in S2 for tan� * 35. Problems in RS2
are discussed in Sec. V F, problems in RS6 have been found
for complex parameters, see Sec. VG. The various spikes
and dips can be understood as follows:

(i) For RS3 in S2 a ‘‘peak’’ appears at tan� 	 4:6 and at
tan� 	 6:2. This is discussed in Sec. VE below.

(ii) For RS5 in S1 a peak appears (not visible) at tan� ¼
jAbj=j�j ¼ 2. This is caused by large corrections to
the bottom-quark mass as discussed further in
Sec. VG. This is also the reason why there is no
entry in Table IV for RS5, S1 at tan� ¼ 2.

(iii) For RS5 in S2 a peak appears at tan� ¼
jAbj=j�j ¼ 5:33. This is caused by large correc-
tions to the bottom-quark mass as discussed further
in Sec. VG.

C. Generic considerations for the b= ~b
sector renormalization (I)

As discussed in Sec. IV, a bottom-quark/squark sector
renormalization scheme always contains dependent coun-
terterms which can be expressed by the independent ones.
According to our six definitions, this can be �mb, �Ab or
�Yb. A problem can occur when the MSSM parameters are
chosen such that the independent counterterms (nearly)
drop out of the relation determining the dependent counter-
terms. As will be shown below, even restricting to the two
numerical examples, S1 and S2, it is possible to find a set of
MSSM parameters which show this behavior for each of
the chosen renormalization schemes. Consequently, it ap-
pears to be difficult by construction to define a renormal-
ization scheme for the bottom-quark/squark sector (once
the top-quark/squark sector has been defined) that behaves
well for the full MSSM parameter space. One possible
exception could be a pure DR scheme, which, however,
is not well suited for processes with external top squarks
and/or bottom squarks.

Assuming that SUSY, and more specifically the MSSM,
will be discovered at the LHC and its parameters will be
measured, the problem will have disappeared. For a

specific set of MSSM parameters, renormalization
schemes can (easily) be found that behave well.
However, due to our ignorance about the actual values of
the SUSY parameters, scans over large parts of the MSSM
parameter space are performed, see also Sec. VI. For this
kind of analysis a careful choice of the renormalization
scheme has to be made.
In the following subsections we will analyze in more

detail, analytically and numerically, the deficiencies of the
various schemes.

D. Problems of the ‘‘OS’’ renormalization

The ‘‘OS’’ renormalization as described in Sec. IVA
does not yield reasonable results in perturbative calcula-
tions as shown already, e.g. in Refs. [10,11]. For the sake of
completeness we briefly repeat the results. The ‘‘OS’’
scheme of Sec. IVA is the renormalization scheme analo-
gous to the one used in the t=~t sector and thus would be the
‘‘naive’’ choice. It includes an on-shell renormalization
condition on the sbottom mixing parameter Yb that con-
tains the combination ðAb ��� tan�Þ. In parameter re-
gions where ð� tan�Þ) is much larger than Ab, the
counterterm �Ab receives a very large finite shift when
calculated from the counterterm �Yb. More specifically,
�Ab as given in Eq. (48) contains the contribution

�Ab ¼ 1

mb

½�ðAb ��� tan�Þ�mb þ . . .� (112)

that can give rise to very large corrections to Ab. This is
also visible in Fig. 5 below, where we show the numerical
values of �Ab as a function of tan� for various renormal-
ization schemes. In Ref. [10] it was shown that, because of
Eq. (112), the ‘‘OS’’ renormalization yields huge correc-
tions to the lightest MSSMHiggs mass. Also the numerical
results shown in Table IV and Fig. 4 show extremely large
one-loop corrections for tan� ¼ 50.
This problem is (more or less) avoided in the other

renormalization schemes introduced in Table I, where the
renormalization condition is applied directly to Ab, rather
than deriving �Ab from a renormalization condition fixing
�Yb. Also the renormalization schemes RS3 (‘‘mb,
YbDR’’) and RS4 (‘‘mbDR, Yb OS’’) avoid this severe
problem by renormalizing the bottom-quark mass DR.

E. Problems of non-Ab renormalization schemes

Two of our schemes, besides the ‘‘OS’’ scheme (RS1),
do not employ a renormalization of Ab: RS3 (‘‘mb,
YbDR’’) and RS4 (‘‘mbDR, Yb OS’’). As argued in
Sec. VD a huge contribution to �Ab as evaluated in that
section is avoided by the DR renormalization of mb.
However, following Eq. (48) with �m2

~b1
, �m2

~b2
, �Yb and

�mb chosen according to the renormalization schemes RS3
and RS4, respectively, one finds for the finite parts of �Ab:
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RS3: �Abjfin ¼ 1

mb

½U~b11
U�

~b12
ð�m2

~b1
� �m2

~b2
Þ�fin þ . . . ;

(113)

RS4: �Abjfin ¼ 1

mb

½U~b11
U�

~b12
ð�m2

~b1
� �m2

~b2
Þ

þU~b11
U�

~b22
�Y�

b þU�
~b12
U~b21

�Yb�fin þ . . . ;

(114)

where the ellipses denote contributions from �� which,
however, are not relevant for our argument. It can be seen
that still �Ab depends on parameters (diagonal and off-
diagonal sbottom self-energies) that are independent of Ab.
As an example, Higgs boson loops in the sbottom self-
energy contain contributions 
� tan�, which can become
very large, independently of the value of Ab. This can be
seen in the right plot of Fig. 5, where we show �Ab as a
function of tan� in S2. In both renormalization schemes,
RS3 and RS4, �Ab becomes very large and negative for
large tan�. This yields the very large and negative loop

corrections to �ð~t2 ! ~b1H
þÞ shown in the right plot of

Fig. 4. In S1 this problem is less pronounced, as can be seen

in the left plot of Fig. 5 (�Ab) and Fig. 4 (�ð~t2 ! ~b1H
þÞ).

But also for lower tan� values, tan� & 10, problems
can occur. The (finite) ‘‘multiple spike structure’’ in RS3
for S2 around tan� 	 5:33 (for details see the small insert
within the right plot of Fig. 5) is due to an interplay of top/
chargino contributions to the two diagonal sbottom self-
energies, invalidating this scenario also for this part of the
parameter space.

F. Problems of an mb �Ab renormalization

If mb and Ab are renormalized, the sbottom mixing
parameter Yb is necessarily a dependent parameter, see
Table I. This situation is realized in the scheme RS2
(‘‘mb, AbDR’’), see Sec. IVB. �Yb enters prominently
into �Z~b21

. For real parameters we have,

�Z~b21
¼ �2

Re�~b21
ðm2

~b2
Þ � �Yb

m2
~b1
�m2

~b2

: (115)

In this way �Yb (or the interplay between �Yb and
Re�~b21

ðm2
~b2
Þ) can induce large loop corrections to the

scalar top-quark decay width. �Yb can be decomposed
according to Eq. (51) (concentrating again on the case of
real parameters),

�Yb ¼
U~b11

U~b21

jU~b11
j2 � jU~b12

j2 ð�m
2
~b1
� �m2

~b2
Þ þ . . . ; (116)

where the ellipses denote terms with only divergent con-
tributions (due to the chosen renormalization scheme RS2)
as well as finite contributions from ��, which, however, do
not play a role for our argument. For ‘‘maximal sbottom
mixing’’, jU~b11

j 	 jU~b12
j, �Yb diverges, and the loop

calculation does not yield a reliable result. In our two
parameter scenarios, S1 and S2, this is not the case. Such
a large sbottommixing is often associated with large values
of jAbj that may be in conflict with charge- or color-
breaking minima [53].
However, in order to show an example with a divergence

in �Yb we use a modified version of S1 with Ab ¼
1000 GeV (a value still allowed following Ref. [53]). In
this scenario at tan� 	 37 we indeed find the case of
‘‘maximal mixing’’ in the scalar bottom sector. As ex-
pected this leads to a divergence in �Yb, as can be seen
in the left plot of Fig. 6. This divergence propagates into
�Z~b21

as shown in the right plot of Fig. 6.6 (Also �~b21

exhibits a discontinuity due to a sign change in U~b for
this extreme set of MSSM parameters.) The tan� value for
which this ‘‘divergence’’ occurs depends on the choice of
the other MSSM parameters. For (numerical) comparison
we also show �Z~t21 for the two scenarios.

FIG. 5. Finite parts of �Ab in various renormalization schemes. The parameters are chosen according to S1 left plot and S2 right plot.
For S1 the grey region is excluded and for S2 the dark grey region is excluded.

6The scalar bottom masses could receive large corrections via
M2

~QL
ð~bÞ in Eq. (44), with �Yb entering via Eq. (45).
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For the different choice of MSSM parameters in S2
(without a higher Ab value) this divergences does not occur.
However, for tan� & 7 one finds �Yb * Re�~b21

ðm2
~b1
Þ (with

�Yb ¼ Re�~b21
ðm2

~b1
Þ for tan� 	 7:5). In this part of the

parameter space we also find m~b1
	 m~b2

, yielding a rela-

tively large value of �Z~b21
according to Eq. (115), as can be

seen in the right plot of Fig. 6. This relatively large (nega-
tive) value of �Z~b21

in turn induces relatively large correc-

tions to �ð~t2 ! ~b1H
þÞ. However, the loop corrections do

not exceed the tree-level value of �ð~t2 ! ~b1H
þÞ (for our

choice of MSSM parameters). In summary: while for S1 a
divergence in �Yb and thus in �Z~b12

can appear for very

large values of jAbj (possibly in conflict with charge- or
color-breaking minima), invalidating the renormalization
scheme RS2 in this part of the parameter space, these kind
of problems are not encountered in S2. Here only moderate
loop corrections to the respective tree-level values are
found, and RS2 can be applied safely.

G. Problems of non-mb renormalization schemes

Two of our schemes do not employ a renormalization
condition for mb: RS5 (‘‘AbDR, ReYb OS’’) and RS6 (‘‘Ab

vertex,ReYb OS’’). Since Ab and Yb are complex, we chose
to renormalize Ab and the real part of Yb.

We start with the discussion of the (simpler) ‘‘AbDR,
ReYb OS’’ scheme. We will focus on the real case as a
subclass of the more general complex case. In this renor-
malization scheme the bottom-quark mass counterterm has
the following form for real parameters (compare to
Eq. (65)),

�mb ¼ � mb�Ab þ �S

ðAb �� tan�Þ : (117)

For vanishing sbottom mixing one finds ðAb �
� tan�Þ ! 0. In the ‘‘AbDR, ReYb OS’’ scheme this

yields a finite (and negative) numerator in Eq. (117),
but a vanishing denominator.
In a numerical evaluation, starting out with a value for

the bottom-quark mass defined as DR parameter, the actual
value of the bottom-quark mass receives a shift with re-
spect to the DR bottom-quark mass according to Eq. (105).
This shift corresponds to the finite part of �mb in Eq. (117).
Consequently, large positive or negative contributions to
the bottom-quark mass can occur, yielding possibly nega-
tive values for the bottom-quark mass and thus invalidating
the renormalization scheme for these parts of the parameter
space. This can be seen in the left plot of Fig. 7, where we
showmb in RS5 (and RS6) for the two numerical scenarios
given in Table II as a function of tan�.mb exhibits a strong
upward/downward shift around the pole reached for
tan� ¼ Ab=� and consequently yields unreliable results
in this part of the parameter space.
We now turn to the RS6 (‘‘Ab vertex, ReYb OS’’)

scheme. Following the same analysis as for the ‘‘AbDR,
ReYb OS’’ scheme an additional term in the denominator of
the bottom-quark mass counterterm 
Um=U� appears,

�mb ¼ � �Sþ F

ðAb �� tan�Þ �Um=ðtan�U�Þ ; (118)

where F denotes other (relatively small) additional contri-
butions. With the help of Eq. (97) one finds for real
parameters

Um

tan�U�
¼U~b11

U~b22
ðAb tan�þ�Þ�U~b12

U~b21
ðAb tan�þ�Þ

tan�ðU~b11
U~b22

�U~b12
U~b21

Þ
¼ðAbþ�= tan�Þ;

(119)

and therefore

FIG. 6. �ð~t2 ! ~b1H
þÞ. Left plot: size of �Yb and Re�~b21

ðm2
~b1
Þ, the two contributions to �Z~b21

, in RS2. Right plot: comparison of the
size of �Z~b21

in the scheme RS2 (‘‘mb, AbDR’’). For both plots the parameters are chosen according to S1 (but here with Ab ¼
1000 GeV), S2 in Table II. For S1 the grey region is excluded and for S2 the dark grey region is excluded via LEP Higgs searches
(see text).
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�mb ¼ �Sþ F

�ðtan�þ 1= tan�Þ : (120)

The denominator of Eq. (120) can go to zero only for
� ! 0, which is experimentally already excluded.
Consequently, the problem of (too) large contributions to
mb is avoided in this scheme. This can be seen in the left
plot of Fig. 7, where RS6, contrary to RS5, does not exhibit
any polelike structure in mb.

In the complex case the above argument is no longer
valid, and larger contributions to �mb can arise. In the limit
of tan� � 1 and � real the denominator of �mb in
Eq. (89) reads

1

�mb


 4�tan3�

�
ReU�ðjU~b11

j2 � jU~b12
j2Þ

þ ImU�
4mb

m2
~b1
�m2

~b2

ImðU�
~b11
U~b12

AbÞ
	
: (121)

Depending on’Ab
this denominator can go to zero and thus

yield unphysically large corrections to mb in RS6. In the
right plot of Fig. 7 we showmb as function of’Ab

. At’Ab
	

41:5�, 87.5�, 272.5�, 318.2� the denominator in Eq. (121)
goes to zero and changes its sign which explains the corre-
sponding structures. This divergence in �mb enters via Eq.
(105) already into the tree-level prediction. To summarize:
while in S1 the scheme RS6 is well behaved and can be
safely applied (also for complex Ab), in S2 (with j�j ¼
120 GeV) severe problems (divergences in the counter-
terms) arise once complex parameters are taken into account.
Consequently, for S2 the scheme RS6 cannot be applied.

It should be noted that the ‘‘Ab vertex, ReYb OS’’ (RS6)
scheme is the complex version of the renormalization
scheme used in Refs. [10,11] for the Oð�b�sÞ corrections
to the neutral Higgs boson self-energies and thus to the
mass of the lightest MSSM Higgs boson, Mh. For real
parameters, no problems occurred. Therefore, employing
this renormalization scheme in Refs. [10,11] yields
numerically stable results.

H. Generic considerations for the b= ~b
sector renormalization (II)

In the previous subsections we have analyzed analyti-
cally (and numerically) the deficiencies of the various
renormalization schemes. We have shown that despite of
the variety of schemes, even concentrating on the two sets
of parameters, S1 and S2, severe problems can be encoun-
tered in all schemes.
For the further numerical evaluation of the partial stop

quark decay widths we choose RS2 as our ‘‘preferred
scheme.’’ According to our analyses in the previous sub-
sections, RS2 shows the ‘‘relatively most stable’’ behav-
ior, problems only occur for maximal sbottom mixing,
jU~b11

j ¼ jU~b12
j, where a divergence in �Yb appears.

Having �Yb as a dependent counterterm induces effects
in the field renormalization constants �Z~b12

and �Z~b21
and

in �M2
~QL
ð~bÞ entering the scalar bottom-quark masses. In a

process with only internal scalar bottom quarks, no prob-
lems occur due to the field renormalization, but counter-

terms to propagators, which induce a transition from a ~b1
squark to a ~b2 squark contain also the term �Yb.
However, �Yb appearing in counterterms of internal sca-
lar bottom quarks does not exhibit a problem, since in this
case these ‘‘dangerous’’ contributions cancel (which we
have checked analytically). On the other hand, other
schemes with �mb or �Ab as dependent counterterms
may exhibit problems in larger parts of the parameter
space and may induce large effects, since mb (or the
bottom-Yukawa coupling) and Ab enter prominently into
the various couplings of the Higgs bosons to other
particles.
We are not aware of any paper dealing with scalar

quark decays (or decays into scalar quarks) that has
employed exactly RS2 (or its real version), see our
discussion in the beginning of Sec. IV. Very recently a
calculation of the scalar top decay width in the rMSSM
using a pure DR scheme for all parameters was reported
[67].

FIG. 7. Left plot:mb in RS5 and RS6 for S1, S2. For S1 the grey region is excluded and for S2 the dark grey region is excluded. Right
plot: mb in RS6 for S1, S2 but both with tan� ¼ 20 and ’Ab

varied. In S2 we used also j�j ¼ 120 GeV.
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VI. NUMERICAL EXAMPLES FOR OUR
FAVORITE SCHEME

Following the discussion in Sec. V we pick the renor-
malization scheme that shows the ‘‘most stable’’ behavior
over the MSSM parameter space. We choose the ‘‘mb,
AbDR’’(RS2) scheme. Tree-level values of the partial
decay widths shown in this section have been obtained
including a shift in mb according to Eq. (105). We will
concentrate on the calculation of the partial ~t2 decay widths
including one scalar bottom quark in the final state. A
calculation of the respective branching ratios requires the
evaluation of all partial scalar top-quark decay widths,
which in turn requires the renormalization of the full
cMSSM. This is beyond the scope of our paper and will
be presented elsewhere [26].

A. Full one-loop results

We start our numerical analysis with the upper left plot

of Fig. 8, where we show the partial decay width �ð~t2 !
~b1H

þÞ as a function of tan�. ‘‘Tree’’ denotes the tree-level
value and ‘‘full’’ is the decay width including all one-loop
corrections as described in Sec. VA. As one can see, the
full one-loop corrections are negative and rather small over
the full range of tan�, the largest size of the loop correc-
tions is found to be 
28% of the tree-level value for
tan� ¼ 50 in S2.7 In S1 the grey region and in S2 the
dark grey region is excluded due to too small values of the
mass of the lightest MSSM Higgs boson, Mh.

In the upper right plot of Fig. 8 we show the partial
decay width varying jAbj for tan� ¼ 20. In S1 and S2 the
full one-loop corrections grow with Ab, but never exceed

25% of the tree-level result. Note, that for S1 jAbj>
1130 GeV (grey region) and S2 jAbj> 1800 GeV (dark
grey region) is excluded due to the charge- or color-
breaking minima. Over the full parameter space the loop
corrections are smooth and small with respect to the tree-
level results.

In the lower left plot of Fig. 8 we analyze the partial
decay width varying j�j for tan� ¼ 20. Values for j�j &
120 GeV are excluded due to m~��

1
< 94 GeV [41]. The

loop corrected predictions for the partial decay width show
several dips and spikes. In S1 the first dip at j�j 	
285 GeV is due to jU~b11

j 	 jU~b12
j, see the discussion in

Sec. V F. The second peak/dip (already present in the tree-
level prediction) at j�j ¼ 300 GeV is due to the renormal-
ization of � [12] and will be discussed in more detail in
Ref. [26].8 The third dip at j�j 	 424 GeV, which is

hardly visible, is due to the production threshold mt þ
m~�0

3
¼ m~t2 . The fourth dip at j�j 	 873 GeV is the thresh-

old m~t1 þMH� ¼ m~b1
of the self-energy �~b11

ðm2
~b1
Þ in the

renormalization constants �Z~b11
and �m2

~b1
. The fifth dip at

j�j 	 1107 GeV is the production thresholdm~b2
þMW ¼

m~t2 . For j�j> 790 GeV the value of Mh drops strongly,

and the scenario S1 is excluded by LEP Higgs searches as
indicated by the gray shading. Apart from the dips ana-
lyzed above the loop corrections are very small and do not
exceed 
7% of the tree-level result, the prediction for

�ð~t2 ! ~b1H
þÞ is well under control. We now turn to the

scenario S2. Here, for growing j�j, the squark mass split-

ting in the ~t=~b sector becomes very large, leading to large
contributions to the electroweak precision observables.
The dark gray region for j�j> 1060 GeV yields W boson
masses outside the experimentally favored region at the 2

level, MW * 80:445 GeV [68]. Such large j�j values are
consequently disfavored. The dip/peak at j�j ¼ 200 GeV
in the tree and the loop contribution is due to ��, where
� ¼ M2 is reached, see above. The second dip at j�j ¼
477 GeV, which is hardly visible, is the threshold mt þ
m~��

2
¼ m~b1

of the self-energy �~b11
ðm2

~b1
Þ in the renormal-

ization constants �Z~b11
and �m2

~b1
. The third dip at j�j ¼

725 GeV is the production thresholdmt þm~�0
3
¼ m~t2 . The

fourth dip at j�j ¼ 850 GeV is again the threshold m~t1 þ
MH� ¼ m~b1

. In S2 the one-loop corrections are negative

and growing with j�j. Apart from the dips described
above, also in this numerical evaluation the loop correc-
tions stay mostly relatively small with respect to the tree-
level result, reaching the largest relative contribution at the
smallest j�j values, and are thus well under control.
We now turn to the case of complex parameters. As

discussed in Sec. VB we consider only Ab as a complex
parameter. In the lower right plot of Fig. 8 we show the
partial decay width depending on ’Ab

for tan� ¼ 20. In

S1, the tree-level values and the loop corrections are well-
behaved. The latter ones stay relatively small for the whole
parameter space, not exceeding 
18% of the tree-level
result. In S2, the largest corrections occur for real positive
values of Ab and reach 
12% of the tree-level values.
For negative Ab, the tree-level result becomes very small
(< 0:01 GeV) and here the size of the loop corrections can
be as large as the tree-level values. A small (and barely
visible) asymmetry in the one-loop corrections appears in
the lower right plot of Fig. 8, due to terms 
U~bij

� C0;1;2

function. The peak/dip at ’Ab
	 117�, 243� are again due

to jU~b11
j 	 jU~b12

j, see Sec. V F. It can be seen that the

peaks due to this divergence are relatively sharp, i.e. the
region of parameter space that is invalidated remains rela-
tively small.

In Fig. 9 we show the results for �ð~t2 ! ~b2H
þÞ for the

same set and variation of parameters as above.

7It is interesting to note that at tan� ¼ jAbj=j�j ¼ 2ð5:33Þ in
S1 (S2) we get U~b11;22

¼ 1 and U~b12;21
¼ 0, and consequently

~bL;R ¼ ~b1;2, respectively.
8The chosen renormalization exhibits a divergence for � ¼

M2. �� enters via �Yb into �M2
~QL
ð~bÞ and thus into the values of

m~bi
. Consequently, the dip is already present in the tree-level

result.
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Consequently, the same peak and dip structures are visible
in the lower plots of Fig. 9. In the lower left plot of Fig. 9 in
S1 both lines end because the phase space closes, m~b2

þ
MH� >m~t2 for j�j> 300 GeV. Overall the partial decay

width is much smaller than for �ð~t2 ! ~b1H
þÞ, which can

partially be attributed to the smaller phase space, see for
instance the results within S2 in the upper left plot of
Fig. 9, and partially to the smallness of the tree-level

coupling. Only in S2 for tan� * 35 we find �ð~t2 !
~b2H

þÞ * 1 GeV. The relative corrections become very
large for jAbj * 1200 GeV as shown in the upper right
plot of Fig. 9, however these values are disfavored by the
constraints from charge and color-breaking minima as

discussed above. The smallness of �ð~t2 ! ~b2H
þÞ at the

tree-level can lead sometimes to a ‘‘negative value at
the loop level’’. In this case of (accidental) smallness of
the tree-level partial decay width also jMloopj2 would have
to be taken into account, yielding a positive value for

�ð~t2 ! ~b2H
þÞ. Overall, because of the smallness of the

tree-level result due to the tree-level coupling the relative

size of the loop corrections are a bit larger than for �ð~t2 !
~b1H

þÞ. Nevertheless, apart from the peaks visible in the
lower plots of Figs. 9, the loop corrections are well under

control also for �ð~t2 ! ~b2H
þÞ using the renormalization

scheme RS2. Again a small asymmetry in the one-loop
corrections in the lower right plot of Fig. 9 can be observed,
which is due to terms 
U~bij

� C0;1;2 function.

Finally we evaluate the partial decay width of a scalar

top quark to a scalar bottom quark and a W boson, �ð~t2 !
~b1W

þÞ and �ð~t2 ! ~b2W
þÞ. Since theW boson is relatively

light, also the latter channel is open. In Fig. 10 the results

for ~t2 ! ~b1W
þ are shown, in Fig. 11 the ones for ~t2 !

~b2W
þ. The divergences visible in the various plots are the

same ones as found in the respective plot for �ð~t2 !
~b1H

þÞ. An additional (finite) dip is visible in the lower
left plot of Fig. 10 in S2 for j�j 	 521 GeV, due to an
interplay of t=~��

2 contributions to �~b11
ðm~b1

Þ, similar to the

structure discussed for Fig. 5. In this part of the parameter
space the results calculated within the renormalization
scheme RS2 have to be discarded.

Overall, the loop corrections to �ð~t2 ! ~b1W
þÞ calcu-

lated within the renormalization scheme RS2 behave simi-

lar to the ones to �ð~t2 ! ~b1H
þÞ. The size is relatively

small, i.e. & 20% and & 30% of the tree-level results in
the upper left and in the upper right plot of Fig. 10,
respectively, for the regions which are not in conflict

FIG. 8. �ð~t2 ! ~b1H
þÞ. Tree-level and full one-loop corrected partial decay widths for the renormalization scheme RS2. The

parameters are chosen according to the scenarios S1 and S2 (see Table II). For S1 the grey region is excluded and for S2 the dark grey
region is excluded. Upper left plot: tan� varied. Upper right plot: tan� ¼ 20 and jAbj varied. Lower left plot: tan� ¼ 20 and j�j
varied. Lower right plot: tan� ¼ 20 and ’Ab

varied.
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with charge- or color-breaking minima (for jAbj ¼
2000 GeV a correction of 
70% of the tree-level result
can be observed in S1 due to the smallness of the tree-level
value). We find loop corrections of the size of & 20% of
the tree-level results in the lower left plot of Fig. 10 except
for very small values of j�j and in the lower right plot of
Fig. 10. In the latter plot for S2 the known divergences
appear at ’Ab

	 117�, 243�, leading to larger loop correc-
tions for intermediate values of ’Ab

. Apart from the latter

case the full one-loop corrections to �ð~t2 ! ~b1W
þÞ are

well under control employing the renormalization scheme
RS2.

Similar observations hold for the decay ~t2 ! ~b2W
þ, as

shown in Fig. 11. In the upper left plot of Fig. 11 in the
scenario S2 for tan� ¼ jAbj=j�j 	 5:3, the tree-level par-
tial decay width vanishes, leading to a ‘‘negative value at
the loop level.’’ As discussed above, in this case also
jMloopj2 would have to be taken into account, yielding a

positive value for �ð~t2 ! ~b2W
þÞ. (A similar situation is

found in the lower left plot of Fig. 11 for j�j 	 200 GeV.)
For somewhat larger tan� values, loop corrections of

50% of the tree-level values are reached, while in S1
they stay below
23% of the tree-level results. In the upper

right plot of Fig. 11 the loop corrections are smaller than

40% of the tree-level values, depending on the size of
jAbj, see above. The loop corrections shown in the lower
left plot of Fig. 11 yield maximal 
9ð37Þ% of the tree-
level results in S1 (S2), apart from very small � values,
where the tree-level partial decay width can become acci-
dentally small.
Finally, looking at the dependence on ’Ab

in the lower

right plot of Fig. 11, apart from the known divergences in
S2 around ’Ab

	 117�, 243�, the loop corrections do not

exceed 
6% and 
35% of the tree-level values in S1 and
in S2, respectively. Overall, except for the small parameter
regions around ’Ab

	 117�, 243�, the full one-loop cor-

rections to �ð~t2 ! ~b2W
þÞ are well under control employ-

ing the renormalization scheme RS2.

B. Comparison with SQCD calculation

Often QCD corrections to SM or MSSM processes are
considered as the leading higher-order contributions.
However, it has also been observed for SM processes
(e.g. in the case of WH and ZH production at the
Tevatron and LHC [69], for H þ 2 jet production at
the LHC [70], or for the Higgs decay to four fermions in

FIG. 9. �ð~t2 ! ~b2H
þÞ. Tree-level and full one-loop corrected partial decay widths for the renormalization scheme RS2. The

parameters are chosen according to the scenarios S1 and S2 (see Table II). For S1 the grey region is excluded and for S2 the dark grey
region is excluded. Upper left plot: tan� varied. Upper right plot: tan� ¼ 20 and jAbj varied. Lower left plot: tan� ¼ 20 and j�j
varied. Lower right plot: tan� ¼ 20 and ’Ab

varied.
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the SM [71]) that the electroweak corrections can be of
similar size as the QCD corrections. Therefore, in the last
step of our numerical evaluation, we show the size of the
one-loop effects based on SUSY QCD (SQCD) only. The
size of the SQCD corrections can then be compared to the
full calculation presented in the previous subsection. It
should be kept in mind that, following Eq. (44), also the
masses of the scalar bottom quarks depend on the order of
the calculation. Consequently, we do not explicitly com-
pare SQCD with the full one-loop calculation, but analyze
only the size and the sign of the pure SQCD corrections.

In Fig. 12 we show the tree-level values and SQCD one-

loop corrected partial decay widths for ~t2 ! ~b1H
þ, ~t2 !

~b1W
þ, ~t2 ! ~b2H

þ, ~t2 ! ~b2W
þ, respectively. The renor-

malization scheme RS2 is used, and hard gluon radiation is
taken into account. The parameters are chosen according to
S1 and S2 with tan� varied. For S1 and S2 the grey and the
dark grey region is excluded via LEP Higgs searches,
respectively. In the lower left plot of Fig. 12 the curves
in S1 end at tan� 	 27 due to the closing of the phase
space. The size of the SQCD one-loop corrections reaches

the highest values for large tan� in the case of ~t2 ! ~b1;2H
þ

and for intermediate tan� in the case of ~t2 ! ~b1;2W
þ. The

relative size in the percentage of the tree-level values do

not exceed �8% in �ð~t2 ! ~b1H
þÞ, þ18% in �ð~t2 !

~b1W
þÞ, �24% in �ð~t2 ! ~b2H

þÞ and �6% in �ð~t2 !
~b2W

þÞ. The absolute size of the SQCD corrections can
be compared with the upper left plots of Figs. 8–11, where
the full one-loop corrections are shown. It becomes ob-
vious, especially in S2, that restricting an evaluation to the
pure SQCD corrections would strongly underestimate the
full one-loop corrections. (Hard photon radiation can be as
relevant as hard gluon radiation.) Consequently, the full set
of one-loop corrections must be taken into account to yield
a reliable prediction of the scalar top-quark decay width.

VII. CONCLUSIONS

A scalar top quark can decay into a scalar bottom quark
and a charged Higgs boson or a W boson if the process is
kinematically allowed. These decay modes can comprise a
large part of the total stop decay width. The decay channels
with a charged Higgs boson in the final state form a
potentially important subprocess of cascade decays which
are interesting for the search of charged Higgs bosons at
the LHC. In order to arrive at a precise prediction of these

FIG. 10. �ð~t2 ! ~b1W
þÞ. Tree-level and full one-loop corrected partial decay widths for the renormalization scheme RS2. The

parameters are chosen according to the scenarios S1 and S2 (see Table II). For S1 the grey region is excluded and for S2 the dark grey
region is excluded. Upper left plot: tan� varied. Upper right plot: tan� ¼ 20 and jAbj varied. Lower left plot: tan� ¼ 20 and j�j
varied. Lower right plot: tan� ¼ 20 and ’Ab

varied.
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scalar top-quark partial decay widths at least a (full) one-
loop calculation has to be performed. In such a calculation
a renormalization procedure has to be applied that takes
into account the top quark/squark as well as the bottom-
quark/squark sector in the MSSM. These two sectors are
connected via the soft SUSY-breaking mass parameter
M ~QL

of the superpartners of the left-handed quarks, which

is the same in both sectors due to the SUð2ÞL invariance.
Within the MSSM with complex parameters (cMSSM)

we defined six different renormalization schemes for the
bottom quark/squark sector, while in the top quark/squark
sector we applied a commonly used on-shell renormaliza-
tion scheme, which is well suited for processes with exter-
nal top and stop quarks. In our analysis we focused on the
problem that, for certain parameter sets, an applied renor-
malization scheme might fail and cause large counterterm
contributions that enhance the loop corrections to unphysi-
cally large values. We have analyzed analytically the draw-
backs and shortcomings of each of the six renormalization
schemes. Because of the relations between the parameters
that have to be respected also at the one-loop level we did
not find any renormalization scheme that results in reason-
ably small counterterm contributions over all the cMSSM

parameter space we have analyzed (we did not consider a
pure DR scheme which is not well suited to describe
external particles). Some renormalization schemes (for
instance, the ‘‘on-shell’’ scheme which is defined analo-
gously to the one applied in the top quark/squark sector)
fail over large parts of the parameter space. Others fail only
in relatively small parts where, for instance, a divergence
due to a vanishing denominator occurs. The most robust
schemes turn out to be the ‘‘mb, AbDR’’(RS2) scheme and
the ‘‘Ab vertex, ReYb OS’’(RS6) scheme. These renormal-
ization schemes appear to be most suitable for higher-order
corrections involving scalar top and bottom quarks.
We performed a detailed numerical analysis for the full

one-loop result of the partial decay widths corresponding

to the four processes ~t2 ! ~bjH
þ=Wþ (j ¼ 1, 2) in our

preferred scheme, ‘‘mb, AbDR’’. The higher-order correc-
tions, besides the full set of one-loop diagrams, also con-
tain soft and hard QED and QCD radiation. We evaluated
the higher-order predictions of the four partial decay
widths as a function of tan�, �, Ab and ’Ab

. We found

mainly modest corrections at the one-loop level. Larger
corrections are mostly found in regions of the parameter
space that are disfavored by experimental constraints

FIG. 11. �ð~t2 ! ~b2W
þÞ. Tree-level and full one-loop corrected partial decay widths for the renormalization scheme RS2. The

parameters are chosen according to the scenarios S1 and S2 (see Table II). For S1 the grey region is excluded and for S2 the dark grey
region is excluded. Upper left plot: tan� varied. Upper right plot: tan� ¼ 20 and jAbj varied. Lower left plot: tan� ¼ 20 and j�j
varied. Lower right plot: tan� ¼ 20 and ’Ab

varied.
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and/or charge and color-breaking minima. A comparison
of the full one-loop calculation with a pure SQCD calcu-
lation showed that the latter one can result in a very poor
approximation of the full result and cannot be used for a
reliable prediction.

A full one-loop calculation of the corresponding branch-
ing ratios requires the calculation of all possible partial
decay widths of the scalar top quark (and consequently a
renormalization of the full cMSSM) and will be presented
elsewhere [26].
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APPENDIX: C FUNCTIONS

As explained in Sec. IV F, in RS6 we have to deal with
infrared divergent C functions (appearing in �ðp2

1 ¼
0; p2; p2Þ) with vanishing gram determinants. This case is
not implemented in LOOPTOOLS [47]. Therefore we follow
Ref. [40] (and references therein) and replace the corre-
sponding C functions by well-behaving linear combina-
tions of B functions.9 For sake of completeness we briefly
review our implementation. The class of C functions with
only one external momentum zero, can be completely
reduced to B functions. Having three different masses we
can use partial fraction decomposition:

FIG. 12. Tree-level and SQCDcorrected partial decaywidths for the renormalization schemeRS2with tan� varied. The parameters are
chosen according to the scenarios S1 and S2 (see Table II). For S1 the grey region is excluded and for S2 the dark grey region is excluded.
Upper left plot: �ð~t2 ! ~b1H

þÞ. Upper right plot: �ð~t2 ! ~b1W
þÞ. Lower left plot: �ð~t2 ! ~b2H

þÞ. Lower right plot: �ð~t2 ! ~b2W
þÞ.

9
FORMCALC [47] sorts the loop integrals with help of the

masses. Consequently, any momentum can become zero, not
only p1. Furthermore, LOOPTOOLS uses a different convention
than [40]: C1 ¼ C11–C12, C2 ¼ C12.
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C0ð0; p; p;m1; m2; m3Þ ¼ B0ðp;m1; m3Þ � B0ðp;m2; m3Þ
m2

1 �m2
2

:

(A1)

With only two different masses applying partial differen-
tiation (l’Hospital) yields

C0ð0; p; p;m1; m1; m3Þ ¼ @B0ðp;m1; m3Þ
@ðm2

1Þ
: (A2)

We also used symmetry relations and decompositions
which can be found in [40] and the following shorthand
notation:

Dij¼p4þm4
i þm4

j �2ðp2m2
i þp2m2

j þm2
i m

2
j Þ: (A3)

We included the following replacements of Ci functions
with p1 ¼ 0:

C0ð0; p; p;m1; m2; m3Þ ! B0ðp;m1; m3Þ � B0ðp;m2; m3Þ
m2

1 �m2
2

;

(A4)

C0ð0; p; p;m1; m1; m3Þ ! 1

D13

½ðp2 þm2
3 �m2

1Þ
� ð2� B0ðp;m1; m3ÞÞ
þ ðp2 �m2

3 �m2
1ÞB0ð0; m1; m1Þ

þ 2m2
3B0ð0; m3; m3Þ�; (A5)

C1ð0; p; p;m1; m2; m3Þ ! 1

3ðm2
1 �m2

2Þ2
� ½2m2

1ðB0ðp;m2; m3Þ � B0ðp;m1; m3ÞÞ
þ ðm2

1 �m2
2ÞB0ðp;m2; m3Þ �m2

1 þm2
2

þ ð3m2
1 � 2m2

2 �m2
3 þ p2ÞB1ðp;m2; m3Þ

þ ðm2
3 �m2

1 � p2ÞB1ðp;m1; m3Þ�; (A6)

C2ð0; p; p;m1; m2; m3Þ ! B1ðp;m1; m3Þ � B1ðp;m2; m3Þ
m2

1 �m2
2

;

(A7)

C2ð0; p; p;m1; m1; m3Þ ! 1

2p2

�
B0ð0; m1; m1Þ

� B0ðp;m1; m3Þ � p2 þm2
1 �m2

3

D13

� ½ðp2 �m2
1 þm2

3Þð2� B0ðp;m1; m3ÞÞ
þ ðp2 �m2

3 �m2
1ÞB0ð0; m1; m1Þ

þ 2m2
3B0ð0; m3; m3Þ�



: (A8)

In the case of p2 ¼ 0, we used the following replacements:

C0ðp; 0; p;m1; m2; m3Þ ! B0ðp;m1; m2Þ � B0ðp;m1; m3Þ
m2

2 �m2
3

;

(A9)

C0ðp; 0; p;m1; m2; m2Þ
! 1

D12

½ðp2 �m2
2 þm2

1Þð2� B0ðp;m1; m2ÞÞ
þ ðp2 �m2

1 �m2
2ÞB0ð0; m2; m2Þ þ 2m2

1B0ð0; m1; m1Þ�;
(A10)

C1ðp; 0; p;m1; m2; m3Þ ! 1

3ðm2
2 �m2

3Þ2
� ½2m2

1ðB0ðp;m1; m2Þ � B0ðp;m1; m3ÞÞ
þ ðm2

2 �m2
3ÞB0ð0; m2; m3Þ �m2

3 þm2
2

� ð3m2
3 � 2m2

2 �m2
1 � p2ÞB1ðp;m1; m2Þ

þ ðm2
3 �m2

1 � p2ÞB1ðp;m1; m3Þ�; (A11)

C2ðp; 0; p;m1; m2; m3Þ ! 1

3ðm2
2 �m2

3Þ2
� ½2m2

1ðB0ðp;m1; m3Þ � B0ðp;m1; m2ÞÞ
� ðm2

2 �m2
3ÞB0ð0; m2; m3Þ þm2

3 �m2
2

� ð3m2
2 � 2m2

3 �m2
1 � p2ÞB1ðp;m1; m3Þ

þ ðm2
2 �m2

1 � p2ÞB1ðp;m1; m2Þ�: (A12)

Finally, for p3 ¼ ðp1 þ p2Þ ¼ 0 we employed:

C0ðp; p; 0; m1; m2; m3Þ ! B0ðp;m1; m2Þ � B0ðp;m2; m3Þ
m2

1 �m2
3

;

(A13)

C0ðp; p; 0; m1; m2; m1Þ ! 1

D12

½ðp2 �m2
1 þm2

2Þ
� ð2� B0ðp;m1; m2ÞÞ þ ðp2 �m2

2 �m2
1ÞB0ð0; m1; m1Þ

þ 2m2
2B0ð0; m2; m2Þ�; (A14)

C1ðp; p; 0; m1; m2; m3Þ

! B0ðp;m2; m3Þ þ B1ðp;m1; m2Þ þ B1ðp;m2; m3Þ
m2

1 �m2
3

;

(A15)
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C1ðp; p; 0; m1; m2; m1Þ ! 1

2p2

�
B0ð0; m1; m1Þ

� B0ðp;m1; m2Þ � p2 þm2
1 �m2

2

D12

½ðp2 �m2
1 þm2

2Þ
� ð2� B0ðp;m1; m2ÞÞ þ ðp2 �m2

2 �m2
1ÞB0ð0; m1; m1Þ

þ 2m2
2B0ð0; m2; m2Þ�



; (A16)

C2ðp; p; 0; m1; m2; m3Þ ! 1

3ðm2
1 �m2

3Þ2
� ½2m2

1ðB0ðp;m2; m3Þ � B0ðp;m1; m2ÞÞ
� ð2m2

1 �m2
2 �m2

3 þ p2ÞB0ðp;m2; m3Þ
þm2

3 �m2
1 � ð3m2

1 � 2m2
3 �m2

2 þ p2ÞB1ðp;m2; m3Þ
þ ðm2

2 �m2
1 � p2ÞB1ðp;m1; m2Þ�: (A17)
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