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If collider experiments demonstrate that the minimal supersymmetric standard model (MSSM) is a

good description of nature at the weak scale, the experimental priority will be the precise determination of

superpartner masses. These masses are governed by the weak scale values of the soft supersymmetry-

breaking (SUSY-breaking) parameters, which are in turn highly dependent on the SUSY-breaking scheme

present at high scales. It is therefore of great interest to find patterns in the soft parameters that can

distinguish different high-scale SUSY-breaking structures, identify the scale at which the breaking is

communicated to the visible sector, and determine the soft breaking parameters at that scale. In this work,

we demonstrate that 1-loop renormalization group invariant quantities present in the MSSM may be used

to answer each of these questions. We apply our method first to generic flavor-blind models of SUSY

breaking, and then we examine in detail the subset of these models described by general gauge mediation

and the constrained MSSM with nonuniversal Higgs masses. As renormalization group invariance

generally does not hold beyond leading-log order, we investigate the magnitude and direction of the

2-loop corrections. We find that with superpartners at the TeV scale, these 2-loop effects are either

negligible, or they are of the order of optimistic experimental uncertainties and have definite signs, which

allows them to be easily accounted for in the overall uncertainty.
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I. INTRODUCTION

The standard model (SM) provides an excellent descrip-
tion of the experimental data collected at high energy
physics facilities. However, it has a series of shortcomings
and is believed to provide an effective theory only at
energies below a scale of the order of 1 TeV. The minimal
supersymmetric standard model (MSSM) addresses most
of the SM shortcomings: It provides a solution to the
hierarchy problem, is consistent with the unification of
couplings at high energies, leads to an understanding of
the origin of the negative Higgs mass parameters generat-
ing the breakdown of the electroweak symmetry, and in-
cludes a natural dark matter candidate [1–3]. Furthermore,
the MSSM provides a weakly interacting extension of the
SM in which the SM-like Higgs mass is bounded from
above by about 130 GeV [4–13] and will be within obser-
vational reach of colliders within a few years [14–30].
Finally, MSSM sparticle effects on the precision electro-
weak observables efficiently decouple for sparticle masses
above a few hundred GeV, in agreement with the best fit to
these measurements (see, for example, [31–33]).

If sparticles corresponding to the MSSM are discovered
at the LHC or any future collider, resolving the properties
of the supersymmetry-breaking (SUSY-breaking) mecha-
nism will become an important theoretical and experimen-
tal problem. Since most well-motivated scenarios place
the ‘‘messenger scale’’ at which SUSY breaking is com-
municated to the MSSM far beyond direct experimental
access, it is likely that the renormalization group (RG)

will be our primary tool for investigating the nature of
this mechanism.
The standard approach is ‘‘top-down,’’ where a high-

scale model with a limited number of parameters (for
instance, the constrained MSSM [CMSSM] or mSUGRA)
is assumed, and the parameters are fit to the low-scale data
using RG evolution. This method is well studied, both in
the context of present constraints from dark-matter
searches and low-energy observables as well as for future
LHC projections. (For a sample of references, see
[34–41].) It is now quite a sophisticated technique (see
for instance [42]), but it has a few limitations. Primarily,
the reliability of the fit may be reduced as the number
of high-scale parameters is increased. It is also subject to
the behavior of uncertainties under RG flow: if they tend
to spread as the scale increases, the fit will become
weaker. The top-down approach is also sensitive to the
experimental uncertainties in gauge couplings and SM
particle masses, and multiple iterations of RG evolu-
tion from high to low scales are required to consis-
tently incorporate SUSY corrections to the Yukawa cou-
plings [43–46].
Alternatively, a direct ‘‘bottom-up’’ approach has been

studied [47–51] and found to possess utility complemen-
tary to the top-down method. The bottom-up reconstruc-
tion has the advantage of being easy and quite transparent:
Simple analytic formulae are used to convert measured
pole masses into low-scale values of the Lagrangian pa-
rameters, including dominant radiative effects. The run-
ning parameters are then evolved up to the high scale at
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which the mediation of SUSY breaking takes place and
their structure can be analyzed. This method is relatively
fast and attractive, and it is less sensitive to the total
number of free parameters, but it also presents challenges:
Foremost, one does not know the scale that should be used
as the ultraviolet boundary. Additionally, uncertainties in
the running parameters must again be propagated carefully
under RG evolution. As in the top-down approach, the
�-functions for each sfermion mass are subject to the
present experimental uncertainties in the gauge and
Yukawa couplings. Furthermore, these �-functions depend
on many MSSM parameters even at 1-loop order, coupling
all of the soft scalar masses to each other through the
hypercharge D-term, as well as to the gaugino masses
and the soft trilinear couplings. In Ref. [52], it was dem-
onstrated that the failure to infer even one soft mass
experimentally may be sufficient to drastically alter the
high-scale prediction for other masses.

Here we would like to suggest an alternative technique
for the bottom-up reconstruction program. Within the pa-
rameters of the MSSM, neglecting first- and second-
generation Yukawa couplings, there exists a significant set
of combinations of the parameters that are RG invariant
(RGI) at 1-loop. We propose that these RGIs may be used
to efficiently test and extract parameters of high-scale
SUSY-breaking models, including in certain cases the
messenger scale.

There are several reasons why RGIs are of particular
interest. The first is that in some appropriate bases, subsets
of the RGIs are predicted to vanish in different classes of
SUSY-breaking models. A low-scale measurement of any
of these invariants may therefore provide immediate evi-
dence for or against several attractive high-scale models
without requiring knowledge of the value of the high scale.
The second reason is that for broad classes of SUSY-
breaking models, most or all of the fundamental high-scale
parameters can be expressed uniquely in terms of the
nonzero RGIs. If measurements of the first type of RGIs
indicate that a particular class of models is favored, the
second type may be used to constrain the parameter space
of those models. Third, none of the RGIs individually
involve all of the parameters of the theory. This property
limits the set of physical masses and couplings that must be
measured before high-scale theories can be tested. Finally,
from a practical point of view, the use of RGIs simplifies
the standard bottom-up approach: it avoids the integration
of RG equations and the complicated propagation of errors
between scales.

Although RG invariance holds strictly only at leading-
log order, 2-loop corrections are expected to be quite small
and are likely to be negligible compared with experimental
uncertainties. To confirm this expectation, we analyze the
2-loop effects and demonstrate that they can either be
neglected or be absorbed to a good approximation into a
simple shift of the measured value of the RGIs. For each

RGI, we show that the shift can be computed from a linear
function of a few dominant sparticle masses.
In this work, we will study RGIs within theories satisfy-

ing the following conditions:
(i) The effective theory at the electroweak scale is the

MSSM;
(ii) No new physics alters the 1-loop MSSM

�-functions below the messenger scale, at which
SUSY breaking is transmitted to the observable
sector.1

After deriving a set of invariants under these assump-
tions, we will apply our method to test the class of theories
in which the SUSY-breaking mechanism is flavor blind. In
addition to the general case, we will consider two major
subclasses of flavor-blind theories. The first is general
gauge mediation (GGM), where the interactions between
the SUSY-breaking sector and the sfermion/gaugino fields
of the MSSM are controlled entirely by the MSSM gauge
couplings [54]. Integrating out the hidden sector generates
soft mass terms for these fields that can be parameterized
by six constants. Soft masses are also generated for the
Higgs doublets, but it is likely that additional, nongauge
couplings link the Higgs and hidden sectors. We demon-
strate that certain RGIs may be used to test the GGM
hypothesis, and if the data is found to be consistent, other
RGIs may be used to extract the full set of GGM parame-
ters, including the soft Higgs masses at the messenger
scale. The second type of SUSY-breaking structure we
examine is the CMSSM with nonuniversal Higgs masses
(NUHM). In this case, flavor blindness is maintained with
fewer input parameters than in GGM. Consequently, all
messenger-scale parameters may be expressed in terms of a
subset of the RGIs. Among the remaining invariants,
several nontrivial relationships must be satisfied for the
low-energy mass spectrum to be consistent with the
CMSSM þ NUHM.
The RGI quantities discussed in this work have all

appeared previously in the literature in various guises,
but either as limited subsets or not in the context of a
bottom-up determination for the high-scale SUSY-
breaking parameters. In Ref. [52], several invariants were
introduced for the purpose of testing high-scale flavor
universality in the presence of extra intermediate-scale
grand unified theory (GUT) multiplets. Reference [52]
also commented on the use of two quantities, DY and
DB�L (defined in Sec. III), for probing GUT embeddings
of the MSSM. These functions are related to the RGIs but
are not themselves invariant in general; we will discuss the
use of the corresponding RGIs in greater detail for testing
gauge mediation and the CMSSM. In Ref. [55], most of the
invariants we will use are listed, but in a basis without the

1Here we neglect the possibility that strong couplings in the
hidden sector could affect the running of the soft scalar masses,
as pointed out in [53].
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properties discussed above, rendering them less relevant
for probing high-scale models with low, single-scale mea-
surements. In Ref. [54], DY , DB�L, and one other invariant
combination of them were listed as potential tests of GGM;
they will be included and expanded upon in our discussion.
Finally, Refs. [56–60] discuss in detail some of the invari-
ants in the context of sum rules for mSUGRA and a variety
of SUSY-GUTs.

We attempt to go beyond previous work on the subject of
RGIs by providing a full set of invariants in a useful basis, a
program for using them to explore the structure of the
messenger-scale effective theory, a discussion of experi-
mental uncertainties, and an analysis of 2-loop effects. Our
presentation is divided into four sections. In Sec. II, wewill
derive the RGIs in a convenient basis from symmetry
arguments. In Sec. III, we will discuss tests of flavor blind-
ness, and under that hypothesis we will express the high-
scale soft parameters as simple functions of RGIs and a
single gauge coupling at that scale. We will then use the
RGIs to test and determine the parameter spaces of GGM
and of the CMSSMþ NUHM. In Sec. IV, we analyze
experimental prospects and 2-loop corrections for the
RGI method in the context of GGM. We discuss briefly
the minimal set of physical observables necessary to de-
termine the soft parameters in the RGIs, and estimate the
precision with which the RGIs may be used to constrain the
high-scale parameter space given a set of uncertainties in
the low-scale soft parameters. We derive simple estimates
that may be used to subtract out the bulk of the low-scale
2-loop shifts in the RGIs, and demonstrate that residual
2-loop contributions are typically small compared with
optimistic assumptions for experimental uncertainties in
the soft masses. We reserve Sec. V for our summary and
conclusions. The Appendix collects some analytic approx-
imations for the 2-loop �-functions.

II. 1-LOOP RGI COMBINATIONS OF SOFT
MASSES AND GAUGE COUPLINGS

In this section wewill derive 14 RG invariants2 and relate
several of them to symmetries of the MSSM Lagrangian.
For reference, the RGIs are collected in Table II.

We begin with RGIs constructed solely out of soft scalar
masses. We will assume that the soft sfermion masses are
flavor diagonal in the superweak basis and that the first-
and second-generation masses are degenerate at the input
scale, as is strongly motivated by low-energy flavor-mixing
constraints. Similarly, we assume that there are no new
sources of CP violation in the soft SUSY-breaking sector
beyond those induced by the Yukawa couplings. We will
also neglect first- and second-generation Yukawa and

trilinear couplings since they give very small contributions
to the evolution of the soft SUSY-breaking parameters,
smaller than the 2-loop corrections associated with the
gauge and third-generation Yukawa couplings. In general,
these approximations tend to be excellent for models in
which there exists flavor universality at the messenger
scale, and all flavor violation effects are due to radiative
corrections induced by Yukawa couplings. Finally, we
assume that the right-handed neutrino, if it exists, effec-
tively decouples from the spectrum and the RG equations
(RGEs). (See the discussion in Sec. IV.) With these con-
ditions, the soft scalar masses mi obey the following RGEs
at 1-loop:

16�2 dm
2
i

dt
¼ X

jk

y�ijky
ijkðm2

i þm2
j þm2

k þ A�
ijkA

ijkÞ

� 8
X
a

CaðiÞg2ajMaj2 þ 6

5
Yig

2
1DY; (2.1)

where

DY �TrðYm2Þ
¼X

gen

ðm2
~Q
�2m2

~uþm2
~d
�m2

~L
þm2

~eÞþm2
Hu

�m2
Hd
:

(2.2)

The first sum in Eq. (2.1) is over all the degrees of freedom
available to run in self-energy loops, the second sum is
over the three gauge groups a of the MSSM, Ma and Aijk

are the gaugino masses and soft trilinear parameters, CaðiÞ
is the quadratic Casimir for the representation i of a, and
t � logð�=MZÞ. The trace in the definition of the hyper-
charge D-term, DY , runs over all chiral multiplets. A
summary of the B, L and the hypercharge representations
for the particle content in the MSSM is given in Table I.
We first construct linear combinations, Di, of the soft

masses that evolve only with DY ,

Di � TrðQim
2Þ; dDi

dt
¼ aiDY; (2.3)

where Qi and ai are constants, and again the trace is
defined over all chiral multiplets. With five soft SUSY-
breaking masses contributed per generation (for a total of

TABLE I. U(1) representations in the MSSM.

Particle Y B L

Q ¼ u
d

� �
L

1=6 1=3 0

L ¼ �
l

� �
L

�1=2 0 1

u ¼ uCR �2=3 �1=3 0

d ¼ dCR 1=3 �1=3 0

e ¼ lCR 1 0 �1
Hu 1=2 0 0

Hd �1=2 0 0

2A fewmore RGIs exist, such as I2 and I4 of Ref. [55]. However,
they are not needed in our investigation of flavor-blind theories,
and they require more MSSM parameters than the set considered
in this work, including the soft trilinear couplings and �.
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10 soft masses if the first generation masses are identified
with those of the second generation) and the two soft
SUSY-breaking Higgs mass terms, 12 coefficients Qi are
associated with each combination Di. That there are
six independent Di satisfying Eq. (2.3) can be seen from
Eq. (2.1) as follows. For the Yukawa terms to vanish from
the �-function, the Qi must correspond to charges of a
global symmetry of the classical Yukawa potential. This
affects only the third generation in our approximation, so it
implies three independent constraints on the 12Qi. For the
gaugino terms to cancel, the symmetry must have vanish-
ing mixed anomalies with the SM gauge groups. This
supplies three more independent constraints on the Qi.

Furthermore, we can construct a basis in which five of
these six combinations will also satisfy TrQiY ¼ 0. This
condition eliminates the DY term from the RGEs. These
five combinations are then genuine RG invariants, inde-
pendent of the vanishing of DY .

Let us first consider baryon number, Q ¼ B, and lepton
number, Q ¼ L. Classically, these are symmetries of the
action, but both are anomalous in the MSSM. Within our
approximation, both the baryon and the lepton number
associated with each generation is separately conserved
at the classical level and their anomalies are flavor inde-
pendent. Hence the differences between the first- (or
second-) and third-generation baryon and lepton number
are anomaly free. With this in mind, one can define RGIs
associated with the new global symmetries: B13 and
L13 [52],

DB13
� DB1

�DB3

¼ 2m2
~Q1
�m2

~u1
�m2

~d1
� 2m2

~Q3
þm2

~u3
þm2

~d3
;

DL13
� DL1

�DL3
¼ 2m2

~L1
�m2

~e1
� 2m2

~L3
þm2

~e3
; (2.4)

where numbers in the subscripts indicate the generation.
We can also consider nonanomalous Uð1Þ symmetries.

The obvious choices are hypercharge and (B� L). How-
ever, since TrY2 and TrYðB� LÞ are nonvanishing, these
combinations will evolve with DY .

In the hypercharge combination, the DY dependence
can be eliminated by using nearly the same trick with
family nonuniversality as we did with B and L. In this
case, we must include the Higgs doublets with the third
generation, since their soft mass evolution is linked by the
Yukawa couplings. The proper RG invariant combination
is given by

DY13H
� DY1

� 10

13
DY3H

;

¼ m2
~Q1
� 2m2

~u1
þm2

~d1
�m2

~L1
þm2

~e1

� 10

13
ðm2

~Q3
� 2m2

~u3
þm2

~d3
�m2

~L3

þm2
~e3
þm2

Hu
�m2

Hd
Þ: (2.5)

For (B� L), generation subtraction is redundant, since
we can construct it out of DB13

and DL13
. However, even

restricting the trace to a single generation, DY and DB�L

evolve only with DY . Therefore we can construct a fourth
RGI combination which depends only on the soft masses of
the first generation [54],

D�1
� 4DY1

� 5DðB�LÞ1
¼ �6m2

~Q1
� 3m2

~u1
þ 9m2

~d1
þ 6m2

~L1
�m2

~e1
: (2.6)

Here �1 is used to indicate that this charge assignment is
related by an overall rescaling to the Uð1Þ� symmetry

generated by the spontaneous breaking of E6.
The E6 breaking generates an additional Uð1Þ,

E6 ! SUð5Þ �Uð1Þ� �Uð1Þc , but the Uð1Þc symmetry

is anomalous when restricted to the MSSM and involves
the Higgs sector, which prevents a family nonuniversal
invariant combination. Fortunately, by taking the linear
combination (the ‘‘inert Uð1Þ0’’ [61]),

ffiffiffiffiffiffi
10

p
2

Uð1Þ� þ
ffiffiffi
6

p
2

Uð1Þc ; (2.7)

and setting the charge of the first generation left-handed
sleptons to zero, we obtain an anomaly-free symmetry,
Uð1ÞZ, and the corresponding RGI [52]:

DZ � 3m2
~d3
þ 2m2

~L3
� 2m2

Hd
� 3m2

~d1
: (2.8)

This new symmetry is evidently independent from those
already discussed, as it depends only onm2

Hd
and not on the

combination m2
Hu

�m2
Hd
.

Of course, the sixth combination must now run withDY .
The RGE for DY is given by

16�2 dDY

dt
¼ 66

5
g21DY; (2.9)

so this combination can be taken to beDY itself.DB�L also
evolves only with DY , and, as mentioned previously, so do
the restrictions of DY and DB�L to any given generation
(plus Higgs in the case of the third-generation DY). These
quantities are then RGIs if DY vanishes, although only
those related to DY are linearly independent of the invari-
ants introduced above. However, one can construct a genu-
ine independent invariant out of DY that is nonlinear in
running parameters. Recall that the gauge couplings obey
homogeneous RGEs at one loop:

16�2 dgr
dt

¼ g3rðTrnIrðnÞ � 3CrðGÞÞ; (2.10)

where IrðnÞ is the Dynkin index of the chiral multiplet n,
and CrðGÞ is the quadratic Casimir invariant of the adjoint
representation. The g1 group theory factor is equal to 33=5
in the MSSM, and so we obtain the RGI,

IY� � DY

g21
: (2.11)
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Additionally, because of the form of Eq. (2.10), we
obtain two additional RGIs,

Ig2 �
1

g21
� 33

5g22
and Ig3 �

1

g21
þ 33

15g23
; (2.12)

whose values may be computed from measurements at the

scale MZ. In the MS scheme, for instance, they are ap-
proximately �10:9 and 6.2, respectively.

We now construct RGIs with gaugino mass dependence.
The three soft gaugino masses, Mr, evolve with 1-loop
RGEs given by

16�2@tMr ¼ g2rMrð2TrnIrðnÞ � 6CrðGÞÞ: (2.13)

Again replacing g2r in Eq. (2.13) with @t logðgrÞ and the
group theory factor, we recover the well-known set of three
RGIs,

IBr
� Mr=g

2
r : (2.14)

Finally, there are three RGIs that mix gaugino and
sfermion soft mass parameters. Following the method of
Ref. [55], these can be obtained easily from the first-
generation masses because of the absence of Yukawa
couplings and the homogeneity of the Mr and DY RGEs,

IM1
� M2

1 �
33

8
ðm2

~d1
�m2

~u1
�m2

~e1
Þ;

IM2
� M2

2 þ
1

24
ð9ðm2

~d1
�m2

~u1
Þ þ 16m2

~L1
�m2

~e1
Þ;

IM3
� M2

3 �
3

16
ð5m2

~d1
þm2

~u1
�m2

~e1
Þ:

(2.15)

The invariant IM1
involves the subtraction of potentially

large squark masses squared with a large coefficient. In
models possessing a large mass hierarchy between strongly
and weakly interacting particles, the splitting between m~d1

and m~u1 is likely to be much smaller than either mass,

whereas the experimental uncertainty in IM1
grows

approximately linearly with both m~d1
and m~u1 . Therefore,

the measured value of this RGI is likely to be consistent
with zero within experimental errors. A similar effect may
occur with IM2

, but in this case the squarks coefficient is

significantly smaller. One can form a combination of IM1

and IM2
that is independent of the squark masses and

therefore suffers lesser uncertainties:

IM12
¼ IM1

þ 11IM2
¼ M2

1 þ
11

3
ð3M2

2 þ 2m2
~L1
þm2

~e1
Þ:

(2.16)

In most cases, IM12
may be determined much more pre-

cisely than IM1
or IM2

. Indeed, since all of the terms are

positive, the percentage error in its determination is gov-
erned by the percentage error in the measurement of the
weakly interacting sparticle masses.
With the exception of IY�, the RGIs given in Table 1 of

Ref. [55] may be obtained3 as linear combinations of those
we have listed in Table II. However, the explicit relation-
ship to symmetries in our basis allows a clean application
of the invariants to the problem of reconstructing the theory
at the messenger scale.

III. EXTRACTION OF HIGH-SCALE
PARAMETERS FROM RGIS

We now examine the extraction of high-scale SUSY-
breaking parameters from the RGIs constructed in the
previous section. The five soft masses contributed by the
degenerate first and second sfermion generations, five soft

TABLE II. 1-loop RG invariants in the MSSM.

Invariant Symmetry Dependence on Soft Masses

DB13
B1 � B3 2ðm2

~Q1
�m2

~Q3
Þ �m2

~u1
þm2

~u3
�m2

~d1
þm2

~d3

DL13
L1 � L3 2ðm2

~L1
�m2

~L3
Þ �m2

~e1
þm2

~e3

D�1
�1 3ð3m2

~d1
� 2ðm2

~Q1
�m2

~L1
Þ �m2

~u1
Þ �m2

~e1

DY13H
Y1 � 10

13Y3H m2
~Q1
� 2m2

~u1
þm2

~d1
�m2

~L1
þm2

~e1
� 10

13 ðm2
~Q3
� 2m2

~u3
þm2

~d3
�m2

~L3
þm2

~e3
þm2

Hu
�m2

Hd
Þ

DZ Z 3ðm2
~d3
�m2

~d1
Þ þ 2ðm2

~L3
�m2

Hd
Þ

IY� Y ðm2
Hu

�m2
Hd

þP
genðm2

~Q
� 2m2

~u þm2
~d
�m2

~L
þm2

~eÞÞ=g21
IBr

Mr=g
2
r

IM1
M2

1 � 33
8 ðm2

~d1
�m2

~u1
�m2

~e1
Þ

IM2
M2

2 þ 1
24 ð9ðm2

~d1
�m2

~u1
Þ þ 16m2

~L1
�m2

~e1
Þ

IM3
M2

3 � 3
16 ð5m2

~d1
þm2

~u1
�m2

~e1
Þ

Ig2 1=g21 � 33=ð5g22Þ
Ig3 1=g21 þ 33=ð15g23Þ

3A few typos appear in Ref. [55]: The coefficient of M2
2 in I12

should be þ3=2, and similarly for I17. The coefficient of M2
1

should be 1=33, and all coefficients of S should be multiplied by
13=33. Note that with these corrections, five invariants in the list
I5–I17 of Ref. [55] can be expressed as linear combinations of the
others.
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masses from the third sfermion generation, two Higgs soft
mass parameters, three gaugino masses, and the gauge
couplings (assuming no knowledge of the high scale) con-
stitute 18 unknowns. (More are introduced if the right-
handed neutrino or other new physics is included.) In the
most generic case, assuming all RGIs are nonzero at the
high scale, 14 of these parameters may be obtained.
Although the system is underconstrained, the high-scale
degrees of freedom are considerably reduced by the deter-
mination of the invariants.

As mentioned previously, a large class of SUSY-
breaking models favor flavor-universal interactions. Even
without the ability to extract all high-scale parameters,
using the RGIs to test flavor blindness would be a non-
trivial result. Furthermore, in the most generic flavor-blind
models, the number of unknown parameters is reduced to
13, whereas the number of nonzero RGIs is 12. We will
consider the generic case below, as well as the specific
models of GGM and the CMSSM with nonuniversal Higgs
masses. The high-scale values of the invariants listed in
Table II are tabulated in Table III for these three models.

A. Generic flavor-blind models

The most immediate consequence of flavor blindness is
the vanishing of DB13

and DL13
. Therefore these invariants

provide us with a direct test of the flavor-independent
hypothesis with a minimal set of measurements. More
precisely, they allow this hypothesis to be ruled out: mea-
suring DB13

� 0 or DL13
� 0 at the low scale implies

high-scale family nonuniversality; however, as noted in

Ref. [52], measuring DB13
¼ 0 and DL13

¼ 0 at the low

scale does not necessarily indicate high-scale universality.
Current experimental data from flavor physics strongly

motivates a flavor-universal mediation mechanism for
SUSY breaking. (For a selection of Minimal Flavor
Violation studies, see Refs. [62–79].) Accordingly, if
DB13

and DL13
are found to vanish, it is reasonable to

proceed a step further and attempt to extract constraints
on the high-scale values of flavor-blind MSSM soft pa-
rameters from the RGIs.
The 10 free soft-mass parameters can be expressed

uniquely in terms of the ten invariants D�1
through IM3

listed in Table II and are given in Eqs. (3.1) and (3.2). Note
that these relations depend on the three gauge couplings at
the high scale; with the invariants Ig2 and Ig3 defined in

Eq. (2.12), they may be expressed entirely in terms of g1.
Equivalently, one can reduce the degrees of freedom at
the high scale to a single parameter which can be taken
to be the value of that scale. In particular this permits tests
of more restrictive flavor-universal models such as
mSUGRA, taking g1 at the GUT scale. However, if the
high scale is not known, one may take advantage of the fact
that the gauge couplings do not vary too wildly with scale
and simply guess values for them, at the cost of introducing
a further uncertainty. We will discuss this possibility fur-
ther below.

M1 ¼ g21IB1
; M2 ¼ g22IB2

; M3 ¼ g23IB3
; (3.1)

m2
~L
¼� 1

440
ð26DY13H

þ11D�1
þ20ððg41I2B1

þ33g42I
2
B2
Þ�ðIM1

þ33IM2
Þþg21IY�ÞÞ;

m2
Hd

¼m2
~L
�1

2
DZ; m2

Hu
¼m2

~L
�1

2
DZ�13

11
DY13H

þg21
11

IY�; m2
~e¼

1

220
ð26DY13H

þ11D�1
�20ð2ðg41I2B1

�IM1
Þ�g21IY�ÞÞ;

m2
~u¼� 1

990
ð78DY13H

þ33D�1
þ20ð4ððg41I2B1

�11g43I
2
B3
Þ�ðIM1

�11IM3
ÞÞþ3g21IY�ÞÞ;

m2
~d
¼ 1

1980
ð78DY13H

þ33D�1
�20ð2ððg41I2B1

�44g43I
2
B3
Þ�ðIM1

�44IM3
ÞÞ�3g21IY�ÞÞ;

m2
~Q1
¼ 1

3960
ð78DY13H

�627D�1
�20ððg41I2B1

þ297g42I
2
B2
�176g43I

2
B3
Þ�ðIM1

þ297IM2
�176IM3

Þ�3g21IY�ÞÞ: (3.2)

In the above, all couplings and soft parameters are assumed
to be given at the messenger scale.

B. General gauge mediation

Gauge-mediated SUSY breaking encompasses a broad
class of models in which flavor blindness is perhaps most
natural [80–85]. In Ref. [54], GGM was defined as any
theory in which all SUSY-breaking effects decouple from
the MSSM in the limit of vanishing MSSM gauge
couplings.

Let us first review the formulae for the soft masses in
GGM at the messenger scale given in Ref. [54]. The soft
sfermion masses can be parameterized by a set of three
parameters, Ar

4:

4We neglect a possible explicit hypercharge Fayet-Iliopoulos
(FI) dependent term, g21Y~f�, in Eq. (3.3). The FI term may drive
some of the m2

~f
to negative values, and we assume it is fixed to

zero by a Z2 symmetry in the hidden sector. For further dis-
cussion of difficulties associated with FI terms, see [86,87]. We
comment again on this term below Eq. (3.12).
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m2
~f
¼ X3

r¼1

g4rCrðfÞAr; (3.3)

where the sum runs over the gauge groups of the MSSM,
and the Ar can be expressed as loop integrals over hidden
sector current-current correlation functions,

Ar � �
Z d4p

2�4

1

p2

�
� 1

p2
���hjðrÞ� ðpÞjðrÞ� ð�pÞi

þ 2p�

p2
�	� _��hj�ðpÞ �j _�ð�pÞi þ hJðpÞJð�pÞi

�
: (3.4)

The gaugino masses are expressed in terms of three
more parameters, MBr, given by

Mr ¼ g2rMBr; (3.5)

where M is the scale of SUSY breaking and

MBr ¼ � 1

2

��hj�ð0Þj�ð0Þi: (3.6)

In order to generate a Higgsino mass parameter, �, and
soft term, B�, of the correct order, gauge mediation may

need to be supplemented by additional SUSY-breaking
contributions in the Higgs sector. Therefore, we assume
that in the case of the soft Higgs masses, the expression
given in Eq. (3.3) may be modified,

m2
Hu

¼ m2
~L3
þ �u; m2

Hd
¼ m2

~L3
þ �d: (3.7)

With these definitions for the soft masses, we can now
calculate the high-scale values of the RGIs in GGM, listed
in Table III. By inspection, we see that they can be sepa-
rated into

(i) Three that test consistency of GGM;
(ii) Six that probe the high-scale mass parameters of

pure GGM;

(iii) Five that are sensitive to extra structures linking the
Higgs and SUSY-breaking sectors and to the values
of the gauge couplings at the messenger scale.

The flavor-independence of gauge mediation is manifest
in the formulae listed for the soft masses, and therefore, as
before, DB13

and DL13
should vanish at all scales.

The third invariant testing consistency of data with
GGM is D�1

[54]. It should also remain approximately

zero at all scales, which can be seen as follows. The
condition for anomaly cancellation between a Uð1Þ sym-
metry Q and another gauge group G with generators tGA ðiÞ
in the representation i reads

TrQtGA t
G
A ¼ 0; (3.8)

where the trace runs over all degrees of freedom. If Q
commutes with all generators of G, this can be written
equivalently as

0 ¼ X
i

Qi Trt
G
A ðiÞtGA ðiÞ;¼

X
i

QidðiÞCGðiÞ ¼ TrQiCGðiÞ;

(3.9)

where the sums run over all representations i of G and dðiÞ
is the dimension of i. The sfermion masses in GGM depend
on the gauge couplings and the Casimirs of the gauge
groups; hence, if the mixed anomalies between Q and the
MSSM gauge groups cancel, we can multiply both sides of
Eq. (3.3) by the charges Q and take the trace to obtain

DQ ¼ TrðQm2Þ ¼ X
G

g4GAG TrQiCGðiÞ ¼ 0: (3.10)

The second equality in Eq. (3.10) is only valid if the Higgs
fields are neutral under Q; otherwise, the modifications
of Eq. (3.7) imply DQ ¼ 2ðQHu

�u þQHd
�dÞ. Choosing

TABLE III. Values of the 1-loop RGIs in terms of high-scale soft parameters.

Invariant Generic Flavor-Blind Model GGM CMSSM with NUHM

DB13
0 0 0

DL13
0 0 0

D�1
3ð3m2

~d
� 2ðm2

~Q
�m2

~L
Þ �m2

~uÞ �m2
~e 0 5m2

0

DY13H

1
13 ð3ðm2

~Q
� 2m2

~u þm2
~d
�m2

~L
þm2

~eÞ þ 10ðm2
Hd

�m2
Hu
ÞÞ � 10

13 ð�u � �dÞ � 10
13 ð�u � �dÞ

DZ 2ðm2
~L
�m2

Hd
Þ �2�d �2�d

IY� ð3ðm2
~Q
� 2m2

~u þm2
~d
�m2

~L
þm2

~eÞ �m2
Hd

þm2
Hu
Þ=g21 ð�u � �dÞ=g21 ð�u � �dÞ=g21

IBr
Mr=g

2
r MBr m1=2=g

2
r

IM1
M2

1 þ 33
8 ðm2

~u �m2
~d
þm2

~eÞ g41ððMB1Þ2 þ 33
10A1Þ m2

1=2 þ 33
8 m

2
0

IM2
M2

2 þ 1
24 ð9ðm2

~d
�m2

~uÞ þ 16m2
~L
�m2

~eÞ g42ððMB2Þ2 þ 1
2A2Þ m2

1=2 þ 5
8m

2
0

IM3
M2

3 � 3
16 ð5m2

~d
þm2

~u �m2
~eÞ g43ððMB3Þ2 � 3

2A3Þ m2
1=2 � 15

16m
2
0

Ig2 � �10:9 � �10:9 � �10:9
Ig3 � 6:2 � 6:2 � 6:2
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Q ¼ �1, the Higgs fields are uncharged, and thus D�1

vanishes. This property may differentiate GGM from
alternate theories with universal soft masses such as
mSUGRA, where D�1

does not vanish unless a relevant

right-handed neutrino is included.
This argument also suggests DY and DB�L vanish and

are RG invariant, since both are anomaly-free symmetries
of the MSSM and both run with DY . However, as men-
tioned above, the modifications to the Higgs sector in
Eq. (3.7) may spoil the vanishing of DY . Furthermore,
although DY is zero in pure GGM, it also vanishes in other
SUSY-breaking scenarios, including mSUGRA.

These first three RGIs are sufficient to either rule out
GGM or demonstrate consistency of GGM with the data.
However, they do not constrain the ðAr;MBr; �u; �d;MÞ
parameter space. Therefore, we now turn to the RGIs with
nonzero values at the messenger scale.

In the most generic case where DY (and thus the invari-
antsDY13H

and IY�) is nonzero, we can determine the gauge

couplings at the high scale. The following relations are
satisfied at the input scale:

DY13H
¼ � 10

13
ð�u � �dÞ; (3.11)

IY� ¼ ð�u � �dÞ
g21

: (3.12)

Therefore, if we can calculate the value ofDY13H
=IY� at the

low scale, we can infer the value of g21 at the input scale via

g21ðMÞ ¼ � 13

10

DY13H

IY�
: (3.13)

Then the Igr RGIs given in Eq. (2.12) can be used with

Eq. (3.13) to compute g2 and g3 at the high scale.
The invariants DZ and DY13H

can be used to extract the

individual input-scale values of �u and �d:

�u ¼ � 1

2

�
DZ þ 13

5
DY13H

�
; �d ¼ � 1

2
DZ: (3.14)

Now we turn to the RGIs with explicit dependence on
the gaugino mass parameters to extract information about
the Ar and MBr. From the Igr we immediately obtain

MBr ¼ IBr
: (3.15)

For the sfermions, using the IMr
, we can obtain the Ar:

A1 ¼ 10

33

�
IM1

g41
� I2B1

�
; A2 ¼ 2

�
IM2

g4
2

� I2B2

�
;

A3 ¼ � 2

3

�
IM3

g43
� I2B3

�
; (3.16)

where the gr are the gauge couplings at the unknown scale,
M, that can be deduced from Eq. (3.13) (note that the gr

used to compute the IBr
are at the low, measurement

scale).5

If �u is found to be equal to �d, and thus the gauge
couplings at the high scale cannot be extracted from the
RGIs, explicit RG evolution may be the only available
method for determining M, choosing it to be the scale at
which m2

~u1
¼ m2

~u3
. This would require knowledge not only

of all up-type soft mass parameters at the low scale, but
also of the soft trilinear coupling At of the stop to the
Higgs, which appears in the m2

~u3
RGE.6 Moreover, as

discussed previously, the evolution of the soft masses is
linked to the evolution of all other parameters via the DY

terms. Therefore, it is expected that there will be large
uncertainties in the determination of the messenger scale
by this method.
As mentioned before and as we will see in Sec. IV

below, IM1
and IM2

could suffer from large uncertainties

induced by cancellation between potentially large masses.
If IM12

is used instead, this pitfall is avoided, but in general

only the following correlation between A1;2 and g1;2 can be
obtained,

g41
33

10
A1 þ g42

11

2
A2 ¼ IM12

� g41I
2
B1

� 11g42I
2
B2
: (3.18)

In the above, the coefficients of the IB1
and A1 terms are

significantly smaller than those of IB2
and A2, particularly

for low values of the messenger scale where g22 ’ 2g21.
Therefore, unless A1 � A2, for low messengers scales,
the above equation then gives the approximate expression
for A2,

A2 � 2

11

�
IM12

g42
� 11I2B2

�
: (3.19)

C. Constrained MSSM with nonuniversal Higgs masses

The CMSSMþ NUHM [88–94] is another common
model realizing flavor universality. The messenger scale
is the GUT scale, however, here we will consider the more
generic possibility of M � MGUT, as, for example, occurs
in mirage mediation [95–97]. The sfermions are given a
common soft mass m0 and the gauginos share a soft mass
m1=2 at the scaleM. As in the GGM case, the Higgs masses

5If there is an explicit hypercharge FI term at the input scale,
the only effect on the RGIs is to change the input-scale value of
IY�:

�u � �d

g21
! �u � �d

g21
þ 11�: (3.17)

Equation (3.16) for the Ar remains unchanged; however, this
shift is sufficient to spoil the extraction of g1 at the input scale
from the inhomogeneities in the Higgs sector.

6One could equally seek the scale where m2
~d1
¼ m2

~d3
, but it

is likely that the soft trilinear coupling Ab will be more difficult
to determine experimentally than At.
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are allowed to differ from the sfermion masses by the
factors �u and �d.

From the fourth column of Table III, we see that the
nonvanishing RGIs overconstrain the ðm0; m1=2; grðMÞ;
�u; �dÞ system, allowing multiple ways of testing consis-
tency and extracting parameters. Both experimental errors
and 2-loop contributions to the RGIs should be considered
to decide which avenues to use for each purpose. The
unification of gaugino mass parameters at some scale M�
demands the following consistency relationships:

IB1
� 33

5
IB2

¼ Ig2m1=2; (3.20)

and

IB1
þ 33

15
IB3

¼ Ig3m1=2; (3.21)

where m1=2 is now a universal gaugino mass parameter at

M�, which is not necessarily constrained to be equal to M
by these relations.

In the MSSM the gauge couplings unify at the grand
unification scale, and therefore at any arbitrary scale the
following relationship is satisfied:

Ig3 ¼ � 4

7
Ig2 : (3.22)

Together Eqs. (3.20), (3.21), and (3.22) indicate that gau-
gino mass unification requires the simple condition

5

12
IB1

� IB2
þ 7

12
IB3

¼ 0: (3.23)

This relation is necessary but not sufficient to ensure uni-
fication. In addition, a second requirement following from
Eqs. (3.20), (3.21), and (3.22) is

IB1
g21ðM�Þ ¼ 5IB1

� 33IB2

5Ig2
: (3.24)

If we demand that Eq. (3.24) should be satisfied for a
sensible value of M�, between about 105 and 1016 GeV,
then the IBi

should obey the inequality

IB1

4
&

5IB1
� 33IB2

5Ig2
&

IB1

2
: (3.25)

In the particular case where the gaugino masses unify at
M� ¼ MGUT, IB1

¼ IB2
¼ IB3

, and Eq. (3.23) holds di-

rectly, while the upper bound of Eq. (3.25) is approxi-
mately saturated. Note that it is not unreasonable for a
model to obey Eq. (3.23) while still violating Eq. (3.25).
This happens, for example, in anomaly mediated SUSY
breaking [98,99], where the IBi

are proportional to the

�-function coefficients of the gi, and so Eq. (3.23) holds.
The gaugino masses do not unify in anomaly mediation,
however, spoiling Eq. (3.25) (and the extracted value of
m1=2 from Eq. (3.20) or Eq. (3.21) would be zero). Note

further that these relations involve invariants sensitive only

to the gaugino sector, and therefore are expected to have
small experimental uncertainties.
Equations (3.20), (3.21), (3.22), (3.23), (3.24), and (3.25)

guarantee gaugino mass unification but do not enforce
M ¼ M�, which is a requirement in the CMSSM. In mi-
rage mediation or minimal gauge mediation, the masses
unify, but M � M� in general. Therefore, to differentiate
the CMSSM from these other models, one may test the
equality of M with M�, if �u � �d, by equating the mes-
senger scale value of g21 calculated via Eq. (3.13) with the
M� value of g21 found from Eq. (3.24). Additionally, the
extracted value ofm1=2 from Eq. (3.20) has to be consistent

with the gaugino mass calculated from the other RGIs.
These considerations enforce that the following set of
relations, in addition to Eq. (3.23), have to be satisfied
for the spectrum to be consistent with the CMSSM:

IY� ¼ � 13DY13H
IB1

Ig2
2ð5IB1

� 33IB2
Þ ;

IM1
¼

�
5IB1

� 33IB2

5Ig2

�
2 þ 33D�1

40
;

IM2
¼

�
5IB1

� 33IB2

5Ig2

�
2 þD�1

8
;

IM3
¼

�
5IB1

� 33IB2

5Ig2

�
2 � 3D�1

16
:

(3.26)

If the data satisfies Eqs. (3.23) and (3.26), one can proceed
to the extraction of parameters.D�1

immediately yields the

value of the soft sfermion mass m0, and Eq. (3.14) can still
be used to obtain �d and �u. Turning to the 2-loop
�-functions for the RGIs listed in the Appendix, we find
that IM1

is a 2-loop invariant in the approximation that g1,

the soft trilinear couplings, and the lepton Yukawa cou-
plings are set to zero. It may therefore be useful to extract
m1=2 from IM1

. However, the advantage of 2-loop invari-

ance can be mitigated by the consideration of experimental
errors, which as noted previously may be large for IM1

.

In that event m1=2 should be taken directly from either

Eq. (3.20) or Eq. (3.21), for which the experimental errors
are expected to be small:

m2
0 ¼

D�1

5
; m1=2 ¼

5IB1
� 33IB2

5Ig2
: (3.27)

The g21 at the messenger scale can then be obtained via
Eq. (3.24):

g21 ¼ m1=2=IB1
: (3.28)

Taken together, the consistency relations, Eqs. (3.23)
and (3.26), provide strong constraints that make it highly
unlikely, for example, for a generic flavor-blind or GGM
spectrum to mimic the CMSSMþ NUHM.
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IV. EXPERIMENTAL PROSPECTS
FOR THE MSSM RGIS

A. Extracting soft masses from observables

We now turn to the prospects for measuring the RGIs at
the LHC. In practice it is necessary to convert the observed
pole masses into the soft masses entering into the RGIs at
the TeV scale. Here we comment only briefly on some
relevant features of the analysis in the sfermion sector. For
comprehensive studies, see Refs. [46–48].

For the first and second squark generations, the off-
diagonal components of the mass matrices are proportional
to the corresponding fermion masses and can therefore be
neglected. Furthermore, the soft masses for the up-type and
down-type left-chiral states are equal by gauge invariance.

This allows one squark pole mass to be written in terms of
the others and thus removed from the RGIs. For instance,

m2
~uL

¼ m2
~dL
þm2

W cos2�; (4.1)

where we have ignored the quark masses and the subscript
on the squarks refers to the predominantly left-handed (and
therefore chargino-interacting) mass eigenstate of the
squarks in the spectrum.
For the third-generation squarks, the off-diagonal com-

ponents cannot be ignored. Therefore, in addition to pole
masses, mixing angles must be measured in order to extract
the soft masses. However, there is still one more observable
than there are parameters in each sector, allowing the
sbottom mixing angle to be removed

cos 2�~b ¼
m2

~t1
cos2�~t þm2

~t2
sin2�~t �m2

~b2
�m2

t þm2
b �m2

W cos2�

m2
~b1
�m2

~b2

: (4.2)

Here and below, the subscripts 1 and 2 denote the mass
eigenstates. This leaves only the stop mixing angle to be
determined experimentally.

For the slepton sector, the result depends on the treat-
ment of the sneutrinos. In GGM models, the right-handed
sneutrinos, if present in the spectrum, do not receive
SUSY-breaking masses at the messenger scale. Their
masses are therefore controlled by the Majorana mass
scale, MR, of the right-handed neutrino partners, which
only couple with the rest of the observable sector via the
neutrino Yukawa couplings.7 Since the neutrino masses

m� �O
�
h2�sin

2�v2

MR

�
(4.3)

are smaller or of the order of 1 eV, these Yukawa coupling
effects are very small provided MR & Oð1010 GeVÞ. For
values of MR > 1010 GeV, the Yukawa effects must be
taken into account. However, they will only have an impact
on the soft masses if the messenger scale is larger thanMR,
since otherwise the right-handed sneutrinos decouple at the
messenger scale. In this work we will make the assumption
that either MR & Oð1010 GeVÞ or MR * M. This justifies
our neglect of any right-handed sneutrino effects in the
RGIs, as we have implicitly done in our treatment of
the lepton sector in this article. With this assumption, the
mixing angles in the sneutrino sector are negligibly small
for all generations.

For the first two generations, as in the squark sector we
can remove either a slepton or a sneutrino mass. For the
third generation we can remove either m2

~�

or the stau

mixing angle, using the relation

m2
~�1
¼ m2

~
1
cos2�~
 þm2

~
2
sin2�~
 þm2

W cos2�; (4.4)

where we have ignored the explicit dependence on the
relatively small 
 mass.
Even if a large number of masses can be determined at

the LHC, a finite set of ambiguities will arise and affect the
calculation of the RGIs. For the first and second generation
sfermions, unless the mass eigenvalues are nearly degen-
erate, their measurement is not sufficient to compute the
RGIs, because it must still be determined which eigenstate
is the superpartner of the left-chiral and the two right-chiral
quarks. An incorrect assignment leads (in the limit of
vanishing D terms in the mass matrix), for instance, to a
reversal of the soft masses m2

~Q
and m2

~u for the case of the

up-type first- and second-generation squarks, and these
parameters do not enter into the RGIs in a symmetric
way. Similar reversals may occur for the cases of the
down-type squarks and the sleptons. Measurements in the
chargino sector may be able to unravel this ambiguity,
since only the left-handed first- and second-generation
sparticles couple to the charginos.
Another problem is the difficulty in distinguishing up-

type and down-type first- and second-generation sfermions
at hadron colliders. Since the dominant production mecha-
nism is through the strong force, the electromagnetic
charges may be unmeasurable. However, if our intent is
to test GGM, it is likely that m2

~u1
>m2

~d1
, since this relation

holds at the input scale if A1 � 0 (which is necessary for a
nontachyonic selectron mass in the absence of an FI term)
and is maintained if DY � 0 (although this condition is not
necessary). Alternatively, one can test which, if any, of the
two squark mass choices leads to a fulfillment of the
necessary condition of DB13

¼ D�1
¼ 0, and take that as

the hypothetical correct assignment when using the other
RGIs to test the GGM scenario further. The contribution of

7In more general flavor-blind models, the SUSY-breaking
masses for the right-handed sneutrinos are naturally of the order
of the soft scale, and the same conclusion holds.
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m2
~u1
and m2

~d1
to D�1

is quite different and of opposite sign,

and therefore a cancellation of this RGI within errors for
both choices of the squark masses is highly unlikely.

B. Measurement uncertainties in RGIs
and GGM parameters

It is difficult to estimate how well the physical quantities
of the MSSM can be measured at the LHC, even if the
sparticles are kinematically accessible. Most mass mea-
surement studies in the literature have been performed in
mSUGRA/CMSSM benchmark scenarios, under the as-
sumption that sparticles will be produced in long cascade
decays from strongly produced squarks and gluinos. (For a
detailed study in the context of the LHC and a future linear
collider, see [100].) Endpoint methods and other kinematic
variables may then be used to extract the pole masses. As
for the stop mixing angle, in Ref. [101] it was shown that
the angle and the light stop mass may be inferred from a fit
to measurements of ratios of stop branching ratios into
charginos and neutralinos. (For other stop mixing studies,
see [102,103].) The authors demonstrated that this method
can be effective if the decays are kinematically allowed
and if the parameters of the neutralino/chargino sector have
already been measured. However, it is clear that these
methods will only be possible in a portion of the allowed
parameter space, even restricting the model space just to
GGM. Therefore, it is challenging to conjecture what can
be done at the LHC without reanalyzing the reach point by
point in parameter space, an exercise which is beyond the
scope of this work.

With this in mind we forgo the application of projected
measurement uncertainties to the physical parameters and
simply apply a universal uncertainty to the soft masses
entering into the RGIs. This allows us to get a general
notion of how well the low-scale parameters will have to be
measured in order to determine the RGIs and the high-scale
parameters with a certain precision.

We perform a numerical scan over messenger scale
inputs, restricting for the purposes of illustration to the
parameter space of GGM and taking the following ranges
of values:

0:1 	 Ar 	 1:0 TeV2; 0 	 �u;d 	 1:0 TeV2;

0:1 	 MBr 	 1:0 TeV; 2 	 tan� 	 50;

106 & M & 1015 GeV: (4.5)

For each point in our scanned parameter space of mod-
els, we compute the soft spectrum, run the soft masses
down to the scale �i ¼ 1 TeV, and calculate the resulting
central value and uncertainties for the RGIs. We then
reconstruct the high-scale GGM parameters, assuming a
universal 1% measurement error on the soft parameters.
We enforce the conditions that the low-energy spectrum is
within the reach of the LHC and satisfies mweak >
100 GeV and mstrong > 300 GeV, where the mweak are the

masses of the weakly interacting sparticles and mstrong are

the colored sparticle masses.
As an approximation, we consider the propagation of

errors in quadrature, although this is only an estimate since
most masses would be obtained in decay chains and there-
fore their experimental errors are expected to be highly
correlated. The quadrature combination also allows the
errors from a larger universal soft mass fractional error
to be obtained simply by rescaling the results presented
here for 1%.
Figure 1 gives the net experimental error in the RGIs as a

function of m2
~d1
. We omit DL13

, IBr
, and Igr , which have

relatively small uncertainties. With the exception of IM3
, all

the errors reflect a small y-intercept and small variation for
a givenm2

~d1
. This demonstrates that although the invariants

involve many masses squared, the total uncertainties are
dominated almost entirely by the uncertainty in the squark
masses, assuming all individual mass errors are of the same
order. Since in the GGM spectrum the squark mass

FIG. 1 (color online). Experimental errors in the low-scale
determination of the RGIs plotted vs m2

~d1
, assuming 1% uncer-

tainties in all soft masses and scanning over the high-scale
parameters as in Eq. (4.5). The clear correlation seen in these
plots demonstrates that, although the invariants involve many
masses squared, the total uncertainties are dominated almost
entirely by the uncertainty in the squark masses. RGIs with small
uncertainties are omitted for brevity.
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splittings are proportional to smaller gauge couplings, they
are typically small compared to the masses themselves
unless A1;2 � A3. Thus the expected error tends to be

controlled essentially by a single parameter, as reflected
in the scan. In the case of IM3

the gluino error must also be

included.
Going a step further, we can estimate the uncertainties in

the reconstructed values for the high-scale GGM parame-
ters. For the Ar this reconstruction relies on the premise
that �u � �d within experimental errors, which can be
determined by testing the consistency of DY13H

with zero.

If �u ¼ �d within errors, then the extraction of g1 at the
high scale using Eq. (3.13) leads to potentially meaningless
results. Figure 2 gives the errors in the calculated values of
the Ar, �u;d, and g

2
r at the messenger scale, for those points

in the scan satisfying jDY13H
j>	DY13H

. For brevity we omit

the MBr, which have small uncertainties controlled en-
tirely by the corresponding gaugino masses.

It is clear from the range of the y-axes in Fig. 2 that even
a precise determination of the soft masses can lead to
moderate uncertainties in the reconstructed Ar. This is
mostly due to cancellations between large squark mass
parameters, which reduce the value of the IMr

while in-

creasing the magnitude of the uncertainties. This explains
why the value of A3 can be determined with relatively good
precision, while even for large values of A1, its uncertainty
may be as large as its calculated value. In most cases,
however, the uncertainties in the Ar are smaller than their
calculated values, indicating that useful information can be
obtained about the allowed range of these parameters. The
considerable spread in the reconstructed values of the Ar is
due to 2-loop effects and will be mostly compensated by
methods to be discussed in the next section.

As mentioned previously, if measurements suggest �u ¼
�d within errors, one can still obtain constraints on the Ar

by making educated guesses for the gauge couplings at the
messenger scale. Taking the messenger scale to lie between
105 and 1016 GeV, the gauge coupling dependence enter-
ing into Eq. (3.16) can then be estimated as8

g�4
1 � 10
 6; g�4

2 � 4:5
 0:5;

g�4
3 � 2:5� 1:5:

(4.6)

These errors are not very different from what is obtained by
propagating soft mass experimental errors through the g1
reconstruction in the case �u � �d. Observe that the values
of the couplings are correlated and should satisfy the Ig2;3
RGI constraints.

Therefore, one can always use the RGIs to obtain inter-
esting constraints on the Ar, even if �u ¼ �d within
uncertainties.

C. 2-loop effects in GGM

One can easily check that the RGIs discussed are not
strictly preserved at the 2-loop level and therefore it is
important to estimate the magnitude of the 2-loop effects.
For the scan discussed in the previous section, we imple-
mented full 2-loop RG equations for the soft SUSY-
breaking parameters and the gauge and Yukawa couplings
[104] into MATHEMATICA. We compared the running of the
parameters calculated by our code with those obtained
from the public program SUSPECT [105], finding excellent
agreement.
The spread in the reconstructed values of the Ar in Fig. 2

demonstrates that, apart from experimental error, there is
also a theoretical uncertainty in the calculated low-scale
value of invariants since the RGIs defined above have
vanishing�-functions only at 1-loop order. The differences
between the low- and high-scale central values of the RGIs

FIG. 2 (color online). Experimental errors in the calculated
values of the high-scale GGM parameters using the RGI recon-
struction method. Parameters with small uncertainties are omit-
ted for brevity. The spread in the calculated Ar parameters is due
mainly to 2-loop effects and can be reduced using the technique
discussed in Sec. IVC. See Fig. 6.

8In principle, if the messenger scale is & 107 GeV, it may be
determined from decays of the next-to-lightest supersymmetric
particle to the gravitino inside the detector. Assuming this is the
case, one could take the messenger scale between 107 and
1016 GeV, with g�4

1 � 9
 5, g�4
2 � 4:5
 0:5, and g�4

3 �
2:5� 1.
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and the differences between the input and reconstructed
central values of the GGM parameters give the 2-loop
contributions to these quantities.

In the Appendix we list the 2-loop �-functions for all
the RGIs, ignoring the small contribution from the
hypercharge couplings as well as the terms proportional
to the trilinear coupling, which however have been in-
cluded in our numerical work. We see that the contribu-
tions toDL13

and IM1
vanish in the limit that ye ! 0, and so

in general these functions behave as approximate RGIs at
the 2-loop level. Furthermore, the �-function of DZ is
proportional to the square of the bottom Yukawa coupling,
and it is therefore only relevant for large values of tan�.
Finally, the �-function of DB13

does not contain any strong

gauge coupling contribution and thus tends to be small for
low values of the messenger scale.

To analyze the invariants with larger 2-loop contribu-
tions, it is useful to consider a further limit of the
�-functions defined in the Appendix in which we turn off
the slepton masses, the bino mass, and the Higgs masses,

set the masses of all squarks equal to m~d1
, and yu ¼

ffiffiffiffiffiffiffiffi
3=4

p
.

This reduces the 2-loop �-functions to simple functions of
tan�,M2,M3, andm~d1

. The 2-loop corrections can then be

estimated from a limited number of parameters as the
values of these functions multiplied by logðM=TeVÞ.
To demonstrate the utility of these estimates, we analyze

numerically the shifts in the RGIs induced by the full 2-
loop RGEs. In the left-hand column of Figs. 3–5, we plot
the 2-loop corrections, �ðRGIÞ, against the approximate 2-
loop �-functions. The best-fit line passing through the
origin then gives an estimate for the average value, h�i,
of the 2-loop corrections. The slope of the line corresponds

FIG. 3 (color online). Left: 2-loop shifts in the low-scale values of the RGIs. The x-axis is a simple approximation to the 2-loop
�-function. The (red) line denotes the best fit for � in terms of our approximate �-function. Right: The ratio of the residual 2-loop
effects, after subtracting the best-fit � from �, to the experimental errors. We assume 1% uncertainties in all of the soft masses.
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approximately to logðM0=TeVÞ, where M0 is some inter-
mediate messenger scale. We tabulate the slopes in
Table IV. The deviation from this approximation is due to
residual 2-loop running as well as to the different values of
the parameters over which we scan. In the right-hand
column we subtract the approximated 2-loop �-function
shifts, h�is, from the 2-loop contributions, �s,
at every point in the scan and plot the ratio of �� h�i
to the experimental uncertainties against the approximate
2-loop �-functions. The spread in the y-axis is due to
the residual 2-loop effects not accounted for by the
h�is.

From the numerical simulation we see that, in most
cases, even with an optimistic experimental error of 1%
in the soft masses, the experimental error tends to be larger

than the residual 2-loop effects on the RGIs once the shift
is performed to remove the bulk of the 2-loop corrections.
In those cases it is justified to treat the 1-loop RGIs as true
invariants in the determination of the parameters of the
GGM models. For IM2

, the 2-loop corrections can become

of the same order as the 1% experimental errors. One could
then in principle combine the uncertainty in IM2

due to the

2-loop effects in quadrature with the experimental errors.
Notice that the determination of the messenger scale by
any independent method can serve to further reduce most
of the uncertainty associated with the 2-loop evolution of
the soft parameters.
In Fig. 6 we repeat the plots of Fig. 2 using the shifted

RGIs to compute the GGM input parameters. This further
demonstrates the advantage of the simple shifts and the

FIG. 4 (color online). Left: 2-loop shifts in the low-scale values of the RGIs. The x-axis is a simple approximation to the 2-loop
�-function. The (red) line denotes the best fit for � in terms of our approximate �-function. Right: The ratio of the residual 2-loop
effects, after subtracting the best-fit � from �, to the experimental errors. We assume 1% uncertainties in all of the soft masses.
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subsequent dominance of experimental errors over residual
2-loop corrections.

Finally, we consider more carefullyDB13
,DL13

, andD�1
.

The first two are expected to vanish for all flavor-blind
models, and all three vanish in GGM. To test the power of
these invariants as discriminants we calculate the percent

deviation in the soft SUSY-breaking parameters that would
lead to a departure from zero. For instance, even a 10%
shift in m ~Q1

entering into the D�1
RGI is enough to shift it

by more than 5	 outside the range experimentally consis-
tent with zero. Similar conclusions hold for DB13

and DL13
.

For a few of the soft masses we plot in Figs. 7–11 the

FIG. 5 (color online). Left: 2-loop shifts in the low-scale values of the RGIs. The x-axis is a simple approximation to the 2-loop
�-function. The (red) line denotes the best fit for � in terms of our approximate �-function. Right: The ratio of the residual 2-loop
effects, after subtracting the best-fit � from �, to the experimental errors. We assume 1% uncertainties in all of the soft masses.

TABLE IV. Equations for the best-fit line for the 2-loop beta functions, corresponding to Figs. 3–5.

RGI h�i RGI h�i RGI h�i RGI h�i
DB13

11:7�DB13
DL13

0:47�DL13
D�1

9:5�D�1
DY13H

8:5�DY13H

DZ 7:4�DZ
IY�

7:9�IY�
IB2

10:6�IB2
IB3

9:95�IB3
IM2

14:7�IM2
IM3

6:3�IM3
Ig2 16:5�Ig2

Ig3 9:65�Ig3
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percent deviation in them that would cause the invariants to
take values more than 1	 away from zero. D�1

and DB13

are quite sensitive to the squark masses; they are less
sensitive to the generically smaller slepton masses, but
for those DL13

is an excellent discriminator. As mentioned

before, the effect of a larger experimental error in the soft
masses can be simply seen as a rescaling of the y-axis of
Figs. 7–11.

FIG. 6 (color online). Experimental errors in the calculated
values of the high-scale GGM parameters using the RGI recon-
struction method. Parameters with small uncertainties are omit-
ted for brevity. These plots differ from those of Fig. 2 in that the
bulk of the 2-loop corrections have been accounted for via
simple shifts in the RGIs, as detailed in Sec. IVC.

FIG. 7 (color online). Percent deviation in left-handed squark
masses necessary to generate values of DB13

[dark grey (blue)

points] or D�1
[light grey (red) points] more than 1	 away from

zero, assuming 1% experimental uncertainties in the soft masses.

FIG. 9 (color online). Percent deviation in right-handed down-
type squark masses necessary to generate values of DB13

[dark

grey (blue) points] or D�1
[light grey (red) points] more than 1	

away from zero, assuming 1% experimental uncertainties in the
soft masses.

FIG. 10 (color online). Percent deviation in left-handed slep-
ton masses necessary to generate values of DL13

more than 1	

away from zero, assuming 1% experimental uncertainties in the
soft masses.

FIG. 8 (color online). Percent deviation in right-handed up-
type squark masses necessary to generate values of DB13

[dark

grey (blue) points] or D�1
[light grey (red) points] more than 1	

away from zero, assuming 1% experimental uncertainties in the
soft masses.

FIG. 11 (color online). Percent deviation in right-handed slep-
ton masses necessary to generate values of DL13

more than 1	

away from zero, assuming 1% experimental uncertainties in the
soft masses.
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V. CONCLUSIONS

Low-energy supersymmetry provides a predictive
framework of physics at the weak scale. However, the
precise spectrum of the new particles depends on the soft
SUSY-breaking parameters, which proceed from the un-
known mechanism mediating SUSY breaking from the
hidden sector to the MSSM at high energies. Knowledge
of the soft parameters at the messenger scale will greatly
contribute to the understanding of UV physics. In principal
the RG evolution of the soft parameters will allow the
determination of their high-scale values as a function of
the measured values at the weak scale. The running of
each scalar parameter, however, is complicated by the
dependence of the �-function on nearly all other running
soft parameters.

In this work we have proposed the use of renormaliza-
tion group invariants to resolve the soft SUSY-breaking
parameters at the messenger scale. Of the 14 RGIs we have
considered, two may be used to test high-scale flavor
universality of the soft parameters, and 12 encode infor-
mation about the 13 variables associated with the most
general CP-conserving flavor-universal models. Indeed, if
the messenger scale can be determined by alternative
methods, the whole spectrum at high energies could be
established.

Specific models of SUSY breaking, however, lead to
relationships between the different sparticle masses at the
messenger scale. For example, in general gauge mediation,
even assuming a modification of the soft parameters in the
Higgs sector, only 11 free parameters remain. Moreover, an
additional RGI must vanish and may be used, together with
the two RGIs related to the flavor independence, to test
consistency of the low-scale spectrum with GGM. As we
have shown in this work, the deviation from zero of these
invariants is a very powerful discriminant for these models.
The remaining 11 RGIs can be used to extract most, and, in
some cases all, of the GGM parameters at the messenger
scale. More minimal models, for example, the CMSSM +
NUHM, depend on fewer parameters to define the high-
energy sparticle spectrum. In those cases the system is
overconstrained, leading not only to the determination of
all parameters but also to consistency relations between the
values of several RGIs.

Although RG invariance holds only at the 1-loop level,
we have shown that in general the 2-loop evolution leads to
modifications of the RGIs that are smaller than their ex-
pected experimental errors obtained from aggressive 1%
uncertainties in the low-scale soft masses. Moreover, we
have shown that a simple approximation based on the
2-loop �-functions and dependent on a few low-scale
parameters effectively describes the 2-loop corrections to
the invariants. These functions can be directly subtracted
from the low-energy measured values of the RGIs, thereby
reducing the theoretical uncertainty. The remaining uncer-
tainty is then primarily due to the unknown messenger

scale and can be reduced once further constraints are
obtained on the value of this scale.
RGIs offer a simple and modular approach to the recon-

struction of messenger-scale physics. The dependence of
high-scale parameters on observed values at the weak scale
is reduced from a set of integrals to a set of algebraic
equations. Moreover, each RGI depends only on a subset
of the low-scale masses. Although we have not investigated
this possibility in detail, it would be interesting to consider
strategies for the use of RGIs if only a limited set of the
masses are extracted at the LHC or a future linear collider.
In such a situation, traditional methods relying on direct
integration of the RG equations will fail in the sfermion
sector, while if any RGIs depend only on the known
masses, they may still be used to provide constraints on
the high-scale structure. It would also be interesting to
examine in greater detail the use and effectiveness of the
RGI method in other proposed models for the mediation of
SUSY breaking, as well as in nonminimal models of low-
scale supersymmetry. Additionally, in this work we have
taken a simple quadrature sum in the estimation of experi-
mental errors, neglecting correlations which in many cases
may be significant. Finally, a more realistic determination
of the expected experimental uncertainty in the extraction
of the soft breaking parameters could alter the overall
uncertainties in parameter reconstructions. We leave these
investigations to future work.
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APPENDIX: 2-LOOP �-FUNCTIONS
FOR THE 1-LOOP RG INVARIANTS

In the following set of 2-loop �-functions, we set the
hypercharge gauge coupling g1 and the soft trilinear
couplings Ai to zero. The subscripts on the � functions
are in correspondence with the invariants defined in the
text.

�DB13
¼ 1

64�4
ð3g22ðm2

~d3
þm2

~Q3
þm2

Hd
þ 2M2

2Þy2d
þ 2ðm2

~d3
þm2

~Q3
þm2

Hd
Þy4d þ ð3g22ðm2

~Q3
þm2

~u3

þm2
Hu

þ 2M2
2Þ � 2ðm2

~d3
þ 2m2

~Q3
þm2

~u3
þm2

Hd

þm2
Hu
Þy2dÞy2u þ 2ðm2

~Q3
þm2

~u3
þm2

Hu
Þy4uÞ; (A1)
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�DL13
¼ 1

64�4
ð3g22ðm2

~e3
þm2

~L3
þm2

Hd
þ 2M2

2Þy2e þ 2ðm2
~e3
þm2

~L3
þm2

Hd
Þy4eÞ; (A2)

�D�1
¼ � 1

4�4
ð3g22g23ðM2

2 þM2M3 þM2
3ÞÞ; (A3)

�DY13H
¼ 1

416�4
ð3g22ð4g23ðM2

2þM2M3þM2
3Þ�5ðm2

~d3
þm2

~Q3
þm2

Hd
þ2M2

2Þy2d�5ðm2
~e3
þm2

~L3
þm2

Hd
þ2M2

2Þy2e
þ10ðm2

~Q3
þm2

~u3
þm2

Hu
þ2M2

2Þy2uÞþ5ð8m2
~Q3
g23y

2
dþ8g23m

2
Hd
y2dþ16g23M

2
3y

2
dþ4m2

~Q3
y4dþ4m2

Hd
y4d

þ3m2
~e3
y2dy

2
eþ3m2

~L3
y2dy

2
eþ3m2

~Q3
y2dy

2
eþ6m2

Hd
y2dy

2
e�2m2

~e3
y4e�2m2

~L3
y4e�2m2

Hd
y4e�ð8g23ðm2

~Q3
þm2

~u3
þm2

Hu

þ2M2
3Þþð2m2

~Q3
þm2

~u3
þm2

Hd
þm2

Hu
Þy2dÞy2u�2ðm2

~Q3
þm2

~u3
þm2

Hu
Þy4uþm2

~d3
y2dð8g23þ4y2dþ3y2e�y2uÞÞÞ; (A4)

�DZ
¼ 1

64�4
y2dð9g22m2

Hd
� 16g23m

2
Hd

þ 18g22M
2
2 � 32g23M

2
3 � 6m2

Hd
y2d � 6ðm2

~e3
þm2

~L3
þ 2m2

Hd
Þy2e

þm2
~d3
ð9g22 � 2ð8g23 þ 3ðy2d þ y2eÞÞÞ þm2

~Q3
ð9g22 � 2ð8g23 þ 3ðy2d þ y2eÞÞÞÞ; (A5)

�DY�
¼ 1

64�4g21
ð�8m2

~Q3
g23y

2
d � 8g23m

2
Hd
y2d � 16g23M

2
3y

2
d � 4m2

~Q3
y4d � 4m2

Hd
y4d � 3m2

~e3
y2dy

2
e � 3m2

~L3
y2dy

2
e � 3m2

~Q3
y2dy

2
e

� 6m2
Hd
y2dy

2
e þ 2m2

~e3
y4e þ 2m2

~L3
y4e þ 2m2

Hd
y4e þ ð8g23ðm2

~Q3
þm2

~u3
þm2

Hu
þ 2M2

3Þ þ ð2m2
~Q3
þm2

~u3
þm2

Hd

þm2
Hu
Þy2dÞy2u þ 2ðm2

~Q3
þm2

~u3
þm2

Hu
Þy4u þm2

~d3
y2dð�8g23 � 4y2d � 3y2e þ y2uÞ þ 3g22ðm2

~d3
y2d þ ðm2

~e3
þm2

~L3
Þy2e

þm2
Hd
ðy2d þ y2eÞ � 2ðm2

~u3
þm2

Hu
Þy2u þm2

~Q3
ðy2d � 2y2uÞ þ 2ð4g23ðM2

2 þM2M3 þM2
3Þ þM2

2ðy2d þ y2e � 2y2uÞÞÞÞ;
(A6)

�IB1
¼ 1

640�4
ð27g22M2 þ 88g23M3Þ; (A7)

�IB2
¼ 1

128�4
ð25g22M2 þ 24g23M3Þ; (A8)

�IB3
¼ 1

128�4
ð9g22M2 þ 14g23M3Þ; (A9)

�IM1
¼ 0; (A10)

�IM2
¼ 1

128�4
g22ðm2

~L1
g22 þm2

~L2
g22 þm2

~L3
g22 þ 3m2

~Q1
g22

þ 3m2
~Q2
g22 þ 3m2

~Q3
g22 þ g22m

2
Hd

þ g22m
2
Hu

þ 111g22M
2
2 þ 48g23M

2
2 þ 48g23M2M3

� 12M2
2y

2
d � 4M2

2y
2
e � 12M2

2y
2
uÞ; (A11)

�IM3
¼ � 1

128�4
g23ð3m2

~d1
g23 þ 3m2

~d2
g23 þ 3m2

~d3
g23

þ 6m2
~Q1
g23 þ 6m2

~Q2
g23 þ 6m2

~Q3
g23 þ 3m2

~u1
g23

þ 3m2
~u2
g23 þ 3m2

~u3
g23 � 80g23M

2
3

� 18g22M3ðM2 þM3Þ þ 8M2
3y

2
d þ 8M2

3y
2
uÞ; (A12)

�Ig2
¼ 1

320�4
ð399g22 þ 352g23 � 92y2d � 24y2e � 86y2uÞ;

(A13)

�Ig3
¼ 1

320�4
ð�63g22 � 121g23 þ 29y2d þ 9y2e þ 35y2uÞ:

(A14)
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