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We discuss the existence of a conformal phase in SUðNÞ gauge theories in four dimensions. In this

lattice study, we explore the model in the bare parameter space, varying the lattice coupling and bare mass.

Simulations are carried out with three colors and 12 flavors of dynamical staggered fermions in the

fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the

theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like

phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero

coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like

theories is smaller than Nf ¼ 12, before the loss of asymptotic freedom at 16 and 1/2 flavors. We discuss

open questions and future directions.
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I. INTRODUCTION

With the imminent activity of the LHC experiments and
the quest for a theory describing fundamental forces be-
yond the electroweak symmetry breaking scale, renewed
interest has arisen in the most elusive aspects of gauge
theories. In particular, the possibility of an emergent qua-
siconformal symmetry in theories with fermionic content
has attained a strong experimental appeal. There are mul-
tiple reasons for pursuing this search. Resolving conformal
behavior would complete our understanding of the phase
diagram of gauge theories by varying temperature and
number of flavors, as sketched in Fig. 1. It sheds light on
how the low temperature and large flavor number quasi-
conformal phase may be connected to the high temperature
and low flavor number quark-gluon plasma phase. It is
essential for theoretically establishing or excluding walk-
ing technicolor-type theories and more generally strongly
interacting dynamics above the electroweak symmetry
breaking scale. Finally, elucidating the way conformal
symmetry or its remnants drive the dynamics of particle
interactions with or without supersymmetry contributes to
clarifying the possible connection of field theory to string
theory that the AdS/CFT correspondence seems to imply.

In the early eighties, our understanding of the perturba-
tive behavior of non-Abelian gauge theories was enriched
by two seminal papers [1,2]. It was noticed that a second
zero of the two-loop beta function of an SU(3) gauge
theory with Nf massless fermions in the fundamental

representation appears for Nf * 8:05, at g�2 � 0, before

the loss of asymptotic freedom at Nc
f ¼ 16 1

2 . This fact

implies, at least perturbatively, the appearance of an infra-
red fixed point (IRFP). The fixed point moves closer to zero
coupling as the number of flavors approaches Nc

f. The

dynamics of chiral symmetry have led to the discovery of
the conformal window in QCD-like theories [3,4]: chiral
symmetry breaking can only occur below a critical number

of flavors N�
f. Between N�

f and Nc
f, the conformal window

opens up. Finding the actual value of the critical number of
flavors N�

f at which chiral symmetry breaking takes place

is a nonperturbative problem for which the lattice approach
is the method of choice [5]. Recent studies have provided
evidence that Nf ¼ 8 lies within the hadronic phase of

QCD [6–10]. A recent study of the SU(3) running coupling
[6,9] by use of the lattice Schrödinger functional has con-
cluded that Nf ¼ 12 should already be in the conformal

window. Other numerical studies, however, challenged this
conclusion [11–13]. This is hardly surprising, given that
Nf ¼ 12 should be very close to the critical number of

FIG. 1. A projected view of the phase diagram of QCD-like
theories in the temperature (T), flavor number (Nf), and bare

coupling (g) space. In the T-Nf plane, the critical line is a phase

boundary between the chirally broken hadronic phase and the
chirally symmetric quark-gluon plasma, the zero temperature
end point of which is the onset of the conformal window. The
zero temperature projected plane is inspired by the scenario in
Refs. [3,4], see Fig. 2.
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flavors [14–17], making a numerical study particularly
delicate.

The current strategy, complementary to that of
Refs. [6,9], is inspired by the physics of phase transitions;
it allows for the exploration of multiple aspects of the
theory in different regimes and regions of the phase dia-
gram, in order to probe the existence and properties of an
IRFP inside and outside its basin of attraction.

This paper is organized as follows. In Sec. II, we
review previous theoretical work, in particular, the sce-
nario for conformality originally proposed in Refs. [3,4],
and define our strategy. Section III shortly describes the
simulations and the observables of this work. Section IV
presents the results on the bulk chiral phase transition,
while Sec. V further discusses the behavior of the chiral
order parameter. Here, several subsections describe vari-
ous theoretically motivated models, and related fits for the
mass dependence of the chiral condensate. Section VI
addresses the spectrum, and it is organized in two sub-
sections. The first one discusses the interrelation between
the spectrum results and the pattern of chiral symmetry.
The second subsection, similar in spirit to Ref. [18],
argues that the lattice spacing increases when decreasing
the coupling, as expected of a negative beta function;
finally, it uses the numerical results combined with the
perturbative input to argue in favor of the existence of a
zero of the beta function. In Sec. VII, we summarize the
results, draw our conclusions, and briefly discuss future
directions.

II. A SCENARIO FOR CONFORMALITY
AND A LATTICE STRATEGY

The strategy of this study has received heuristic guid-
ance from the scenario depicted in Refs. [3,4] and sketched
in Fig. 2.

The zero temperature phase diagram of Fig. 2, originally
proposed in Ref. [4], is of course conjectural at this stage:
even the existence of the conformal window itself needs to
be verified by an ab initio calculation. The scenario is
based on analytic, necessarily approximate estimates, and
ab initio lattice studies are also needed to clarify the shape
and nature of the various lines. Importantly, the line of
IRFP is not a phase transition in the scenario of Ref. [4],
while it is a chiral transition in the one of Ref. [2], known
as the Banks-Zaks scenario. The shape of the line of IRFP
is of course scheme dependent. The nature of the phase
transitions on each line of Fig. 2, in particular, on the bulk
transition line—which is relevant in the context of the
search for an ultraviolet fixed point (UVFP) at strong
coupling—and the way the lines merge depend on the
details of the dynamics. This is why it is important to carry
out a lattice study.

For our present scope, it suffices to bear in mind that a
conformal window, if any, should be preempted by a
zero temperature lattice chirally symmetric phase. This is

a robust feature, which does not depend on any of the
interesting details of the phase diagram outlined above.
We will implicitly assume the validity of that scenario in

the lattice bare coupling g space, where we shall work in
the rest of this paper.
On the weak coupling side of Fig. 2, for any Nf < Nc

f,

the continuum limit exists for g ! 0, due to asymptotic
freedom. Should the IRFPs and the conformal window
exist, the corresponding lines in Fig. 2 have a mapping
onto the phase diagram of the continuum theory. We add
that, if an UVFP at strong coupling [19] exists, the line of
bulk transitions signals the emergence of a new continuum
limit on the strong coupling side of Fig. 2. The existence of
UV fixed points at strong coupling in four dimensions is a
long-standing problem in field theory. Second order phase
transitions at strong coupling are natural candidates for
such fixed points. Their nontrivial critical dynamics could
signal the emergence of an interacting theory, distinct from
the asymptotically free dynamics of QCD.
Following Fig. 2, at a given Nf > N�

f and increasing the

coupling from g ¼ 0, one crosses the conformal line,
location of the IRFPs, going from a chirally symmetric
(S) and asymptotically free phase (quasiconformal phase)
to a symmetric, but not asymptotically free one (Coulomb-
like or QED-like phase). A phase transition need not be
associated with the line of IRFPs, differently from what
was originally speculated in Ref. [2]. At even larger cou-
plings, a transition to a strongly coupled chirally asymmet-
ric (A) phase will always occur in the lattice regularized
theory. The latter is referred to as a bulk phase transition. In
the symmetric phases at nonzero coupling, the conformal

FIG. 2 (color online). Phase diagram of an SU(3) gauge theory
with fundamental fermions in the number of flavors Nf—bare

coupling g plane after Ref. [4]. Theories for Nf < N�
f are QCD-

like in the continuum. For N�
f < Nf < Nc

f, theories develop a

conformal phase. S and A refer to chirally symmetric and
asymmetric, respectively. The dashed (green) line qualitatively
indicates the location of the Banks-Zaks IRFP [2]. The dot-
dashed (red) line indicates a lattice bulk transition, which has
been observed at Nf ¼ 12 and Nf ¼ 16. The line at Nf ¼ N�

f

represents the conformal phase transition [3,4], which is absent
in the original Banks-Zaks scenario. The beta function on the
conformal side is also sketched.
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symmetry is still broken by ordinary perturbative contri-
butions. They generate the running of the coupling
constant which is different on the two sides of the sym-
metric phase. See Ref. [4] for a detailed discussion of this
point. We emphasize that in the region considered in this
paper, conformal symmetry would still be broken by
Coulombic forces.

A theory in the hadronic phase, Nf < N�
f, has a thermal

phase transition in the continuum from a low temperature
chirally broken phase to a high temperature chirally
symmetric—quark-gluon plasma—phase. Thus, as argued
in Ref. [7], the observation of a thermal transition in the
continuum limit is incompatible with the existence of a
conformal fixed point, see Fig. 1. It is also clear from Fig. 2
that the presence of a Coulomb-like phase next to the bulk
transition at weaker coupling is a distinguishing feature of
the conformal phase. Here, the nonperturbative beta func-
tion should be positive, implying a weakening of the
effective coupling over increasing distances. The appear-
ance of such a region is, in principle, a sufficient condition
for the existence of an IRFP, since the perturbative beta
function of SU(3) with Nf < 16 1

2 in the extreme weak

coupling regime is known to be negative. Note, however,
that the beta function is not universal away from fixed
points with diverging correlation lengths, and one can
therefore not exclude a priori the appearance of spurious
fixed points at intermediate values of the coupling constant
[18]. The reader should keep in mind that we will work
with a lattice beta function; please see Sec. VIB for a
caveat and discussions of this point.

The evidence presented here thus consists of a few
components. First, it will be demonstrated that the location
of the transition from the chirally symmetric to the broken
phase is not sensitive to the physical temperature and is
therefore compatible with a bulk nature. Subsequently, we
will present a detailed study of the mass dependence of the
chiral condensate on the weak coupling side of the bulk
transition, which clearly favors exact chiral symmetry.
Finally, the behavior of the mass spectrum close to the
bulk transition will be studied and found to be compatible
with a positive beta function, similarly to the observations
of Ref. [18] for Nf ¼ 16, and the restoration of chiral

symmetry. These results are consistent with the scenario
for conformality of Fig. 2.

III. THE SIMULATIONS AND THE OBSERVABLES

We have simulated an SU(3) gauge theory with 12
flavors of staggered fermions in the fundamental represen-
tation. We used a tree-level Symanzik improved gauge
action to suppress lattice artifacts, and Kogut-Susskind
(staggered) fermions with the Naik improvement scheme,
that effectively extends the Symanzik improvement to the
matter content.

High statistics runs were performed at fixed bare quark
mass am ¼ 0:05 over an extended range of bare lattice

couplings, on 163 � 8 and 164 lattices. At two selected
couplings, 6=g2L ¼ 3:9 and 6=g2L ¼ 4:0, we have performed
runs on lattices 203 � 32, 244, 324 and five masses
am ¼ 0:025, 0.04, 0.05, 0.06, 0.07. The thermalization of
all runs was extensively verified by monitoring the stability
of averages and uncertainties as a function of the discarded
number of sweeps and bin size. In addition, we have verified
the decorrelation from initial conditions by performing
simulations with ordered and random starts for a few se-
lected couplings and masses.
We have measured gauge and fermionic observables

including the average plaquette, the Polyakov loop, the
interquark potential, the chiral condensate, and its suscep-
tibility, the meson spectrum. We report here on our results
for the chiral condensate and the meson spectrum. We
underscore that staggered fermions have a remnant of exact
chiral symmetry which allows a precise definition of the
chiral order parameter—the condensate h �c c i—also on a
coarse lattice.

IV. THE BULK TRANSITION

Figure 3 shows our results for the chiral condensate at a
fixed value of the bare quark mass am ¼ 0:05 and for two
volumes 163 � 8 and 164, differing by a factor of 2 in their
temporal extent Nt. The results display a sudden variation
of the chiral order parameter as a function of the bare
lattice coupling constant gL, for both Nt. At this point,
one notices that the temperature of the system is related to
the lattice temporal extent as T ¼ 1=aðgLÞNt, with aðgLÞ
the lattice spacing for a given lattice coupling. From Fig. 3,
one infers that the phase transition—or rapid crossover—
happens at identical values of the critical coupling gcL ¼
1:35ð3Þ, thus implying they occur at vastly different physi-
cal temperatures. Hence, one concludes that the observed
transition (or crossover) is driven purely by the bare
coupling constant itself and is therefore of bulk nature.

FIG. 3 (color online). The bulk transition in the chiral conden-
sate for am ¼ 0:05 on lattices of 163 � 8 (circles), and 164

(crosses) as a function of the bare lattice coupling gL. Data
are shown in the range 6=g2L ¼ 2:5 to 4.7. The location of the
transition is identical, while the curves describe physics at
temperatures differing by a factor of 2. Simulation errors are
within symbol size.
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Further information on this behavior, with a refined scaling
study, might shed light on the occurrence of a conjectured
ultraviolet fixed point at strong coupling in the continuum
theory [19].

The results of Fig. 3 beg for a detailed analysis of the
behavior of the chiral condensate at weaker couplings, in
order to discriminate between a genuine phase transition to
a chirally symmetric phase, and a rapid crossover to a
phase where chiral symmetry is still broken.

V. THE CHIRAL CONDENSATE
AT 6=g2L ¼ 3:9AND 6=g2L ¼ 4:0

In order to be able to extract information on the
symmetry of the vacuum—chiral symmetry broken or
restored—by extrapolating the condensate to the chiral
limit, we need to measure it at infinite volume and at
sufficiently light values of the quark masses. Light here
means that the dynamics of the system is not yet dominated
by the amount of explicit chiral symmetry breaking. This
study, being of course extremely demanding from the point
of view of numerical resources, was performed for two
relevant selected couplings. We will first address the issue
of systematic errors; then, we will consider and compare
several theoretically motivated parameterizations, appro-
priate for chirally broken or symmetric phases.

A. Aspects of systematics

To reach the infinite volume limit within statistical
errors, measurements of the chiral condensate were per-
formed on three different volumes for each mass, up to 324

for the smallest masses, and the difference between the
largest two volumes found to be smaller than both the

difference between the smallest volumes and the statistical
uncertainty in all measurements, as can be gleaned from
Fig. 4 and Table I. The data set used for the extrapolation to
the chiral limit thus consists of the measurements at lattice
volumes 244, which can be considered as infinite volume
measurements within their errors, again according to Fig. 4
and Table I.
Evidence that we are considering sufficiently light quark

masses is provided by the mass dependence of the conden-
sate itself, and by our results for the spectrum in Sec. VI,
where we further elucidate this aspect.
As for the issue of the continuum limit, we remind the

reader that all the measurements are performed at a fixed
value of the lattice spacing and no extrapolation to the
continuum limit is considered. On the other hand, in the
scenario of Fig. 1, there is only one symmetric phase at
large Nf. Hence, once chiral symmetry is restored, it

should stay so till the continuum. A preliminary study
towards weak coupling has revealed no sign of further
phase transitions, thus confirming this scenario. Being
notoriously difficult to directly probe the IRFP with a
lattice study, we are collecting precisely those measure-
ments at finite lattice spacing and varying lattice coupling
that can provide a combined evidence for the restoration of
chiral symmetry and for the existence of the peculiar non
asymptotically free regime that precedes the IRFP for
decreasing coupling, a feature proper to non-Abelian
gauge theories with a conformal phase.

B. Fits motivated by a possible Goldstone phase

The functional forms discussed here would be appropri-
ate if the bulk behavior were not to be associated to a true
chiral transition. For instance, it might just be due to a
generic rapid crossover, or to a genuinely lattice transition
between two phases with different ordering. In this case,

FIG. 4 (color online). Observed finite volume effects in the
chiral condensate, displayed as the difference �FV between the
measurements at the two largest available volumes (243 � 24
and 323 � 32 for the lowest mass, 203 � 32 and 243 � 24 for the
other masses) divided by their combined standard deviation �.
Blue triangles indicate results for 6=g2L ¼ 3:9, red circles those
for 6=g2L ¼ 4:0. A value of less than unity (within the band)
implies that finite volume effects are within a single standard
deviation of each other and therefore statistically irrelevant.

TABLE I. Comparison of the measured chiral condensate at
different volumes, with varying bare masses am and for two
lattice couplings 6=g2L ¼ 3:9 and 4:0. For all masses, the mea-

surements at volume Ns � Nt ¼ 243 � 24 differ from the adja-
cent volumes by less than their statistical uncertainty. We
therefore use the 244 measurements as input to the chiral
extrapolations of Table VI.

6=g2L am a3h �c c iNs¼20 a3h �c c iNs¼24 a3h �c c iNs¼32

3.9 0.025 0.07638(22) 0.07693(07) 0.07697(07)

0.040 0.12107(10) 0.12092(17)

0.050 0.15018(17) 0.15018(10)

0.060 0.17918(17) 0.17897(14)

0.070 0.20776(19) 0.20768(10)

4.0 0.025 0.07212(13) 0.07202(10) 0.07206(05)

0.040 0.11366(09) 0.11360(10)

0.050 0.14093(19) 0.14079(07)

0.060 0.16775(16) 0.16787(11)

0.070 0.19476(11) 0.19470(13)
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the range of couplings between 6=g2L ¼ 3:9 and 6=g2L ¼
4:0 would still belong to the phase with broken chiral
symmetry. We have thus considered the following func-
tional form,

h �c c i ¼ Amþ Bm logðmÞ þ h �c c i0; (1)

where the parameters were all left free, giving fits with 2
degrees of freedom, or in turn constrained to zero. The
logarithmic mass dependence is typical of a chirally bro-
ken phase for a QCD-like theory in four dimensions at zero
temperature.

The results of the fits to Eq. (1) are summarized in
Table II. The linear fits—case B ¼ 0 also used in [13]—
produce an intercept different from zero, but are highly
disfavored by their large �2. The inclusion of the term
m logðmÞ considerably improves the quality of the fits.
Those with free intercept h �c c i0 gave an extrapolated
value consistent with zero, and in agreement with the fit
obtained by constraining h �c c i0 ¼ 0. Both fits are satis-
factory and imply that the chiral condensate in the chiral

limit is zero within errors. In conclusion, a conventional
picture of the Goldstone phase seems not to be supported
by our data.

C. Fits with an anomalous dimension

We considered the functional form

h �c c i ¼ Am1=� þ Bmþ h �c c i0; (2)

containing an anomalous dimension, whose effect is
parameterized by the exponent �. Since the fits described
in Sec. VB already suggest that a curvature in the behavior
of the chiral condensate as a function of the mass is
mandatory, we started by setting the linear term to zero.
We note that analogous fits were used in the past to analyze
QED in its symmetric phase, close to the strong coupling
transition in Ref. [20], even if a more satisfactory account
of the data requires the consideration of the magnetic
equation of state, which is going to be discussed in the
next section. Results for these fits are reported in Table III.
All fits to Eq. (2) with B ¼ 0 are satisfactory, with a chiral
condensate compatible with zero in the chiral limit. This
was checked, as before, by comparing fits with free inter-
cept, and fits with h �c c i0 ¼ 0.
One might still suspect that a fit combining a power-law

term and a linear term, with a nonzero intercept might still
accommodate the data, hence indicating chiral symmetry
breaking. For instance, a linear term can arise because of
the additive renormalization of the chiral condensate—see,
e.g., [21] for a discussion of this term in the context of the
QCD thermal transition.

TABLE II. Fits to h �c c i ¼ Amþ Bm logmþ h �c c i0.
6=g2L A B h �c c i0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2dof
p

3.9 2.70(3) �0:103ð13Þ 0.00013(54) 0.68

3.12(3) 0 (F) 0.0043(3) 3.12

2.682(5) �0:107ð2Þ 0 (F) 0.56

4.0 2.48(2) �0:120ð10Þ �0:00091ð42Þ 0.51

2.73(1) 0 (F) 0.0041(5) 3.74

2.519(8) �0:099ð3Þ 0 (F) 0.56

TABLE III. Fits to h �c c i ¼ Am1=� þ Bmþ h �c c i0.
6=g2L A 1=� B h �c c i0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2dof
p

3.9 3.00 (F) 0.960 (F) �0:30 (F) �0:00002 (F) 0.96

2.700 (4) 0.9646 (4) 0.00 (F) 0.0000 (F) 0.55

2.699 (25) 0.964 (4) 0.00 (F) �0:0000 (6) 0.68

1.86 (24) 0.950 (F) 0.83 (26) �0:0001 (5) 0.68

2.10 (27) 0.955 (F) 0.60 (29) �0:0001 (6) 0.68

2.38 (30) 0.960 (F) 0.31 (33) �0:0001 (5) 0.68

2.75 (35) 0.965 (F) �0:05 (38) �0:0000 (1) 0.68

3.24 (41) 0.970 (F) �0:54 (44) �0:0000 (5) 0.68

3.93 (50) 0.975 (F) �1:23 (53) 0.0000 (5) 0.69

4.97 (64) 0.980 (F) �2:27 (66) 0.0000 (6) 0.68

4.0 1.230 (F) 0.910 (F) 1.26 (F) �0:0010 (F) 0.70

2.534 (8) 0.965 (1) 0.00 (F) 0.0000 (F) 0.87

2.489 (18) 0.956 (3) 0.00 (F) �0:0011 (4) 0.51

2.15 (17) 0.950 (F) 0.33(18) �0:0011 (4) 0.50

2.42 (19) 0.955 (F) 0.06(21) �0:0012 (4) 0.51

2.76 (21) 0.960 (F) �0:26ð23Þ �0:0011 (4) 0.51

3.18 (25) 0.965 (F) �0:70ð27Þ �0:0011 (4) 0.51

3.75 (30) 0.970 (F) �1:26ð32Þ �0:0011 (4) 0.51

4.55 (36) 0.975 (F) �2:06ð38Þ �0:0010 (4) 0.52

5.74 (45) 0.980 (F) �3:26ð47Þ �0:0010 (4) 0.52
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For completeness, we have performed fits to Eq. (2) with
the inclusion of a linear term. As expected from the near
degeneracy between a power law with 1=� � 1 and a
linear term, the uncertainties coming from a Marquardt-
Levenberg minimization of �2 are huge, ranging from
100% to 10 000%. In Table III, we simply quote the central
results, omitting the errors. Studies able to disentangle the
effect of linear scaling violations [21] were using an exact
form for the scaling function which is not available here. In
conclusion, the behavior of the fits to Eq. (2) says that an
additional linear term, or any analytic term in Eq. (2), is
redundant for our data.

To acquire a feeling about the possible relevance of a
linear term, we have also performed a sequence of fits,
constraining the exponent to several values in the accept-
able range given by the fit errors. The results are again
summarized in Table III. It appears that the coefficient of
the linear term smoothly changes from positive to negative,
while the intercept—the chiral condensate in the chiral
limit—remains consistent with zero throughout at 6=g2L ¼
3:9, and becomes slightly negative at 6=g2L ¼ 4:0. We thus
again conclude that our data point at exact chiral
symmetry.

D. Fits motivated by the magnetic equation of state

Finally, we considered fits motivated by the magnetic
equation of state. The following equation is a satisfactory
parameterization

m ¼ Ah �c c i þ Bh �c c i�; (3)

which would of course coincide with the simple power law
when A ¼ 0. The coefficient of the linear term A should
vanish at a critical point, with A / ð�� �cÞ. This of
course explains the smallness of A close to the transition,
while � is the conventional magnetic exponent. The linear
term in the condensate is implied by chiral symmetry, and
guarantees that the ratio

lim
m!0

R� ¼ @h �c c i=@m
h �c c i=m ¼ 1 (4)

approaches unity in the chiral limit and in the chirally
symmetric phase. We can view Eq. (3) as a model for a
theory with anomalous dimensions, which incorporates the
correct chiral limit. Note that the linear term of Eq. (3) is of
different origin than the one considered in Eq. (2). The
latter describes violations of scaling and it is increasingly
relevant at larger masses. In Eq. (3) instead, it is dominat-
ing at very small masses, away from the critical point.

Results for this case are given in Table IV. The fit m ¼
mðh �c c iÞ was performed with a least squares algorithm.
Note that, as expected, the significance of the linear term is
very low, closer to the bulk transition, and slightly larger by
moving away from it. In Table V, we quote the numerical
solutions of the equation mðh �c c iÞ ¼ msim, with msim the
simulation masses, to be compared with the simulation
results for the condensate. The agreement is very good.
All fits clearly favor a positive value for the coefficient

of the linear term, as it should be in the chirally symmetric
phase, and within the large errors, the results for the
exponent are compatible with the ones coming from the
genuine power-law fits. We conclude again in favor of
chiral symmetry restoration.

E. Side-by-side comparison of the
two simplest scenarios

The spirit of the analysis performed above is to see if any
of the simplest physically motivated parameterizations can
account for a condensate in the chiral limit different from
zero, and we can conclude that all analyses favor a vanish-
ing chiral condensate. In this subsection, we directly com-
pare in more detail the genuine linear fit, Eq. (1) with
B ¼ 0, as this is the only fit that produced a tiny nonzero
chiral condensate, and the genuine power-law fit, Eq. (2)
with B and h �c c i0 ¼ 0, being the simplest fit with a �2 in
an acceptable statistical range. In the rest of this section,
we refer to these fits as ‘‘linear’’ and ‘‘power law,’’
respectively.
The measured values of the chiral condensate and those

predicted by the linear and power-law fits are shown in
Table VI. In Fig. 5, the measured data with superimposed
fits are shown. Of course, since the range of variability of
the chiral condensate is exceedingly larger than its errors, it
is impossible to appreciate by eye the quality of the fits on
this scale. A more effective description of the relative
quality of the fits is offered by Figs. 6 and 7 . In Fig. 6,
we plot the difference between the chiral condensate
predicted by the fits and the data, divided by the data

TABLE V. Comparison of the simulation results for h �c c i
with the ones obtained from the fits to the magnetic equation
of state.

6=g2L am h �c c i h �c c ifit
3.9 0.025 0.07693(07) 0.07689

0.040 0.12092(17) 0.12102

0.050 0.15018(10) 0.15010

0.060 0.17897(14) 0.17898

0.070 0.20768(10) 0.20768

4.0 0.025 0.07202(10) 0.07204

0.040 0.11360(10) 0.11355

0.050 0.14079(07) 0.14083

0.060 0.16787(11) 0.16787

0.070 0.19470(13) 0.19469

TABLE IV. Fits to m ¼ Ah �c c i þ Bh �c c i�.
6=g2L A B �

3.9 0.1(9) 0.3(9) 1.1(2)

4.0 0.3(1) 0.077(9) 1.3(1)
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themselves. The tension between fitted and numerical re-
sults for the linear form is quite evident. The pattern of the
deviations in the linear fits indicates a significant curvature,
which is reflected in the quality of the fit. The pattern of the
residuals of the power-law fit is instead far less structured
and statistically insignificant throughout. Figure 7 offers in
our opinion the most clear way of visualizing the devia-
tions by plotting the same difference as in Fig. 6, this time
divided by the error �. The horizontal band indicates the
boundary of 1 standard deviation, and the points obtained
by a power-law fit nicely fall within it, while again the
tension with the linear form appears. These results thus
confirm a strong preference for the restoration of chiral
symmetry at the weak coupling side of the transition, as
was inferred from Sec. VA to Sec. VD.

It is clear that additional data at even lighter masses will
improve the discriminating power of these fits and even-
tually allow to significantly constrain the linear contribu-
tions. The presence of curvature in the data and the very
good quality of the power-law fit, having barred finite
volume effects, is also an indication that we are not in
the heavy quark limit. In addition, one could also study the

analogous of the Gell-Mann-Oakes-Renner (GMOR) rela-
tion of broken chiral symmetry, and variations of it in terms
of the scalar meson mass, by also measuring the pion decay
constant f� in the chiral limit and the scalar mass.

TABLE VI. Measurements of the chiral condensate at Ns �
Nt ¼ 243 � 24 for two values of the coupling 6=g2 ¼ 3:9 and
4:0, and a range of bare quark masses am, together with the
values predicted by the fits to a linear and a power-law model.

6=g2L am a3h �c c imeasured a3h �c c ilinear a3h �c c ipower
3.9 0.025 0.07693(07) 0.07705 0.07692

0.040 0.12092(17) 0.12069 0.12105

0.050 0.15018(10) 0.14978 0.15013

0.060 0.17897(14) 0.17887 0.17899

0.070 0.20768(10) 0.20796 0.20769

4.0 0.025 0.07202(10) 0.07237 0.07212

0.040 0.11360(10) 0.11331 0.11350

0.050 0.14079(07) 0.14060 0.14077

0.060 0.16787(11) 0.16789 0.16785

0.070 0.19470(13) 0.19518 0.19477

FIG. 5 (color online). Fits to the chiral condensate measured at
6=g2L ¼ 3:9 (circles) and 6=g2L ¼ 4:0 (triangles), with linear fits
shown in red and power-law fits (going through the origin) drawn
in blue.

FIG. 6 (color online). Deviations � of the fitted value from the
measured value �� for the chiral condensate, rescaled by the
measured value itself. Error bars represent the relative (rescaled
by the data) standard deviation on the measured value.
Deviations from the prediction with a fit to the linear form are
given in red, while those for a fit to a power-law (smallest
deviations) are given in blue. The top graph displays results
for 6=g2L ¼ 3:9, the lower graph those for 6=g2L ¼ 4:0. The linear
form shows tension with the data for both values of the coupling,
which is quantitatively seen in the larger �2 value.

FIG. 7 (color online). Deviations � of the fitted value from the
measured one for the chiral condensate, rescaled by the standard
deviation � of each measurement. Results are shown for both
6=g2L ¼ 3:9 (circles) and 6=g2L ¼ 4:0 (triangles), with fits to the
linear form shown in red and fits to the power law (smallest
deviations) drawn in blue. The data and corresponding fits are
displayed on linear scales in the inset.
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VI. SPECTRUM ANALYSIS

An alternative approach to the study of the symmetry of
a phase is offered by the spectrum analysis [22].
Particularly useful quantities for this type of study are the
masses of the ground state excitations in the pseudoscalar
and vector channels, with slight abuse of nomenclature
from QCD referred to as the � and � masses. We defer
to future work the exploration of other interesting observ-
ables, such as the ratio of the scalar and pseudoscalar
masses or equivalently the ratio of transverse and longitu-
dinal chiral susceptibilities.

A. Spectrum and chiral symmetry

A powerful way to distinguish between symmetric and
broken chiral symmetry [22] is to plot the pseudoscalar
mass as a function of the chiral condensate, as in Fig. 8. We
have considered the same range of bare fermion masses
used in Sec. V for the chiral extrapolation of the conden-
sate. The data are best fitted by a simple power-law form,
and the results are reported in Table VII. They clearly
suggest that chiral symmetry is restored and that the theory
has anomalous dimensions. In the symmetric phase and in
mean field [22], we expect a linear dependence with non-
negative intercept. The presence of anomalous dimensions
is responsible for negative curvature—noticeably opposite
to what finite volume effects would induce—and a zero
intercept. The same graph in the broken phase would show
the opposite curvature and extrapolate with a negative
intercept.

This result gives also further confidence that the fermion
masses used in this study are not too light so that they do
not significantly feel the finite volume, and not too heavy
so that they are not blind to chiral symmetry. In Fig. 9, we
report on the measured values of m� and m� as a function

of the bare fermion mass. Here, the lightest point at am ¼
0:025 for the vector mass is absent, but a curvature can still

be appreciated. Simulations were done on 163 � 24 vol-
umes, while a set of measurements at larger volumes
showed that finite volume effects were under control. The
mass dependence shown in Fig. 9 hints again at a few
properties of a chirally symmetric phase. We have fitted
both the pion and the rho mass to a power law

m�;� ¼ A�;�m
��;� (5)

with the results A� ¼ 3:41ð21Þ, �� ¼ 0:61ð2Þ, A� ¼
4:47ð61Þ, �� ¼ 0:66ð5Þ at 6=g2L ¼ 3:9, and A� ¼
3:41ð21Þ, �� ¼ 0:61ð2Þ, A� ¼ 4:29ð11Þ, �� ¼ 0:66ð1Þ at

6=g2L ¼ 4:0. The accuracies of these fits are not compa-
rable with those achieved by the fits to the chiral conden-
sate; however, they allow to draw a few conclusions. First,
the mass dependence of the vector and pseudoscalar me-
sons is well fitted by a power law. Second, it is also relevant
that the exponents are not unity and �� � 1=2. The latter
result immediately tells that the pion seen here is not a
Goldstone boson of a broken chiral symmetry. In addition,
both mesons have masses scaling with roughly the same
power, as it should be in a symmetric phase, and with

FIG. 8 (color online). The relation between the chiral conden-
sate and the pion mass, for 6=g2L ¼ 3:9 (blue squares) and 4.0
(red circles). The line represents a power law fit to the combined
data, the results of which are reproduced in Table VII.

TABLE VII. Results of fits to the functional form ðam�Þ2 ¼
Aða3h �c c iÞ2�� . Fits are performed to the separate values of the
coupling constant and the combined data set.

6=g2L parameter value

3.9 A 3.350(70)

�� 0.639(6)
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2dof
p

0.73

4.0 A 3.500(40)

�� 0.649(3)
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2dof
p

0.46

combined A 3.400(50)

�� 0.642(4)
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2dof
p

0.70

FIG. 9 (color online). The relation between the bare quark
mass and the masses of the pion (red circles) and rho meson
(blue squares), for 6=g2L ¼ 3:6, 3.7, 3.8, 3.9, and 4.0 from the
uppermost line down. Power-law fits to the separate values of
beta are provided.
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increasing degeneracy towards the chiral limit. The expo-
nent of the power law being not one, confirms that we are
not in the heavy quark regime.

These results are confirmed in a more visual way by
looking at the behavior of the mass ratio. Figure 10(b)
shows the ratios of measured pseudoscalar and vector
masses, for a fixed coupling and as a function of the bare
quark mass. We have superimposed the ratios of the best
fits to the raw mass data, as explained in Sec. VI B. It is
immediately clear that the ratio increases as the quark mass
approaches zero, a behavior opposite to what is expected
for a Goldstone pion. Notice also that the mass ratio should
be one for exact conformal symmetry in the chiral limit:
we do not yet observe that, since, as explained in Sec. II,
conformal symmetry is expected to be broken by
Coulombic forces in the region of parameter space probed
by this study. On the other hand, the trend towards unity as

decreasing the lattice coupling gL is evident, and certainly
worth further exploration. See also Ref. [23] for a study of
the spectrum.

B. Spectrum, lattice spacing, and the beta function

We used the spectrum results to determine the lines of
‘‘constant physics’’ in the two dimensional parameter
space gL and am, the bare quark mass of degenerate
fermions, following the same strategy which was success-
ful for Nf ¼ 16 [18]. Along these lines, the coupling and

masses are all functions of the lattice spacing a. Since all
dimensionful quantities measured on the lattice will be
expressed in terms of the lattice spacing and will therefore
vary with gL even if they do not physically, a dimension-
less quantity has to be taken as a reference. A convenient
choice is the ratio of the � and � masses. Before continu-
ing, let us specify that the same caveat as in Ref. [18]
applies: since we are at strong coupling, there is no guar-
antee that the system can be described in terms of a one-
parameter beta function. This implies, for instance, that the
lines of ‘‘constant physics’’ determined by use of certain
observables might not match those determined using other
observables. If multiple bare couplings are needed, it might
happen that the change of physics produced by changing
only one bare coupling will not be compensated by a
change of mass. So our lines of ‘‘constant physics’’ are,
strictly speaking, lines of constant m�=m� ratio. We will

show in the following that in order to keep this ratio
constant, the bare parameters am and gL controlling the
simulations should be tuned as if we had a one-parameter,
positive beta function.
In Fig. 10(a), we report on the measured values of m�

and m� as a function of the bare coupling, while Fig. 10(b)

shows the ratios of measured pseudoscalar and vector
masses, for a fixed coupling and as a function of the bare
quark mass. We have superimposed the ratios of the best
fits to the raw mass data, confirming the good quality of the
interpolations derived in Fig. 10(a) and used to produce
Fig. 11.
It is immediately evident from Fig. 10(b) that, in order to

keep the ratio constant, we should simultaneously decrease
the lattice coupling gL and increase the bare mass. These
results already indicate that the lattice spacing increases
while decreasing the coupling. This is the same behavior as
observed for Nf ¼ 16, and of the pion-to-sigma ratio in

QED. It is also expected of a one-parameter beta function
with a positive sign.
To refine the analysis, and express the result in terms of a

physical observable, we proceed as follows. Given the ratio
m�=m� at reference values of gL and am, one can deter-

mine a value a0m0 at coupling g0L in the surroundings of gL
that reproduces the same ratio and thus lies on the same
line of constant physics. This is implemented by fitting the
measured values of both masses to a parameterization,
as shown in Fig. 10(a), then determining the isolines

FIG. 10 (color online). (a) Measurements of the pseudoscalar
(blue) and vector (red) masses versus lattice coupling at several
values of the bare quark mass, from bottom to top am ¼ 0:04,
0.05, 0.06, and 0.07. Lines displayed represent a global parame-
terization, with a mixed OðmÞ polynomial quark mass depen-
dence and Oð�2Þ polynomial dependence, with lattice parameter
� ¼ 6=g2L, and producing a reduced �2 per degrees of freedom
just over unity for both channels. Errors include fitting system-
atics from combining several methods. (b) The measured � to �
mass ratio as a function of the bare mass and decreasing coupling
gL, bottom to top 6=g2L ¼ 3:5 to 4. The superimposed lines are
ratios of the best fits in Fig. 10(a).
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from the ratio of the two parameterizations. The physical
pseudoscalar mass being constant along each of these lines,
the ratio of measured values am�=a

0m� directly deter-
mines the ratio of the lattice spacings a=a0. If a decrease
in gL is associated with an increase in the lattice spacing,
the sign of the beta function is positive, i.e., that of the
Coulomb-like phase in Fig. 2.

Generalizing, along the lines of ‘‘constant physics,’’
the slope of the line of measured values of the pseudo-
scalar mass is a direct measure of the sign of the beta
function. Figure 11 provides evidence for the Coulomb-
like phase, with a positive sign of the beta function, in
full agreement with the more naive discussion of Fig. 10.
Since the beta function is known to be negative in the
continuum limit, our results indicate a zero of the beta
function at some intermediate coupling g. We emphasize
that the location of this zero is regularization dependent,
and we reiterate the caveat at the beginning of this
section. Further, we do not claim to have directly studied
the physics around the IRFP itself. The latter type of
study is notoriously difficult, while the strategy presented
here aims at probing the emergence of conformality in an
indirect way.

VII. SUMMARYAND OUTLOOK

We summarize here the main findings of our study:
(i) For an SU(3) gauge theory with three unrooted stag-

gered fermions, corresponding to 12 continuum fla-
vors, we have observed a lattice bulk transition or
crossover which is clearly of a nonthermal nature.

(ii) We have studied the realization of the chiral sym-
metry on the weak coupling side of this transition:

the analysis of the order parameter favors chiral
symmetry restoration.

(iii) A study of the spectrum in the weak coupling phase
close to the transition favors chiral symmetry res-
toration as well.

(iv) We have derived the lines of ‘‘constant physics’’
and inferred a positive sign of the beta function,
again implying the emergence of a Coulomb-like
phase.

The above results provide evidence towards the exis-
tence of a symmetric, Coulomb-like phase on the weak
coupling side of the lattice bulk transition. In the scenario
of Refs. [3,4] and Fig. 2, such a Coulomb-like region
must be entangled to the presence of a conformal infrared
fixed point for the theory with 12 continuum flavors,
without any further transition at weaker coupling. Such
a Coulomb-like phase is not expected in ordinary QCD.
We reiterate that the evidence provided is indirect,
while we do not address the physics at the infrared fixed
point.
A few directions are a natural extension of this work.

An accurate chiral extrapolation of the chiral condensate
in the strong coupling phase, would allow to determine the
precise location of the chiral phase transition (or cross-
over). Establishing the nature of such a bulk transition
might shed light on the possible emergence of an ultra-
violet fixed point in the continuum theory at strong cou-
pling [19]. It is also important to notice that a way to
discriminate between the scenario of Refs. [3,4] and the
one originally proposed in Ref. [2] is the presence of a
chiral transition towards a broken phase at weaker cou-
plings. While both scenarios share the presence of con-
formality and of a Coulomb-like phase, only in the first a
range of theories exists—the conformal window—where
confinement and chiral symmetry breaking do not occur at
weak coupling. For a recent review on the subject, see
Ref. [5]. In addition, more extended results on the mass
spectrum, in particular, an analysis of the chiral partners,
would shed further light on the pattern of chiral symmetry
breaking and restoration for this theory. Work in these
directions is in progress. Alternative studies based on the
Renormalization Group analysis as proposed in [24] will
provide an independent and valuable tool to investigate
these systems. Such studies aim to directly probe the
existence of an infrared fixed point and complement in-
direct searches for conformal behavior in SUðNÞ gauge
theories with matter content.
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FIG. 11. Pseudoscalar mass along lines of constant physics.
The physical pion mass is identical along lines of constant
physics, such that a decreasing pion mass in lattice units for
increasing gL, implies an increase of the lattice spacing for
weaker couplings, signature of the Coulomb-like phase. The
pseudoscalar mass along lines of constant physics was con-
structed by interpolating along the isolines of the ratio of the
separate interpolations of pseudoscalar and vector masses.
Different polynomial interpolations produced compatible results,
and in agreement with a noninterpolated analysis of raw data.
Labels give the value of the ratio m�=m� along the isolines.

A. DEUZEMAN, M. P. LOMBARDO, AND E. PALLANTE PHYSICAL REVIEW D 82, 074503 (2010)

074503-10



[1] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
[2] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[3] T. Appelquist, J. Terning, and L. Wijewardhana, Phys.

Rev. Lett. 77, 1214 (1996).
[4] V. A. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051

(1997).
[5] E. Pallante, Proc. Sci., LAT2009 (2009) 15.
[6] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev.

Lett. 100, 171607 (2008).
[7] A. Deuzeman, M. P. Lombardo, and E. Pallante, Phys.

Lett. B 670, 41 (2008).
[8] G. T. Fleming, Proc. Sci., LAT2008 (2008) 21.
[9] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev. D

79, 076010 (2009).
[10] X.-Y. Jin and R.D. Mawhinney, Proc. Sci., LAT2008

(2008) 59.
[11] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C.

Schroeder, Proc. Sci., LAT2009 (2009) 55.
[12] A. Hasenfratz, Proc. Sci., LAT2009 (2009) 52.
[13] X.-Y. Jin and R.D. Mawhinney, Proc. Sci., LAT2009

(2009) 49.

[14] T. Appelquist, A. G. Cohen, and M. Schmaltz, Phys. Rev.
D 60, 045003 (1999).

[15] J. Braun and H. Gies, J. High Energy Phys. 06 (2006)
024.

[16] T.A. Ryttov and F. Sannino, Phys. Rev. D 76, 105004
(2007).

[17] F. Sannino, arXiv:0804.0182.
[18] P. Damgaard, U. Heller, A. Krasnitz, and P. Olesen, Phys.

Lett. B 400, 169 (1997).
[19] D. B. Kaplan, J.-W. Lee, D. T. Son, and M.A. Stephanov,

Phys. Rev. D 80, 125005 (2009).
[20] A. Kocic, S. Hands, J. B. Kogut, and E. Dagotto, Nucl.

Phys. B347, 217 (1990).
[21] S. Ejiri et al., Phys. Rev. D 80, 094505 (2009).
[22] A. Kocic, J. B. Kogut, and M.-P. Lombardo, Nucl. Phys.

B398, 376 (1993).
[23] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,

Phys. Rev. D 80, 074507 (2009).
[24] T. DeGrand and A. Hasenfratz, Phys. Rev. D 80, 034506

(2009).

EVIDENCE FOR A CONFORMAL PHASE IN SUðNÞ GAUGE . . . PHYSICAL REVIEW D 82, 074503 (2010)

074503-11

http://dx.doi.org/10.1103/PhysRevLett.33.244
http://dx.doi.org/10.1016/0550-3213(82)90035-9
http://dx.doi.org/10.1103/PhysRevLett.77.1214
http://dx.doi.org/10.1103/PhysRevLett.77.1214
http://dx.doi.org/10.1103/PhysRevD.55.5051
http://dx.doi.org/10.1103/PhysRevD.55.5051
http://dx.doi.org/10.1103/PhysRevLett.100.171607
http://dx.doi.org/10.1103/PhysRevLett.100.171607
http://dx.doi.org/10.1016/j.physletb.2008.10.039
http://dx.doi.org/10.1016/j.physletb.2008.10.039
http://dx.doi.org/10.1103/PhysRevD.79.076010
http://dx.doi.org/10.1103/PhysRevD.79.076010
http://dx.doi.org/10.1103/PhysRevD.60.045003
http://dx.doi.org/10.1103/PhysRevD.60.045003
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1103/PhysRevD.76.105004
http://dx.doi.org/10.1103/PhysRevD.76.105004
http://arXiv.org/abs/0804.0182
http://dx.doi.org/10.1016/S0370-2693(97)00355-9
http://dx.doi.org/10.1016/S0370-2693(97)00355-9
http://dx.doi.org/10.1103/PhysRevD.80.125005
http://dx.doi.org/10.1016/0550-3213(90)90558-U
http://dx.doi.org/10.1016/0550-3213(90)90558-U
http://dx.doi.org/10.1103/PhysRevD.80.094505
http://dx.doi.org/10.1016/0550-3213(93)90115-6
http://dx.doi.org/10.1016/0550-3213(93)90115-6
http://dx.doi.org/10.1103/PhysRevD.80.074507
http://dx.doi.org/10.1103/PhysRevD.80.034506
http://dx.doi.org/10.1103/PhysRevD.80.034506

