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We study the lattice spacing dependence, or scaling, of physical quantities using the highly improved

staggered quark (HISQ) action introduced by the HPQCD/UKQCD Collaboration, comparing our results

to similar simulations with the asqtad fermion action. Results are based on calculations with lattice

spacings approximately 0.15, 0.12, and 0.09 fm, using four flavors of dynamical HISQ quarks. The strange

and charm quark masses are near their physical values, and the light-quark mass is set to 0.2 times the

strange-quark mass. We look at the lattice spacing dependence of hadron masses, pseudoscalar meson

decay constants, and the topological susceptibility. In addition to the commonly used determination of the

lattice spacing through the static quark potential, we examine a determination proposed by the HPQCD

Collaboration that uses the decay constant of a fictitious ‘‘unmixed s�s’’ pseudoscalar meson. We find that

the lattice artifacts in the HISQ simulations are much smaller than those in the asqtad simulations at the

same lattice spacings and quark masses.
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I. INTRODUCTION AND MOTIVATION

The ‘‘highly improved staggered quark,’’ or HISQ, ac-
tion was developed by the HPQCD/UKQCD Collaboration
to reduce the lattice artifacts associated with staggered
quarks in lattice QCD calculations [1–3]. While signifi-
cantly more expensive than the asqtad action used in the
MILC Collaboration’s long-running program of QCD
simulations with three dynamical quark flavors [4], it is
still very economical compared with nonstaggered quark
actions.

The initial studies of the HISQ action by the HPQCD/
UKQCD Collaboration demonstrated the reduction of taste
symmetry breaking and improvements in the dispersion
relation for the charm quark by using the HISQ action for
valence quarks on quenched lattices and lattices generated
with asqtad sea quarks [1–3]. Further work with this action,
again implemented for the valence quarks with asqtad sea
quarks, has demonstrated impressive precision for charmo-
nium and heavy-light meson physics [5–7].

As a first stage in a complete program of QCD simula-
tions using the HISQ action for dynamical quarks, we have
generated ensembles of lattices at three different lattice
spacings with four flavors of dynamical quarks, where the
light-quark mass is fixed at two-tenths of the strange-quark
mass, and the strange and charm quark masses are near
their physical values. This allows us to test scaling, or
dependence of calculated quantities on the lattice spacing.
The purpose of this paper is to report on these tests at fixed
quark mass. Where possible, we compare the lattice spac-
ing dependence of physical quantities with the HISQ ac-
tion to their dependence using the asqtad action at the same
quark mass and lattice spacings. We look at the static quark
potential, splittings among the different tastes of pions,
masses of the rho and nucleon, pseudoscalar meson decay
constants, and the topological susceptibility. We empha-
size that all of this is done at a fixed, and unphysically
large, light-quark mass—our purpose here is to make a
controlled study of the dependence on lattice spacing.

II. METHODS AND LATTICE DATA

There are four major differences between these HISQ
simulations and our earlier asqtad simulations.
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First, the HISQ simulations include the effects of a
dynamical charm quark. We expect that the effects of
dynamical charm will be very small for the quantities
studied here, but with modern algorithms it is cheap to
include the charm quark, and we plan to investigate quan-
tities involving dynamical charm in the future.

Second, the one-quark-loop contributions to the pertur-
bative calculation of the coefficients in the Symanzik
improved gauge action are included. At the time the asqtad
simulation program was started these corrections were not
available, but they have now been computed for both the
asqtad and HISQ actions, and are unexpectedly large [8].

Third, in the HISQ action the parallel transport of quark
fields is done with a link that is highly smeared.
Specifically, it is first smeared using a ‘‘fat7’’ smearing,
then projected onto a unitary matrix, and then smeared
again with an ‘‘asqtad’’ smearing [3]. The use of the asqtad
smearing in the second iteration, together with the addition
of the Naik term, or third-nearest-neighbor coupling, in 6D,
ensures that the fermion action is formally order a2 im-
proved. The use of two levels of smearing produces a
smooth gauge field as seen by the quarks, and this explains
the reduced taste symmetry violations.

Finally, the third-nearest-neighbor term in the charm
quark 6D is modified to improve the charm quark dispersion
relation [3]. These last two differences combine to make up
what is usually meant by ‘‘the HISQ action,’’ although in
principle they could be introduced independently.

Where practical, since our purpose is to compare the
lattice artifacts in the two actions, we use the same analysis
for the HISQ data as was used for the asqtad data.

Table I shows the parameters of the three HISQ runs
used in these tests. Detailed information about the asqtad
ensembles can be found in Ref. [4].

The HISQ lattices were generated using the rational
hybrid Monte Carlo algorithm [10]. Issues with imple-
menting this algorithm for the HISQ action have been
discussed in Ref. [11]. We used different molecular dy-
namics step sizes for the gauge and fermion parts of the
action, with three gauge steps for each fermion step [12].

We used the Omelyan integration algorithm in both the
gauge and fermion parts [12,13]. Five pseudofermion fields
were used, each with a rational function approximation for
the fractional powers. The first implements the ratio of the
roots of the determinants for the light and strange sea
quarks to the determinant for three heavy ‘‘regulator’’
quarks with mass amr ¼ 0:2. That is, it corresponds to

the weight detðMðmlÞÞ1=2 detðMðmsÞÞ1=4 detðMðmrÞÞ�3=4.
The next three pseudofermion fields each implement
the force from one flavor of the regulator quark, or the
fourth root of the corresponding determinant [14]. The
final pseudofermion field implements the dynamical charm
quark.
Rational function approximations were used for the

fractional powers of the matrices [10,15]. In the molecular
dynamics evolution we used a 9th order approximation for
the pseudofermion field containing the light quarks, and a
7th order approximation for the three regulator fields and
the charm quark pseudofermion. For the heat bath updating
of the pseudofermion fields and for computing the action at
the beginning and end of the molecular dynamics trajec-
tory, we used 11th order and 9th order approximations.
These approximations comfortably exceeded the required
accuracy, but since a multimass conjugate gradient routine
is used for the sparse matrix solutions, adding extra terms
in these approximations has minimal cost.
In order to make this paper self-contained, we summa-

rize the action in Appendix A, and discuss some algorith-
mic issues specific to the HISQ action in Appendixes B, C,
and D.

III. AUTOCORRELATIONS IN SIMULATION TIME

Estimating statistical errors on any physical quantity
requires taking into account the fact that successive
sample configurations are not completely statistically
independent, and calculations of statistical errors that
ignore these autocorrelations are generally underestimates
of the true errors. The amount of autocorrelation depends
strongly on the quantity under consideration, so we present

TABLE I. Parameters of the HISQ runs with ml ¼ 0:2ms. Here �N is the correction for the three-link (Naik) term in the charm quark
action. These values differ slightly from the expression in Appendix A because they do not include the distinction between bare and
tree-level quark mass [see Eq. (24) in Ref. [3] ]. The expression in Appendix A is used in all more recent ensembles. The number of
equilibrated lattices is Nlats. The separation of the lattices in simulation time is St, the length of a trajectory in simulation time is Lt, the
molecular dynamics step size is �, and the fraction of trajectories accepted is ‘‘Acc.’’ Our definition of the step size is such that there is
one evaluation of the fermion force per step, so a complete cycle of the Omelyan integration algorithm includes two fermion-action
steps and six gauge-action steps. The physical lattice spacing given in this table uses the three flavor determination of r1 ¼
0:3117ð6Þðþ12

�31Þ fmmade using f� to set the scale on the asqtad ensembles [9]. It should be noted that when chiral and continuum limits

of 2þ 1þ 1 flavor calculations are completed, a 2þ 1þ 1 flavor determination of r1 will supercede this.

10
g2

aml ams amc �N Size u0 Nlats St Lt � Acc. r1=a a (fm)

5.8 0.013 0.065 0.838 �0:3582 163 � 48 0.855 35 1021 5 1.0 0.033 0.73 2.041(10) 0:1527ð þ7
�16Þ

6.0 0.0102 0.0509 0.635 �0:2308 243 � 64 0.863 72 1040 5 1.0 0.036 0.66 2.574(5) 0:1211ð þ6
�12Þ

6.3 0.0074 0.037 0.440 �0:1205 323 � 96 0.874 164 878 6 1.5 0.031 0.68 3.520(7) 0:0886ðþ4
�9Þ
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autocorrelations for a few simple but relevant quantities.
To parametrize autocorrelations we use the dimensionless
coefficient

C�t ¼ hxixiþ�ti � hxii2
hx2i i � hxii2

; (1)

where xi is the measurement at simulation time i and �t is
the time separation of the two measurements. As discussed
above, in these simulations successive lattices were saved
at time separations �t ¼ 5 for the a ¼ 0:15 and 0.12 fm
ensembles, and �t ¼ 6 for the 0.09 fm ensemble.
However, measurements of the plaquette and �c c were
made every trajectory. Note that determination of these
autocorrelation coefficients is numerically difficult, even
on time series of order 1000 lattices. This is partly because
of the practical necessity of using the average (hxii) from
our simulation, rather than the true average. (Note, how-
ever, that for the topological charge we know that the true
average is zero.) Estimation of errors on these coefficients
is also noisy. Here we have estimated the errors from the
variance of autocorrelations measured on five separate
segments of the time series, but for the central value quote
the result from the full time series.

The autocorrelations can be taken into account either by
blocking the data (averaging over intervals of time) and
then computing the average of the blocked values, or by
multiplying the error estimate ignoring autocorrelations by
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

X
t

Ct

s
; (2)

with the sum suitably truncated. For complicated functions
of observables a jackknife analysis can be used, and
Eqs. (1) and (2) applied to the sequence of jackknife
results.

We begin with the plaquette and strange-quark �c c ,
simple observables which were measured at each trajec-
tory. The first two panels of Fig. 1 show the autocorrelation
of these quantities as a function of separation in simulation
time. Here �c c is estimated using a single random source
vector. Thus part of its variance comes from the random
source, and part from the variation of the lattice. For this
reason, its autocorrelation does not approach one at small
time. We show the strange-quark �c c because it generally
shows larger autocorrelations than the light-quark �c c .
Also, relevant to future ensembles at other light-quark
masses, it will be useful to compare autocorrelations using
�c c at a fixed physical quark mass. These two simple
quantities provide a good illustration of how autocorrela-
tions differ among various quantities.
Table II shows these quantities at the time separation of

the stored lattices, and a selection of autocorrelations of
more physically relevant quantities. In particular, it con-
tains autocorrelations of the pion and rho correlators
(h�ð0Þ�ðDÞi and h�ð0Þ�ðDÞi) at a distance D equal to the
minimum distance that might be used in a mass fit, and
would be one of the important contributors to the mass.
This table also contains autocorrelations of single elimina-
tion jackknife measurements of the pion mass, the pion
decay constant (amplitude of a pion correlator), and the rho
meson mass.
The topological charge is generally expected to have a

long autocorrelation time. In fact, in the continuum limit,
tunnelings would be expected to be completely suppressed
in a simulation algorithm where the configurations evolve
continuously. Such a simulation would still give correct
results in infinite volume, but would have power-law finite
volume effects [16]. The right panel in Fig. 1 shows the
autocorrelation of the topological charge in the a ¼ 0:12
and 0.09 fm ensembles. As expected, the autocorrelation
time is larger for this quantity than for the others, and is

FIG. 1 (color online). Autocorrelation C�t in simulation time of the plaquette (left panel), strange-quark �c c (center panel), and
topological charge (right panel). Note that the horizontal scale is different in each of the three panels. Errors on the autocorrelation
were estimated by dividing the time series into five subsets and averaging the autocorrelations from each subset. The vertical arrows in
the left panel indicate the time separation between stored lattices, used in computing the potential, spectrum, and other quantities.
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much larger on the finer ensemble. The long autocorrela-
tion time means that it will be important to check the size
of finite volume effects; such runs are planned.

In the sections below, the static quark potential was
computed using block sizes of 50 time units for a ¼ 0:15
and 0.12 fm, and 60 time units for a ¼ 0:09 fm. For the
pseudoscalar meson plot, block sizes of 20 and 24 time
units were used. Autocorrelations for the rho and nucleon
masses are small, and were neglected here.

IV. THE STATIC QUARK POTENTIAL

Although it is not a physical observable, the potential
between two infinitely heavy test quarks is well defined on
the lattice and can be computed with high precision and
comparatively little effort. Therefore it has become con-
ventional in lattice simulations to use a length scale based
on the static quark potential to relate lattice simulations
with different couplings, and to translate the dimensionless
results of lattice simulations into physical units. We gen-
erally use r1 defined by r21Fðr1Þ ¼ �1, where FðrÞ is the
force � @VðrÞ

@r . The scale r0 defined by r20Fðr0Þ ¼ �1:65 is

also commonly used. [The idea behind scales of this form
[17] is that they locate the transition region between the
Coulomb potential at short distances, r2FðrÞ ¼ � 4

3�, and

the linear potential at long distances, r2FðrÞ ¼ ��r2.]
In order to determine r1, we measure the static potential

at discrete distances r2=a2 ¼ n2x þ n2y þ n2z , and for a

range of r approximately centered at r1, we fit it to the
functional form [18]

VðRÞ ¼ Cþ B

R
þ �Rþ �

�
1

R

��������lat
� 1

R

�
: (3)

Here 1
R jlat is the the lattice Coulomb potential, 1

R jlat ¼
4�

R d3p
ð2�Þ3 D

ð0Þ
00 ðpÞeipR, with Dð0Þ

00 ðpÞ the free lattice gluon

propagator calculated with the Symanzik improved gauge
action, and 1=R is the continuum Coulomb potential.
Figure 2 shows the static quark potential at a � 0:09 fm

for the HISQ ensemble and a corresponding asqtad
ensemble. Overall, the two potentials are very similar.
For reference, the value of r1=a for this HISQ ensemble

in Table I came from a fit to the range
ffiffiffi
5

p � r=a � 6, or
0:63< r=r1 < 1:70. The inset in Fig. 2 makes visible some
of the lattice artifacts at short distance. In particular, the
HISQ point at r=r1 ¼ 0:57 and the asqtad point at 0.53
correspond to separation (2, 0, 0) along a lattice axis, and
are visibly displaced below the trend. Note that artifacts of
this kind are not decreased with the HISQ action, and we
do not expect them to be decreased. In fact, in the contin-
uum limit we expect them to be described by Eq. (3) with
� ¼ B. [The fit to this potential has B ¼ �0:441ð6Þ and
� ¼ �0:52ð11Þ.] Artifacts like this, at fixed number of
lattice spacings, simply move to r ¼ 0 in the continuum
limit. Also note that these artifacts diminish quickly with
increasing r. For example, the HISQ point at r=r1 ¼ 0:95
is really two points, with ~r=a ¼ ð3; 0; 0Þ and (2, 2, 1), and
the difference between the two potential values is invisible.

TABLE II. Autocorrelation C�t of various quantities between
successive lattices in the ensembles. Lattices are separated by
five time units for a ¼ 0:15 and 0.12 fm, and by six time units
for a ¼ 0:09 fm. As discussed in the text, the autocorrelations
for �c c are between estimates made with one random source.
Autocorrelations for the correlators h�ð0Þ�ðDÞi and h�ð0Þ�ðDÞi
are given at a spatial distance D which is the minimum distance
used in a typical fit for the mass. For the pion correlator these
distances are D ¼ 15, 20, and 30, respectively, and for the �
correlator they are D ¼ 6, 7, and 10, respectively. For the pion
and rho mass and f� the autocorrelations are from single
elimination jackknife samples.

Operator 0.15 fm 0.12 fm 0.09 fm

h 0.311(25) 0.300(10) 0.359(14)
�c c light 0.135(24) 0.151(27) 0.192(34)
�c c strange 0.234(38) 0.265(27) 0.259(19)

h�ð0Þ�ðDÞi 0.034(40) 0.084(46) 0.177(21)

h�ð0Þ�ðDÞi 0.055(24) 0.074(24) 0.061(18)

m� 0.008(14) 0.182(35) 0.249(51)

f� 0.123(21) 0.150(23) 0.184(45)

m� 0.036(38) 0.045(09) 0.002(24)

Qtopo � � � 0.500(25) 0.754(36)

FIG. 2 (color online). The static quark potential with the
HISQ and the asqtad actions. The HISQ results are from the
a � 0:09 fm run, and the asqtad results are from a lattice with
almost the same lattice spacing and light-quark mass about 0.2
times the correct strange-quark mass (aml ¼ 0:004 65). In order
to match the potentials, the plot is in units of r1, while rulers in
units of the lattice spacing are shown at r1VðrÞ ¼ 0. A constant
has been added to each potential so that Vðr1Þ ¼ 0. The solid
lines (essentially superimposed) show the fit from Eq. (3) for the
two runs (evaluated with � set to zero). The inset magnifies a
part of this plot at short distance to show the lattice artifacts
discussed in the text.
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We expect that these short-distance lattice artifacts in the
static quark potential are mostly controlled by the gauge
actions, which differ only in the fermion contributions to
the one-loop corrections.

We do expect scaling violations proportional to a4 and to
a2�2 at physical distances for both actions, and these
would be visible in quantities like r0=r1 or r1

ffiffiffiffi
�

p
.

However, it is not possible to make a definitive comparison
of scaling violations in these quantities between the two
actions yet, since the addition of the dynamical charm
quark to the HISQ simulations could also have small
effects on these quantities.

For reference, Table III shows the parameters of the fits
in Fig. 2, defined in Eq. (3). Note that in this figure the
fitting range used for the HISQ run is the same as used for
the asqtad ensemble, and so differs from that used in
finding the value of r1=a in Table I. Also note that the
quantity �r21 parametrizes the potential in the range around
r1, and should not be used as a measurement of the long-
distance string tension. Finally, note that since the dimen-
sionful parameters are expressed in units of r1, which is
found from the same fit, one relation between B and � is
automatically enforced. In Fig. 2 this constraint forces both
fits to have the same slope at r ¼ r1 [since r1 is defined by
the slope (force) at this distance], and a constant was
subtracted to make both fits be zero at this point.

V. SCALING TESTS

Reduction of taste splittings among the pion masses with
HISQ valence quarks was demonstrated with quenched
gauge fields in Refs. [1,2], and with asqtad sea quarks in
Ref. [3], and there is little reason to expect it to be different
with dynamical HISQ sea quarks. However, in view of the
importance of this quantity, we show splittings for all of the
different tastes of pions in Fig. 3, comparing results with
HISQ quarks (both valence and sea) to earlier results with

asqtad quarks. In this figure, we see that the expected
reduction in taste splittings happens, with roughly a factor
of 3 reduction relative to asqtad calculations at the same
lattice spacing.
The main purpose of this study was to see if the im-

provements in the action designed to reduce taste symme-
try violations translate into decreased lattice spacing
dependence in other quantities. We begin with the mass
of the light-quark vector meson, or �. In Fig. 4 we show the
mass of the � meson in units of r1. Here we have asqtad
results for several light-quark masses at each lattice spac-
ing, but HISQ results for only one light-quark mass. The
light-quark masses themselves are regularization depen-
dent, so to plot asqtad and HISQ results on the same
footing we use the Goldstone pion mass in units of r1 for
the horizontal axis. Note that for ml ¼ 0:2ms, the light-
quark mass used in the HISQ simulations, and for the
lattice sizes used here (� 2:9 fm), the vector meson is
stable against decay to two pions. Results for the nucleon
mass are similar, and are shown in Fig. 5. In Figs. 4 and 5
the HISQ masses show smaller dependence on the lattice
spacing than the asqtad masses, with the same continuum
limits within the statistical errors. Roughly speaking, the
HISQ results are similar to the asqtad results at the next
smaller lattice spacing.

TABLE III. Parameters of the potential fits in Fig. 2. As
discussed in the text, in this comparison the fit ranges for the
HISQ potential were chosen to match those used for the asqtad
potential, and so these tabulated parameters differ slightly from
those used in the rest of this paper. Note that the lattice mass is
regularization dependent—in both of these ensembles the light-
quark mass is about one-fifth of the correct strange-quark mass.

Asqtad HISQ

Fit range 2.01–6.5 2.01–6.5

Time separations 5–6 5–6

10=g2 7.085 6.30

aml=ams=amc 0:004 65=0:031=na 0:0074=0:037=0:440
aC 0.849(3) 0.824(3)

B �0:432ð4Þ �0:450ð5Þ
�r21 0.568(6) 0.554(6)

r1=a 3.697(7) 3.510(7)

FIG. 3 (color online). Taste splittings among the pions. The
asqtad results used configurations with 2þ 1 flavors of dynami-
cal quarks, and the HISQ results 2þ 1þ 1 flavors. The quantity
plotted is r21ðM2

� �M2
GÞ, where M� is the mass of the non-

Goldstone pion and MG is the mass of the Goldstone pion.
Reading from top to bottom, the non-Goldstone pions are
the �s (box), �0 (fancy box), �i (fancy plus), �io (plus), �ij

(diamond), �i5 (cross), and �05 (octagon). r21ðM2
� �M2

GÞ is

known to be almost independent of the light-quark mass. The
vertical bar at the upper left shows the size of a factor of 3,
roughly the observed reduction in taste splittings, while the
sloping solid line shows the theoretically expected dependence
on lattice spacing. Nearly degenerate points have been shifted
horizontally to improve their visibility.
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Although we have chosen to present these results as
improved scaling of the � and nucleon masses, since we
are plotting the dimensionless quantities M�r1 and MNr1,

they could equally well be described as improved scaling
of r1 when a hadron mass is chosen to be the length
standard.
The pseudoscalar meson decay constants are important

for lattice determinations of Cabibbo-Kobayashi-Maskawa
matrix elements, and can be computed with high precision.
In fact, our current best determination of r1 in physical
units comes from matching the asqtad lattice results to the
physical value of f�. These decay constants for light
quarks have been extensively studied using the asqtad
ensembles [4,19]. The HPQCD Collaboration has com-
puted these decay constants in a mixed action calculation,
with HISQ valence quarks on the asqtad sea-quark ensem-
bles, and used them in a determination of the physical
value of r1 [20]. Figure 6 shows the pseudoscalar decay
constant with one of the valence quarks fixed at approxi-
mately the strange-quark mass as a function of the mass of
the other valence quark. (At the physical light-quark mass,
this is just fK.) To facilitate the comparison, we have used
the ratio of the light-quark mass to the corrected strange-
quark mass in the corresponding ensemble for the horizon-
tal axis. The reduction in lattice artifacts is obvious, and it
can also be seen that the HISQ points lie near the contin-
uum limit of the asqtad points. Once again, we remark that
since the plotted quantity is r1fPS, this could equally well
be described as scaling of r1 or scaling of fPS.
The topological susceptibility is a particularly important

test here, since it is computed solely from the gluon con-
figurations that are generated, without involving HISQ or
asqtad valence quarks. Therefore improvements in the
scaling of the topological susceptibility directly test
whether the change of the sea-quark action has the ex-
pected effect on the gluon configurations that are gener-
ated. Our technique for calculating the topological
susceptibility is set out in detail in Ref. [21]. Here we
just note that this technique is based on measurement of
a density-density correlator, and hence is not limited by
long autocorrelation times for the overall topological
charge. Figure 7 shows the topological susceptibility for
most of the asqtad ensembles, and HISQ results for the a �
0:12 fm and a � 0:09 fm ensembles. The HISQ point with
a � 0:12 fm lies near the asqtad points with a � 0:09 fm,
and the HISQ point with a � 0:09 fm is near the asqtad
points with a � 0:06 fm, demonstrating a decrease in
lattice artifacts. Note that the HISQ points are to the left
of the corresponding asqtad points, which are indicated by
arrows in the figure. This is because the horizontal axis is
the mass of the taste singlet pion (the heaviest pion taste),
and the reduction in taste symmetry breaking moves the
points to the left. It is the movement down relative to the
asqtad points that represents an improvement in the gluon
configurations.

FIG. 4 (color online). Vector meson (�) masses in units of r1.
Here the bold (red) points are the HISQ simulations with ml ¼
0:2ms, and the lighter (blue) points are asqtad results for various
light-quark masses. The a � 0:06 fm asqtad point immediately
to the right of the a � 0:09 fm HISQ point has been displaced to
the right to make it visible. It in fact falls on top of the a �
0:09 fm HISQ point. The cross sign at lower left is the physical �
mass. The error on the physical mass point is just the error on the
physical value of r1.

FIG. 5 (color online). Nucleon masses in units of r1. Here the
bold (red) points are the HISQ simulations withml ¼ 0:2ms, and
the lighter (blue) points are asqtad results for various light-quark
masses. The cross at lower left is the physical nucleon mass.
The solid magenta line is a continuum extrapolation of a
chiral perturbation theory fit to the asqtad nucleon masses, while
the dotted green lines are from the same fit at finite lattice
spacing [32].
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VI. USING fss TO SET THE SCALE

In Figs. 4–6 it can be seen that r1fK and the hadron
masses in units of r1 all increase as the lattice becomes
coarser. This common dependence on lattice spacing could
be absorbed into a lattice spacing dependence of r1. Put
more simply, we could use one of these quantities to set the
lattice spacing. Such a procedure has been introduced and
studied by the HPQCD Collaboration in Ref. [20]. In
particular, they usethe decay constant of a fictitious
‘‘unmixed �ss’’ pseudoscalar meson, which is an isospin
nonsinglet meson with both valence quarks having mass
ms, to set the scale. We call this decay constant fss. Like r1,
fss is not a quantity that can be directly determined from
experiment, and so, like r1, its physical value is eventually
determined by matching to some precisely known quantity
such as f� or mass splittings of heavy quark mesons. In
practice, the HPQCD Collaboration determines fss and the
corresponding meson mass Mss using a next-to-leading-
order chiral fit (augmented with discretization corrections)
to their lattice data, and inputs of the experimental values
for f�, fK, M�, and MK. In fact, lowest order chiral
perturbation theory with these experimental values alone
(without lattice data) gets within �1% of the HPQCD
results [20]. We prefer not to input the experimental value
fK in such determinations, since we take fK as an output of
our lattice calculations that gives a result for Vus [4,19].
Indeed, f�, M�, and MK alone are adequate for determin-
ing the physical scale and the quark massesml andms, and
hence all light-quark quantities.

FIG. 6 (color online). Pseudoscalar decay constant. One valence-quark mass, mA, is varied while the second is held fixed near the
strange-quark mass. All ensembles used a light sea-quark mass of about 0.2 times the strange-quark mass. The left-hand panel shows
asqtad results for four different lattice spacings and the right-hand panel shows HISQ results for three lattice spacings.

FIG. 7 (color online). The topological susceptibility. Points
with the asqtad action are shown for several lattice spacings
and quark masses, and the HISQ results for a � 0:12 fm and
a � 0:09 fm with ml ¼ 0:2ms. For the horizontal axis we use
the mass of the taste singlet pion, since in lowest order chiral
perturbation theory the topological susceptibility is a function of
this mass [33]. The curves in the figure come from a chiral
perturbation theory fit to the asqtad data. The asqtad results are
updated from Ref. [34] and are discussed further in Refs. [4,21].
The two arrows indicate the locations of asqtad points with
lattice spacing and quark mass similar to the two HISQ points.
(In the case of the a � 0:09 fm HISQ point, the quark mass falls
between two of the masses of the asqtad points.)
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An advantage of using fss to set the scale on a given
lattice ensemble is that it can be determined to high accu-
racy in the simulations. However, it has the disadvantage
that it depends on the choice of valence quarks, so the
lattice spacing assigned to a particular ensemble will de-
pend slightly on whether it is determined with asqtad
quarks, HISQ quarks, or some other formalism.

Table IV shows the lattice spacings of the three HISQ
ensembles used in this paper, and some comparable
asqtad ensembles, using r1 and fss as the length standards.
For the asqtad ensembles, we show the effect of using
either asqtad or HISQ valence quarks to determine the
lattice spacing. Note that, as expected, the differences
among the scale determinations decrease as the lattice
spacing decreases. The values of fss and the corresponding

strange-quark mass ams were determined by fitting a qua-
dratic polynomial through masses and decay constants at
valence masses equal to 1.0, 0.8, and 0.6 times the sea
strange-quark mass. Table IV also shows the value of the
strange-quark mass ams given by this interpolation or
extrapolation. Figure 8 shows the differences in length
scale (relative to the determination from r1) as a function
of lattice spacing. In this figure it can be seen that these
differences are vanishing in the expected way as the lattice
spacing decreases.
In Fig. 9 we show the rho mass data from Fig. 4 replotted

using fss to set the scale. Replotting the nucleon masses in
Fig. 5 would produce similar results. (Of course, one could
then make a plot showing the dependence of r1fss on
sea-quark mass and lattice spacing.)

TABLE IV. Lattice spacings in fm from r1 ¼ 0:3117 fm, fss with asqtad valence quarks, and fss with HISQ valence quarks. The first
five columns identify the ensemble by the sea-quark action, the gauge coupling 10=g2, and the sea-quark masses. The horizontal line
separates ensembles with asqtad sea quarks (above) from those with HISQ sea quarks (below). The values for HISQ valence quarks on
asqtad sea ensembles are taken from Ref. [20]. The errors on aðr1Þ are statistical only—they do not include the errors in r1 ¼
0:3117ð6Þðþ12

�31Þ fm. Similarly, the errors on aðfss � asqtadÞ and aðfss � HISQÞ for the HISQ ensembles do not include any errors in the

physical value of fss. The numbers following the fss lattice spacings are the value of the valence strange-quark mass ams at which the
desired ratio is obtained. We use the values fss ¼ 181:5 MeV and fss=Mss ¼ 0:2647 from Ref. [20].

Action 10=g2 aml ams amc aðr1Þ aðfss � asqtadÞ ams aðfss � HISQÞ ams

Asqtad 6.76 0.01 0.05 0.1178(2) 0.1373(2) 0.0467 0.1264(11) 0.0553

Asqtad 7.09 0.0062 0.031 0.0845(1) 0.0905(3) 0.0286 0.0878(7) 0.0362

Asqtad 7.46 0.0036 0.018 0.0588(2) 0.0607(1) 0.0187 0.0601(5) 0.0233

Asqtad 7.81 0.0028 0.014 0.0436(2) 0.0444(1) 0.0133 0.0443(4) 0.0163

HISQ 5.80 0.013 0.065 0.838 0.1527(7) � � � � � � 0.1558(3) 0.0720

HISQ 6.00 0.0102 0.0509 0.635 0.1211(2) � � � � � � 0.1244(2) 0.0549

HISQ 6.30 0.0074 0.037 0.440 0.0884(2) � � � � � � 0.0900(1) 0.0374

FIG. 8 (color online). Differences in determinations of the
length scale using different standards. In the legend, the symbol
types are labeled as ‘‘valence on sea.’’ The ‘‘HISQ on asqtad’’
points are taken from Ref. [20].

FIG. 9 (color online). Vector meson (�) masses in units of fss.
The data and the meaning of the symbols are the same as in
Fig. 4. The vertical and horizontal scales in the figure correspond
to the same ranges as in Fig. 4.
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VII. CONCLUSIONS

Using simulations with a fixed and unphysically large
light-quark mass, we see that dimensionless ratios of sev-
eral hadronic quantities show smaller dependence on lat-
tice spacing with the HISQ action than with the asqtad
action. Roughly, for the quantities that we checked, HISQ
simulations at lattice spacing a appear to have similar
lattice artifacts as asqtad simulations at lattice spacing
2
3 a, leading to substantial savings in simulation costs.

This program is continuing with computations at different
light sea-quark masses, so that both the extrapolation to the
continuum limit and the extrapolation to the physical light-
quark mass can be controlled.
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APPENDIX A: GAUGE AND FERMION ACTIONS

For completeness, we summarize the gauge and fermion
actions in this appendix.

The gauge action is a tadpole-improved [22] one-loop-
Symanzik-improved gauge action [23] including the ef-
fects of the quark loops in the one-loop coefficients [8].
The number of flavors nf is set to four in these simulations.

This gauge action involves three kinds of loops: the
1� 1 loop, or plaquette P, the 2� 1 loop, or rectangle

R, and the twisted loop T, which traverses paths such as
þx̂, þŷ, þẑ, �x̂, �ŷ, �ẑ. Then

Sg ¼�

�
CP

X
P

�
1� 1

3
ReTrðPÞ

�

þCR

X
R

�
1� 1

3
ReTrðRÞ

�
þCT

X
T

�
1� 1

3
ReTrðTÞ

��
;

(A1)

where the sums run over all distinct positions and orienta-
tions of the loops. The coefficients are

CP ¼ 1:0;

CR ¼ �1

20u20
ð1� ð0:6264� 1:1746nfÞ lnðu0ÞÞ;

CT ¼ 1

u20
ð0:0433� 0:0156nfÞ lnðu0Þ:

(A2)

In this expression the strong coupling constant appears in
the form �s ¼ � lnðu0Þ=1:303 615. With this normaliza-
tion � ¼ 10

g2
. We determine the tadpole coefficient u0 from

the average plaquette, u0 ¼ ðhReTrPi=3Þ1=4.
The fermion factor in the partition function is

lnðSfÞ ¼
Y
f

ðdetð2 6Dþ 2mfÞÞ1=4: (A3)

The Dirac operator 6D is constructed from smeared links.
Two levels of smearing are used, with a projection onto an
element of U(3) after the first smearing. The fundamental
gauge links are U�ðxÞ, the fat links after a level one fat7

smearing are V�ðxÞ, the reunitarized links are W�ðxÞ, and
the fat links after level two asqtad smearing are X�ðxÞ. The
first level smeared links V are constructed from the U as a
sum over products of links along paths from x to xþ �̂, or
parallel transports.

V�ðxÞ ¼
X
paths

Y
path

UðyÞðpathÞ: (A4)

Table V gives the coefficients used in the two levels of
smearing. The nearest neighbor part of 6D uses the twice-
smeared links X while the third-nearest-neighbor part uses
the once-smeared and unitarized links W:

2 6Dx;y ¼
X
�

f	xþ�̂;yX�ðxÞ�	x��̂;yX
y
�ðx� �̂Þg

þ ð1þ �NÞf	xþ3�̂;yW�ðxÞW�ðxþ �̂ÞW�ðxþ 2�̂Þ
�	x�3�̂;yW

y
�ðx� 3�̂ÞWy

�ðx� 2�̂ÞWy
�ðx� �̂Þg:

(A5)

In Eq. (A5) and Table V, �N is a mass-dependent
correction to the tree-level improvement of the quark
dispersion relation, or the ‘‘Naik term.’’ This correction
is negligible and set to zero for the light and strange quarks.
For the charm quark we use
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�N ¼ � 27

40
ðamcÞ2 þ 327

1120
ðamcÞ4 � 15 607

268 800
ðamcÞ6

� 73 697

3 942 400
ðamcÞ8: (A6)

In this expression amc is the bare mass in the quark action,
and this formula combines Eqs. (24) and (26) in Ref. [3].
The numerical values of �N used in our simulations are
given in Table I.

APPENDIX B: HISQ FORCE
CALCULATION DETAILS

Here we summarize the details of the HISQ force cal-
culation. For clarity in this and the next appendixes
we suppress the x dependence and the direction index in
the notation of the links. Most of this material appeared
earlier in Ref. [11]. For the force calculation we adopted
the strategy of Refs. [24,25], in which the derivative of the
smeared action is calculated by repetitive application
of the chain rule:

@Sf
@U

¼ @Sf
@X

@X

@W

@W

@V

@V

@U
; (B1)

where Sf is the fermion part of the action, U are funda-

mental gauge links, V, the fat links after level one fat7
smearing, W, the reunitarized links, and X, the fat links
after level two asqtad smearing. In our code, for the parts
that involve smearing, we follow the same procedure as for
the asqtad action. This procedure is described in
Refs. [26,27], so we do not repeat it here. The algorithm
for the reunitarization part is detailed below.

We have chosen to project links to U(3), rather than
SU(3) as in the original HPQCD/UKQCD formulation, for
two reasons:

(1) SU(3) projection requires calculation of the third
root of the determinant, which involves a phase
that can initially be restricted to, e.g., the interval
½��=3; �=3Þ. However, during the molecular dy-
namics evolution, this phase has to evolve continu-
ously (to prevent the appearance of 	-function-like
forces) and may cross into ½�=3; 2�=3Þ interval, and
so on. Thus, SU(3) projection requires tracking the
evolution of the phase for each link during molecu-
lar dynamics.

(2) For the U(3) group, different methods of projection
yield the same answer for the projected link, W.

For instance, the default method in our code is polar
projection: one builds a Hermitian matrix

Q ¼ VyV (B2)

and then

W ¼ VQ�1=2 (B3)

belongs to U(3), i.e.,

WyW ¼ ðQ�1=2ÞyVyVQ�1=2 ¼ Q�1=2QQ�1=2 ¼ 1:

(B4)

It is important that closed-form expressions for Q�1=2 can
be derived [28] and, thus, the whole procedure can be
implemented analytically.

One may expect, given that Q�1=2 is a singular opera-
tion, that when one of the eigenvalues ofQ is close to 0, the
numerical accuracy in evaluation of W becomes poor.
In fact, in simulations one occasionally encounters large
deviations from unitarity:

jWyW � 1j �Oð1Þ: (B5)

TABLE V. Paths and coefficients used in smearing the links. It is understood that all distinct
rotations and reflections of each path are used in the action. In specifying paths in this table,
directions x̂ and ŷ, etc., are different. The multiplicity is the number of such paths contributing to
a single smeared link. The first block of the table gives the coefficients used in the fat7 smearing
used to construct V from U. The second block gives the coefficients in the ‘‘asqtad+’’ smearing
used to compute X from the unitarized links W, and the final line is the coefficient of the third-
nearest-neighbor term. Note that the coefficient of the ‘‘Lepage’’ term that corrects the form
factor at small momenta is twice that of the single smearing asqtad action.

Name Path Multiplicity Coefficient

Single link þx̂ 1 1=8
3-staple þŷþ x̂� ŷ 6 1=16
5-staple þŷþ ẑþ x̂� ẑ� ŷ 24 1=64
7-staple þŷþ ẑþ t̂þ x̂� t̂� ẑ� ŷ 48 1=384

Single link þx̂ 1 1=8þ 3=4þ 1=8ð1þ �NÞ
3-staple þŷþ x̂� ŷ 6 1=16
5-staple þŷþ ẑþ x̂� ẑ� ŷ 24 1=64
7-staple þŷþ ẑþ t̂þ x̂� t̂� ẑ� ŷ 48 1=384
Lepage þŷþ ŷþ x̂� ŷ� ŷ 6 �1=8

Naik þx̂þ x̂þ x̂ 1 �1=24ð1þ �NÞ
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Such situations are rare, but the contribution of (system-
atic) errors of this kind can be large. Therefore, we also
implemented the singular value decomposition (SVD)
algorithm, which is slower, but is used only in exceptional
cases. We decompose

V ¼ A�By; (B6)

A, B 2 Uð3Þ and � is a positive, diagonal matrix. (The
values on the diagonal are called the singular values of V.)
Then we have, simply,

W ¼ ABy: (B7)

It is easy to see that (B3) gives the same result as (B7),

Q ¼ VyV ¼ B�AyA�By ¼ B��By

¼ B�ByB�By ¼ ðB�ByÞ2;
Q�1=2 ¼ ðB�ByÞ�1 ¼ ðByÞ�1��1B�1 ¼ B��1By;

W ¼ A�ByB��1By ¼ ABy;

as it should be. The SVD algorithm of Golub and Reinsch
[29] is numerically stable even in the case of exactly zero
eigenvalues.

Another popular projection algorithm is ‘‘trace maximi-
zation’’ [30]: find W 2 Uð3Þ such that it maximizes

� ¼ ReTrfVyWg: (B8)

Let us again use SVD on V:

V ¼ A�By ) � ¼ ReTrfB�AyWg ¼ ReTrf�AyWBg:
(B9)

Since � is positive, clearly � is maximized when

AyWB ¼ 1 ) W ¼ ABy (B10)

and we arrive at (B7) again. In the SU(3) case an extra
phase present in (B9) would lead toW different from (B7).
To summarize, we use the polar projection (B3) replaced
by SVD if small eigenvalues of Q are encountered.

Appendix C gives the details of calculation ofQ�1=2 and

its derivative @Q�1=2=@V within the approach of
Refs. [28,31] based on the Cayley-Hamilton theorem.

Let us now turn to the calculation of the force. During
the molecular dynamics evolution, one encounters (more
often on coarser ensembles) matrices V that have small
eigenvalues. Let us consider the U(1) group for simplicity.
Then V is just an arbitrary complex number V ¼ rei
. The
projection onto U(1) isW ¼ ei
. The derivative that enters
the force calculation is

@W

@V
�

�
@W

@V

�
Vy

¼ @ðW;VyÞ
@ðV; VyÞ ¼

@ðW;VyÞ
@ðr; 
Þ

@ðr; 
Þ
@ðV; VyÞ ¼

1

2r
:

(B11)

Thus the derivative is inversely proportional to the magni-
tude of V, or, in the U(3) case, to the smallest singular

value of V (or eigenvalue of Q), which is not protected
from being zero. Thus, on rare occasions one has to deal
with exceptionally large forces that give large contribu-
tions to the action, but originate from a single link. In
Fig. 10 we show the evolution of the minimal detjVj over
the lattice and maximal value of the norm of the fermion
force on a logarithmic scale. One can easily see the corre-
lation: the lower detjVj, the higher the force.
To circumvent this problem we introduce a ‘‘cutoff’’ in

the force calculation by replacing

W ¼ VQ�1=2 ! W ¼ VðQþ 	IÞ�1=2; (B12)

where I is the unit matrix, whenever the smallest eigen-
value of Q is less than 	. In the ensembles used in this
paper we set 	 ¼ 5� 10�5. In tuning 	, we weigh two
competing issues: the value of 	 should be large enough to
suppress an exceptional contribution from a link, but small
enough not to modify too many forces on the lattice. If 	 is
too large, the evolution will be smooth, but the fluctuation
of the action will be large, usually leading to rejection of
the trajectory. Note that we modify W only in the force
calculation, and we use the original Eq. (B3), or Eq. (B7)
for nearly singular matrices, to calculate the action at the
accept/reject step. That is, the modification (B12) amounts
to using a different guiding Hamiltonian during the

FIG. 10 (color online). Time history of the maximum (over
lattice sites) magnitude of the fermion force and the minimum
determinant of the fattened links after the first level of
smearing (V). This exploratory run was done on a 203 � 64
lattice at � ¼ 6:75, aml ¼ 0:2ams, ams ¼ 0:05, amc ¼ 0:6, and
u0 ¼ 0:9. This approximately corresponds to the a � 0:12 fm
ensemble in Table I at � ¼ 6:0. The difference in � is due to the
use of a different gauge action in the earlier studies.
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evolution, while the Metropolis step ensures the desired
distribution.

APPENDIX C: ALGEBRA FOR REUNITARIZED
LINKS AND THEIR DERIVATIVES

To make this presentation self-contained we include
Eqs. (C1)–(C11) from Hasenfratz, Hoffmann, and
Schaefer [28], preserving the notation of the original.

The inverse square root of a nonsingular matrix Q enter-
ing Eq. (B3) is given by the Cayley-Hamilton theorem as a
polynomial of Q:

Q�1=2 ¼ f0 þ f1Qþ f2Q
2: (C1)

Since Q is Hermitian, it has nonnegative eigenvalues that
can be found by solving the characteristic equation

g3 � c0g
2 �

�
c1 � 1

2
c20

�
g�

�
c2 � c0c1 þ 1

6
c30

�
¼ 0;

(C2)

where

cn ¼ 1

nþ 1
trQnþ1; n ¼ 0; 1; 2: (C3)

The solution of the cubic equation (C2) is

gn ¼ c0
3
þ 2

ffiffiffi
S

p
cos

�



3
þ ðn� 1Þ 2�

3

�
; n ¼ 0; 1; 2;

(C4)

where

S ¼ c1
3
� c20

18
; R ¼ c2

2
� c0c1

3
þ c30

27
;


 ¼ arccos

�
R

S3=2

�
:

(C5)

It is convenient to define the symmetric polynomials of the
square roots of the eigenvalues

u ¼ ffiffiffiffiffi
g0

p þ ffiffiffiffiffi
g1

p þ ffiffiffiffiffi
g2

p
;

v ¼ ffiffiffiffiffiffiffiffiffiffi
g0g1

p þ ffiffiffiffiffiffiffiffiffiffi
g0g2

p þ ffiffiffiffiffiffiffiffiffiffi
g1g2

p
; w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0g1g2
p

:

(C6)

In the diagonalized form the expression (C1) can be
rewritten as an equation for fi

1 g0 g20
1 g1 g21
1 g2 g22

0
B@

1
CA

f0
f1
f2

0
@

1
A ¼

g�1=2
0

g�1=2
1

g�1=2
2

0
BB@

1
CCA (C7)

which has the solution

f0 ¼ �wðu2 þ vÞ þ uv2

wðuv� wÞ ; f1 ¼ �w� u3 þ 2uv

wðuv� wÞ ;

f2 ¼ u

wðuv� wÞ : (C8)

The derivative @fi=@cj can be written as

Bij � @fi
@cj

¼ X2
k¼0

@fi
@gk

@gk
@cj

: (C9)

After rescaling (C9) by the common denominator

Cij � dBij; d ¼ 2w3ðuv� wÞ3; (C10)

a closed-form expression for the symmetric matrix Cij has

been derived in Ref. [28]:

C00 ¼ �w3u6 þ 3vw3u4 þ 3v4wu4 � v6u3 � 4w4u3

� 12v3w2u3 þ 16v2w3u2 þ 3v5wu2 � 8vw4u

� 3v4w2uþ w5 þ v3w3;

C01 ¼ �w2u7 � v2wu6 þ v4u5 þ 6vw2u5 � 5w3u4

� v3wu4 � 2v5u3 � 6v2w2u3 þ 10vw3u2

þ 6v4wu2 � 3w4u� 6v3w2uþ 2v2w3;

C02 ¼ w2u5 þ v2wu4 � v4u3 � 4vw2u3 þ 4w3u2

þ 3v3wu2 � 3v2w2uþ vw3;

C11 ¼ �wu8 � v2u7 þ 7vwu6 þ 4v3u5 � 5w2u5

� 16v2wu4 � 4v4u3 þ 16vw2u3 � 3w3u2

þ 12v3wu2 � 12v2w2uþ 3vw3;

C12 ¼ wu6 þ v2u5 � 5vwu4 � 2v3u3 þ 4w2u3

þ 6v2wu2 � 6vw2uþ w3;

C22 ¼ �wu4 � v2u3 þ 3vwu2 � 3w2u: (C11)

In the following, differentiation with respect to V at fixed
Vy is always assumed. We use explicit color indices to
show how different contractions and direct products of
matrices are built.
The derivatives that enter in the calculation of the

fermion force are

@Wij

@Vkl

¼ @ðVimðQ�1=2ÞmjÞ
@Vkl

¼ 	ikðQ�1=2Þlj þ Vim

@ðQ�1=2Þmj

@Vkl

; (C12)

@Wy
ij

@Vkl

¼ @ððQ�1=2ÞimVy
mjÞ

@Vkl

¼ @ðQ�1=2Þim
@Vkl

Vy
mj: (C13)

Also,

@Qij

@Vkl

¼ Vy
ik	lj: (C14)

The central component of the calculation is
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@ðQ�1=2Þij
@Qpq

¼ @

@Qpq

ðf0	ijþf1Qijþf2ðQ2ÞijÞ

¼ @f0
@Qpq

	ijþ @f1
@Qpq

Qijþf1	ip	qj

þ @f2
@Qpq

ðQ2Þijþf2ð	ipQqjþQip	qjÞ: (C15)

From the definition (C3) it follows that @cn=@Qpq ¼
ðQnÞpq. Then

@fk
@Qpq

¼ X2
n¼0

@fk
@cn

@cn
@Qpq

¼ X2
n¼0

BknðQnÞpq: (C16)

We define

Pqp � @f0
@Qpq

¼ B00	qp þ B01Qqp þ B02ðQ2Þqp; (C17)

Rqp � @f1
@Qpq

¼ B10	qp þ B11Qqp þ B12ðQ2Þqp; (C18)

Sqp � @f2
@Qpq

¼ B20	qp þ B21Qqp þ B22ðQ2Þqp: (C19)

Substituting (C17)–(C19) into (C15) and Eq. (C15) in
(C12) and (C13) we obtain the final result

@Wij

@Vkl

¼ 	ikðQ�1=2Þlj þ ½f1ðVVyÞik þ f2ðVQVyÞik�	lj

þ f2ðVVyÞikQlj þ VijðPVyÞlk þ ðVQÞijðRVyÞlk
þ ðVQ2ÞijðSVyÞlk; (C20)

@Wy
ij

@Vkl

¼ ½f1Vy
ik þ f2ðQVyÞik�Vy

lj þ f2V
y
ikðQVyÞlj

þ Vy
ijðPVyÞlk þ ðQVyÞijðRVyÞlk

þ ðQ2VyÞijðSVyÞlk: (C21)

The calculation of the fermion force from the reunita-
rized links proceeds as follows:

(1) The eigenvalues of the Hermitian matrix Q are
calculated with Eq. (C4).

(2) detjQj is compared with the product g0g1g2. If the
relative error is larger than 10�8 or any eigenvalue is
smaller than 10�8 the singular value decomposition
of V is performed and the eigenvalues are set to

gi ¼ �2
i ; i ¼ 0; 1; 2; (C22)

where �i are the diagonal elements of the matrix �
in Eq. (B6).

(3) Additionally, if any of the eigenvalues is smaller
than (an adjustable parameter) 	 ¼ 5� 10�5, the
eigenvalues are modified to

gi ! gi þ 	: (C23)

[This corresponds to the force cutoff in Eq. (B12).]
(4) With these eigenvalues the coefficients fi and the

elements Bij are calculated from Eqs. (C8) and

(C11).
(5) Finally, the force is calculated from Eqs. (C20) and

(C21).
In the MILC code we have also implemented two other

methods for calculating Q�1=2 and its derivative:
(1) a rational function approximation,

(2) an iterative evaluation of Q�1=2 with the derivative
replaced by finite difference.

We found that the analytic evaluation via Eqs. (C20) and
(C21) is superior to the other methods due to its higher
precision and speed.

APPENDIX D: TREATMENT OF THE HISQ
CHARM QUARK

The tree-level discretization errors are Oððap�Þ4Þ and
are negligible for light quarks. However, at the lattice
spacings listed in Table I, the charm quark mass is in the
range amc � 0:4–0:8 and therefore the discretization errors
are larger. The leading tree-level OððamcÞ4Þ error can be
removed by retuning the coefficient of the third-nearest-
neighbor (Naik) term [3], using the expansion in Eq. (A6).
As can be seen from Table I, at the finest lattice,
a � 0:09 fm, it is quite small, �N ¼ �0:120 471. The
effect of the correction in Eq. (A6) has been studied in
Ref. [3]. To check the quality of charm quark physics in our
ensembles, we computed the speed of light for the �c

meson by calculating its propagator at several nonzero
momenta. The result is shown in Fig. 11, where

c2ðpÞ ¼ E2ðpÞ � E2ð0Þ
p2

(D1)

and the momenta are rescaled by the lattice size Ls:

n2 ¼ p2

�
Ls

2�

�
2
: (D2)

For the finest a � 0:09 fm ensemble the error in the dis-
persion relation is below 2%. As expected, these �c dis-
persion relations are very similar to those found for HISQ
valence quarks on asqtad sea quarks, shown in Table V of
Ref. [3].
For dynamical simulations, the mass-dependent correc-

tion to the Naik term requires the use of different sets of
smeared links for light quarks and the charm quark.
Since the difference in the Naik term enters at the second
level of smearing, it is advantageous to regroup the force
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calculation as described in the following. Let Xð0Þ denote
the fat links after level two asqtad smearing for the light

quarks, for which �N is set to zero, and XðcÞ denote the fat
links for the charm quark. Then the fat links for the charm
quark can be written as

XðcÞ ¼ Xð0Þ þ �N�X; (D3)

where �X contains only one-link and three-link paths.
(This can be easily seen from Table V.) The derivative is

@XðcÞ

@W
¼ @Xð0Þ

@W
þ �N

@�X

@W
: (D4)

The fermion force in Eq. (B1) contains contributions
from the light (u, d, and s) quarks, and from the charm
quark.

@Sf
@U

¼ @Sf

@Xð0Þ
@Xð0Þ

@W

@W

@V

@V

@U
þ @Sf

@XðcÞ
@XðcÞ

@W

@W

@V

@V

@U
:

(D5)

The calculation of the force for multiply smeared actions
proceeds from the last level of smearing to the first one.

Therefore, operations with Xð0Þ and XðcÞ links are done first
and can be combined before the reunitarization part:

@Sf
@U

¼
�
@Sf

@Xð0Þ
@Xð0Þ

@W
þ @Sf

@XðcÞ
@XðcÞ

@W

�
@W

@V

@V

@U

¼
��

@Sf

@Xð0Þ þ
@Sf

@XðcÞ

�
@Xð0Þ

@W
þ �N

@Sf

@XðcÞ
@�X

@W

�
@W

@V

@V

@U
:

(D6)

After the @�X=@W contribution is separated, the
number of operations needed for the HISQ fermion
force is reduced to slightly more than twice the number
needed for the asqtad fermion force. This is because the
most time-consuming part of the calculation is related
to 3-, 5-, and 7-staple paths that have high multiplicity.

In our final form (D6) they are present only in @Xð0Þ=@W
and @V=@U.
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