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We suggested a Monte Carlo approach to simulate a kinetic equilibrium ensemble, and proved the

equivalence to the linear equations method on equilibrium. With the convenience of the numerical

method, we introduced variable splitting rates representing the details of the dynamics as model

parameters which were not considered in previous works. The dependence on model parameters was

studied, and it was found that the sea quark flavor asymmetry weakly depends on model parameters. It

reflects the statistics principle, contributes the dominant part of the asymmetry, and the effect caused by

details of the dynamics is small. We also applied the Monte Carlo approach of the statistical model to

predict the theoretical sea quark asymmetries in kaons, octet baryons �,�, and � baryons, even in exotic

pentaquark states.
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I. SEA QUARK FLAVOR ASYMMETRY FROM
STATISTICAL BALANCE MODEL

Although the proton is the simplest system in which the
three colors of QCD neutralize into a colorless bound state,
we still do not know how to describe the proton in terms of
its fundamental quark and gluon degrees of freedom from
basic principles. The structure of the proton is rather
complicated due to the nonperturbative and relativistic
nature of the quark and gluon in the protons. The compli-
cation also comes from the presence of sea quarks in the
proton. The sea flavor symmetry naively assumed in the
Gottfried sum rule [1], which is a symmetry between the
light flavor u and d sea quarks inside the proton, was
disproved by experiments of both deep inelastic scattering
and Drell-Yan processes [2–7].

Many theoretical attempts have been made to describe
the origin of the nucleon sea and its antiquark asymmetry
[7–21]. It is assumed that the primary mechanism to gen-
erate the sea is gluon splitting into u �u and d �d pairs. Field
and Feynman [22] suggested that the extra valence u quark
in the proton could lead to a suppression of g ! u �u relative
to g ! d �d via Pauli blocking. But a subsequent calculation
[23] found that the effects of Pauli blocking are very small,
and this result has been confirmed by another calculation
[24]. Thus, it is believed that there must be a nonperturba-
tive origin. For example, the meson cloud inside the nu-
cleon can account for such asymmetry [7–15] and chiral
quark models [16–19]. Also the large-Nc approach [20]

can explain the flavor asymmetry of the antiquark
distribution.
Another attempt to understand the sea flavor asymmetry

of the proton is from a pure statistical consideration in a
kinetic equilibrium model [21] or ‘‘statistical balance
model’’ as called in previous papers. The idea is rather
simple and perspicuous: while the sea quark-antiquark u �u
and d �d pairs can be produced by gluon splitting with equal
probabilities, the time-reversal invariant processes of the
annihilation of the antiquarks with their quark partners into
gluons are not flavor symmetric due to the net excess of u
quarks over d quarks. As a consequence, the �u quarks have
a larger probability to annihilate with the u quarks than that
of the �d quarks, and this brings an excess of �d over �u inside
the proton. Taking the proton as an ensemble of a complete
set of quark-gluon Fock states (and assuming that the
probability of ‘‘arriving in’’ one state from others equals
the probability of ‘‘leaving’’ it), one can obtain the prob-
abilities of finding every Fock state (state density) in the
proton. Thus one can calculate the quark and gluon content
of the nucleon from a pure statistical consideration. It is
interesting that the model gives a sea flavor �u and �d
asymmetry as ½ �d� �u� � 0:132, which agrees with the
experimental data
The diagram in Fig. 1 can describe the ‘‘state shifting’’

between states.
Assuming kinetic equilibrium, we have these kinetic

equilibrium equations

Xn
j�i

cij�i ¼
Xn
j�i

cji�j; (1)

where �i is jii state density, cij is the non-normalized state-

shift probability (NSSP) of jii ! jji, and n is the total state
number. Also there is the normalization condition
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Xn
i

�i ¼ 1: (2)

If we know cij, we can derive state densities �is by solving

a system of n linear algebraic equations when n is a finite
number. If n is infinite, we can get �i by the asymptotic
approach in some cases, if �i converges as n ! 1.
Actually, if we change cij to cij=C0, where C0 is a arbitrary

constant, the result would be the same. It means we only
need the ratios of NSSP’s cijs.

If only considering the particle numbers of quark, anti-
quark, and gluon, the proton state can be described as an
ensemble of Fock states

juudi; juudgi; juudu �ui; juudd �di; juudd �di; . . . ;
� jNu;Nd; N �u; N �d; Ngi; . . .

Because the u quark number Nu � N �u þ 2, and Nd �
N �d þ 1, all Fock states can be denoted with just three
numbers as jN �u; N �d; Ngi.

In order to derive the state density �jN �u;N �d;Ngi we should
know the probability of states shifting. We introduce the
rate fq!qg as a quark splitting ability factor; there are

2N �u þ 2N �d þ 3 quarks (including antiquarks) in the initial
state, so the NSSP of jN �u; N �d; Ngi ! jN �u; N �d; Ng þ 1i is

ð2N �u þ 2N �d þ 3Þfq!qg: (3)

We also introduce a splitting rate fg!q �q and fg!gg,

so the NSSP of jN �u; N �d; Ngi ! jN �u; N �d þ 1; Ng � 1i and
jN �u; N �d; Ngi ! jN �u þ 1; N �d; Ng � 1i is

Ngfg!q �q; (4)

and the NSSP of jN �u; N �d; Ngi ! jN �u; N �d; Ng þ 1i is
Ngfg!gg: (5)

Now, we consider the time-reversal process and assume
those fusion rates

fqg!q ¼ fq!qg; fq �q!g ¼ fg!q �q; fgg!g ¼ fg!gg

for time-reversal invariance.
Hence, the NSSP of jN �u; N �d; Ngi ! jN �u; N �d; Ng � 1i is

ð2N �u þ 2N �d þ 3ÞNgfqg!q þ
NgðNg � 1Þ

2
fgg!g; (6)

the NSSP of jN �u; N �d; Ngi ! jN �u � 1; N �d; Ng þ 1i is
ðN �u þ 2ÞN �ufq �q!g; (7)

and the NSSP of jN �u; N �d; Ngi ! jN �u; N �d � 1; Ng þ 1i is
ðN �d þ 1ÞN �dfq �q!g: (8)

We can see that the probability of u �u annihilation is larger
than d �d annihilation in all of the proton states because of
valence quark asymmetry. This is the origin of the sea
quark flavor asymmetry.
It is assumed that all the splitting and fusion rates are the

same in the previous papers [21]. If we get all the non-
normalized state-shift probabilities cij, the state densities

can be derived out if the particle numbers N �u; �d;g are finite.

We set an artificial limit N �u; �d;g � Nmax and solve the finite

linear equations. The numeric state densities are then
derived. The sea quark flavor asymmetry can be written as

½ �d� �u� ¼ X
�u; �d;g

ðN �d � N �uÞ�jN �u;N �d;Ngi: (9)

The sea quark flavor asymmetry converges to 0.133 when
Nmax increases. The result is consistent with experiment
data [2–6]. Some subsequent works [25,26] followed the
kinetic equilibrium principle to study the spin of nucleons
and the parton distributions in the proton and pion, and
obtained quite good results, agreeing with the correspond-
ing experimental values.
However, in the previous works, we assumed that all the

splitting rates are the same as fq!qg ¼ fg!q �q ¼ fg!g �g �
1 and we did not estimate the ‘‘error bound’’ caused by the
assumption. As we can imagine, if the splitting rates vary
in different orders of magnitude, the convergence of flavor
asymmetry will be bad. It is necessary to solve large Nmax

linear equations. So we need a convenient numerical
method to explore the effects of different splitting rates
and to study more complex hadronic states.

II. MONTE CARLO SIMULATION APPROACH
OFA KINETIC EQUILIBRIUM ENSEMBLE

Monte Carlo simulation also can give the numeric state
densities instead of solving algebraic equations, even
when the number of states is infinite. Here, we want to
explain some details about the Monte Carlo evolution on
kinetic equilibrium and prove the equivalence between the
Monte Carlo evolution approach and solving algebraic
equations. Let us start with an arbitrary initial state jii,
and then let it make a possible shift during each unit
step. The probability of the state jii shifting to jji is
cij=C0. Here, C0 is an arbitrary large constant we intro-

duced to ensure that the total shifting probability for each
prior state is less than 1. It is required that C0 >

P
j�icij for

all prior states jii, so the probability of staying in the prior
state jii is

FIG. 1. Diagram describing the shifting between states.
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1�X
j�i

cij=C0: (10)

The state evolves step-by-step as random walk, and we
record the number of iteration steps as Ti while the state jii
is emerging. And after a large number of iteration steps T,
the normalized jii emerging probability is Ti=T. For each
step while the state is jii, the next step has the probability
cij=C0 to be jji. So there are the times Ticij=C0 of state

shifting jii ! jji. Of course, other states also can shift to
jji; meanwhile jji has chance to stay at jji. That means the
number of those steps jji emerging should be

Tj ¼
X
i�j

cij=C0Ti þ
�
1�X

i�j

cji=C0

�
Tj: (11)

The equation can be reduced toX
i�j

cijTi ¼
X
i�j

cjiTj: (12)

The equation is independent of the constant C0. The value
of C0 only determines the number of iteration steps needed
to arrive at the equilibrium state after starting from an
arbitrary initial state. We can find the above equation is
just the kinetic equilibrium equation (1), if we consider that
the normalized jii emerging probability Ti=T is equivalent
to the state density as

Ti=T ¼ �i: (13)

And we also have the sum conditionX
i

Ti ¼ T; (14)

which is equal to the normalization condition Eq. (2).
Hence, we proved the equivalence of the Monte Carlo
simulation approach and solving algebraic equations.

The Monte Carlo simulation approach provides a power-
ful method for solving kinetic equilibrium ensemble prob-
lems. This method is error-controllable and very useful
especially on complex multistate systems, such as the
applications to other hadrons in the following sections.
We gain the same value of the sea quark flavor asymmetry
0:132� 0:02 in the proton as expected. Here, the error bar
�0:02 is the standard deviation of results with different

random number series, and the deviation will decrease
when computing time increases.

III. DYNAMICS-NONSENSITIVE SEA QUARK
FLAVOR ASYMMETRY IN THE PROTON

The fusion rate should be the same as the splitting rates
for a time-reversal process. In other words, the evolution in
the proton should be time-reversal invariant. But there is no
principle that requires that the quark and gluon splitting
evolution abilities of g ! q �qðggÞ and q ! qg are equal.
Therefore we should introduce three splitting rates fq!qg,

fg!q �q, and fg!gg, to represent the quark and gluon split-

ting evolution abilities which are determined by the
dynamics of quarks and gluons. Each rate enhances the
corresponding splitting or fusion evolution probability. In
previous works, we assumed that all the splitting rates are
the same, to be fq!qg ¼ fg!q �q ¼ fg!g �g � 1 and we did

not estimate an ‘‘error band’’ caused by the assumption. In
the present work, we introduced a numerical Monte Carlo
approach. This new method is easy to apply to complex
systems, and it is easy to put the variable splitting rates in
evolutions and calculate the deviation caused by them.
In the above section, we can see that the state densities or

results are independent of the constant C0. The numerical
value of fg!q �q, for example, is input as fg!q �q=C0.

Therefore the result does not depend on the absolute value
of fg!q �q. It means that the sea quark asymmetry does not

depend on the absolute values of those splitting rates. Only
two ratios between three splitting rates will affect the state
densities and the value of sea quark flavor asymmetry. So,
we can fix the rate fq!qg � 1, and vary the other two ratios

fg!q �q=fq!qg and fg!gg=fq!qg as two parameters in the

model.
In Table I, the values of sea quark asymmetry for differ-

ent ratios of splitting rates are listed. The previous result
0:132� 0:02 is reproduced when fg!q �q=fq!qg ¼
fg!gg=fq!qg ¼ 1.

From Table I, we can see that the asymmetry value ½ �d�
�u� is not sensitive to the model parameter fg!q �q=fq!qg; it

is almost fixed when fg!q �q=fq!qg varies in a very large

range over five order of magnitudes. We also can find that
the values of asymmetry are always larger than 0.123,
whatever the splitting rates vary even over an arbitrary

TABLE I. The values of sea quark asymmetry for different ratios of splitting rates.

½ �d� �u� � 100 fg!q �q=fq!qg

fg!gg=fq!qg 100 10 1 0.1 0.01 0.001

0 123� 2 124� 2 124� 2 124� 3 125� 3 126� 6
1 131� 2 132� 2 132� 2 134� 3 135� 3 136� 6
2 137� 2 138� 3 140� 3 140� 4 141� 3 141� 6
5 150� 2 152� 3 153� 3 154� 3 156� 4 156� 7
10 161� 3 163� 3 164� 4 164� 3 165� 5 166� 8
100 179� 4 180� 4 180� 4 180� 3 181� 5 182� 9
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large range. This reflects the principle of statistics and
contributes the dominant part of sea quark flavor asymme-
try. The asymmetry only has a variation ½ �d� �u� ¼
ð0:12–0:16Þwhich is within 30%when fg!gg=fq!qg varies

in the range 0 � fg!gg=fq!qg � 10, and still a small

variation ½ �d� �u� ¼ ð0:12–0:18Þ even when fg!gg=fq!qg

varies in a larger magnitude range 0 � fg!gg=fq!qg �
100. So the effect brought from details of the dynamics
is small and within the bound of the experiments’
uncertainty.

By now, we do not consider the probability of g ! ggg
splitting and ggg ! g recombination, because the proba-
bility is suppressed by a coupling constant and ‘‘three-
body’’ splitting kinematics. g ! ggg can be regarded as
two successive g ! gg, and its effect is the same as the
effect of increasing fg!gg, as we can see from Table II.

However, the rate of three-body splitting g ! gggmust be
much smaller than two-body splitting g ! gg or q ! qg,
because the three-body phase space in perturbative QCD is
suppressed by the factor of 2–3 orders of magnitudes
compared with the two-body splitting. Though the parton
splitting in hadrons is a strong-coupling nonperturbative
process, we believe that we still can safely assume
fg!ggg=fq!qg � 0:1 which only causes a very small en-

hancement as shown in Table II. The effect of the splitting
g ! ggg is thus negligible.

Because the effect of the splitting g ! ggg and recom-
bination ggg ! g is negligible and the asymmetry value
of ½ �d� �u� is almost independent of the parameter
fg!q �q=fq!qg, there is only one parameter fg!gg=fq!qg

that can vary the asymmetry. This parameter is QCD
relevant and it is the only input from dynamics. If the
parameter could be fixed by analysis of QCD, the deviation
on sea quark asymmetry caused by the details of dynamics
could be determined and the sea quark flavor asymmetry in
proton is predictable.

These two splitting vertices are QCD vertices and have
the same coupling constant. The splitting kinematics of
g ! gg and q ! qg are also similar. So, the splitting rates
of g ! gg and q ! qg should be in the same order of
magnitude. The assumption can be supported by the inte-
grations of Altarelli-Parisi (AP) splitting functions.
Though these equations are valid in the perturbative
region and the parton splitting in hadrons is a nonpertur-
bative process, the ratio of the total splitting rates is still
inspirational. The ratio parameter fg!gg=fq!qg can be

heuristically ‘‘derived’’ from Altarelli-Parisi splitting
functions [27].
The AP splitting functions are

Pðq ! qðzÞgÞ ¼ CF

1þ z2

1� z
;

Pðg ! gðzÞgÞ ¼ CA

�
1� z

z
þ z

1� z
þ zð1� zÞ

�
;

Pðg ! qðzÞ �qÞ ¼ TR½z2 þ ð1� zÞ2�;
where the color factors CF ¼ 4=3, CA ¼ 3, and TR ¼ 1=2.
The integrations of AP splitting functions are assumed

to be the total probabilities of quarks and gluons splitting.
So the splitting rates directly are

fq!qg ¼
Z 1�zmin

0
Pðq ! qðzÞgÞdz;

fg!gg ¼
Z 1�zmin

zmin

Pðg ! gðzÞgÞdz;

fg!q �q ¼
Z 1

0
Pðg ! qðzÞ �qÞdz:

The rates fq!qg and fg!gg are logarithmic divergent

when the integration limit zmin ! 0, but fortunately the
ratio between the two rates is not divergent, and thus we
have the model parameter

fg!gg

fq!qg
¼

R
1�zmin
zmin

Pðg ! gðzÞgÞdzR1�zmin

0 Pðq ! qðzÞgÞdz !
CA

CF

¼ 9

4
;

when zmin ! 0. The ratio parameter is not sensitive to the
integration limit zmin. For example, when zmin ¼ 0:1, the
ratio is 2.01 which is close to 9=4. Such a small deviation
change on parameter fg!gg=fq!qg does not have an effect

on sea quark asymmetry. Considering that the integration
limit is relative to Q2 scale, then the model parameter
fg!gg=fq!qg and sea quark asymmetry are not sensitive

to the Q2 scale. We estimated the ratio parameter by the
perturbative AP splitting functions and it is just the ratio of
color factors. We assume the parameter value is still similar
in the nonperturbative region.
The nonsensitive parameter fg!q �q=fq!qg also can be

derived by the above method. But it is relevant to the
integration limit or Q2 scale. The dependence can be

extracted as �0:075TR

CF logzmin
when zmin is small on the order of

magnitude and becomes zero when zmin ! 0. For example,
the value of parameter fg!q �q=fq!qg ¼ 0:005 when zmin ¼
10�6, and the value is not sensitive to the magnitude of zmin

or Q2 scale because of its logzmin dependence. We can see
from Table. I, the sea quark asymmetry is not sensitive to
this parameter even though it is so small.
As discussed above, the ratio fg!gg=fq!qg is almost

fixed to a ratio of color factors as 9=4 and the asym-
metry is independent of other details except the param-
eter fg!gg=fq!qg. Therefore we arrived at the following

TABLE II. The values of sea quark asymmetry ½ �d� �u� � 100
for different value of fg!ggg=fq!qg, for fg!qg ¼ 1, fq!gg ¼ 1,

fg!q �q ¼ 1, and fg!ggg ¼ fggg!g.

fg!ggg=fq!qg

0 0.1 0.2 0.4 0.6 0.8 1.0

132� 2 135� 2 137� 2 142� 3 145� 3 148� 3 150� 4
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conclusion: after considering the detail of QCD, especially
the color factors, we can predict the sea quark flavor
asymmetry in the proton is 0:142� 0:03. It is enhanced a
little compared to the value given in the previous papers.
More precise measurement of ½ �d� �u� is needed to exam-
ine the statistical balance model.

The x-dependent ½ �dðxÞ � �uðxÞ� can be derived from
deep inelastic scattering and Drell-Yan processes, andR
1
0½ �dðxÞ � �uðxÞ�dx is given by extrapolating ½ �dðxÞ � �uðxÞ�

to x ! 0 and x ! 1. The sea quark asymmetry values from
three collaborations are listed in Table. III—they are all
consistent with the sea quark asymmetry value predicted
above. The value of E866 seems a little bit smaller com-
pared to the prediction value, but the x range of the E866
measurement is narrow and the uncertainty brought by
extrapolating to small x is out of control. So, more precise
measurements are needed to test the prediction.

IV. SEA QUARK FLAVOR ASYMMETRY
IN MESONS

Because the sea quark asymmetry value is not sensitive
to details of dynamics and only depends on the parameter
fg!gg=fq!qg which is almost fixed as 9=4, then it should

not only work for the proton, but also for the mesons and
other baryons. We suppose the statistical model also has
validity on predicting sea quark asymmetry in other had-
rons. M. Alberg, E.M. Henley [26], and C.-B. Yang [28]
derived the parton distributions of pions according the
statistical model, but the sea quark asymmetry is zero
because of the same valence quark number in pions.
While the valence quark numbers of the u and d
quarks are different for the kaons, for example, Kþðu�sÞ
has one u valence quark and no d valence quark. The
statistical balance model predicts the sea quark asym-
metry value �d� �u ¼ 0:284 in Kþ, when fg!gg=fq!qg ¼
9=4. In the same way, the sea quark asymmetry value ½ �d�
�u� ¼ �0:275 in K0ðd�sÞ and ½d� u� ¼ �0:275 in �K0ð �dsÞ,
d� u ¼ 0:275 in K�ð �usÞ. These sea quark asymmetry
values are also not sensitive to dynamics as shown in
Table IV.

We can see from Table IV that the asymmetry ½ �d� �u�
is independent of fg!q �q=fq!qg and varies in a small

range 0.263–0.31 as fg!gg=fq!qg varies in a large

range 0–10.

V. SEA QUARK FLAVOR ASYMMETRY
IN BARYONS

We also use our statistical model to predict sea
quark asymmetry for baryons. In a previous paper [29],
L. Shao et al. derived the octet baryons’ sea quark asym-
metry values by the method of solving linear equations.
They give ½ �d� �u� ¼ 0:41 in �þðuusÞ and ½ �d� �u� ¼
0:276 in �þðussÞ. In this paper, we get the same number
by the Monte Carlo approach. We can find that the sea
quark asymmetry value in �þðussÞ is almost the same as
the meson Kþðu�sÞ because their u and d valence quark
numbers are the same. So, in the statistical model, the s
valence quark number in the hadron has a negligible effect
on the ½ �d� �u� sea quark asymmetry. We also find the sea
quark asymmetry values in the octet baryons are not sensi-
tive to details of dynamics—they just depend on the va-
lence quark numbers in those baryons. The asymmetries
½ �d� �u� in�þðuusÞ and�þðussÞ are enhanced a little to be
0.42 and 0.285 when fg!gg=fq!qg ¼ 9=4.

Besides octet baryons, we also derived � baryons’ sea
quark asymmetry value as

�d� �u ¼ 0:50 for �þðuuuÞ;
�d� �u ¼ 0:14 for �þðuudÞ;
�d� �u ¼ �0:14 for �0ðuddÞ;
�d� �u ¼ �0:50 for ��ðdddÞ;

where fg!gg=fq!qg ¼ 9=4. The sea quark asymmetry in

�þðuudÞ is the same as in the proton because of their same
u and d valence quark numbers. Of course, the asymmetry
in �0ðuddÞ is the same as in the neutron.
We also derived exotic baryons’ (pentaquark states) sea

quark asymmetry values as:

�d� u ¼ �0:14 for ���ðssdd �uÞ;
d� �u ¼ 0:14 for ��ðssuu �dÞ;

where the sea quark asymmetry values are the same as in
the proton because of their same uð �uÞ and dð �dÞ valence
quark numbers.
If there is such a pentaquark state Xþþðuuud�sÞ, then its

sea quark asymmetry value would be ½ �d� �u� ¼ 0:21 de-
rived by the statistical model.

TABLE III.
R½ �dðxÞ � �uðxÞ�dx as determined by three experi-

ments. The range of the measurement is shown along with the
value of the integral over all x (Q2 ¼ 54 GeV2=c2).

Experiment x range
R
1
0½ �dðxÞ � �uðxÞ�dx

E866 0:015< x< 0:35 0:118� 0:012
NMC 0:004< x< 0:80 0:148� 0:039
HERMES 0:020< x< 0:30 0:16� 0:03

TABLE IV. The values of sea quark asymmetry �d� �u in Kþ
for different split factors.

½ �d� �u� fg!q �q=fq!qg

fg!gg=fq!qg 100 10 1 0.1 0.01

0 0.263 0.264 0.264 0.264 0.265

0.1 0.264 0.265 0.265 0.266 0.266

1 0.272 0.274 0.275 0.277 0.278

5 0.296 0.300 0.303 0.304 0.305

10 0.311 0.312 0.312 0.312 0.313
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VI. CONCLUSIONS

In the previous works in the statistical balance model,
the sea quark flavor asymmetry ½ �d� �u� � R

dxð �dðxÞ �
�uðxÞÞ in the proton was computed using the ‘‘linear equa-
tions method.’’ Because of the difficulty and limit of the
linear equations method, it is hard to apply the method to
more complex systems. It is also assumed that all the
splitting rates are the same, fq!qg ¼ fg!q �q ¼ fg!g �g � 1

in the previous works, and the ‘‘error band’’ caused by the
assumption was not estimated. In the present work, we
introduced a numerical Monte Carlo approach. This new
method is easy to apply to complex systems, such as other
mesons and baryons. We also introduced the variable split-
ting rates representing details of the dynamics and we
studied the dependence on them. We find the sea quark
flavor asymmetry in the proton is always larger than 0.123
whatever the splitting rates vary even over an arbitrary
large range. It reflects that the statistics principle contrib-
utes the dominant part of the asymmetry. The asymmetry is
almost independent of the model parameter fg!q �q=fq!qg

and only changes within 30% when fg!gg=fq!qg varies in

the range 0–10. So the effect caused by details of the
dynamics is small and within the bound of the experi-
ments’ uncertainty. However, these two splitting vertices
are QCD vertices and have the same coupling constant.
The splitting kinematics of g ! gg and q ! qg are also
similar. So the splitting rates of g ! gg and q ! qg
should be in the same order of magnitude. The assumption
can be supported by the integrations of Altarelli-Parisi
splitting functions. Though these equations are valid in
the perturbative region, one may heuristically assume
that the ratio of the total splitting rates obtained from
them holds approximately also in the nonperturbative re-
gime. The parameter fg!gg=fq!qg can be fixed to the ratio

of color factors as 9=4 by integrations of Altarelli-Parisi
splitting functions. According to the above reasons, we can
conclude that the prediction only from a statistics principle
has an accuracy <30%. Or, in other words, the details of
the dynamics only bring less than 30% effect. After con-

sidering the details of QCD, especially the color factors,
the sea quark flavor asymmetry in proton is enhanced to
0:142� 0:03 which is consistent with present experimen-
tal measurements and can be tested by more precise
measurements.
The sea quark asymmetries are not sensitively depen-

dent on the details of dynamics. The sea quark flavor
asymmetry derived only from statistics principle contrib-
utes the dominant part of the asymmetry. It strongly im-
plies that the origin of the sea quark flavor asymmetry of
hadrons is the asymmetry of valence quarks. We also
applied this Monte Carlo approach of statistical model to
predict the sea quark asymmetries in kaons, octet baryons
�, �, and � baryons, even in exotic pentaquark states. All
these asymmetries only depend on the valence quarks
number in those hadrons. The sea quark asymmetries for
different u and d valence quark numbers are listed in
Table V. These values can confirm the mechanism we
proposed to explain the sea quark asymmetry in the proton.
It can be observed from Table V that the sea quark asym-
metries are enhanced by the difference of corresponding
valence quark numbers and suppressed by the sum of
valence quark numbers. When the valence quark numbers
½uv�> ½dv�, the sea quarks �u are easier to annihilate be-
cause of the existence of more u valence quarks and it leads
the sea quark asymmetry. On the other hand, the larger
total number of valence quark ½uv þ dv� suppresses the
relative difference of valence quarks and weakens the sea
quark asymmetries even if ½uv � dv� remains the same.
These sea quark asymmetries for hadrons, except the pro-
ton, are listed purely for theoretical interest, as it is not
known presently how to access this information in
experiment.
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TABLE V. The sea quark asymmetry values for different u, d valence quark numbers
fg!gg=fq!qg ¼ 9=4.

Asymmetry values u valence quark number

d valence quark number 0 1 2 3

0 0 0:284ðKþ;�0Þ 0:42ð�þÞ 0:50ð�þþÞ
1 �0:284ðK0;��Þ 0ð�0;�0Þ 0:14ðP;�þ;��Þ 0:21ðuuud�sÞ
2 �0:42ð��Þ �0:14ðN;�0;���Þ 0ð�þ;�cÞ 0:07ðuuudd�s �sÞ
3 �0:50ð��Þ �0:21ðdddu�sÞ �0:07ðuuddd�s �sÞ 0
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