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We study the dynamics of confinement-deconfinement phase transition in the context of relativistic

heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We

study the formation of Zð3Þ walls and associated strings in the initial transition from the confining

(hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble

mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising

after any phase transition which represents random variation of the order parameter at distances beyond

the typical correlation length. We implement this domain structure by using the Polyakov loop effective

model with a first order phase transition and confine ourselves with temperature/time ranges so that the

first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined

domain structure. The formation of Zð3Þ walls and associated strings results from the coalescence of QGP

bubbles expanding in the confining background. We investigate the evolution of the Zð3Þ wall and string

network. We also calculate the energy density fluctuations associated with Zð3Þ wall network and strings

which decay away after the temperature drops below the quark-hadron transition temperature during the

expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s

hydrodynamical model and discuss possible experimental signatures resulting from the presence of Zð3Þ
wall network and associate strings.
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I. INTRODUCTION

Search for the quark-gluon plasma (QGP) at relativistic
heavy-ion collision experiments (RHICE) has reached a
very exciting stage with the ongoing experiments at RHIC
and with the upcoming heavy-ion experiments at the Large
Hadron Collider. No one doubts that the QGP phase has
already been created at RHIC, but conclusive evidence for
the same is still lacking. Many signatures have been pro-
posed for the detection of the QGP phase [1], and these
have been thoroughly investigated both theoretically and
experimentally. Along with continued investigation of
these important signatures of QGP, there is a need for
investigating novel signals exploring qualitatively nontri-
vial features of the QGP phase and/or the quark-hadron
phase transition.

With this view, we focus on the nontrivial vacuum
structure of the QGP phase which arises when one uses
the expectation value of the Polyakov loop lðxÞ as the order
parameter for the confinement-deconfinement (C-D) phase
transition [2]. This order parameter transforms nontrivially
under the center Zð3Þ of the color SU(3) group and is
nonzero above the critical temperature Tc. This breaks
the global Zð3Þ symmetry spontaneously above Tc, while
the symmetry is restored below Tc in the confining phase
where this order parameter vanishes. In the QGP phase,

due to spontaneous breaking of the discrete Zð3Þ symmetry,
one gets domain walls (interfaces) which interpolate be-
tween different Zð3Þ vacua. The properties and physical
consequences of these Zð3Þ interfaces have been discussed
in the literature [3]. It has been suggested that these inter-
faces should not be taken as physical objects in the
Minkowski space [4]. Similarly, it has also been a subject
of discussion whether it makes sense to talk about this Zð3Þ
symmetry in the presence of quarks [5]. However, we will
follow the approach where the presence of quarks is inter-
preted as leading to explicit breaking of Zð3Þ symmetry,
lifting the degeneracy of different Zð3Þ vacua [6–9]. Thus,
with quarks, even planar Zð3Þ interfaces do not remain
static and move away from the region with the unique
true vacuum. Our main discussion will be for the pure
gauge theory which we discuss first. Later, we will briefly
comment on the situation with quarks. A detailed study
with inclusion of quark effects is postponed for a future
work.
In earlier works, some of us had shown that there are

novel topological string defects which form at the intersec-
tion of the threeZð3Þ interfaces. These strings are embedded
in the QGP phase, and their cores consist of the confining
phase. Structure of these strings and interfaces were dis-
cussed in these earlier works [10]. It was also shown that
reflection of quarks from collapsingZð3Þ interfaces can lead
to large-scale baryon inhomogeneities in the early Universe
[11]. This effect is also utilized to argue forPT enhancement
of quarks of heavy flavor (consecutively corresponding
hadrons) in relativistic heavy-ion collisions [12].
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In this paper, we carry out numerical simulation of
formation of these Zð3Þ interfaces and associated strings
at the initial confinement-deconfinement transition which
is believed to occur during the preequilibrium stage in
relativistic heavy-ion collision experiments. For the pur-
pose of numerical simulation, we will model this stage as a
quasiequilibrium stagewith an effective temperature which
first rises (with rapid particle production) to a maximum
temperature T0 > Tc, where Tc is the critical temperature
for the confinement-deconfinement phase transition, and
then decreases due to continued plasma expansion.

We use the effective potential for the Polyakov loop
expectation value lðxÞ as proposed by Pisarski [7,8] to
study the C-D phase transition. Within this model, the
C-D transition is weakly first order. Even though Lattice
results show that quark-hadron transition is most likely a
smooth crossover at zero chemical potential, in the present
work, we will use this first order transition model to discuss
the dynamical details of quark-hadron transition. One rea-
son for this is that our study is in the context of
RHICEwhere the baryon chemical potential is not zero.
For not too small values of the chemical potential, the
quark-hadron phase transition is expected to be of first
order, so this may be the case relevant for us anyway
(especially when collision energy is not too high).
Further, our main interest is in determining the structure
of the network of Zð3Þ domain walls and strings resulting
during the phase transition. These objects will form irre-
spective of the nature of the transition, resulting entirely
from the finite correlation lengths in a fast evolving system,
as shown by Kibble [13]. The Kibble mechanism was first
proposed for the formation of topological defects in the
context of the early Universe [13], but is now utilized
extensively for discussing topological defects production
in a wide variety of systems from condensed matter physics
to cosmology [14]. An essential ingredient of the Kibble
mechanism is the existence of uncorrelated domains of the
order parameter which result after every phase transition
occurring in finite time due to finite correlation length. A
first order transition allows easy implementation of the
resulting domain structure especially when the transition
proceeds via bubble nucleation. With this view, we use the
Polyakov loop model as in [7,8] to model the phase tran-
sition and confine ourselves with temperature/time ranges
so that the first order quark-hadron transition proceeds via
bubble nucleation.

The Zð3Þ wall network and associated strings (as men-
tioned above) formed during this early confinement-
deconfinement phase transition evolve in an expanding
plasma with decreasing temperature. Eventually, when
the temperature drops below the deconfinement-con-
finement phase transition temperature Tc, these Zð3Þ walls
and associated strings will melt away. However, they may
leave their signatures in the form of extended regions of
energy density fluctuations (as well as PT enhancement of

heavy-flavor hadrons [12]). We make estimates of these
energy density fluctuations which can be compared with
the experimental data. Especially interesting will be to
look for extended regions of large energy densities in
space-time reconstruction of hadron density (using hydro-
dynamic models). In our model, we expect energy density
fluctuations in event averages (representing high energy
density regions of domain walls/strings), as well as event-
by-event fluctuations as the number/geometry of domain
walls/strings and even the number of QGP bubbles, varies
from one event to the other. A detailed analysis of energy
fluctuations, especially the event-by-event fluctuations, is
postponed for a future work.
We also determine the distribution/shape of the Zð3Þ

wall network and its evolution. In particular, our results
provide an estimate of domain wall velocities (for the
situations studied) to range from 0.5 to 0.8. These results
provide crucial ingredients for a detailed study of the
effects of collapsing Zð3Þ walls on the PT enhancement
of heavy-flavor hadrons [11,12] in RHICE. We emphasize
that the presence of Zð3Þ walls and string may not only
provide a qualitatively new signature for the QGP phase in
these experiments, but may also provide the first (and may
be the only possible) laboratory study of such topological
objects in a relativistic quantum field theory system.
The paper is organized in the following manner. In

Sec. II, we discuss the Polyakov loop model of
confinement-deconfinement phase transition. We describe
the effective potential proposed by Pisarski [7] and discuss
the structure of the Zð3Þ walls and associated strings. In
Sec. III, we present the physical picture of the formation of
these Zð3Þ walls and associated strings in the confinement-
deconfinement phase transition via the Kibble mechanism
which provides a general framework for the production of
topological defects in symmetry breaking phase transi-
tions. We confine ourselves with temperature/time ranges
so that the first order transition (in the Pisarski model)
proceeds via bubble nucleation. The other possibility of
spinodal decomposition is of completely different nature,
and we will present it in a future work. (We mention here
that a simulation of spinodal decomposition in the
Polyakov loop model has been carried out in Ref. [15],
where fluctuations in the Polyakov loop are investigated in
detail. In comparison, the main focus of our work is on the
topological objects, Zð3Þ walls, and strings, and energy
density fluctuations resulting therefrom.) In Sec. IV, we
discuss the calculation of the profile of the critical bubble
using bounce technique [16] and also the estimates of
nucleation rates for bubbles for the temperature/time range
relevant for RHICE. Section V presents the numerical
technique of simulating the phase transition via random
nucleation of bubbles. In Sec. VI, we discuss the issue of
the effects of quarks in our model. Section VII presents the
results of the numerical simulations. Here, we discuss
distribution of the Zð3Þ wall/string network formed due
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to coalescence of QGP bubbles (in a confining back-
ground). We also calculate the energy density fluctuations
associated with the Zð3Þ wall network and strings. We
discuss evolution of these quantities with changing tem-
perature via Bjorken’s hydrodynamical model. In
Sec. VIII, we discuss possible experimental signatures
resulting from the presence of Zð3Þ wall network and
associate strings. Section IX presents conclusions.

II. THE POLYAKOV LOOP MODEL

We first discuss the case of pure SUðNÞ gauge theory. We
will later discuss briefly the case with quarks. The order
parameter for the confinement-deconfinement phase tran-
sition is the expectation value of the Polyakov loop lðxÞ
which is defined as

lðxÞ ¼ ð1=NÞ trðP expðig
Z �

0
A0ðx; �Þd�ÞÞ: (1)

Here, P denotes the path ordering, g is the gauge cou-
pling, and � ¼ 1=T, where T is the temperature.
A0ðx; �Þ � Aa

0ðx; �ÞTa, Ta being the generators of SUðNÞ
in the fundamental representation, is the time component
of the vector potential at spatial position x and Euclidean
time �. Under a global ZðNÞ symmetry transformation, lðxÞ
transforms as

lðxÞ ! expð2�in=NÞlðxÞ; n ¼ 0; 1; . . . ðN � 1Þ: (2)

The expectation value of lðxÞ is related to e��F where F
is the free energy of an infinitely heavy test quark. For
temperatures below Tc, in the confined phase, the expec-
tation value of the Polyakov loop is zero corresponding to
the infinite free energy of an isolated test quark. (Hereafter,
we will use the same notation lðxÞ to denote the expectation
value of the Polyakov loop.) Hence, the ZðNÞ symmetry is
restored below Tc. ZðNÞ symmetry is broken spontane-
ously above Tc where lðxÞ is nonzero corresponding to
the finite free energy of the test quark. For QCD, N ¼ 3,
and we take the effective theory for the Polyakov loop as
proposed by Pisarski [7,8]. The effective Lagrangian den-
sity is given by

L ¼ N

g2
j@�lj2T2 � VðlÞ: (3)

VðlÞ is the effective potential for the Polyakov loop

VðlÞ ¼
��b2

2
jlj2 � b3

6
ðl3 þ ðl�Þ3Þ þ 1

4
ðjlj2Þ2

�
b4T

4: (4)

The values of various parameters are fixed to reproduce
the lattice results [17,18] for pressure and energy density of
pure SU(3) gauge theory. We make the same choice and
give those values below. The coefficients b3 and b4 have
been taken as b3 ¼ 2:0 and b4 ¼ 0:6016. We will take the
same value of b2 for real QCD (with three massless quark
flavors), while the value of b4 will be rescaled by a factor of
47:5=16 to account for the extra degrees of freedom

relative to the degrees of freedom of pure SU(3) gauge
theory [17]. The coefficient b2 is temperature dependent
[17]. b2 is taken as b2ðrÞ ¼ ð1� 1:11=rÞð1þ 0:265=rÞ2 �
ð1þ 0:3=rÞ3 � 0:487, where r is taken as T=Tc. With the
coefficients chosen as above, the expectation value of order

parameter approaches to x ¼ b3=2þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ 1Þ

q
for temperature T ! 1. As in [8], we use the normaliza-
tion such that the expectation value of order parameter l0
goes to unity for temperature T ! 1. Hence, the fields and
the coefficients in VðlÞ are rescaled as l ! l=x, b2ðTÞ !
b2ðTÞ=x2, b3 ! b3=x, and b4 ! b4x

4 to get proper nor-
malization of l0.
For the parameters chosen as above, the value of Tc is

taken to be 182 MeV. We see that the b3 term in Eq. (4)
gives a cosð3�Þ term, leading to Zð3Þ degenerate vacua
structure. Here, the shape of the potential is such that there
exists a metastable vacuum up to a temperature
�250 MeV. Hence, first order transition via bubble nu-
cleation is possible only up to T ¼ 250 MeV. We show the
plot of VðlÞ in � ¼ 0 direction in Fig. 1(a) for a value of
temperature T ¼ 185 MeV. This shows the metastable
vacuum at l ¼ 0. Figure 1(b) shows the structure of vac-
uum by plotting VðlÞ as a function of � for fixed l0, where l0
is the vacuum expectation value of VðlÞ at T ¼ 185 MeV.
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FIG. 1. (a) Plot of VðlÞ in � ¼ 0 direction for T ¼ 185 MeV
showing the metastable vacuum at l ¼ 0. In (a) and (b), plots of
V are given in units of T4

c . The value of critical temperature is
taken to be Tc ’ 182 MeV. The Zð3Þ structure of the vacuum can
be seen in (b) in the plot of the potential VðlÞ as a function of �
for fixed jlj ¼ l0. Here, l0 corresponds to the absolute minimum
of VðlÞ.
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In Fig. 1(b), the three degenerate vacua are separated by
a large barrier in between them. While going from one
vacuum to another vacuum, the field configuration is de-
termined from the field equations. For the case of degen-
erate vacua, there are time independent solutions which
have planar symmetry. These solutions are called domain
wall. For the nondegenerate case, as will be appropriate for
the case when quarks are included as dynamical degrees of
freedom in discussing the quark-hadron transition, the
solutions of the interfaces separating these vacua will be
similar to the bounce solutions [16], though the standard
bounce techniques need to be extended for the case of
complex scalar field. The resulting planar domain wall
solutions will not be static. As mentioned above, we will
be neglecting such effects of quarks, and hence will discuss
the case of degenerate vacua only. Later, in Sec. VI, wewill
examine the justification of using the approximation of
neglecting quark effects.

In physical space, after the phase transition, regions with
different Zð3Þ vacua are separated by domain walls. Inside
a domain wall, jlj becomes very small as T ! Tc [10]. In
Ref. [10], the intersection of the three Zð3Þ domain walls
was considered, and, using topological arguments, it was
then shown that at the linelike intersection of these inter-
faces, the order parameter lðxÞ should vanish. This leads to
a topological string configuration with the core of the string
being in the confining phase. Properties of these new string
configurations were determined in [10] using the model of
Eq. (3). This string configuration is interesting, especially
when we note that such a string has exactly reverse physi-
cal behavior compared to the standard QCD string. The
QCD string exists in the confining phase, connecting
quarks and antiquarks, or forming baryons, glueballs, etc.
Inside the QCD string, the core region is expected to
behave as a deconfined region. In contrast, the string dis-
cussed in [10], arising at the intersection of Zð3Þ walls,
exists in the high temperature deconfined phase. Its core is
characterized by restored Zð3Þ symmetry, implying that it
is in the confined phase. To differentiate it with the stan-
dard QCD string, this new string structure was called the
QGP string in Ref. [10]. It is also important to note that
although the standard QCD string breaks by creating
quark-antiquark pairs, the QGP string cannot break as it
originates from topological arguments. This QGP string
thus should either form closed loops, or it should end at the
boundary separating the deconfined phase from the con-
fined phase. Its structure is very similar to certain axionic
strings discussed in the context of the early Universe [19].
Note that as these strings contain the confining phase (with
l ¼ 0) in the core, while they are embedded in the QGP
phase, a transition from deconfining phase to the confining
phase, in the presence of such strings, may begin from
regions near the strings. Similarly, the presence of domain
walls may lead to heterogeneous bubble nucleation in a
first order quark-hadron transition. We will be studying the

formation of Zð3Þ domain walls and these QGP strings in
the initial confinement-deconfinement phase transition,
and their subsequent evolution.

III. DOMAIN WALL AND STRING FORMATION
VIA KIBBLE MECHANISM

We now briefly describe the physical picture of the
formation of topological defects via the Kibble mecha-
nism. Kibble first gave a detailed theory of the formation
of topological defects in symmetry breaking phase
transitions in the context of the early Universe [13].
Subsequently, it was realized that the basic physics of the
Kibble mechanism is applicable to every symmetry break-
ing transition, from low energy physics of condensed
matter systems to high energy physics relevant for the early
Universe [14].
Basic physics of the Kibble mechanism can be described

as follows. After a spontaneous symmetry breaking phase
transition, the physical space consists of regions, called
domains. In each domain, the configuration of the order
parameter field can be taken as nearly uniform while it
varies randomly from one domain to another. In a numeri-
cal simulation where the phase transition is modeled to
implement the Kibble mechanism, typically the physical
region is divided in terms of elementary domains of defi-
nite geometrical shape. The order parameter is taken to be
uniform within the domain, and random variations of order
parameter field within the vacuum manifold are allowed
from one domain to the other. The order parameter field
configuration in between domains is assumed to be such
that the variation of the order parameter field is minimum
on the vacuummanifold (the so-called geodesic rule). With
this simple construction, topological defects arise at the
junctions of several domains if the variation of the order
parameter in those domains traces a topologically non-
trivial configuration in the vacuum manifold. See
Ref. [20] for a detailed discussion of this approach.
We, however, will follow a more detailed simulation as

in Ref. [21] where the Kibble mechanism was imple-
mented in the context of a first order transition. Bubbles
of true vacuum (determined from the bounce solution)
were randomly nucleated in the background of false vac-
uum. Each bubble was taken to have the uniform orienta-
tion of the order parameter in the vacuum manifold, while
the order parameter orientation varied randomly from one
bubble to another. This provided the initial seed domains,
as needed for the Kibble mechanism. Evolution of this
initial configuration via the field equation led to expansion
of bubbles which eventually coalesce and lead to the for-
mation of topological defects at the junctions of bubbles
when the order parameter develops appropriate variation
(winding) in that region. An important thing is that in this
case, one does not need to assume anything like the geo-
desic rule. As different bubbles come into contact during
their expansion, the value of the order parameter in the
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intermediate region is automatically determined by the
field equations.

An important aspect of the Kibble mechanism is that it
does not crucially depend on the dynamical details of the
phase transition. Although the domain size depends on the
dynamics of phase transitions, the defect number density
(per domain) and type of topological defects produced via
the Kibble mechanism depend only on the topology of
order parameter space and spatial dimensions. If the
vacuum manifold M has disconnected components, then
domain walls form. If it is multiply connected (i.e., if M
contains unshrinkable loops), strings will form. When M
contains closed two surfaces which cannot be shrunk to a
point, then monopoles will form in 3-dimensional physical
space. In our case, domain walls and string network will be
produced in the QGP phase. As discussed above, domain
walls arise due to interpolation of field between different
Zð3Þ vacua. At the intersection of these interfaces, string is
produced.

IV. CRITICAL BUBBLE PROFILE AND
NUCLEATION PROBABILITY

As we explained in the Introduction, we will study the
Zð3Þ domain wall and string formation with the first order
transition model given by Eq. (3), such that the transition
occurs via bubble nucleation. The semiclassical theory of
decay of false vacuum at zero temperature has been given
in Ref. [16], and the finite temperature extension of this
theory was given in Ref. [22]. The process of barrier
tunneling leads to the appearance of bubbles of the new
phase. The resulting bubble profile is determined using the
bounce solution for the false vacuum decay, which we will
discuss below.

First, we note general features of the dynamics of a
standard first order phase transition at finite temperature
via bubble nucleation. A region of true vacuum, in the form
of a spherical bubble, appears in the background of false
vacuum. The creation of bubble leads to the change in the
free energy of the system as

FðRÞ ¼ Fs þ Fv ¼ 4�R2�� 4�

3
R3� (5)

where R is the radius of bubble, Fs is the surface energy
contribution, and Fv is the volume energy contribution. �
is the difference of the free energy between the false
vacuum and the true vacuum, and � is the surface tension
which can be determined from the bounce solution.

A bubble of size R will expand or shrink depending on
which process leads to lowering of the free energy given
above. The bubbles of very small sizes will shrink to
nothing since surface energy dominates. If the radius of
bubble exceeds the critical size Rc ¼ 2�

� , it will expand and

lead to the transformation of the metastable phase into the
stable phase.

Equation (5) is useful for the so-called thin wall bubbles
where there is a clear distinction between the surface con-
tribution to the free energy and the volume contribution.
For the temperature/time relevant for our case in relativistic
heavy-ion collisions, this will not be the case. Instead we
will be dealing with the thick wall bubbles where surface
and volume contributions do not have clear separations.We
will determine the profiles of these thick wall bubbles
numerically following the bounce technique [16].
First, we note that for the effective potential in Eq. (4),

the barrier between true vacuum and false vacuum vanishes
at temperatures above about 250 MeV. So, first order
transition via bubble nucleation is possible only within
the temperature range of Tc ’ 182 MeV–250 MeV.
Above T ’ 250 MeV, spinodal decomposition will take
place due to the roll down of field. Implementation of the
dynamics of phase transition via spinodal decomposition is
of completely different nature, and we hope to discuss this
in a future work.
As we are discussing the initial confinement-decon-

finement transition in the context of RHICE, clearly the
discussion has to be within the context of longitudinal
expansion only, with negligible effects of the transverse
expansion. However, Bjorken’s longitudinal scaling model
[23] cannot be applied during this preequilibrium phase,
even with the assumption of quasiequilibrium (as discussed
above), unless one includes a heat source which could
account for the increase of effective temperature during
this phase to the maximum equilibrium temperature T0. As
indicated above, this heat source can be thought of as
representing the rapid particle production (with subsequent
thermalization) during this early phase. We will not at-
tempt to model such a source here. Instead, we will simply
use the field equations resulting from Bjorken’s longitudi-
nal scaling model for the evolution of the field configura-
tion for the entire simulation, including the initial
preequilibrium phase from � ¼ 0 to � ¼ �0. The heating
of the system until � ¼ �0 will be represented by the
increase of the temperature up to T ¼ T0. Thus, during
this period, the energy density and temperature evolution
will not obey the Bjorken scaling equations [23]. After �0,
with complete equilibrium of the system, the temperature
will decrease according to the equations in the Bjorken’s
longitudinal scaling model.
We will take the longitudinal expansion to only repre-

sent the fact that whatever bubbles will be nucleated, they
get stretched into ellipsoidal, and eventually cylindrical,
shapes during the longitudinal expansion (ignoring the
boundary effects in the longitudinal direction). The trans-
verse expansion of the bubble should then proceed accord-
ing to relative pressure difference between the false
vacuum and the true vacuum as in the usual theory of first
order phase transition. We will neglect transverse expan-
sion for the system, and focus on the midrapidity region.
With this picture in mind, we will work with effective
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2þ 1 dimensional evolution of the field configuration,
(neglecting the transverse expansion of QGP). However,
for determining the bubble profile and the nucleation
probability of bubbles, one must consider full 3þ 1 di-
mensional case as bubbles are nucleated with full
3-dimensional profiles in the physical space. It will turn
out that the bubbles will have sizes of about 1–1.5 fm
radius. Taking the initial collision region during the pre-
equilibrium phase also to be of the order of 1–2 fm in the
longitudinal direction, it looks plausible that the nucleation
of 3-dimensional bubble profile as discussed above may
provide a good approximation. Of course, the correct thing
will be to consider the bounce solutions for rapidly longi-
tudinally expanding plasma, and we hope to return to this
issue in some future work.

We neglect transverse expansion in the present work,
which is a good approximation for the early stages when
wall/string network forms. However, this will not be a valid
approximation for later stages, especially when tempera-
ture drops below Tc and wall/string network melts. The
way to account for the transverse expansion in the context
of our simulation will be to take a lattice with much larger
physical size than the initial QGP system size, and allow
free boundary conditions for the field evolution at the QGP
system boundary (which will still be deep inside the whole
lattice). This will allow the freedom for the system to
expand in the transverse direction automatically. With a
suitable prescription of determining temperature from
local energy density (with appropriate account of field
contributions and expected contribution from a plasma of
quarks and gluons) in a self consistent manner, the trans-
verse expansion can be accounted for in this simulation.
We hope to come back to this in a future work.

Let us consider the effective potential in Eq. (4), at a
temperature such that there is a barrier between the true
vacuum and the three Zð3Þ vacua. An example of this
situation is shown in Fig. 1 for the case with T ¼
185 MeV. The initial system (of nucleons) was at zero
temperature with the order parameter lðxÞ ¼ 0, and will be
superheated as the temperature rises above the critical
temperature. It can then tunnel through the barrier to the
true vacuum, representing the deconfined QGP phase. At
zero temperature, the tunneling probability can be calcu-
lated by finding the bounce solution which is a solution of
the 4-dimensional Euclidean equations of motion
However, at finite temperature, this 4-dimensional theory
will reduce to an effectively 3-Euclidean dimensional the-
ory if the temperature is sufficiently high, which we will
take to be the case.

For this finite temperature case, the tunneling probabil-
ity per unit volume per unit time in the high temperature
approximation is given by [22] (in natural units)

� ¼ Ae�S3ðlÞ=T (6)

where S3ðlÞ is the 3-dimensional Euclidean action for the
Polyakov loop field configuration that satisfies the classical

Euclidean equations of motion. The condition for the high
temperature approximation to be valid is that T � r�1

0 ,

where r0 is the radius of the critical bubble in 3-
dimensional Euclidean space. The values of temperature
for our case (relevant for bubble nucleation) will be above
T ¼ Tc ¼ 182 MeV. As we will see, the bubble radius will
be larger than 1.5 fm (� ð130 MeVÞ�1) which justifies our
use of high temperature approximation to some extent. The
determination of the preexponential factor is a nontrivial
issue, and we will discuss it below. The dominant contri-
bution to the exponential term in � comes from the least
actionOð3Þ symmetric configuration which is a solution of
the following equation (for the Lagrangian in Eq. (3)):

d2l

dr2
þ 2

r

dl

dr
¼ g2

2NT2
V 0ðlÞ (7)

where r � rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ t2E

q
, subscript E denoting the coor-

dinates in the Euclidean space.
The boundary conditions imposed on l are

l¼0 as r!1 and
dl

dr
¼0 at r¼0: (8)

Bounce solution of Eq. (7) can be analytically obtained
in the thin wall limit where the difference in the false
vacuum and the true vacuum energy is much smaller than
the barrier height. This situation will occur for very short
time duration near T ¼ Tc for the effective potential in
Eq. (4). However, as the temperature is rapidly evolving in
the case of RHICE, there will not be enough time for
nucleating such large bubbles (which also have very low
nucleation rates due to having large action). Thus, the case
relevant for us is that of thick wall bubbles whose profile
has to be obtained by numerically solving Eq. (7).
As we have mentioned earlier, in the high tempera-

ture approximation, the theory effectively becomes 3-
(Euclidean) dimensional. For a theory with one real scalar
field in 3-Euclidean dimensions the preexponential factor
arising in the nucleation rate of critical bubbles has been
estimated, see ref. [22]. The preexponential factor obtained
from [22] for our case becomes

A ¼ T4

�
S3ðlÞ
2�T

�
3=2

: (9)

It is important to note here that the results of [22] were
for a single real scalar field, and one of the crucial ingre-
dients used in [22] for calculating the preexponential factor
was the fact that for a bounce solution, the only light modes
contributing to the determinant of fluctuations were the
deformations of the bubble perimeter. Even though we are
discussing the case of a complex scalar field lðxÞ, this
assumption may still hold as we are calculating the tunnel-
ing from the false vacuum to one of the Zð3Þ vacua (which
are taken to be degenerate here as we discussed above).
This assumption may need to be revised when light modes,
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e.g., Goldstone bosons, are present which then also have to
be accounted for in the calculation of the determinant.

A somewhat different approach for the preexponential
factor in Eq. (6) is obtained from the nucleation rate of
bubbles per unit volume for a liquid-gas phase transition as
given in Refs. [24,25],

� ¼ �

2�
�0e

��F=T: (10)

Here, � is the dynamical prefactor which determines the
exponential growth rate of critical droplets. �0 is a statis-
tical prefactor which measures the available phase space
volume. The exponential term is the same as in Eq. (6) with
�F being the change in the free energy of the system due to
the formation of critical droplet. This is the same as S3 in
Eq. (6). The bubble grows beyond the critical size when the
latent heat is conducted away from the surface into the
surrounding medium which is governed by thermal dissi-
pation and viscous damping. For our case, in the general
framework of transition from a hadronic system to the QGP
phase, we will use the expression for the dynamical pre-
factor from Ref. [26]

� ¼ 2�

ð�!Þ2R3
c

�
	T þ 2

�
4

3
�þ 


��
: (11)

Here, � is the surface tension of the bubble wall, �! is
the difference in the enthalpy densities of the QGP and the
hadronic phases, 	 is thermal conductivity, Rc is the criti-
cal bubble radius, and � and 
 are shear and bulk viscos-
ities. 
 will be neglected as it is much smaller than �. For 	
and �, the following parametrizations are used [26,27].

� ¼
�
1700

T2

��
n

n0

�
2 þ

�
22

1þ T2=1000

��
n

n0

�
0:7

þ 5:8T1=2

1þ 160=T2
(12)

	 ¼
�
0:15

T

��
n

n0

�
1:4 þ

�
0:02

1þ T4=ð7� 106Þ
��

n

n0

�
0:4

þ 0:0225T1=2

1þ 160=T2
: (13)

Here, n=n0 is the ratio of the baryon density of the
system to the normal nuclear baryon density, T is in
MeV, � is in MeV=fm2c, and 	 is in c=fm2. With this,
the rate in Eq. (10) is in fm�4. For the range of tempera-
tures of our interest (T > 160 MeV), and for the low
baryon density central rapidity region under consideration,
it is the last n independent term for both � and � which
dominates, and we will use these terms only for calculating
� and � for our case.

For the statistical prefactor, we use the following ex-
pression [26]

�0 ¼ 2

3
ffiffiffi
3

p
�
�

T

�
3=2

�
Rc

�had

�
4
: (14)

The correlation length in the hadronic phase, �had, is
expected to be of order of 1 fm, and we will take it to be
0.7 fm [26]).
We will present estimates of the nucleation rates from

Eq. (6) as well as Eq. (10). One needs to determine the
critical bubble profile and its 3-dimensional Euclidean
action S3 (equivalently, �F in Eq. (10)). We solve
Eq. (7) using the fourth order Runge-Kutta method with
appropriate boundary conditions (Eq. (8)), to get the profile
of critical bubble [21]. The critical bubble profiles (for the
3þ 1 dimensional case) are shown in Fig. 2(a) for different
temperatures. The bubble size decreases as temperature
increases, since the energy difference between true vacuum
and false vacuum increases (relative to the barrier height)
as temperature increases. We choose a definite temperature
T ¼ 200 MeV for the nucleation of bubbles, which is
suitably away from Tc to give acceptable bubble size and
nucleation probabilities for the relevant time scale. Making
T larger (up to T ¼ 250 MeVwhen the barrier disappears)
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FIG. 2. (a) Critical bubble profiles for different values of the
temperature. (b) Solid curve shows the critical bubble for
the 3þ 1-dimensional case (which for finite temperature case
becomes 3-Euclidean dimensional) for T ¼ 200 MeV and the
dotted curve shows the same for 2þ 1-dimensional case (i.e.
2-Euclidean dimensions for finite temperature case).
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leads to similar bubble profile, and the nucleation proba-
bility of the same order.

Recall that we are calculating bubble profiles using
Eq. (7) relevant for the 3þ 1 dimensional case; however,
the field evolution is done using 2þ 1-dimensional equa-
tions as appropriate for the midrapidity region of rapidly
longitudinally expanding plasma. In Fig. 2(b), the solid
curve shows the critical bubble for the 3þ 1-dimensional
case (which for finite temperature case becomes 3-Eucli-
dean dimensional) for T ¼ 200 MeV, and the dashed
curve shows the same for 2þ 1-dimensional case (i.e.,
2-Euclidean dimensions for finite temperature case). It is
clear that the 3-dimensional bubble is of supercritical size
and will expand when evolved with 2þ 1 dimensional
equations. This avoids the artificial construction of suitable
supercritical bubbles which can expand and coalesce as
was done in Ref. [21]. (Recall that for the finite tempera-
ture case, a bubble of exact critical size will remain static
when evolved by the field equations. In a phase transition,
bubbles with somewhat larger size than the critical size
expand while those with smaller size contract.)

For the bubble profile given by the solid curve in
Fig. 2(b), the value of the action S3ðlÞ is about
240 MeV. Using Eq. (6) for the nucleation rate, we find
that the nucleation rate of QGP bubbles per unit time per
unit volume is of the order of 0:025 fm�4. The thermal-
ization time for the QGP phase is of the order of 1 fm at
RHIC (say, for Au-Au collision at 200 GeV energy).
Hence, the time available for the nucleation of QGP
bubbles is at most about 1 fm. We take the region of
bubble nucleation to be of thick disk shape with the radius
of the disk (in the transverse direction) of about 8 fm and
the thickness of the disk (in the longitudinal direction) of
about 1 fm. Total space-time volume available for bubble
nucleation is then about 200 fm4 (in practice, less than
this). For the case of Eq. (6), net number of bubbles is
then equal to 5.

For the case of the nucleation rate given by Eq. (10), one
needs an estimate of the critical bubble size Rc as well as
bubble surface energy �, (along with other quantities like
	 etc. as given by Eqs. (11)–(14)). Determination of Rc is
somewhat ambiguous here as the relevant bubbles are thick
wall bubbles as seen in Fig. 2. Here, there is no clear
demarcation between the core region and the surface re-
gion which could give an estimate of Rc. Essentially, there
is no core at all and the whole bubble is characterized by
the overlap of bubble-wall region. We can take, as
an estimate for the bubble radius Rc, any value from 1–
1.5 fm. It is important to note here that this estimate of Rc is
only for the calculation of nucleation rate �, and not for
using the bubble profile for actual simulation. When bub-
bles are nucleated in the background of false vacuum with
l ¼ 0, a reasonably larger size of the bubble is used so that
cutting off the profile at that radius does not lead to
computational errors and field evolution remains smooth.

Once we have an estimate of Rc, we can then estimate
the surface tension� (which also is not unambiguous here)
as follows. With the realization that essentially there is no
core region for the bubbles in Fig. 2, we say that the entire
energy of the bubble (i.e., the value of S3) comes from the
surface energy. Then, we write

4�R2
c� ¼ S3: (15)

For S3 ¼ 240 MeV, we get � ¼ 8 MeV=fm2 if we take
Rc ¼ 1:5 fm. With Rc ¼ 1:0 fm, we get � ¼
20 MeV=fm2. We mention here that the surface tension
of the bubble wall for the SU(3) case, without quarks, has
been estimated using lattice calculations [28], and its value
is found to be about � ¼ 0:015T3

c � 0:03T3
c . For Tc ’

182:0 MeV, one gets � ’ 2� 4 MeV= fm2 which is
much smaller than the values of � mentioned above.
However, note that in the effective potential in Eq. (4),
though various parameters are fitted with lattice results for
pure SU(3) gauge theory, the value of parameter b4 is
rescaled by a factor 47:5=16 to account for the quark
degrees of freedom. Above values of surface tension are
obtained with this rescaled value of b4. For a proper
comparison, we use b4 ¼ 0:6106 without this rescaling,
and recalculate the bubble profile and the bubble action
S3ðlÞ. For T ¼ 200 MeV (i.e., with some superheating to
get finite bubble size), the action is found to be about
400 MeV and the bubble radius is found to be about
3.0 fm. Except for being larger, the bubble profile,
for this pure SU(3) case, is similar to what is shown in
Fig. 2(b); hence, we do not show this plot. Using Eq. (15)
then, we get the value of � to be about 3:5 MeV=fm2

which is consistent with the estimates given in Ref. [28].
The number of bubbles expected can now be calcu-

lated for the case when the nucleation rate is given by
Eq. (10). We find the number of bubbles to be about
10�4 with Rc taken as 1.5 fm. This is in accordance with
the results discussed in Ref. [26]. The bubble number
increases by about a factor 5 if Rc is taken to be about
1 fm. Thus, with the estimates based on Eq. (10), bubble
nucleation is a rare event for the time available for
RHICE.
As we have mentioned above, for us the bubble nuclea-

tion on one hand represents the possibility of actual
dynamics of a first order transition, while on the other
hand, it represents the generic properties of the domain
structure arising from a C-D transition, which may very
well be a crossover, occurring in a finite time. With this
view, and with various uncertainties in the determination
of preexponential factors in the nucleation rate, we will
consider a larger number of bubbles also and study do-
main wall and string production. First, we will consider
nucleation of 5 bubbles, and then we will consider nu-
cleation of 9 bubbles to get a better network of domain
walls and strings.
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V. NUMERICAL TECHNIQUES

In our simulation, critical bubbles are nucleated at a time
when the temperature T crosses the value T ¼ 200 MeV
during the initial stage between � ¼ 0 to � ¼ �0 ¼ 1 fm
(during which we have modeled the system temperature to
increase linearly from 0 to T0). We take T0 ¼ 400 MeV so
the bubble nucleation stage is taken to be at � ¼ 0:5 fm
when T reaches the value 200 MeV. Again, this is an
approximation since in realistic case bubbles will nucleate
over a span of time given by the (time dependent) nuclea-
tion rate, which could lead to a spectrum of sizes of
expanding bubbles at a given time. However, due to the
very short time available to complete the nucleation of
QGP bubbles in the background of confined phase, bubbles
will have very little time to expand during the nucleation
period of all bubbles (especially as initial bubble expansion
velocity is zero). Thus, it is reasonable to assume that all
the bubbles nucleate at the same time.

After nucleation, bubbles are evolved by the time de-
pendent equations of motion in the Minkowski space [29]
as appropriate for Bjorken’s longitudinal scaling model,

€l i þ
_li
�
� @2li

@x2
� @2li

@y2
¼ �@VðlÞ

@li
; i ¼ 1; 2 (16)

with _l ¼ 0 at � ¼ 0. Here, l ¼ l1 þ il2, and dot indicates
derivative with respect to the proper time �.

The bubble evolution was numerically implemented by
a stabilized leapfrog algorithm of second order accuracy
both in space and in time with the second order derivatives
of li approximated by a diamond-shaped grid. Here, we
follow the approach described in [21] to simulate the first
order transition. We need to nucleate several bubbles ran-
domly choosing the corresponding Zð3Þ vacua for each
bubble. This is done by randomly choosing the location
of the center of each bubble with some specified probabil-
ity per unit time per unit volume. Before nucleating a
bubble, it is checked if the relevant region is in the false
vacuum (i.e., it does not overlap with some other bubble
already nucleated). In case there is an overlap, the nuclea-
tion of the new bubble is skipped. The orientation of l
inside each bubble is taken to randomly vary between the
three Zð3Þ vacua.

For representing the situation of relativistic heavy-ion
collision experiments, the simulation of the phase transi-
tion is carried out by nucleating bubbles on a square lattice
with physical size of 16 fm within a circular boundary
(roughly the Gold nucleus size). We use fixed boundary
condition, free boundary condition, as well as periodic
boundary condition for the square lattice. To minimize
the effects of boundary (reflections for fixed boundary,
mirror reflections for periodic boundary conditions), we
present results for free boundary conditions (for other
cases, the qualitative aspects of our results remain un-
changed). Even for free boundary conditions, spurious
partial reflections occur, and to minimize these effects,

we use a thin strip (of 10 lattice points) near each boundary
where extra dissipation is introduced.
We use 2000� 2000 lattice. For the physical size of

16 fm, we have �x ¼ 0:008 fm. To satisfy the Courant

stability criteria, we use �t ¼ �x=
ffiffiffi
2

p
, as well as �t ¼

0:9�x=
ffiffiffi
2

p
(which we use for the results presented in the

paper). For Au-Au collision at 200 GeV, the thermalization
is expected to happen within 1 fm time. As mentioned
above, in this preequilibrium stage, we model the system as
being in a quasiequilibrium stage with a temperature which
increases linearly with time (for simplicity). The tempera-
ture of the system is taken to reach up to 400 MeV in 1 fm
time, starting from T ¼ 0. After � ¼ �0 ¼ 1 fm, the tem-
perature decreases due to continued longitudinal expan-
sion, i.e.,

Tð�Þ ¼ Tð�0Þ
�
�0
�

�
1=3

: (17)

The stability of the simulation is checked by checking
the variation of total energy of the system during the
evolution. The energy fluctuation remains within few per-
cent, with no net increase or decrease in the energy (for
fixed and periodic boundary conditions, and without the

dissipative _l term in Eq. (16)) showing the stability of the
simulation.
The bubbles grow and eventually start coalescing, lead-

ing to a domainlike structure. Domain walls are formed
between regions corresponding to different Zð3Þ vacua, and
strings form at junctions of Zð3Þ domain walls. Recall that
the domain wall network is formed here in the transverse
plane, appearing as curves. These are the cross sections of
the walls which are formed by elongation (stretching) of
these curves in the longitudinal direction into sheets. At the
intersection of these walls, strings form. In the transverse
plane, these strings looks like vortices, which will be
elongated into strings in the longitudinal direction.

VI. EFFECTS OF QUARKS

We now discuss the effects of quarks. As we mentioned
above, we will follow the approach where the presence of
quarks is interpreted as leading to explicit breaking of the
Zð3Þ symmetry, lifting the degeneracy of different Zð3Þ
vacua [6–8]. This has important effects in the context of
our model. First of all, different vacua having different
energies implies different nucleation rates for the QGP
bubbles with different Zð3Þ vacua. Further, for nondegen-
erate vacua, even planar Zð3Þ interfaces do not remain
static and move away from the region with the unique
true vacuum. Thus, while for the degenerate vacua case
every closed domain wall collapses, for the nondegenerate
case, this is not true any more. A closed wall enclosing the
true vacuum may expand if it is large enough so that
the surface energy contribution does not dominate (this is
essentially the same argument as given for the bubble
expansion, see Eq. (5) and the discussion following it).
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To see the importance of these effects, we need an
estimate of the explicit symmetry-breaking term arising
from inclusion of quarks. For this, we use the estimates
given in [9,30]. Even though the estimates in Ref. [30] are
given in the high temperature limit, we will use these for
temperatures relevant for our case, i.e., T ’ 200–
400 MeV, to get some idea of the effects of the explicit
symmetry breaking. The difference in the potential energy
between the true vacuum with l ¼ 1 and the other two

vacua (l ¼ ei2�=3, and l ¼ ei4�=3, which are degenerate
with each other) is estimated in Ref. [30] to be

�V � 2

3
�2T4 Nl

N3
ðN2 � 2Þ (18)

whereNl is the number of massless quarks. If we takeNl ¼
2, then �V ’ 3T4. At the bubble nucleation temperature
(which we have taken to be about T ¼ 200 MeV), the
difference between the false vacuum and the true vacuum
is about 150 MeV=fm3 while �V at T ¼ 200 MeV is
about 4 times larger, equal to 600 MeV=fm3. As T ap-
proaches Tc, this difference will become larger as the
metastable vacuum and the stable vacuum become degen-
erate at Tc, while �V remains nonzero. For T near
250 MeV (where the barrier between the metastable
vacuum and the stable vacuum disappears), �V becomes
almost comparable to the difference between the potential
energy of the false vacuum (the confining vacuum) and the
true vacuum (deconfined vacuum).

It does not seem reasonable that at temperatures of order
200 MeV, a QGP phase (with quarks) has higher free
energy than the hadronic phase. This situation can be
avoided if the estimates of Eq. (18) are lowered by about
a factor of 5 so that these phases have lower free energy
than the confining phase. (A more desirable situation will
be when �V approaches zero as the confining vacuum and
the deconfining true vacuum become degenerate at Tc.) It is
in the spirit of the expectation that explicit breaking of Zð3Þ
is small near Tc for finite pion mass [9]. Even with such
lower estimates, the effects of quarks may give different
nucleation probabilities for different Zð3Þ vacua. As the
presence of quarks acts like a magnetic field in a spin
system in an effective description of the quark-hadron
transition [31], the split between the true vacuum and the
two metastable Zð3Þ vacua will be large for strong enough
(effective) magnetic field. Thus, it is possible that the
nucleation of bubbles with nontrivial Zð3Þ vacua may be
substantially suppressed when quark effects are included.

However, in this paper we will ignore this possibility and
use the same nucleation probability for all three Zð3Þ
domains. This may not be very unreasonable as for thick
wall bubbles, without any well defined core region and
surface, the above estimates of the nucleation rate (in
Sec. IV) may not be very accurate. We also note that the
preexponential factor for the bubble nucleation rate of Eq.
(6), as given in Eq. (9) increases with the value of S3ðlÞ.

Thus, for the range of values of S3ðlÞ for which the ex-
ponential factor in Eq. (6) is of order 1, which is likely in
our case, the nucleation rate may not decrease with larger
values of S3ðlÞ, i.e., for the Zð3Þ vacua with higher potential
energies than the true vacuum. (Of course, for very large
values of S3ðlÞ, the exponential term will suppress the
nucleation rate.) Thus, our assumption of neglecting quark
effects for the bubble nucleation rate may not be very
unreasonable.
We now consider the effect of nonzero �V, as in Eq.

(18), on the evolution of closed domain walls. The tem-
perature range relevant for our case is T ¼ 200–400 MeV.
In an earlier work, we had numerically estimated the
surface tension of Zð3Þ walls to be about 0.34 and
7:0 GeV=fm2 for T ¼ 200 and 400 MeV, respectively.
The effects of quarks will be significant if a closed spheri-
cal wall (with true vacuum inside) starts expanding instead
of collapsing. Again, using the bubble free energy Eq. (5),
with � ¼ �V and � as the surface energy of the interface,
we see that the critical radius R� of the spherical wall is

R� ¼ 2�

�
’ 2�=3T4: (19)

For T ¼ 200 and 400 MeV, we get R� ’ 1 and 1.5 fm,
respectively. Though these values are not large, these are
not too small either when considering the fact that relevant
sizes and times for RHICE are of order few fm anyway.
The values of R� we estimated here are very crude, as for
these sizes, wall thickness is comparable to R�; hence,
application of Eq. (5), separating volume and surface
energy contributions, is not appropriate. Further, as we
discussed above, the estimate in Eq. (18) which is appli-
cable for high-temperature limit, seems an overestimate by
about an order of magnitude at these temperatures. Thus
uncertainties of factors of order 1 may not be unreasonable
to expect. In that case, the dynamics of closed domain
walls of even several fm diameter will not be affected by
the effects of quarks via Eq. (18).
We will see in the next section of simulation results that

the domain walls and strings typically have large veloc-
ities (e.g., about 0.5–0.8) at the time of formation. These
result from momentum of colliding bubble walls and from
curvature in the shape of these walls (as well as asymme-
tries in the profiles of strings) at the time of formation.
With such large velocities present, the effects of pressure
differences between different Zð3Þ vacua due to quarks
may become subdominant in studying the evolution of
these structures for the short time duration available for
RHICE.
With this, we will assume that for small closed walls, of

order few fm diameter, as is expected in RHICE, the quark
effects in the evolution of wall network may be neglected.
We plan to remove these assumptions and include the
effects of nonzero �V due to quarks on bubble nucleation
and wall evolution in a future work.
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VII. RESULTS OF THE SIMULATION

As we mentioned above, the number of bubbles ex-
pected to form in RHICE is small. We first present and
discuss the case of 5 bubbles which is more realistic from
the point of view of nucleation estimates given by Eq. (6)
(though a gross overestimate for Eq. (10)). Note that a
domain wall will form even if only two bubbles nucleate
(with different Zð3Þ vacua). However, to see QGP string
formation, we need nucleation of at least three bubbles.
Next, we will discuss the case of 9 bubbles which is a much
more optimistic estimate of the nucleation rate (even for
Eq. (6)). Alternatively, this case can be taken as better
representation of the case when the transition is a crossover
and bubbles only represent a means for developing a
domain structure expected after the crossover is completed.
(In this case, only relevant energy density fluctuations, as

discussed below, will be those arising from Zð3Þ walls and
strings, and not the ones resulting from bubble wall
coalescence.)

A. Formation and motion of extended walls

Figures 3–7 show the results of simulation when five
bubbles are nucleated with random choices of different
Zð3Þ vacua inside each bubble. Figure 3 shows a time
sequence of surface plots of the order parameter lðxÞ in
the two dimensional lattice. Figure 3(a) shows the initial
profiles of the bubbles of the QGP phase embedded in the
confining vacuum with l ¼ 0 at � ¼ 0:5 fm with the tem-
perature T ¼ 200 MeV. (Recall that for initial 1 fm time,
the temperature is taken to linearly increase from zero to
T0 ¼ 400 MeV.) The radial profile of each bubble is trun-
cated with appropriate care of smoothness on the lattice for

FIG. 3 (color online). (a) and (b) show plots of profiles of l at � ¼ 0:5 fm and 1.5 fm, respectively. (c)–(i) show plots of l0 � l at
� ¼ 1:5, 2.5, 4.0, 6.0, 9.0, 11.0, and 13.7 fm. T drops to below Tc around at � ¼ 10:5 fm and T ¼ 167 MeV at � ¼ 13:7 fm. Formation
of domain walls and string and antistring (at junctions of three walls) can be seen in the plots in (e)–(h).
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proper time evolution. Figure 3(b) shows the profile of each
bubble at � ¼ 1:5 fm showing the expansion of the bub-
bles. Near the outer region of a bubble, the field grows
more quickly towards the true vacuum. If bubbles expand
for a long time, then bubble walls become ultrarelativistic
and undergo large Lorentz contraction. This causes a prob-
lem in simulation (see, e.g., [21]). In our case, this situation
arises at outer boundaries (for the inner regions bubbles
collide quickly). For outer regions also, it does not cause
serious problem because of the use of dissipative boundary
strip (as explained above in Sec. V).

Figures 3(c)–3(i) show plots of l0 � l clearly showing
formation of domain walls and strings (junctions of three
walls). Here, l0 is a reference vacuum expectation value of
l calculated at the maximum temperature T ¼ T0 ¼
400 MeV. Formation of domain walls, extending through
the entire QGP region, is directly visible from Fig. 3(e) (at
� ¼ 4 fm) onwards. The temperature drops to below Tc ’
182 MeV at � ’ 10:5 fm. The last plot in Fig. 3(i) is at � ¼
13:7 fm when the temperature T ¼ 167 MeV, clearly
showing that the domain walls have decayed away in the
confined phase and the field is fluctuating about l ¼ 0.

In Figs. 3(f)–3(h), we see two junctions of three domain
walls where the QGP strings form. This is seen more

clearly in Fig. 4 where the phase � of l is plotted (with
the convention that � is the angle of the arrow from the
positive X axis). The domain walls are identified as the
boundaries where two different values of � meet, and
strings correspond to the nontrivial winding of � at the
junctions of three walls. From Figs. 4(b) and 4(c), we
clearly see that at one of the junctions, we have a string
(at X ’ 5 fm, Y ’ 8 fm) with positive winding, and we
have an antistring at X ’ 9 fm, Y ’ 8 fm with negative
winding. Note the rapid motion of the walls forming the
antistring towards positive Y axis from Fig. 4(c) (at � ¼
4:6 fm) to Fig. 4(e) (at � ¼ 12:2 fm). The average speed of
the antistring (and wall associated with that) can be di-
rectly estimated from these figures to be about 0.5 (in
natural units with c ¼ 1). This result is important in view
of the discussion in the preceding section showing that
effects of pressure differences between different Zð3Þ
vacua, arising from quarks, may be dominated by such
random velocities present for the walls and strings at the
time of formation. The motion of the walls here is a direct
result of the straightening of the L shaped wall structure
due to its surface tension. For the same reason, the wall in
the left part of Fig. 4(b) also straightens from the initial
wedge shape. Figure 4(f) shows almost random variations
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FIG. 4. Plots of the phase � of the order parameter l. (a) shows the initial distribution of � in the bubbles at � ¼ 0:5 fm. (b)–(f) show
plots of at � ¼ 2:0, 4.6, 11.0, 12.2, and 13.7 fm, respectively. Location of domain walls and the string (with positive winding) and
antistring (with negative winding) are clearly seen in the plots in (b)–(e). The motion of the antistring and associated walls can be
directly seen from these plots and an estimate of the velocity can be obtained.
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of � at � ¼ 13:7 fmwhen the temperature is 167MeV, well
below the critical temperature, though it is interesting to
note that a large region of roughly uniform values of � still
survives at this stage.

Figure 5 shows surface plots of the local energy density
". " is plotted in units of GeV=fm3. Although the simula-
tion is 2þ 1-dimensional representing the transverse plane
of the QGP system, we calculate energy in 3þ
1-dimensions by taking a thickness of 1 fm in the central
rapidity region. Figure 5(a) shows plot at � ¼ 3 fm when
bubbles have coalesced. In Fig. 5(b) at � ¼ 3:6 fm, we see
that bubble walls have almost decayed (in ripples of l
waves) between the bubbles with same � (i.e., same Zð3Þ
vacua) as can be checked from � plots in Fig. 4. Energy
density remains well localized in the regions where domain
walls exist. Also, one can see the small peaks in the energy
density where strings and antistrings exist. Large peaks
arise from oscillations of l when bubble walls coalesce, as
discussed in [21]. Large values of " near the boundary of
the lattice are due to relativistically expanding bubble
walls. Motion of walls and generation of increased fluctu-
ations in energy density are seen in Figs. 5(c)–5(e).
Figure 5(f) at � ¼ 13:2 fm (with T ¼ 169 MeV) shows
that walls have decayed. However, some extended regions
of high energy density can be seen at this stage also.

Figure 6 shows contour plots of energy density ".
Figure 6(a) shows coalescence of bubbles at � ¼ 3 fm.
Figure 6(b) at � ¼ 3:6 fm clearly shows the difference in

the wall coalescence depending on the vacua in the collid-
ing bubbles. Where domain walls exist, we see extended
regions of high energy density contours whereas where the
two vacua in colliding bubbles are same, there are essen-
tially no high energy density contours. Motion of domain
walls (and strings at wall junctions) is clearly seen in these
contour plots in Figs. 6(b)–6(d). Figure 6(e) is at � ¼
10:2 fm when T drops to Tc. Wall structures are still
present. Figure 6(f) is at � ¼ 13:2 fm (T ¼ 169 MeV)
when walls have decayed away, though some extended
structures in contours still survive.
We have also calculated the variance of energy density

�" at each time stage to study how energy fluctuations
change during the evolution. In Fig. 7, we show the plot of
�"=" as a function of proper time. Here, " is the average
value of energy density at that time stage. The energy
density " decreases due to longitudinal expansion; hence,
we plot this ratio to get an idea of relative importance of
energy density fluctuations. Figure 7 shows initial rapid
drop in �"=" due to large increase in " during the heating
stage up to � ¼ 1 fm, followed by a rise due to increased
energy density fluctuations during the stage when bubbles
coalesce and bubble walls decay, as expected. Interesting
thing to note is a slight peak in the plot near � ¼ 10:5 fm
when T drops below Tc. This should correspond to the
decay of domain walls and may provide a signal for the
formation and subsequent decay of such objects in
RHICE.

FIG. 5 (color online). Surface plots of the local energy density " in GeV=fm3. (a)–(f) show plots at � ¼ 3:0, 3.6, 5.0, 6.0, 8.0, and
13.2 fm, respectively. Extended domain walls can be seen from these plots of " in (b)–(e). Small peaks in " exist at the locations of
string and antistring (larger peaks arise from oscillations of field where bubbles coalesce). Plot in (f) is at the stage when
T ¼ 169 MeV and domain walls have decayed away.
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B. Formation and collapse of a closed wall

Figures 8–12 show the results of simulation where nine
bubbles are nucleated. Figure 8 shows a time sequence of
surface plots of lðxÞ (similar to Fig. 3). Figure 8(a) shows
the initial profiles of the QGP bubbles at � ¼ 0:5 fm with
the nucleation temperature of T ¼ 200 MeV. Figure 8(b)
shows the profile of l for the bubbles at � ¼ 1:5 fm show-
ing the expansion of the bubbles. Figures 8(c)–8(i) show
plots of l0 � l at different stages. Noteworthy here is the
formation of a closed domain wall near the central region
which is clearly first seen in Fig. 8(e) at � ¼ 5 fm. The
collapse of this closed domain wall is seen in the subse-
quent plots with the closed wall completely collapsing
away in Fig. 8(h) at � ¼ 9:6 fm. Only surviving structure
is an extended domain wall along the X axis. Figure 8(i) is
at � ¼ 13:2 fm when T ¼ 169 MeV. The domain walls
have decayed away and l fluctuates about the value zero as
appropriate for the confined phase.
Figure 9 shows plots of the phase � of l at different

stages. Initial phase distribution in different bubbles is
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FIG. 7. Plot of the ratio of variance of energy density �" and
the average energy density " as a function of proper time. Energy
fluctuations increase during the initial stages when bubbles
coalesce and bubble walls decay. After that, there is a slow
decrease in energy fluctuation until the stage when the tempera-
ture drops below Tc and � ’ 10:5 fm. Energy fluctuations in-
crease after this stage. Note small peak near the transition stage.

FIG. 6 (color online). Contour plots of the local energy density " at different stages. Plots in (a)–(f) correspond to � ¼ 3:0, 3.6, 5.0,
7.6, 10.2, and 13.2 fm, respectively. Structure of domains walls formed near the coalescence region of bubbles with different � is clear
in (b), whereas the bubble walls at lower half of Y region, and near X ¼ 10 fm, are seen to simply decay away due to same vacuum in
the colliding bubbles. Motion of the antistring and associated domain walls is clear from plots in (b)–(e). The last plot in (f) is at
� ¼ 13:2 fm when T ¼ 169 MeV.
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shown in Fig. 9(a) at � ¼ 0:5 fm. Figure 9(b) shows the
formation of closed, elliptical shaped domain wall at � ¼
2:6 fm. Strings and antistrings can also be identified by
checking the windings of �. The closed domain wall col-
lapses, and in the process becomes more circular, as shown
in the plots in Figs. 9(b)–9(h). Figure 9(h) shows the plot at
� ¼ 9:6 fm when the closed domain wall completely col-
lapses away, leaving only an extended domain wall running
along X axis between Y ’ 4–8 fm. The final Fig. 9(i) at
� ¼ 13:8 fm is when the temperature T ¼ 167 MeV
showing random fluctuations of � when domain walls
have decayed away in the confining phase.

Figure 10 shows the surface plot of energy density " at
different stages. Extended thin regions of large values of "
are clearly seen in the plots corresponding to domain walls.
Collapse of the closed domain wall is also clearly seen in

Figs. 10(c)–10(g). The important thing to note here is the
surviving peak in the energy density plot at the location of
domain wall collapse. This peak survives even at the stage
shown in Fig. 10(i) at � ¼ 13:2 fm when T ¼ 169 MeV,
well below the transition temperature. Such hot spots may
be the clearest signals of formation and collapse of Zð3Þ
walls.
Contour plots of " are shown in Fig. 11. Though closed

domain wall can be seen already in Fig. 11(b) (at � ¼
3:5 fm), the domain wall is still attached to outward ex-
panding bubble walls near X ¼ 3 fm, Y ¼ 12 fm which
affects the evolution/motion of that portion of the domain
wall. Formation of distinct closed wall structure is first
visible in Fig. 11(c) at � ¼ 4:6 fm. Subsequent plots
clearly show how the domain wall becomes circular and
finally collapses away by Fig. 11(k) at � ¼ 9:6 fm. Note

FIG. 8 (color online). (a) and (b) show plots of profiles of l at � ¼ 0:5 fm and 1.5 fm, respectively, for the case when 9 bubbles are
nucleated. (c)–(i) show plots of l0 � l at � ¼ 2:0, 3.0, 5.0, 7.0, 8.6, 9.6, and 13.2 fm, respectively. Formation of a closed domain wall is
first clearly seen in the plot in (e). This closed domain wall collapses as seen in plots in (e) through (h). Only surviving domain wall is
an extended wall along X axis in (h). Plot in (i) is when the temperature T ¼ 169 MeV.
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the survival of the hot spot even at the stage shown in
Fig. 11(l) at � ¼ 13:2 fm when T ¼ 169 MeV.

One can make a rough estimate of the velocity of
the closed wall during its collapse from these plots. In
Fig. 11(c), at � ¼ 4:6 fm, the X extent of the closed wall
is about 8 fm and the Y extent is about 5 fm. The wall
collapses away by the stage in Fig. 11(k) at � ¼ 9:6 fm.
This gives rough velocity of collapse in X direction to be

about 0.8 while the velocity in Y direction is about 0.5.
Note that here, as well as in Fig. 4 for the five bubble case,
the estimate of the wall velocity is not affected by the extra
dissipation which is introduced only in a very thin strip
(consisting of ten lattice points) near the lattice boundary.
Formation and collapse of such closed domain walls is
important as the resulting hot spot can lead to important
experimental signatures. Further, such closed domain wall
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FIG. 9. Plots of the phase � of l. (a) shows initial distribution of � in the bubbles at � ¼ 0:5 fm. (b)–(i) show plots of � at � ¼ 2:6,
5.0, 6.0, 7.0, 8.0, 8.6, 9.6, and 13.8 fm, respectively. (b) shows formation of elliptical shaped closed domain wall which subsequently
becomes more circular as it collapses away by � ¼ 9:6 fm as shown by the plot in (h). The plot in (i) is at T ¼ 167 MeV showing
random fluctuations of �.
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structures are crucial in the studies of PT enhancement,
especially for heavy-flavor hadrons as discussed in [11,12].

Figure 12 shows the evolution of the ratio of the variance
of energy density and the average energy density. As for
the five bubble case, initial drop and rise are due to heating
stage upto � ¼ 1 fm and subsequent bubble coalescence
and decay of bubble walls. In this case, the ratio remain
roughly constant up to � ’ 10:5 fm which is the transition
stage to the confining phase. This is the stage when the
surviving extended domain wall starts decaying. This is
also the stage soon after the closed domain wall collapses
away. The prominent peak at this stage should be a com-
bined result of both of these effects. The large increase in
the variance of energy density at this stage should be
detectable from the analysis of particle distributions and
should be a clear signal of hot spots resulting from collapse

of closed walls and the decay of any surviving domain
walls.

VIII. POSSIBLE EXPERIMENTAL SIGNATURES
OF Zð3Þ WALLS AND STRINGS

The Zð3Þ wall network and associated strings form dur-
ing the early confinement-deconfinement phase transition.
They undergo evolution in an expanding plasma with
decreasing temperature, and eventually melt away when
the temperature drops below the deconfinement-con-
finement phase transition temperature. They may leave
their signatures in the distribution of final particles due to
large concentration of energy density in extended regions
as well as due to nontrivial scatterings of quarks and
antiquarks with these objects.

FIG. 10 (color online). Surface plots of the local energy density " in GeV=fm3. (a)–(i) show plots at � ¼ 2:6, 3.5, 4.6, 5.6, 7.0, 8.6,
9.6, 11.2, and 13.2 fm, respectively. Formation and subsequent collapse of closed domain wall is clearly seen in plots in (c) through (g).
Note that the strong peak in " resulting from domain wall collapse (the hot spot) survives in (i) when T ¼ 169 MeV.
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FIG. 11 (color online). Contour plots of the local energy density " at different stages. Plots in (a)–(l) correspond to � ¼ 2:6, 3.5, 4.6,
6.0, 6.6, 7.0, 7.6, 8.0, 8.6, 9.0, 9.6, and 13.2 fm, respectively. Formation of distinct closed wall structure is first visible in (c) at
� ¼ 4:6 fm. Subsequent plots show the collapse of this domain wall as it becomes more circular. The wall finally collapses away in (k)
at � ¼ 9:6 fm. Note that concentration of energy density at the location of domain wall collapse (the hot spot) survives even at the
stage shown in (l) at � ¼ 13:2 fm when T ¼ 169 MeV.
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First, we focus on the extended regions of high energy
density resulting from the domain walls and strings. This is
clearly seen in our simulations and some extended struc-
tures/hot spots also survive after the temperature drops
below the transition temperature Tc. Note that even the
hot spot resulting from the collapse of closed domain wall
in Figs. 9 and 10 will be stretched in the longitudinal
direction into an extended linear structure (resulting from
the collapse of a cylindrical wall). We know that at RHIC
energies, the final freeze-out temperature is not too far
below the transition temperature Tc. This means that the
energy density concentrated in any extended (sheetlike for
domain walls and linelike for strings/hot spots) regions
may not be able to defuse away effectively. Assuming local
energy density to directly result in multiplicity of particles
coming from that region, an analysis of particle distribu-
tion in PT and in rapidity should be able to reflect any such
extended regions. In this context, it will be interesting to
investigate if the ridge phenomenon seen at RHIC [32]
could be a manifestation of an underlying Zð3Þ domain
wall/string structure. Correlation of particle production
over large range of rapidity will naturally result from
longitudinally extended regions of high energy density
(hot spots in the transverse plane). Combined with flow
effects, it may lead to ridgelike structures [32,33]. If ex-
tended domain wall structure survives in the transverse
plane also, this will then extend to sheetlike regions in
the longitudinal direction. Decay of such a region of high
energy density may directly lead to a ridgelike structure,
without requiring flow effects.

We expect nontrivial signatures resulting from the con-
sideration of interactions of quarks and antiquarks with
domain walls. It was shown in an earlier work [11] using

generic arguments that quarks and antiquarks should have
nonzero reflection coefficients when traversing across
these domain walls. A collapsing domain wall will then
concentrate any excess baryon number enclosed, leading to
formation of baryon-rich regions. This is just like Witten’s
scenario for the early Universe [34] (which was applied for
the case of RHICE in Ref. [35]). However, for these works ,
it was crucial that the quark-hadron transition be of
(strong) first order. As we have emphasized above, in our
case formation of Zð3Þ walls and strings will be a generic
feature of any C-D phase transition. Even though we have
implemented it in the context of a first order transition via
bubble nucleation, these objects will form even if the
transition is a crossover. Thus, concentration of baryons
in small regions should be expected to occur in RHICE
which should manifest in baryon concentration in small
regions of rapidity and PT .
Another important aspect of quark/antiquark reflection

is that inside a collapsing wall, each reflection increases
the momentum of the enclosed particle. When closed
domain walls collapse then enclosed quarks/antiquarks
may undergo multiple reflections before finally getting
out. This leads to a specific pattern of PT enhancement
of quarks with heavy flavors showing more prominent
effects [12]. The modification of PT spectrum of resulting
hadrons can be calculated, and the enhancement of heavy-
flavor hadrons at high PT can be analyzed for the signal
for the formation of Zð3Þ domain walls in these experi-
ments [12]. In our simulations, extended domain walls
also form which show bulk motion with velocities of
order 0.5. Quarks/antiquarks reflected from such moving
extended walls will lead to anisotropic momentum distri-
bution of emitted particles which may also provide sig-
nature of such walls. For collapsing closed domain walls,
spherical domain walls were used for estimates in
Ref. [11] and in Ref. [12]. Our simulation in the present
work provides a more realistic distribution of shapes and
sizes for the resulting domain wall network. We have
estimated the velocity of moving domain walls to range
from 0.5 to 0.8 for the situations studied. These velocities
are large enough to have important effect on the momen-
tum of quarks/antiquarks undergoing reflection from these
walls. One needs to combine the analysis of [11,12] with
the present simulation to get a concrete signature for
baryon concentration and heavy-flavor hadron PT spec-
trum modification. We plan to carry this out in a future
work. We also plan to study effects of spontaneous vio-
lation of CP due to formation of these Zð3Þ walls in
RHICE.
Our results show an interesting pattern of the evolution

of the fluctuations in the energy density. As seen in
Figs. 7 and 12, energy density fluctuations show rapid
changes during stages of bubble wall coalescence and
during collapse/decay of domain walls. Even string-
antistring annihilations should be contributing to these
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FIG. 12. Plot of the ratio of variance of energy density �" and
the average energy density " as a function of proper time. Energy
fluctuations increase during the initial stages when bubbles
coalesce and bubble walls decay. After that �"=" remains
roughly constant until the stage when the temperature drops
below Tc at � ’ 10:5 fm. This is also the stage just after the
collapse of the closed domain wall. Energy fluctuations sharply
increase around this stage. Note the prominent peak at this stage.
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fluctuations. Fluctuations near the transition stage may
leave direct imprints on particle distributions. It is intri-
guing to think whether dileptons or direct photons may
be sensitive to these fluctuations, which could then give a
time history of evolution of such energy density fluctua-
tions during the early stages as well. Even the presence of
domain walls and strings during early stages may affect
quark-antiquark distributions in those regions which may
leave imprints on dileptons/direct photons. An important
point to note is that in our model, we expect energy
density fluctuations in event averages (representing high
energy density regions of domain walls/strings as dis-
cussed above), as well as event-by-event fluctuations.
These will result due to fluctuation in the number/geome-
try of domain walls/strings from one event to the other
resulting from different distribution of (randomly occur-
ring) Zð3Þ vacua in the QGP bubbles. Even the number of
QGP bubbles, governed by the nucleation probability,
will vary from one event to the other contributing to
these event-by-event fluctuations.

IX. CONCLUSIONS

We have carried out numerical simulation of formation
of Zð3Þ interfaces and associated strings at the initial
confinement-deconfinement phase transition during the
preequilibrium stage in relativistic heavy-ion collision ex-
periments. A simple model of quasiequilibrium systemwas
assumed for this stage with an effective temperature which
first rises (with rapid particle production) to a maximum
temperature T0 > Tc, and then decreases due to continued
plasma expansion.

Using the effective potential for the Polyakov loop
expectation value lðxÞ from Refs. [7,8], we study the dy-
namics of the (C-D) phase transition in the temperature/
time range when the first order transition of this model
proceeds via bubble nucleation. As we have emphasized
above, though our study is in the context of a first order
transition, its results are expected to be valid even when the
transition is a crossover. (Though for nonzero chemical
potential, the transition may indeed be of first order). The
generic nature of our results arises due to the fact that the
formation of Zð3Þ domain walls and associated strings
happens due to the a general domain structure resulting
after any transition (occurring in a finite time). This is the
essential physics of the Kibble mechanism underlying the
formation of topological defects in symmetry breaking
transitions.

The Zð3Þ wall network and associated strings formed
during this early C-D transition are evolved using field
equations in a plasma which is longitudinally expanding,
with decreasing temperature. We have neglected here the
transverse expansion which is a good approximation for

the early stages near the formation stage of these objects,
but may not be a good approximation for the later parts of
simulations when temperature drops below Tc and Zð3Þ
domain walls and strings melt away. We have studied
size/shape of resulting closed domain wall as well as
extended domain walls and have estimated the velocities
of walls to range from 0.5 to 0.8. We also calculate the
energy density fluctuations expected due to formation of
these objects. Various experimental signals which can
indicate the formation of these topologically nontrivial
objects in RHICE have been discussed. For example,
existence of these objects will result in specific patterns
of energy density fluctuations which may leave direct
imprints on particle distributions. In our model, we expect
energy density fluctuations in event averages (represent-
ing high energy density regions of domain walls/strings),
as well as event-by-event fluctuations as the number/ge-
ometry of domain walls/strings and even the number of
QGP bubbles, varies from one event to the other.
Extended regions of large energy densities arising from
Zð3Þ walls and associated strings may be manifested in
space-time reconstruction of hadron density (using hydro-
dynamic model). The correlation of particle production
over a large range of rapidity will be expected from such
extended regions. This, combined with the flow effects
(for stringlike regions), or possibly directly (for sheetlike
extended region) may provide an explanation for the ridge
phenomena observed at RHIC [32]. Also, from the reflec-
tion of quarks and antiquarks from collapsing domain
walls, baryon number enhancement in localized regions
(due to concentration of net baryon number) as well as
enhancement of heavy-flavor hadrons at high PT is
expected.
We emphasize again that the presence of Zð3Þ walls and

string may not only provide qualitatively new signatures
for the QGP phase in these experiments, it may provide the
first (and may be the only possible) laboratory study of
such topological objects in a relativistic quantum field
theory system.
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