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Exclusive electroproduction revisited: Treating kinematical effects
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Generalized parton distributions of the nucleon are accessed via exclusive leptoproduction of the real
photon. While earlier analytical considerations of phenomenological observables were restricted to twist-
three accuracy, i.e., taking into account only terms suppressed by a single power of the hard scale, in the
present study we revisit this differential cross section within the helicity formalism and restore power-
suppressed effects stemming from the process kinematics exactly. We restrict ourselves to the pheno-
menologically important case of lepton scattering off a longitudinally polarized nucleon, where the photon

flips its helicity at most by one unit.
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I. ELECTROPRODUCTION OBSERVABLES

Unravelling nucleons’ structure from generalized parton
distributions (GPDs) [1] requires their measurements in
exclusive leptoproduction experiments. Recent years have
witnessed groundbreaking efforts which put the underlying
theoretical framework on a firm basis with accuracy of
approximation involved being under control (see, e.g.,
Ref. [2]). While, to date, reliable modeling of partonic
correlations encoded in GPDs is far from being mature
enough, theoretical analyses of experimental observables
are not constrained by any complications of principle and,
rather, await the time when experiments reach competing
precision.

The cross section for exclusive electroproduction of
photons, being the cleanest probe of GPDs, had already
been computed analytically for some time to twist-three
accuracy [3], i.e., keeping terms suppressed at most by one
power of the hard scale and neglecting everything else.
While this approximation is robust for kinematical regimes
with moderately hard virtualities of the exchanged photon
at large energies, it was shown to overestimate available
data at low momentum transfer in the valence quark region,
i.e., for moderate values of the Bjorken variable. This calls
for the restoration of contributions ignored previously on
the basis of their parametric suppression. In a more recent
investigation [4], we demonstrated that the deviation be-
tween the data and theoretical estimates could be recon-
ciled by calculating kinematical corrections in hard scale
exactly while ignoring dynamical high-twist contributions
altogether. The latter assumptions can be motivated by the
expected hierarchy of low-energy scales associated with
hadronic matrix elements of high-twist operators which are
smaller than other soft kinematical scales in the problem,
like the hadron mass or the #-channel momentum transfer.
This phenomenon exhibits itself as precocious scaling in
conventional deep inelastic scattering.

While our earlier analysis was performed for the
(pseudo)scalar target [4], presently we will generalize
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this consideration to the case of a spin one-half hadron.
The main focus of our consideration is the differential
cross section for scattering of the electron/positron
€ = e™ off the nucleon N with the emission of the real
photon in the final state, £(k)N(p,) — €(K')N(p,)y(q»),

_ a3xBy2
8m Q41 + €

The phase space of the process is parameterized by the
Bjorken variable x5 = Q2/(2p, - q,) determined in terms
of the momentum ¢; = k — k' carried by the virtual
photon of mass Q% = —g3, the square of the 7-channel
momentum ¢ = A? with A = p, — p;, and the lepton
energy loss y = p; - q;/p; - k. The azimuthal angle ¢ of
the recoiled nucleon is defined in the rest frame of the
target with the z axis directed counter-along the photon
three-momentum q1. While the theoretical analysis of the
microscopic physics is cleanest when one formally takes
the limit © — oo, realistic experiments are done in a few-
GeV region where the effects from kinematical parameters
suppressed by 9,

do

L ixpd Q2dlldp. (1.1)

e3

t

M
Q, @, (1.2)

€ = 2xp
may be significant.

The electroproduction amplitude 7 is a linear superpo-
sition of the Bethe-Heitler and deeply virtual Compton
scattering (DVCS) amplitudes. In the former process, the
real photon is emitted from the lepton, which then scatters
off the target nucleons via the transition matrix element of
the electromagnetic quark current J,,, parameterized in
terms of the Pauli and Dirac form factors F; = F(¢) and
Fy = Fy(1),

14

. _ . A
Ju=(p2lj . O)lp)= Mz(?’ﬂﬂ + za'#,,sz)ul, (1.3)

with the nucleon bispinors u; = u(p;) normalized conven-
tionally as #u = 2M. The DVCS amplitude
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(1.4)

encodes the partonic structure of the nucleon and is the
object of interest. In the square of the scattering amplitude

Tz — |TBH|2 + |TDVCS|2 + I,
J = TDVCS(TBH)* + (TDVCS)*T’BH,

(1.5)

the Bethe-Heitler contribution |7 BH|? is merely an unde-
sirable contamination which was computed exactly already
in Ref. [3] and can be subtracted from the cross section,
making use of the available vast data on the nucleon
electromagnetic form factors measured at facilities around
the world. The main observables for extraction of GPDs
emerge from the remaining two contributions involving
T PVES | the square of the DVCS amplitude and the inter-
ference term I.

In analogy to the hadronic electromagnetic current (1.3),
decomposed in terms of the Dirac bilinears accompanied
by the form factors, we parameterize the DVCS amplitude
as follows:

\%
T,LLI/ = _T,ua'ga'f? qp K ql + (T;La'pa'?pv

Vs , Ay
+ ,‘P,upp(r?(rv)p—_pq - ?,uolsa'rqu)rup—_pq: (1.6)
where we have kept all dynamical contributions up to twist-
three accuracy and, at the same time, kinematically restored
the electromagnetic gauge invariance exactly. Note, how-
ever, that the so-called gluon transversity contribution,
inducing the photon helicity-flip amplitude by two units
at leading twist level but suppressed by a power of «, is not
included here. The average four-momenta which enter this
equation are p = p; + p, and g = 3(¢; + ¢). The pa-
rametrization (1.6) is similar to the one used in deep
inelastic scattering. Indeed, the twist-two part of the gen-
eralized functions V| and A; corresponds to the conven-
tional F; and g; structure functions. The current
conservation is ensured by means of the projection operator

_ dp9ov
919
whose particular form is driven by the explicit calculation
of the Compton amplitude via the operator product expan-
sion to twist-three accuracy [5,6] (see also Refs. [7,8] for
spinless targets). The V,,, structure is not independent and
is expressed in terms of the other two vector functions V,

and A,
_ Ppq-Vi L Epoig
V2p_§(vlp_7p_q)+2p Aig

where & = —¢?/p - q. The amplitudes V, and A; depend
on the scaling variable xp, the momentum transfer A2 and

Pu=z¢

nv ny

(1.7)

(1.8)
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the hard momentum of the probe Q?; however, in order to
simplify our notations, we will drop this dependence when
it is not essential for the presentation. Their general decom-
position in a complete basis of Compton form factors
(CFFs) reads

quly
Vip = IE quz(é[pp}[ + Alp}[3 1+io, gM [p,E
+ALp61]+Alp[qj:[g +Wg ]')/5)”1,
1
Alp D qu2<475[ppg-[ + AJ_p ]+ yS[pp

+Alpg’i]+&lp[4‘g{3— +Z-O'/U,q5 _])ul,
M

again to twist-three accuracy. Here the CFFs given by
convolutions of perturbatively calculable coefficient func-
tions and a set of twist-two and -three GPDs (see Ref. [3]
for details). In the above equations, we use the following
notations for the transverse components of the 7-channel
momentum:

— q ALl ispqu
A=A ——"Lp and A; =214
p P p pq

and where A - g/p - ¢ = — ¢ in DVCS kinematics.

II. HELICITY AMPLITUDES

While in the consideration of Ref. [3], one is restricted to
the twist-three approximation for dynamical as well as
kinematical effects; in the current analysis, the latter will
be restored exactly, since they account for the bulk of
power-suppressed corrections, provided that there is a
hierarchy of hadronic scales associated with higher-twist
operator matrix elements such that, e.g., €*tw — 2>

étw — 4. An analysis of twist-four effects and higher is

intrinsically involved due to complications and ambiguities
in the choice of operator bases. On the other hand, the
incorporation of kinematical power-suppressed effects is
straightforward. In order to achieve this in the most effi-
cient manner, we separate power corrections that arise
from the leptonic and hadronic parts, respectively, by
evaluating photon helicity amplitudes utilizing the polar-
ization vectors for the incoming and outgoing photons in
the target rest frame. In addition to being a concise calcu-
lation scheme, it has an advantage of localizing the azimu-
thal angle dependence in the lepton helicity amplitudes for
the choice of the reference frame with the z axis counter-
aligned with the incoming photon three-momentum. It also
allows for a straightforward reduction to the harmonic
expansion introduced in Refs. [3,9].
We define the hadronic helicity amplitudes as

T EVES(¢) = (=1 ey ()T, 8% (a), 2.1
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where the overall phase (—1)¢~! accounts for the signature
factor in the completeness relation for the photon polar-
ization vectors. These are constrained by the parity con-
servation and, as a consequence, we have six independent
functions,

TEYS(F) = TSPl grsiagrar, TRSF)
= TODJYCS(?)lj:P:ﬂ_,tfP:zI,

T OVS(F) = TS (F)l gr-sie o=,

Substitution of the explicit parametrization for the
Compton amplitude (1.6) yields dynamical twist-three ap-
proximation for the helicity amplitudes

T Dves pl'q[q V(F) —ag-ACF)]+ 0(Q ), (23)

(2.2)

V2K 1
002 ) ﬂ[q “V(Fetr) — aq - A(Fege)]

+0(Q77 a,27"), (2.4)

where a = *1 labels the helicity states of the final photon,
Fi denotes the effective twist-three contribution in the
notation of Ref. [3] [see Egs. (84, 187) there], and

K= Tin —

X \/(1 - xs)m + (tmin — f)(€24+Q<21(1 — xB)xB)'

DVCS __
TOa -

(2.5)

Note that the helicity-flip amplitude 72V arises from
twist-two gluon transversity, formally suppressed by «j,
and higher twist contributions. Both of them will not be
considered here. In the following two sections we address
the square of the DVCS amplitude and the interference
term in turn.

A. Squared DVCS term

Using the completeness relations for the photon polar-
ization vectors, we can rewrite the square of the DVCS

amplitude
|
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Tvesp =S S L e W 6
Q% S-S0
in terms of the hadronic,
W, = TDYCS(TPYCS)* 4 TDVCS(TDVCSY: (37
and leptonic,
Ly ) = " (a) L,,,(N)e7 (D), (2.8)

amplitudes, labeled by the helicity states of the initial
photon. The latter can be calculated exactly with the result
already presented in Ref. [4]:

1 € 2—y
L=y a2+ 507 - A
++(2) 0T yEy 45y Ty

(2.9)
_ 4 €,
_2—y—/\y\/1—i-e2 _ _622_i¢
‘£0+()" ¢) y2(1+62) \/E 1 y 4y e ’
(2.11)
L (<l>)=42 (1 - 2) “2¢ - (2.12)
o yare)\ Y oar)

where the remaining amplitudes are related to the above
ones by parity and time reversal invariance,

Lo-(A ) = Lo (=2, =),
£i,0(A-r @) = -EO,t(_)\r ®),
L_o_(N) =L, (=2,
L (p)= L, (=)

More explicitly, disregarding transverse photon helicity-flip
contributions, one finds for the squared DVCS amplitude

(2.13)

QAUTPVESP = £, (WTRCS(TRUCS) + L, (= \)TPVCS(TOVES)s 1 Lo, [TBYCS(TRYCS) 4 TBVCS(TBVCS)]
+ Lor (4 GYTRYS(TRISY + Lo (—A, =) TEYS(TOVESY + Ly, (A, =) TRICS(TRYES)”

+ Lop(—A ) TOVCS(TDVCS)-

These findings immediately allow one to get the Fourier
coefficients in the refined approximation. In addition to the
overall prefactors

"We would like to thank M. Diehl for pointing out that the
general relation (84) is not applicable for the CFF &.. For this
specific case, we refer the reader to our original work [6].

(2.14)

and (2.15)

A
V1 + €
accompanying the lepton helicity’s independent and
dependent parts of the amplitude, respectively, one finds

the following substitutions in the refined approximation for
the lepton-photon ““splitting kernels™:

1+ €2
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1
2—2y+y2—>2—2y+y2+562y2,

(2.16)
I—y—1—y—1ey
R

From here, we can read off the kinematically improved
DVCS harmonics in the decomposition

6 2
e
|TDVCS|2 — 2Q2 {C(I)DVCS + Z[Cln)vcs Cos(nd))
y n=1

+spves sin(nqb)]}, 2.17)
with
2—-2y+ y2 + e—zy .
RS =222 T2 epves(, )
16K2

Gk s )l Fen Fo) (218)

{c?ygf} 8K {
st 2= xp)(1 + &)

2-y }
MV + €2

PHYSICAL REVIEW D 82, 074010 (2010)

for an unpolarized target and

2AAy(2 — ) DVCS

T (F. F), (2.20)
{c?{&s} B 8AK {—Ay\/l + e2}
VS -+l @-y)
R
X { S;}CDVCS(:F&, ) (221

for the longitudinal polarized part, proportional to the
polarization A. As in Ref. [3], we use the shorthand

k=1 —y+ Sk
yr gy 0
We emphasize that the squared twist-three contribution in
Eq. (2.18) is a 1/Q?-suppressed contribution and that the

transversity contribution F is set to zero.
To evaluate the bilinear combinations CPVS of CFFs,

X {%e }CDVCS( Foirr F5) (2.19) Wwe rely on the approximations (2.3) and (2.4). By means of
Smj ¢ Eq. (2.14), we find the following result for the unpolarized
2(92 + xp1) 202+t €\ zp e
e = L@y arar a1 - e 220 )i
@ )@ a1 5 G T 4

Q*(Q? + xg1)

+

Q* Q% +xpt)  4M?

and longitudinally polarized combinations of CFFs

CDVCS

_XB+

XBQ

(2 — xp)Q° + xp1)° t)Sé'*— XBQ2 t E‘E‘*}

Q2 + xp t 4M?

(—2x)02 +1 ¢

2 2 2
S(HE 8 - (nggz :Zm

(2.22)

Q3(Q* + xp1) {4<1
V1+ €X((2 — xg) Q2 + xp1)?

QZ + .X'Bt

)(3{3{ G

_¢ _Q?Bf;tsz)tsz(Hé* LB+ e+ edry - T xB)(zgé;(Lngti:: E)Qz e e
B B
- (2= xp) Q7 + xpt x5 (Q2% +1)? ! Zx L pow
# €90~ (gt w0t T i) €60} 2.23)

respectively. The uncertainties from remaining kinematical
and dynamical higher twist contributions are included in
the bilinear combinations CPY®S of CFFs. As shown in
Ref. [10] for a (pseudo)scalar target, i.e., setting

q-V(F) _ q-V(Ferr)
q-p q-p

=5'[cff: q-A=0,

in Egs. (2.3) and (2.4), different parameterizations of the
DVCS amplitude result only in small numerical deviations
even at rather low energy and photon virtualities. Finally,
neglecting 1/Q? power-suppressed terms in the presented
findings for the squared DVCS amplitude leads to those of
Ref. [3].
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B. Interference term

Let us now treat the interference term in a manner
completely analogous to the consideration of the squared
DVCS amplitude given above. Inserting the completeness
condition for the initial and final photon polarization states,
one finds I as a linear superposition

+

e p
= (¢)?2(¢)a_z > LN HT W}

=0+ b=—+ §
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q- A T — App C CIV +9 A
Y et = e~ P + 20 s
chfé‘ (F) +2° gﬁ”ciné(f). 2.27)

Here, to match the notation of Ref. [3], we introduced the
following combination of CFFs:

+ (L5, A DT ), (2.24) Clup(F) = F1H — WFZS
of products of hadronic and leptonic helicity amplitudes. T Fi+ F 5_[ 298
The former were defined earlier in Egs. (2.3) and (2.4), 2 — xp + QL( ! 2 (2.28)
while the latter reads
LY (A ¢) =€l (a)L €5 (D). (2.25)
Xp
Summation over the final nucleon polarization states yields Cf,a}f(f ) = T x (F + F DI + &), (229
the following result for the building blocks of the hadronic BT B QZ
amplitudes (2.3) and (2.4):
Zul = pplCly — CEANF) + 24, = CLY(F)
2. g r T PelCim = Cuip 9p g2 Cuto CLAF) = ~(Fy + F)H,  (230)
— X + X 57
2A A
+ Eradp Ly (F), (2.26)
i+ é Q2
CI(;F)——XB (F +F)[5'-[+ ( t)5]+[1+szlz3 <3+ t)]F.’}'-[
P xp T Xp g2 e 2 Q2 Q22_XB+XB§ 971"
t 2XB(1 - 2)CB) ~ XB XB ( t ) ]
- FH - — = |21 - |)F, +—5F, [& 2.31
Q*2—xpg+xpgs : 2—xg +aggsl2 o2)"! 4M2 : (231)
I
v . . XB i I,
Cip (F) =5— ot j(Fl + F) ACL(F) = — thnw[z = Cunn cung](f),
[ ( )5] (2.32) ACT,() = ~ lim [c{PV + 52 c“](f)
X
As a cross-check, neglecting the power-suppressed contri-
butions yields the CFF and FF combinations that appear in
CI(F) and ACI(F) of Ref. [3].
7, _ *B
CLPA F) = Tt x - (Fy + Fy) Now we turn to the leptonic helicity amplitudes, which
BTBY: Q contain the entire azimuthal angular dependence of the
~ xB interference term. Their contraction with the hadronic
X [}[ + ZXB 02 }[ ) ] (2.33) amplitude with respect to the Lorentz indices introduces

Note that the ambiguity in the parameterization of
hadronic helicity amplitudes (2.3) and (2.4) is also
exhibited in the g, structure of Egs. (2.26) and (2.27), which
are kinematically suppressed by ¢/ Q2. Such terms appear
in the azimuthal angle’s independent part of the interfer-
ence term at “‘twist-three” level, yielding the addenda

the Fourier harmonics in the definition (2.24) of the inter-

ference term yields
+ 0

xBy 1P () Pr(¢h)
+ 5! sin(mﬁ)]},

{co + Z[c cos(nao)

(2.34)
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with kinematically power-suppressed contributions exactly
accounted for,

Cr{ = C++(”)meci+(”|f) + C()+(n)mecé+(n|feff)
+ Cy (WNeCL, (n| Fr), s
= S++(”)%m5£+(”|f) + So+(”)sm5({+(”|feff)
_+(mImSL (n] Fyp). (2.35)

The above coefficients are defined in terms of the photon
helicity-conserving

CLLGIF) = CIF) + S e ()
v GBI PST, (I F)
— I + e () + S el )
(2.36)
and helicity-changing amplitudes
T =5 KT + BDervgy
ggig”ic“mﬁ)] S, 1l Fo)
-2 Ao Fa+ B0z,
ig:gni C“(Teff)] (237)

respectively. For an unpolarized target the coefficients
C,»(n) and S, (n) were already known from the study of
a (pseudo)scalar target [10]. The complete set of coeffi-
cients CZ,(n) and S, (n) is given in Appendix A.

II1. DISCUSSION AND CONCLUSIONS

Let us shortly summarize our framework. To separate
leptonic and hadronic contributions, we defined helicity
amplitudes in a specific reference frame that is commonly
used to confront experimental measurements and theoreti-
cal predictions. Within this convention, the leptonic part
was calculated exactly. As far as the hadronic part is
concerned, a few comments are in order.

(i) To evaluate the hadronic part, we employed
the parametrization (2.3) and (2.4). The
1/9Q2-suppressed terms in both the bilinear (2.22)
and (2.23) and linear combinations (2.29), (2.30),
(2.31), (2.32), and (2.33) of CFFs mainly arise from
the exact treatment of the hadronic states, including
parameterization of the polarization vector.

(i1) There are intrinsic twist-four uncertainties in the
above definitions, induced by the parameterization
of the light cone projection, i.e., (n - V) and (n - A)

PHYSICAL REVIEW D 82, 074010 (2010)

in terms of the four-vectors defining the process
kinematics and by missing pieces in the DVCS
tensor that are needed for the restoration of the
electromagnetic current conservation (see discus-
sion in Ref. [10]).

(iii)) Assuming that there is a hierarchy of hadronic
scales associated with higher-twist operator matrix
elements, we mainly kept power-suppressed twist-
two contributions while neglecting genuine dy-
namical twist-four effects, i.e., étw 2>
étw — 4.

Let us now explore the magnitude of power-suppressed
effects we have accounted for in this work compared to the
approximate treatment of the older analysis in Ref. [3].
Before we present our predictions, let us introduce a sim-
plified treatment of exact kinematical correction to the
BKM formalism, which can be regarded as an improve-
ment of the BKM analysis for an unpolarized target. This
consists of replacing the BKM coefficients, entering the
angular dependence of the cross section, with exact ones
from the spin-zero case and ignoring at the same time all
other induced harmonics for the same hadronic helicity
amplitudes. Moreover, the BKM expressions for the had-
ronic C coefficients are taken. We will dub this scheme
“hot fix.” It consists of substitutions

Cy IBKM - C++(n)‘ﬁeC +(n|f)

SnlBKM - S++(”)%m‘s{r+("|f),

(3.1)

with expression on the right-hand sides given in
Appendix A. It provides a very accurate description of
experimental observables in favorable situations. To dem-
onstrate our point, we evaluated the fourfold cross section
(1.1) and the beam-spin asymmetry defined as

d*o(A=+1) —d‘c(A=—1)

BSA = ,
d*o(A=+1)—d*c(A=—1)

(3.2)

where power-suppressed corrections in the hadronic sector
are still neglected. For illustration, we show in Fig. 1
predictions for approximation schemes advocated in this
paper for two dispersive approach fits [11] to the available
experimental data, where twist-three and gluon transver-
sity CFFs were projected out. (Thus, the observables,
shown in the figure, are not the ones used in the fit; rather,
they contain an admixture of higher harmonics.) In the left
panels, we display the unpolarized cross section measure-
ment of Jefferson Laboratory’s Hall A [12] for the kine-
matics

E =5.75 GeV,
t = —0.36 GeV?,

02 =123 GeV?,
xg = 0.36,

while on the right ones a beam-spin measurement of the
CLAS Collaboration [13] is shown for
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FIG. 1 (color online).
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GPD predictions, resulting from two fits of Ref. [11] as described in the main body of the paper, for the BKM

approximation (red dots) to the exact (green solid line) and ‘‘hot fix” (blue dashes) for the fourfold cross section (1.1) evaluated for
lepton beam of positive helicity A = 1 in the left panels and the beam-spin asymmetry (3.2) in the right panels.

E =577 GeV,
t = —0.28 GeV?,

92 = 1.95 GeV?,
xp = 0.25.

In the upper panels, the predictions are given for a fit that
excluded the Hall A data [12] and assumed the dominance
of the unpolarized GPD H in the DVCS amplitude. It is
clearly demonstrated that (with present understanding of
GPD magnitude) such a hypothesis is in conflict with the
data. In the lower panels, the unpolarized cross section
measurements of Hall A were included, with the fit per-
formed to the ratio of cos(1 - ¢) and cos(0 - ¢) harmonics
of the weighted cross section (see Eq. (103) of Ref. [3]),
rather than to the cross section itself. To describe the data,
one required a large real part in the DVCS amplitude which
was effectively obtained from an abnormally large contri-
bution of the GPD H. As we demonstrate in the figure, in
the former case, the difference between the BKM (dotted)
and exact (solid) results, while of the order of a few percent
in the cross section (except for the endpoint regions),
reaches 20-25% in the beam-spin asymmetry (right panel).
However, the deviations of the ‘“‘hot fix”’ (dashed) from the
exact treatment is vanishingly small. Confronting the two

fits, done with different dynamical assumptions about con-
tributing GPDs, exhibits first of all larger effects of power-
suppressed correction in the differential cross section in the
lower compared to the upper panels, and second, demon-
strates significant differences between the ‘“hot fix”
(dashed) and exact (solid) results. In other words, in a
fitting procedure relying on cross section formulas with
exact treatment of kinematical effects rather than the ones
based on a hot fix, one anticipates that the magnitude of A
becomes smaller.

The improvement on the BKM approximation scheme
that we advocated in this paper demonstrates the necessity
to incorporate power-suppressed corrections stemming
from the kinematical effects in the leptonic part of the
electroproduction scattering amplitudes. The results for
gluon transversity and the transversal polarized target
will be presented somewhere else. The next set of problems
of tantamount importance is to develop a calculational
scheme for the analysis of dynamical higher-twist cor-
relation functions contributing to the DVCS amplitude,
echoing formalism developed before for deep-inelastic
scattering [14,15] as well as target mass and momentum
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transfer corrections, extending the earlier result beyond the
leading twist order [16,17].

APPENDIX: FOURIER HARMONICS OF THE
LEPTONIC TENSOR

Let us present explicit expressions for the Fourier co-

efficients entering the leptonic part of the interference term
(2.24).

Conserved photon helicity coefficients:

PHYSICAL REVIEW D 82, 074010 (2010)
1. Unpolarized target

The angular coefficients C,,*(n) and S,,"(n) for unpo-
larized target are given by the expressions C,,(n) and
AS,,(n) for scalar target [10], while the results for

unpV( ), Cu“pA( )y Soi? V(n) and Sunp (n) are new. The
third odd harmonics Vanlshes i.e.,

SUP(n = 3) =

and will be not listed.

_ Sunp 14

WPV (n=3) = 4P (n =3) =0,

wp, o A2 =)+ V1t € R? 2 —y)? ¢ e -
Ciitn=0) = (R (v i URERE g LR
\/+_e
><(1+2x‘3(2_x‘3+1 et » (A1)
2 —xp)(1 + 1+ €?)
unp,V, _8(2_y) Xl (2_)’)21?2 . €2 ]+\/1+6
e e W (R ) e e G2
Vi+e —1+4+2x5 t
(e o)
anp A, 82—y t [(2— y2K21+m—2xB _62 1+V1+ €&
C+E (n=0)= (1+€2)2 QQ{ ,_1+6Q2 3 (1 y Zyz)l:f
5 5 34T+ —2x5) 1) 2K
><<1+\/1+6—x3+(\/1+6—1+x3 R )@>_?]}

—16K(1 —y — > Ve +1 - 2 2
Cmp (= 1) = 10Ky 4y>{(1+(1_x3) €l 1+f_)x%f_3i}
(1 + €2)5/2 2xp dxg) Q 4
2N+ VIt - € —J1+e€e+3 t
_ 4K(2 _ 2y + y2 + €_y2> 255 . € {1 ( 3XB) €’ €2 xBZ}
2 (1+ €)Y 1+\/1+e—62Q
Y (= 1) = 16K th{(z )2<1 (1= 2xy) ) (1 € 2>1+\/l+6 — 2xp t’}
n = = — — X — _ —4
(1+ 2)5/2 Q2 y B Q2 y 2 y 5 Q2
—16K ¢ e’ t 4x (1—xg)+e ¢
wnp A, _ oy 16Kt [ o B B i
cCiPn=1)= 1+ )y Q2{<1 y 4 )(1 (1 —2xg)—=5 Q2 N Qz)
+ V1 + € — —xg) + € 1
- y)2(1 _ X N 1 1+ € — 2xp (1 B tz) N 4xg(l — xg) + € t_2)},
2 4 Q Wi+e 2
o ) 82—yl —y— %zyz){ 2€? R? N th#<1 Vi+e -1 . €? )}
n = =3 _ - - - - .
o (1+ €*)? JT+el++e) 22 2 2xp
CmY (= 2) — 82— (1 —y—<y?) sz{ 4K> LV €2 — 2xg (1 Lt ) ! }
n = = — —
o (1+ €?)? 22|lV1+ e QZ 2 0?) 0?2
42 -y =y =5y 1 [4(1 - 2xp)R> gt
Ci(n=2) = . —{ —( 1+ —2x5 + ) }
++ ( ) (1 + 62)2 QZ /] T GZQZ B Q2

074010-8



EXCLUSIVE ELECTROPRODUCTION REVISITED: ... PHYSICAL REVIEW D 82, 074010 (2010)

1+e -1 t J1+e—1 t
\/(1 62)5/2_{(1 - xB)@ + 726 (1 +@)}
CV(n = 3) = SK(l — y2;5/42y2) XQB;{\/l +E—1+0+V1+ e —2xp)
16K(1 —y—<y) o
(1 2)5/2 Q4

C™ (n = 3) = —8K<1—y—62 )

ol

{xB(l xg) + 6_2}

CPin=3) = i

unp SAK(Z - y)y 1 - XB + 1+26271 v
=1) = {1 + —}
1+ €2 1+ € Q2

AK(2 — —— N !
STEV(HZI):_M@{ 1+62—1+(1+ 1+€2—2)CB)@},

(1+¢€) 92
wpa, o 8AKQ—y)y [ 1+V1+ € —2xg ¢
S5 (n = 1)_W QZ{I (1 — 2xp) T Qz}

AN1 =y = £y & — (VT 1)
S (n=2)=— 4 1+V1+e-2 { B
++(n =2) (1 + &) ( € 2wgs 1+Ve +1—2xg
_2xB+62t_’}
Wi+ e Q4
AN1 —y = £3?)y xpt I\
unp,V _ _ 4 B
S+E (n—2)—— (1+€2)2 @X(l_(l_sz)@){ 1+62_1
1 +V1+ € —2xB)Q2}

81—y - €32y 1 4(1 — xp)xg + € ¢
SUPA(y =2 4 X(1+vV1l+e—2 ( BB —)
wr (n=2)= 1+ey 9f ( €~ ) 4 —2xpg +3€> Q7

Longitudinal-transverse coefficients:
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Transverse-transverse helicity-flip coefficients:
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2. Longitudinally polarized target

In the helicity-dependent contribution of a longitudinal polarized target, the third even harmonic vanishes, i.e.,

C(n=3)=Cy'(n=3)=Cy"(n=3)=0,

and will be not listed.
Conserved photon helicity coefficients:
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Photon helicity-flip amplitudes by one unit:
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