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We analyze the parallel hybrid texture structures in the charged lepton and the neutrino sector. These

parallel hybrid texture structures have physical implications as they cannot be obtained from arbitrary

lepton mass matrices through weak basis transformations. The total 60 parallel hybrid texture structures

can be grouped into 12 classes, and all the hybrid textures in the same class have identical physical

implications. We examine all 12 classes under the assumption of nonfactorizable phases in the neutrino

mass matrix. Five out of the total 12 classes are found to be phenomenologically disallowed. We study the

phenomenological implications of the allowed classes for 1–3 mixing angle, Majorana and Dirac-type CP

violating phases. Interesting constraints on effective Majorana mass are obtained for all the allowed

classes.
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I. INTRODUCTION

The origin of fermion masses and mixing apart from CP
violation remains one of the least understood aspects of
the standard model (SM) of fundamental particle interac-
tions. In the SM, fermion masses and mixing angles are
free parameters and span a wide range of values and, to
accommodate such a diverse mass spectrum, the Yukawa
couplings must span over 5 orders of magnitude. In the
SM, neutrinos are massless but experiments performed
during the last two decades have established that neutrinos
have small but nonvanishing masses which leads to a
further increase in the number of free parameters. Thus,
the main theoretical challenges are to reduce the number
of free parameters in the Yukawa sector and to obtain tiny
neutrino masses but large mixing angles. The proposals
aimed at reducing the number of free parameters and,
thereby, restricting the form of the mass matrices include
the presence of texture zeros [1–6], requirement of zero
determinant [7], and the zero trace condition [8]. In addi-
tion, the presence of vanishing minors [9] and the simul-
taneous existence of a texture zero and a vanishing minor
have recently [10] been investigated. Attempts have been
made to understand the observed pattern of quark/lepton
masses and mixings by introducing flavor symmetries
(Abelian as well as non-Abelian) which naturally leads
to such texture structures. To be more specific, texture
zeros and flavor symmetries have yielded quantitative
relationships between fermion mass ratios and flavor mix-
ing angles. A unified description of flavor physics and CP
violation in the quark/lepton sectors can be achieved by
constructing a low-energy effective theory with the SM
gauge symmetry and some discrete non-Abelian family
symmetry and, subsequently, embedding this theory into

grand unified theory (GUT) models like SO(10) [11]. The
search for an adequate discrete symmetry has mainly
focused on the minimal subgroups of SO(3) or SU(3)
with at least one singlet and one doublet irreducible rep-
resentation to accommodate the fermions belonging to
each generation. One such subgroup, for example, is the
quaternion group Q8 [12] which not only accommodates
the three generations of fermions but also explains the
rather large difference between the values of the 2–3
mixing in the quark and lepton sectors. Quaternion sym-
metry like some other discrete symmetries leads to non-
trivial relationships among the nonvanishing elements of
the mass matrix. Such textures with equalities between
different elements along with some vanishing elements
have been referred to as hybrid textures. Detailed phe-
nomenological analyses of hybrid textures with one tex-
ture zero and an equality in the neutrino mass matrix
in the flavor basis have been reported [13] earlier.
However, the investigation of the neutrino mass matrix
in the diagonal charged lepton basis can only be regarded
as a precursor of a more general study where both the
charged lepton and the neutrino mass matrices are
nondiagonal.
In the present work, we examine the implications of

parallel hybrid texture structures of both the charged
lepton and the neutrino mass matrices in a nondiagonal
basis assuming the charged lepton mass matrices to be
Hermitian. However, it is pertinent to emphasize here that
Hermitian charged lepton mass matrices cannot be ob-
tained within the framework of the standard electroweak
gauge group. Furthermore, parallel hybrid texture struc-
tures for lepton mass matrices can only be ensured by
imposing discrete non-Abelian lepton flavor symmetries.
There exist a rather large (sixty to be precise [Table I])
number of possible hybrid textures with one texture zero
and one equality between mass matrix elements. However,
we find that these 60 hybrid texture structures can be
grouped into 12 classes such that all the hybrid textures
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belonging to a particular class have the same physical
implications. We examine the phenomenological implica-
tions of all 12 classes of neutrino mass matrices with
hybrid texture structure under the assumption of nonfac-
torizable phases in the neutrino mass matrix.

The CP violation in neutrino oscillation experiments
can be described through a rephasing invariant quantity
JCP [14] with JCP ¼ ImðUe1U�2U

�
e2U

�
�1Þ. In the parame-

trization adopted here, JCP is given by

JCP ¼ s12s23s13c12c23c
2
13 sin�: (1)

The effective Majorana mass of the electron neutrino Mee

which determines the rate of neutrinoless double beta
decay is given by

Mee ¼ jm1c
2
12c

2
13 þm2s

2
12c

2
13e

2i� þm3s
2
13e

2i�j: (2)

This important parameter will help decide the nature of
neutrinos. The analysis of Mee will be significant as many
neutrinoless double beta decay experiments will con-
strain this parameter. A stringent constraint jMeej<
0:35 eV was obtained by the 76Ge Heidelberg-Moscow
experiment [15]. There is a large number of projects such
as SuperNEMO [16], CUORE [17], CUORICINO [17],
and GERDA [18] which aim to achieve a sensitivity below
0.01 eV to Mee. Forthcoming experiment SuperNEMO, in
particular, will explore Mee < 0:05 eV [19]. The experi-
mental constraints on the neutrino parameters at 1, 2 and
3� [20] are given below:

TABLE I. All possible parallel hybrid texture structures. The hybrid textures in a class have the same physical implications.

Class A B C D E F

I

a b 0
a e

f

0
@

1
A a b c

a 0
f

0
@

1
A a 0 c

d e
a

0
@

1
A a b c

d 0
a

0
@

1
A a 0 c

d e
d

0
@

1
A a b 0

d e
d

0
@

1
A

II

0 b c
d e

d

0
@

1
A a b c

0 e
a

0
@

1
A a b c

a e
0

0
@

1
A

III

0 b b
d e

f

0
@

1
A a b c

0 c
f

0
@

1
A a b c

d c
0

0
@

1
A

IV

a a c
0 e

f

0
@

1
A a b a

d e
0

0
@

1
A 0 b c

b e
f

0
@

1
A a b c

d d
0

0
@

1
A 0 b c

d e
c

0
@

1
A a b c

0 e
e

0
@

1
A

V
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0

0
@
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0 e
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0
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0
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0
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A
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0
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0
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1
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c e
0

0
@

1
A 0 b c

d e
b

0
@

1
A a b c

c e
0

0
@

1
A

VII

a a 0
d e

f

0
@

1
A a 0 a

d e
f

0
@

1
A a b c

b 0
f

0
@

1
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d d
f

0
@

1
A a b c

d 0
c

0
@

1
A a b 0

d e
e

0
@

1
A

VIII

a b c
d 0

d

0
@

1
A a b 0

d e
a

0
@

1
A a 0 c

a e
f

0
@

1
A

IX

a b b
d 0

f

0
@

1
A a b 0

d b
f

0
@

1
A a 0 c

d c
f

0
@

1
A

X

a b b
0 e

f

0
@

1
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d e
0

0
@

1
A 0 b c

d b
f

0
@

1
A a b c

d b
f

0
@

1
A 0 b c

d c
f

0
@

1
A a b c

0 c
f

0
@

1
A

XI

a a c
d 0

f
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@

1
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d 0
f
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c

0
@

1
A a 0 c

d e
e

0
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1
A

XII

a 0 c
d a

f
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d 0
b

0
@

1
A

S. DEV, SHIVANI GUPTA, AND RADHA RAMAN GAUTAM PHYSICAL REVIEW D 82, 073015 (2010)

073015-2



�m2
12 ¼ 7:67ðþ0:16;þ0:34;þ0:52Þ

ð�0:19;�0:36;�0:53Þ � 10�5 eV2;

�m2
23 ¼ �2:39ðþ0:11;þ0:27;þ0:47Þ

ð�0:8;�0:20;�0:33Þ � 10�3 eV2;

�12 ¼ 33:96�ðþ1:16;þ2:43;þ3:80Þ
ð�1:12;�2:13;�3:10Þ ;

�23 ¼ 43:05�ðþ4:18;þ7:83;þ10:32Þ
ð�3:35;�5:82;�7:93Þ ;

�13 < 12:38�ð3�Þ:

(3)

The upper bound on �13 is given by the CHOOZ
experiment.

II. WEAK BASIS TRANSFORMATIONS

Assuming neutrinos to be of Majorana nature, the most
general weak basis transformation (under which lepton
mass matrices change but which leaves the gauge currents
invariant) is

Ml ! M0
l ¼ WyMlW

0; M� ! M0
� ¼ WTM�W; (4)

whereW andW 0 are 3� 3 unitary matrices andMl,M� are
the charged lepton and the neutrino mass matrices,
respectively.

A. Parallel hybrid texture structures

In this section we investigate the possibility of obtaining
parallel hybrid texture structures starting from an arbitrary
Hermitian charged lepton and complex symmetric neutrino
mass matrix. We follow the line of argument advanced by
Branco et al. [21] for parallel four texture zero Ansätze.
For illustration we choose a specific hybrid texture struc-
ture (IA) (Table I) with a zero at the (1, 3) position and
equality of (1, 1) and (2, 2) elements:

Ml ¼
al bl 0
b�l al el
0 e�l fl

0
@

1
A; M� ¼

a� b� 0
b� a� e�
0 e� f�

0
@

1
A; (5)

where Ml is Hermitian and M� is complex symmetric.
We can rephase Ml and M� such that

Ml ! XyMlX; M� ! XTM�X; (6)

where X � diagðei�1 ; ei�2 ; ei�3Þ and we can choose �i

such that Ml becomes real. We can use the remaining
freedom to remove one phase from M�. It is instructive
to enumerate the number of free parameters in the above
two parallel hybrid texture structures. The charged lepton
mass matrix after rephasing is left with four real parame-
ters. There are seven free parameters in the neutrino mass
matrix (four real parameters and three phases). In total,
we have 11 free parameters in Ml and M� whereas in
the leptonic sector considering neutrinos to be Majorana
particles there are 12 physical parameters (six lepton
masses, three mixing angles, and three phases) for three
generations of neutrinos. Thus, starting from an arbitrary
Hermitian Ml and complex symmetric M�, we cannot
obtain parallel hybrid texture structures through weak basis

transformations as the number of free parameters for such
texture structures is less than 12. This implies that these
parallel texture structures have physical implications.
However, if the condition of Hermiticity in Ml is removed
then these parallel texture structures can be obtained
through weak basis transformations and will, thus, have
no physical implications as the total number of free
parameters now in Ml and M� is greater than 12. In our
analysis, we consider Ml to be Hermitian.

B. Weak basis equivalent classes of hybrid textures

Different parallel hybrid texture structures of the
charged lepton and neutrino mass matrices can be related
by a weak basis transformation. The implications of these
hybrid textures which are related by such a transformation
are exactly the same. This weak basis transformation can
be performed by a permutation matrix P as

M0
l ¼ PTMlP; M0

� ¼ PTM�P; (7)

which changes the position of the texture zero and an
equality but preserves the parallel structure of charged
lepton and neutrino mass matrices. The permutation
matrix P belongs to the group of six permutation matrices.
We find that all 60 hybrid textures (Table I) fall into 12
distinct classes when operated by these permutation matri-
ces. The different classes are shown in Table I. However,
this type of classification is not possible in the flavor basis
[13] because such a weak basis transformation will render
Ml nondiagonal.

III. COMPREHENSIVE ANALYSIS OF DIFFERENT
CLASSES OF HYBRID TEXTURES

A. Class I

All the information regarding lepton masses and mix-
ings is encoded in the Hermitian charged lepton mass
matrix Ml and the complex symmetric neutrino mass
matrix M�. First, we analyze the hybrid texture structure
in which Ml and M� have the parallel structure with equal
(1, 1) and (2, 2) elements and a texture zero at the (1, 3)
position (case IA). We study this hybrid texture under the
assumption of nonfactorizable phases in the neutrino mass
matrix M�, as it is not always possible to factorize all the
phases present in a general complex symmetric mass ma-
trix without unnatural fine-tuning of phases [22].
Therefore, Ml and M� are given by

Ml ¼
al bl 0
b�l al el
0 e�l fl

0
@

1
A; M� ¼

a� b� 0
b� a� e�
0 e� f�

0
@

1
A; (8)

respectively. The Hermiticity of Ml requires its diagonal
elements al and fl to be real whereas the nondiagonal
elements bl and el are in general complex, i.e., bl ¼
jbljei�1 , el ¼ jeljei�2 . All the nonvanishing elements of
M� are, in general, complex. The charged lepton mass
matrixMl can be diagonalized by the unitary transformation
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Ml ¼ VlM
d
l V

y
l ; (9)

where Vy
l ¼ V�1

l . The Hermitian matrixMl can, in general,

be written as

Ml ¼ PlM
r
lP

y
l ; (10)

where Pl is a unitary diagonal phase matrix,
diagð1; ei�1 ; ei�2Þ, and Mr

l is a real matrix which can be

diagonalized by a real orthogonal matrix Ol as

Mr
l ¼ OlM

d
l O

T
l ; (11)

where the superscript T denotes transposition and Md
l ¼

diagðme;m�;m	Þ. From Eqs. (10) and (11), the unitary

matrix Vl is given by

Vl ¼ PlOl: (12)

Using the invariants TrMr
l , TrM

r2

l , and DetMr
l we get the

matrix elements fl, jelj, and jblj as

fl ¼ me �m� þm	 � 2al;

jelj ¼
�
�ð2al �me þm�Þð2al �me �m	Þð2al þm� �m	Þ

3al �me þm� �m	

�
1=2

;

jblj ¼
�ðal �meÞðal þm�Þðal �m	Þ

3al �me þm� �m	

�
1=2

:

(13)

Here, al has two allowed ranges ðm	�m�

2 Þ< al < ðm	þme

2 Þ and (� m�

2 < al <
me

2 ) for the elements jelj and jblj to be real. The
elements of the diagonalizing matrix Ol can be written in terms of the charged lepton masses me, m�, m	 and the charged
lepton mass matrix elements al, bl, and el. The elements bl and cl can be written in terms of al, thus leading to a single
unknown parameter al, and Ol is given by

Ol ¼
ð�e2

l
�ðal�meÞð2alþm��m	ÞÞ

A

ðe2
l
þðalþm�Þð2al�me�m	ÞÞ

B

ðe2
l
þð2al�meþm�Þðal�m	ÞÞ

C
blð2alþm��m	Þ

A
blð�2alþmeþm	Þ

B

blð�2alþme�m�Þ
C

blel
A � blel

B � blel
C

0
BB@

1
CCA; (14)

where A, B, and C are given by

A¼ ½4a4l þ b2l ðe2l þ ðm� �m	Þ2Þ � 4a3l ð2me �m� þm	Þ þ ðe2l �mem� þmem	Þ2 þ a2l ð4b2l þ 4e2l þ 4m2
e

þ ðm� �m	Þ2 þ 8með�m� þm	ÞÞ � 2alð2b2l ð�m� þm	Þ þ ð2me �m� þm	Þðe2l þmeð�m� þm	ÞÞÞ�1=2;
B¼ ½4a4l � 4a3l ðme � 2m� þm	Þ þ a2l ð4b2l þ 4e2l �m2

e � 8mem� þ 4m2
� þ 2mem	 � 8m�m	 þm2

	Þ
þ ðe2l �m�ðme þm	ÞÞ2 þ b2l ðe2l þ ðme þm	Þ2Þ � 2alð2b2l ðme þm	Þ þ ðme � 2m� þm	Þðe2l �m�ðme þm	ÞÞ�1=2;

C¼ ½4a4l þ b2l ðe2l þ ðme �m�Þ2Þ � 4a3l ðme �m� þ 2m	Þ þ ðe2l þm	ðme �m	ÞÞ2 þ a2l ð4b2l þ 4e2l ðme �m�Þ2
þ 8ðme �m�Þm	 þ 4m2

	Þ � 2alð2b2l ðme �m�Þ þ ðme �m� þ 2m	Þðe2l þ ðme �m�Þm	ÞÞ�1=2g: (15)

If al is known, the diagonalizing matrix Ol and the real charged lepton mass matrix Mr
l are fully determined since the

charged lepton masses are known. The complex symmetric neutrino mass matrixM� is diagonalized by a complex unitary
matrix V�:

M� ¼ V�M
diag
� VT

� : (16)

The lepton mixing matrix or Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS [23] is given by

UPMNS ¼ Vy
l V�: (17)

The mixing matrixUPMNS consists of three nontrivial CP violating phases: the Dirac phase � and the two Majorana phases
�, �, and the three neutrino mixing angles viz. �12, �23, and �13. The neutrino mixing matrix can be written as the product
of two matrices characterizing Dirac-type and Majorana-type CP violation, i.e.,

UPMNS ¼ UP; (18)

where U and P [24] are given by

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA; P ¼

1 0 0
0 ei� 0
0 0 eið�þ�Þ

0
@

1
A: (19)
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From Eqs. (16) and (17), the neutrino mass matrix M� can
be written as

M� ¼ PlOlUPMNSM
diag
� UT

PMNSO
T
l P

y
l : (20)

A texture zero and an equality in M� yield two complex
equations

m1apþm2bqe
2i� þm3cre

2ið�þ�Þ ¼ 0; (21)

m1ða2�d2Þþm2ðb2�g2Þe2i�þm3ðc2�h2Þe2ið�þ�Þ ¼ 0;

(22)

where the complex coefficients a, b, c, d, g, h, p, q, and r
are given by

a ¼ O11Ue1 þO12Um1 þO13Ut1;

b ¼ O11Ue2 þO12Um2 þO13Ut2;

c ¼ O11Ue3 þO12Um3 þO13Ut3;

d ¼ O21Ue1 þO22Um1 þO23Ut1;

g ¼ O21Ue2 þO22Um2 þO23Ut2;

h ¼ O21Ue3 þO22Um3 þO23Ut3;

p ¼ O31Ue1 þO32Um1 þO33Ut1;

q ¼ O31Ue2 þO32Um2 þO33Ut2;

r ¼ O31Ue3 þO32Um3 þO33Ut3:

(23)

The two complex Eqs. (21) and (22) can be solved simul-
taneously to get the following two mass ratios:

m1

m2
e�2i� ¼

�
crðb2 � g2Þ � bqðc2 � h2Þ
apðc2 � h2Þ � crða2 � d2Þ

�
;

m1

m3

e�2i� ¼
�
bqðc2 � h2Þ � crðb2 � g2Þ
apðb2 � g2Þ � bqða2 � d2Þ

�
e2i�:

(24)

It is useful to enumerate the number of parameters in
Eq. (24). The nine parameters including the three neutrino
mixing angles ð�12; �23; �13Þ, three neutrino mass eigenval-
ues ðm1; m2; m3Þ, two Majorana phases ð�;�Þ, and one
Dirac-type CP violating phase (�) come from the neutrino
sector and the four parameters including the three charged
lepton masses ðme;m�;m	Þ and al come from the charged
lepton sector, thus totalling 13 parameters. The three
charged lepton masses are known [25]

me ¼ 0:510 998 910 MeV;

m� ¼ 105:658 367 MeV;

m	 ¼ 1776:84 MeV:

(25)

The masses m2 and m3 can be calculated from the mass-
squared differences �m2

12 and �m2
23 using the relations

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ �m2
12

q
(26)

and

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ�m2
23

q
: (27)

Using the known values of the two mass-squared differ-
ences and the two mixing angles, we can constrain the
other parameters. The parameters � and al are varied
uniformly within their full possible ranges while �13 is
varied uniformly up to its upper bound given by CHOOZ
[20]. Thus, we are left with three unknown parameters
viz. m1, �, �. The magnitudes of the two mass ratios are
given by

� ¼
��������m1

m2

e�2i�

��������; (28)

and


 ¼
��������m1

m3

e�2i�

��������; (29)

while the CP violating Majorana phases are given by

� ¼ � 1

2
arg

�
crðb2 � g2Þ � bqðc2 � h2Þ
apðc2 � h2Þ � crða2 � d2Þ

�
; (30)

� ¼ � 1

2
arg

�
bqðc2 � h2Þ � crðb2 � g2Þ
apðb2 � g2Þ � bqða2 � d2Þ

�
e2i�: (31)

Since, �m2
12 and �m2

23 are known experimentally, the
values of mass ratios ð
;�Þ from Eqs. (28) and (29) can
be used to calculate m1. This can be achieved by inverting
Eqs. (26) and (27) to obtain the two values of m1 viz.

m1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

12

1� �2

s
; (32)

and

m1 ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

12 þ�m2
23

1� 
2

s
: (33)

We vary the oscillation parameters within their known
experimental ranges. The two values of m1 obtained from
the mass ratios 
 and �, respectively, must be equal to
within the errors of the oscillation parameters for this
hybrid texture to be phenomenologically viable.
This class of hybrid texture has both normal and inverted

hierarchical mass spectrum. We get some interesting pre-
dictions for other parameters for each hierarchy which
are to be probed in the forthcoming neutrino oscillation
experiments. For inverted hierarchy, a small range of the
twoMajorana-typeCP violating phases� and� is allowed
at 3�. It can be seen from Fig. 1(a) that � can take the
values 0� or 180� while � is constrained to the range
ð�25

�Þ–ð25�Þ. There exists a clear bound on the reactor
neutrino mixing angle (�13 > 1

�
) while the Dirac-type

CP violating phase � is disallowed between 30�–130�
[Fig. 1(b)]. There exists an upper bound of 0.2 eV on the
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effective Majorana mass Mee and the allowed range
of Jarlskog rephasing invariant JCP is ð�0:04Þ–ð0:04Þ
[Fig. 1(c)]. The range of the unknown parameter al allowed
by the current neutrino oscillation data is ½ð�53Þ � al �
ð�10Þ� MeV as depicted in Fig. 1(d). For normal hierarchy
an upper bound of 0.25 eV is obtained for the effective
Majorana mass Mee. Two highly constrained regions of
parameter space are obtained for the free parameter al as

depicted in Fig. 1(e). All the other hybrid texture structures
in this class have the same physical implications.

B. Class II

Here, we study the phenomenological implications of
the parallel hybrid texture structure for the charged lepton
mass matrix and the neutrino mass matrix with equality
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between (2, 2) and (3, 3) elements and a texture zero at the
(1, 1) position (case IIA):

Ml ¼
0 bl cl
b�l dl el
c�l e�l dl

0
@

1
A; M� ¼

0 b� c�
b� d� e�
c� e� d�

0
@

1
A: (34)

We consider the phases appearing in the charged lepton
mass matrix to be factorizable since it is not possible to

completely remove all the phases from this type of charged
lepton mass matrix where both equality and zero appear
along the diagonal entries. We perform analysis similar to
class I for this hybrid texture. Using the conditions from
three invariants, we get the matrix elements dl, jblj, and jclj
to be

dl ¼
me �m� þm	

2
;

jblj ¼
ð�4e2l ðme �m� þm	Þ þ ðme �m� �m	Þðme þm� �m	Þðme þm� þm	ÞÞ

elX
;

jclj ¼ 1

X
;

(35)

where

X ¼ 4

��
�8e2l þ

1

el
ðð2el �me �m� �m	Þð2el þme �m� �m	Þð2el þme þm� �m	Þð2el �me �m� þm	Þ

� ð2el �me þm� þm	Þð2el þme þm� þm	ÞÞ1=2
�
þ 2ðm2

e þ 2meðm� �m	Þ þ ðm� þm	Þ2Þ
�
1=2

: (36)

Here, el should be in the range
ðm	�m��meÞ

2 < el <
ðm	þm��meÞ

2 for the elements bl and cl to be real. The elements of the
diagonalizing matrix Ol can be written in terms of the charged lepton masses and the parameters el, bl, and cl. The
parameters bl and cl are the functions of el [Eq. (35)], thus leading to a single unknown parameter el, and Ol is given by

Ol ¼
� ð2blelþclðmeþm��m	ÞÞ

A

ð2blel�clðmeþm�þm	ÞÞ
B

ð2blelþclð�meþm�þm	ÞÞ
D

� 2ðblclþelmeÞ
A

2ðblcl�elm�Þ
B

2ðblclþelm	Þ
D

ð2b2
l
�meðmeþm��m	ÞÞ

A

ð�2b2
l
þm�ðmeþm�þm	ÞÞ

B

ð�2b2
l
þm	ð�meþm�þm	ÞÞ

D

0
BB@

1
CCA; (37)

where A, B, D are given by

A ¼ ½4b4l þ 4b2l ðc2l þ e2l �meðme þm� �m	ÞÞ þm2
eð4e2l þ ðme þm� �m	Þ2Þ þ c2l ðme þm� �m	Þ2

þ 4blclelð3me þm� �m	Þ�1=2;
B ¼ ½4b4l þ c2l ðme þm� þm	Þ2 � 4blclelðme þ 3m� þm	Þ þ 4b2l ðc2l þ e2l �m�Þðme þm� þm	Þ

þm2
�ð4e2l þ ðme þm� þm	ÞÞ2�1=2;

D ¼ ½4b4l þ c2l ð�me þm� þm	Þ2 þ 4blclelð�me þm� þ 3m	Þ þ 4b2l ðc2l þ e2l þm	ðme �m� �m	Þ
þm2

	ð4e2l þ ð�me þm� þm	ÞÞ2�1=2: (38)

This structure of hybrid texture of M� results in two com-
plex equations,

m1a
2 þm2b

2e2i� þm3c
2e2ið�þ�Þ ¼ 0; (39)

m1ðd2�p2Þþm2ðg2�q2Þe2i�þm3ðh2�r2Þe2ið�þ�Þ ¼ 0;

(40)

where the complex coefficients a, b, c, d, g, h, p, q, and r
have the same form as given in Eq. (23). The mass ratios
can be found from the two complex Eqs. (39) and (40) and
are given by

m1

m2
e�2i� ¼

�
c2ðg2 � q2Þ � b2ðh2 � r2Þ
a2ðh2 � r2Þ � c2ðd2 � p2Þ

�
;

m1

m3

e�2i� ¼
�
b2ðh2 � r2Þ � c2ðg2 � q2Þ
a2ðg2 � q2Þ � b2ðd2 � p2Þ

�
e2i�:

(41)

The absolute values of Eq. (41) yield the two mass ratios
( m1

m2
) and ( m1

m3
) while the arguments of these equations give

us information about the two Majorana-type CP violating
phases � and � as shown in detail earlier. By equating the
two values of m1 to within the errors of the oscillation
parameters we obtain interesting implications for this
hybrid texture.
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Specifically, both normal and inverted hierarchies are
allowed for this class. For inverted hierarchy, the
Majorana-type CP violating phase � is constrained to the
range 75�–105� [Fig. 2(a)]. In this case, an upper as well as
a lower bound is obtained for effective Majorana mass,
ð0:01<Mee < 0:08Þ eV and a highly constrained range
(880–940) MeV for the free parameter el is allowed as
can be seen from Fig. 2(b). For normal hierarchy Mee is
constrained to be less than 0.1 eV [Fig. 2(c)].

C. Class III

Another class of hybrid textures which leads to interest-
ing implications is when the texture zero is at the (1, 1)

position while (1, 2) and (1, 3) elements are equal
(case IIIA). Here,

Ml ¼
0 bl bl
b�l dl el
b�l e�l fl

0
@

1
A; M� ¼

0 b� b�
b� d� e�
b� e� f�

0
@

1
A:
(42)

Using the invariants, we get the matrix elements jblj, dl
and fl as

jblj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mem�m	

ð�2el þme �m� þm	Þ
s

;

dl ¼ 1

2

�ð2el �me �m� �m	Þð2el þme þm� �m	Þð2el �me þm� þm	Þ
ð�2el þme �m� þm	Þ

�
1=2 þ 1

2
ðme �m� þm	Þ;

fl ¼ me �m� þm	 � dl:

(43)
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The free parameter el is constrained to the range ððme�m��m	Þ
2 Þ< el < ððm	�m��meÞ

2 Þ for the element bl to be real. The
orthogonal diagonalizing matrix Ol can be written in terms of the charged lepton masses and charged lepton mass matrix
elements:

Ol ¼
� ðe2

l
þðdl�meÞðdlþm��m	ÞÞ

A

e2
l
þðdlþm�Þðdl�meþm	Þ

B

�ðe2
l
þðdl�meþm�Þðdl�m	ÞÞ

D
blðdlþelþm��m	Þ

A
blð�dl�elþmeþm	Þ

B

blðdlþel�meþm�Þ
D

blð�dlþelþmeÞ
A

blðdl�meþm�Þ
B

blð�dlþelþm	Þ
D

0
BB@

1
CCA; (44)

where A, B, and D are given by

A ¼ ½ðe2l þ ðdl �meÞðdl þm� �m	ÞÞ2 þ b2l ð2d2l þ 2e2l þm2
e þ ðm� �m	Þ2 þ 2elðme þm� �m	Þ

� 2dlðme �m� þm	ÞÞ�;
B ¼ ½ðe2l þ ðdl þm�Þðdl �me �m	ÞÞ2 þ b2l ð2d2l þ 2e2l þm2

� þ ðme þm	Þ2 � 2dlðme �m� þm	Þ
� 2elðme þm� �m	ÞÞ�1=2;

D ¼ ½ðe2l þ ðdl �me þm�Þðdl �m	ÞÞ2 þ b2l ð2d2l þ 2e2l þm2
	 þ ðme �m�Þ2 � 2dlðme �m� þm	Þ

þ 2elð�me þm� þm	ÞÞ�1=2: (45)

The simultaneous existence of a texture zero and an equal-
ity in M� leads to the following complex equations:

m1a
2 þm2b

2e2i� þm3c
2e2ið�þ�Þ ¼ 0; (46)

m1ðad� apÞ þm2ðbg� bqÞe2i�
þm3ðch� crÞe2ið�þ�Þ ¼ 0: (47)

The complex coefficients are given in Eq. (23). Using these
two complex equations we find the two mass ratios to be

m1

m2
e�2i� ¼

�
c2ðbg� bqÞ � b2ðch� crÞ
a2ðch� crÞ � c2ðad� apÞ

�
;

m1

m3

e�2i� ¼
�
b2ðch� crÞ � c2ðbg� bqÞ
a2ðbg� bqÞ � b2ðad� apÞ

�
e2i�:

(48)

We perform a similar numerical analysis for this class
and find that it is consistent with normal hierarchy only.

A stringent bound on �13 is obtained. There exists a lower
bound of 4� on the 1–3 mixing angle [Fig. 3(a)]. The
unknown parameter el has two allowed regions viz.
½ð�960Þ � ð�680Þ� MeV and (430–830) MeV. The effec-
tiveMajorana mass is constrained to be less than 0.0045 eV
for both regions of el [Fig. 3(b)].

IV. REMAINING VIABLE CLASSES
OF HYBRID TEXTURES

The remaining phenomenologically viable classes are
IV, V, VI, and VII. As for the classes discussed so far, the
condition of a texture zero and an equality inM� results in
two complex equations given in Table II. The two mass
ratios obtained for these hybrid textures are given in
Table III. When we apply our numerical analysis on all
these classes we find that they have normal hierarchical
mass spectra.
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For class IV a constrained region ½ð�55Þ–ð165Þ� MeV
for the free parameter el along with an upper bound of
0.035 eV on effective Majorana mass Mee is obtained
which can be seen from Fig. 4(a). For class V, two regions
of solutions ð�100–0Þ MeV and (833–930) MeV are ob-
tained for the free parameter al. There exists an upper
bound of 0.012 eV on the effective Majorana mass (Mee

[Fig. 4(b)]). There is a strong correlation between the two
phases� and � as can be seen from Fig. 4(c). For class VI a
stringent bound on effective Majorana mass is obtained:
ð0:008<Mee < 0:04Þ eV [Fig. 4(d)]. Class VII is only
marginally allowed since only 10–15 points are allowed

whereas the total number of points generated in our
numerical analysis is 107.

V. CONCLUSIONS

We presented a comprehensive phenomenological
analysis for the parallel hybrid texture structures of the
charged lepton and the neutrino mass matrices. These
parallel hybrid texture structures cannot be obtained from
arbitrary Hermitian charged lepton and complex symmet-
ric neutrino mass matrices through weak basis transforma-
tions and thus have physical implications. All the possible
60 hybrid texture structures are grouped into 12 classes

TABLE III. Mass ratios for remaining viable cases.

Case m1

m3
e�2i� m1

m2
e�2i�

IVA
�
g2ðc2�chÞ�h2ðb2�bgÞ
d2ðb2�bgÞ�g2ða2�adÞ

� �
h2ðb2�bgÞ�g2ða2�adÞ
d2ðc2�chÞ�h2ða2�adÞ

�
e2i�

VA
�
q2ðc2�chÞ�r2ðb2�bgÞ
p2ðb2�bgÞ�q2ða2�adÞ

� �
r2ðb2�bgÞ�q2ðc2�chÞ
p2ðc2�chÞ�r2ða2�adÞ

�
e2i�

VIA
�
g2ðc2�hrÞ�h2ðb2�gqÞ
d2ðb2�gqÞ�g2ða2�dpÞ

� �
h2ðb2�gqÞ�g2ðc2�hrÞ
d2ðc2�hrÞ�h2ða2�dpÞ

�
e2i�

VIIA
�
bqðhb�b2Þ�crðgp�p2Þ
apðgp�p2Þ�bqðda�a2Þ

� �
crðgp�p2Þ�bqðhb�b2Þ
apðhb�b2Þ�crðda�a2Þ

�
e2i�
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FIG. 4. Correlation plots for classes IV, V, and VI.

TABLE II. Complex equations for remaining viable cases.

Case Complex equations

IVA m1d
2 þm2g

2e2i� þm3h
2e2ið�þ�Þ ¼ 0

m1ða2 � adÞ þm2ðb2 � bgÞe2i� þm3ðc2 � chÞe2ið�þ�Þ ¼ 0

VA m1p
2 þm2q

2e2i� þm3r
2e2ið�þ�Þ ¼ 0

m1ða2 � adÞ þm2ðb2 � bgÞe2i� þm3ðc2 � chÞe2ið�þ�Þ ¼ 0

VIA m1d
2 þm2g

2e2i� þm3h
2e2ið�þ�Þ ¼ 0

m1ða2 � dpÞ þm2ðb2 � gqÞe2i� þm3ðc2 � hrÞe2ið�þ�Þ ¼ 0

VIIA m1apþm2bqe
2i� þm3cre

2ið�þ�Þ ¼ 0

m1ða2 � adÞ þm2ðp2 � pgÞe2i� þm3ðb2 � bhÞe2ið�þ�Þ ¼ 0
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using the permutation matrices. All textures in a class have
the same physical implications. Six out of total 12 classes
are found to be phenomenologically viable and have inter-
esting implications while class VII is only marginally
allowed. The remaining five classes of hybrid textures
are phenomenologically disallowed. For each class, we
obtained the allowed range for the only free parameter
from the charged lepton sector. Predictions for the 1–3
mixing angle, the Dirac-type and Majorana-type CP vio-
lating phases are obtained for some of the allowed hybrid
texture structures. We also obtained bounds on the effec-
tive Majorana mass for all the allowed hybrid texture

structures. The study of these parameters is significant as
they are expected to be probed in the forthcoming
experiments.
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