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Universal mass matrix for quarks and leptons and CP violation
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The measurements of the neutrino and quark mixing angles satisfy the empirical relations called quark-
lepton complementarity. These empirical relations suggest the existence of a correlation between the
mixing matrices of leptons and quarks. In this work, we examine the possibility that this correlation
between the mixing angles of quarks and leptons originates in the similar hierarchy of quarks and charged
lepton masses and the seesaw mechanism type I, that gives mass to the Majorana neutrinos. We assume
that the similar mass hierarchies of charged lepton and quark masses allows us to represent all the mass
matrices of Dirac fermions in terms of a universal form with four texture zeroes.
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L. INTRODUCTION

The neutrino oscillations between different flavour
states were measured in a series of experiments with
atmospheric neutrinos [1], solar neutrinos [2], and neutri-
nos produced in nuclear reactors [3] and accelerators [4].
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As a result of the global combined analysis including all
dominant and subdominant oscillation effects, the differ-
ence of the squared neutrino masses and the mixing angles
in the lepton mixing matrix, Upyyg, were determined at
1o (30) confidence level [5]:
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Thus, values of the magnitudes of all nine elements of the lepton mixing matrix, Upyys, at 90% C.L., are
0.80 — 0.84 0.53 —0.60 0.00—0.17
Upyns = | 0.29—0.52 0.51 —=0.69 0.61 — 0.76 |. 3)

0.26 — 0.50 0.46 — 0.66 0.64 — 0.79

The CHOOZ experiment determined an upper bound for
the 6!, mixing angle [6]. The latest analyses give the
following best values [7,8]:
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0, =5.673%(=125)°, 6,=513%=12.0° (5
see also [9]. On the other hand, in the last years extensive
research has been done in the precise determination of the
values of the Vg, quark mixing matrix elements. The most
precise fit results for the values of the magnitudes of all nine
Cabibbo-Kobayashi-Maskawa (CKM) elements are [10]
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0.974 19 = .00022

Vekm = 0.2256 = .0010
0.008 7430026
and the Jarlskog invariant is
J4 = (3.057530) X 107, (7

We also have the three angles of the unitarity triangle with
the following reported best values [10]:

a=(887%°, B=(2146x0.71)°, y=(7713)°

®)

Each of the elements of the V;, matrix can be extracted
from a large number of decays and, for the purpose of our
analysis, will be considered as independent. Hence, current
knowledge of the mixing angles for the quark sector can be
summarized at 1o as [10]

sinff, = 0.2257 = 0.001,
sinf%; = 0.041575:901,, 9)
sin{; = 0.003 59 =+ 0.000 16.

The solar mixing angle 6}, and the corresponding mixing
angle in the quark sector, the Cabibbo angle 67,, satisfy an
interesting and intriguing numerical relation (at 90%
confidence level) [11],

0!, + 09, =~ 45° +2.5° + 1.5°; (10)

see also [12]. Equation (10) relates the 1-2 mixing angles
in the quark and lepton sectors, it is commonly known as
quark-lepton complementarity relation (QLC) and, if not
accidental, it could imply a quark-lepton symmetry. A
second QLC relation between the atmospheric and 2-3
mixing angles is also satisfied [13],

0y + 05, = (44.67731)°. (11)

However, this is not as interesting as (10) because 6‘;’3 is
only about 2°, and the corresponding QLC relation would
be satisfied, within the errors, even if the angle 6%, had
been zero, as long as 6, is close to the maximal value 77/4.
A third possible QLC relation is not realized at all, or
at least not realized in the same way, since it is less than
10° [13]:

0, + 0%, <8.1°. (12)

Equations (10)-(12) are known as the extended
quark-lepton complementarity; for a review see [14]. The
extended QLC relations could imply a quark-lepton sym-
metry [14] or a quark-lepton unification [15]. A systematic
numerical exploration of all CP conserving textures of the
neutrino mass matrix compatible to the QLC relations and
the experimental information on neutrino mixings is given
in [16].
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The neutrino oscillations do not provide information
about either the absolute mass scale or if neutrinos are
Dirac or Majorana particles [17]. Thus, one of the most
fundamental problems of the neutrinos physics is the ques-
tion of the nature of massive neutrinos. A direct way to
reveal the nature of massive neutrinos is to investigate
processes in which the total lepton number is not conserved
[18]. The matrix elements for these processes are propor-
tional to the effective Majorana neutrino masses, which are
defined as

3
(mp) =Y m, U3,  l=epr, (13)
j=1

where m,, are the neutrino Majorana masses and U; are
the elements of the lepton mixing matrix.

In this work, we will focus our attention on understand-
ing the nature of the QLC relation and finding possible
values for the effective Majorana neutrino masses. Thus,
we made a unified treatment of quarks and leptons, where
we assumed that the charged lepton and quark mass ma-
trices have the same generic form with four texture zeroes
from a universal S3 flavor symmetry and its sequential
explicit breaking.

I1. UNIVERSAL MASS MATRIX WITH
A FOUR ZEROES TEXTURE

In particle physics, the imposition of a flavor symmetry
has been successful in reducing the number of parameters
of the standard model. Recent flavor symmetry models are
reviewed in [19]; see also the references therein. In par-
ticular, a permutational S; flavor symmetry and its sequen-
tial explicit breaking allows us to take the same generic
form for the mass matrices of all Dirac fermions, conven-
tionally called the generalized Fritzsch ansatz with four
texture zeroes [20,21]:

0 A O
M;=|A; B C | i=udlLvp,  (14)
i Di
where B;, C;, and D; are real, while A; = |A,|e!% with
¢; = arg{A;}.

In the most general case, all entries in the Hermitian
mass matrix M; are complex and nonvanishing. However,
without loss of generality, by means of a common unitary
transformation of the Dirac fields ¥, , and ¥, it is
always possible to change to a new flavor basis where the
off-diagonal elements (M;);5 = (M;);; vanish [21]. The
vanishing of the diagonal elements (M,,, ); and (M)},

constrains the physics and allows for the predictions of the
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Cabibbo angle as function of the # and d-type quark masses
in the quark sector and the solar angle as function of the
charged leptons and Majorana neutrinos masses in the
leptonic sector in good agreement with the experimental
values.

Then, in the quark sector, M, and M, totally have four
texture zeroes and, in the leptonic sector, M, and M,,
totally have four texture zeroes (here a pair of off-diagonal
texture zeroes are counted as one zero, due to the
Hermiticity of M;) [21]. Hence, following a common con-
vention we will refer to M; as a generalized Fritzsch ansatz
with four texture zeros.

Some reasons to propose the validity of a generalized
Fritzsch ansatz with four texture zeros as a universal form
for the mass matrix of all Dirac fermions in the theory are
the following:

(1) The idea of S; flavor symmetry and its explicit
breaking has been successfully realized as a mass
matrix with four texture zeroes in the quark sector to
interpret the strong mass hierarchy of up and down
type quarks [22].

(2) The quark mixing angles and the CP violating
phase, appearing in the Vg,, mixing matrix, were
computed as explicit, exact functions of the four
quark mass ratios (m,/m,, m./m, my/m,, m,/my),
one symmetry breaking parameter defined as
7\? = % and one CP violating phase ¢,_4 =
¢, — ¢4 Assuming that Z, = Z, = Z, a x? fit of
the theoretical expression for V&, to the experi-
mentally determined V¢, gave Z'/2 = (8)!/2 and
¢.—q = 90°, in good agreement with the experi-
mental data [20]. This agreement has improved as
the precision of the experimental data has improved
and, now, it is very good [10].

(3) Since the mass spectrum of the charged leptons
exhibits a hierarchy similar to the quark’s one, it
would be natural to consider the same S; symmetry
and its explicit breaking to justify the use of the
same generic form with four texture zeroes for the
charged lepton mass matrix.

(4) As for the Dirac neutrinos, we have no direct infor-
mation about the absolute values or the relative
values of the neutrino masses, but the mass matrix
with four texture zeroes can be obtained from
an SO(10) neutrino model which describes the
data on neutrino masses and mixings well [23].
Furthermore, from supersymmetry arguments, it
would be sensible to assume that the Dirac neutrinos
have a mass hierarchy similar to that of the u-quarks
and it would be natural to take for the Dirac neutrino
mass matrix also a matrix with four texture zeroes.

The Hermitian mass matr_ix (14) may be written in terms of
areal symmetric matrix M; and a diagonal matrix of phases
P; = diag[1, ¢'%:, e'%i] as follows:
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M; = Pim,p,. (15)

The real symmetric matrix M; may be brought to diagonal
form by means of an orthogonal transformation,

Mi = Oidiag{mib mi, mi3}OtT’ (16)

where the m;’s are the eigenvalues of M; and O; is a real
orthogonal matrix. Now computing the invariants of the
real symmetric matrix M;, tr{M}, tr{M?}, and det{M;}, we
may express the parameters A;, B;, C;, and D; occurring in
(14) in terms of the mass eigenvalues. In this way, we get
that the M, matrix (i = u, d, [, vp), reparametrized in
terms of its eigenvalues and the parameter D; = 1 — §; is

1 g
0 = 0
7 | farn s - [
M;= T2 My — g+ 0; sy fifi | a7
0;
0 (1_5[)fi1fi2 1= 6i
= __my o~ mpl
where 71, = T, iy = TR,

fu=1—1; — 0, fo=1+my—46,. (18)

The small parameters 6, are also functions of the mass
ratios and the flavor symmetry breaking parameter Z}/ 2
[20]. The flavor symmetry breaking parameter Zil/ 2, which
measures the mixing of singlet and doublet irreducible

representations of S, is defined as the ratio

12 _ (M)
g (M) (19

It is related with the parameters &; by the following cubic
equation [20]:
1

8 — A 1(2 +diy — my + (1 + 200, — my))Z;)67
1

1 _ _ _ _
+ m(zi(miz = my) (2 + iy — )
Z(my — iy )?

+ (1 + 7)1 — 1)) 8, +
( th)( mll)) i Zi+l

=0. (20

Thus, the small parameter J; is obtained as the solution of
the cubic equation (20), which vanishes when Z; vanishes.
The last term in the left-hand side of (20) is equal to the
product of the three roots of (20). Therefore, the root that
vanishes when Z; vanishes may be written as

_Zi Gy — )
YZi+1 Wi(Z)

) 21

where W;(Z) is the product of the two roots of (20) which
do not vanish when Z; vanishes. The explicit form of W;(Z)
is [20]
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Wi(Z) =[p} + 247 +2qyp} + 411" = Ipil + [p} + 247
—2q4/pi + g3 + é(zi(z(’/hﬂ —m;) +1)
+ (i — i) +2)* — %([C]i + VP? +q7]'3
+g; —4/pi + g 1'3) X (2,20 — 1) + 1)

+ (i — my) +2) (22)
with
1z o o )
Pi="3 7+ 1(Zi(2(mi2 — i) + 1) + iy — iy +2)

1 _ o _
+ m[zi(mﬂ — 1ty ) (g — 1ty + 2)

X (14 )1 — my)], (23)
1 1 - - -
9= "5 m(zi(z(’"iz — ) + 1) + iy
) o o
—fiy +2)° + 3 m[zi(mz? — 1)
X (i — fyy + 2)(1 + mp)(1 — myy)]
X(Z;2@, — i) + 1) + iy — iy + 2). (24)

Also, the values allowed for the parameters o; are in the
following range: 0 < 6; <1 — ;.

Now, the entries in the real orthogonal matrix O,
Eq. (16), may also be expressed in terms of the eigenvalues
of the mass matrix (14) as

mpfi 172 _| mufi 172 1 1 O 172
Di Di i3

0. = [ﬁ"il(l_‘si)fil]l/z I:Vhiz(l—&)fizill/z [1—5i)5i]1/2
! Dy Da D3

_I:’;lnfizﬁiill/z _I:'ﬁizfiltsiill/z I:.fn.fa]l/z
D“ D,‘z DB

>

—

where,
Dy = (1 = 8)0iy + 1)1 = sinyy),
Dip = (1 = 8)(iyy + 1)1 + 1),
Dz = (1 = 8)(1 — 1)1 + sinyp).

(26)

III. SEESAW MECHANISM AND PHASES OF THE
LEFT-HANDED NEUTRINO MASS MATRIX

The left-handed Majorana neutrinos naturally acquire
their small masses through an effective type-I seesaw
mechanism of the form

M, = M,,DM;RlMZD, 27)
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where M, and M, denote the Dirac and right-handed
Majorana neutrino mass matrices, respectively. The sym-
metry of the mass matrix of the left-handed Majorana
neutrinos, M, = MZL, and the seesaw mechanism of
type I, Eq. (27), fix the form of the right-handed
Majorana neutrinos mass matrix, M, , which has to be
nonsingular and symmetric. Further restrictions on M,
follow from requiring that M, also has a texture with
four zeroes, as will be shown below. With this purpose in
mind, the seesaw mechanism, Eq. (27), may be written in a
more explicit form as

=——M, adj(M, )\MT , 28
vy det(M,,R) VDa J( VR) vp ( )
where det(M,,) and adj(M,,) are the determinant and
adjugate matrix of M, _, respectively. Now, if we consider

the more general form of a complex symmetric matrix
of 3 X3

8vpg Ay, €y
M, =|a, Db,
e c,

(29)

R VR

QO

VR R VR

to represent the right-handed Majorana neutrinos mass
matrix, we may write Eq. (28) in a more explicit form if
we express det(M,, ) and adj(M,,) in terms of the cofactors
of the elements of the matrix M,,. Then,

det(M, ) = g, X1 — a,, X1, + e, X3 (30)
and
1 g”L g“ f; 31)
v - W vy vy vy ’
®\E, C, D,
where
G, = X»nA;,,
AVL = _XIZIAVD|2 + XZZAVDBVD - X23AVDCVD’
B,, = XuAj, + XnB;, + X53C; ) — 2XpA;, B,
+ 2X13A>;DC,,D - 2X23BVDCVD’ (32)

EVL = X22AVDCVD - X23AVDD
C

vp’

= XISAﬂ;DDVD - X12AiD CVD + XZZBVD CVD
- X23(B,,DD,,D + C%D) + X33C,, D

DVL = XZQC,Z/D - 2X23CVDDVD + X33D’2’D'

v

vp’

In these expressions, the X,,, (m, n =1, 2, 3) are the
cofactors of the corresponding elements of the adj(M,,)
matrix.'

"The cofactors of the elements of M,, matrix, are defined as
X, = (—1)"*™ det(H,,,), where H,, 1s obtained by deleting
the n row and the m column of M, matrix.
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From Egs. (31) and (32), when conditions X,, =
X,3 = 0 are satisfied, the mass matrix of the left-handed
Majorana neutrinos will have the same universal form with
four texture zeroes as the Dirac mass matrices. These
conditions are equivalent to

ngdvR = e%w gVRCVR = aVReVR‘ (33)
Thus, we obtain the relation

aVR v
—— (34)

VR dI/R

o

For nonvanishing det(M, ), these conditions (33) are
satisfied, if

¢, =0 and e, =0. 35)

R
If we extend the meaning of a mass matrix with four
texture zeroes, defined in (14), to include the symmetric
mass matrix of the right-handed Majorana neutrinos, M,
[24], which is non-Hermitian, we could say that the matrix
with four zeroes texture is invariant under the action of the
seesaw mechanism of type I [13,21,24]. It may also be
noticed that, if we set b, = O or/and ¢,, = 0, the resulting
expression for M, still has four texture zeroes. Therefore,
M, may also have four texture zeroes when M, has four,
three, or two texture zeroes (the two last cases are called
Fritzsch textures).

Let us further assume that the phases in the entries of the
M, may be factorized out as

M, = RMVRR, (36)
where
0 ay, 0
M, =|a, bl lc,l| 37
0 el d

VR

and R = diag[e "%, ¢'%, 1] with ¢, = arg{c,}. Then, the
type-I seesaw mechanism takes the form

M, =Pim, PRI, IRTPLM, P, (38)

and the mass matrix of the left-handed neutrinos has the
following form with four texture zeroes”:

0 a, O
M, =\a, b, c, | (39)
0 ¢ d

L v

where

>The seesaw invariance of the four zeroes mass matrix of the
Majorana neutrino is also derived in [24]. However, these
authors ignored the phases in the elements of mass matrices in
their discussion.
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la,, |
ay, ===,
VR
2 2 _ 2
b _ CVD + |CI/R| |bVR|dVR |aVD| ei2(¢ci¢vo)
v,
t dVR dVR a’z’R
Ly la,,| (bVDe_id’VD ~cyley,l ei((ﬁc—qﬁm))’
|avR| VR
o Sy la,, | (C o ity ey ldy, ei<¢,f¢m>)
vy dVR |aVR| YD -
d2
0, = (40)

VR

The elements a,, and d,, are real, while b,, and ¢, are
complex. Notice that the phase factors appearing in
Eqgs. (38) and (40) are fully determined by the seesaw
mechanism and our choice of a generalized Fritzsch ansatz
with four texture zeroes for the mass matrices of all Dirac
fermions and the complex symmetric, but non-Hermitian,
mass matrix of the right-handed Majorana neutrinos.

Now, to diagonalize the left-handed Majorana neutrino
mass matrix M,, by means of a unitary matrix, we need to
construct the Hermitian matrices M,, M I and MILMVL,
which can be diagonalized with unitary matrices through
the following transformations:

UtMi M, Uy = diag[lms, 12, Im3, % Im3, 1]
Uim, M, U, = diagllms, 12, [m3, 1%, 1m3, 1]

where the my, (j = 1, 2, 3) are the singular values of the
M, matrix. Thus, with the help of the symmetry of the
matrix (39) and the transformations (41), the left-handed
Majorana neutrino mass matrix, M, , is diagonalized by a
unitary matrix

Uim,, U; = diagl|ms, |, lm3, |, 1m3, |1 (42)

where U, = U, K and K = diag[e'™/?, ¢i™2/2, ¢i13/2] is
the diagonal matrix of the Majorana phases. From the
previous analysis, the matrix M, has two nonignorable
phases which are

¢y =argib, } and ¢, = arg{c,, }. (43)

However, to describe the phenomenology of neutrino
masses and mixing, only one phase in M, is required.
Therefore, without loss of generality, we may chose ¢ =
2¢, = 2¢ and the following relationship is fulfilled’:

23mce,, Rec,,

(meCVL)Z - (SmCVL)Z .

tang, = (44)

*The general case, when ¢, # 2¢, is slightly more compli-
cated. This case will be treated in detail in a later paper.
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In this case, the analysis simplifies since the phases in M,
may be factorized out as

M, =0OM, 0, (45)

where Q is a diagonal matrix of phases Q = diag[e ¢,
¢'?,1] and M, is a real symmetric matrix. Then, the
matrix M, , can be diagonalized by a unitary matrix
through the transformation

UIM,,L U; = diag[m,,, m,,, m, ]; (46)

where m, (j=1,2,3)are the eigenvalues of the matrix
M, , and the unitary matrix is U, = Q0, XK where O,, is

vy
the orthogonal real matrix (25), that diagonalizes the real
symmetric matrix M, .

It is also important to mention that when the Hermitian
matrix with four texture zeroes defined in Eq. (14) is taken
as a universal mass matrix for all Dirac fermions and right-
handed Majorana neutrinos [13], the phases of all entries in
the right-handed Majorana neutrino mass matrix are fixed
at the numerical value of ¢, = na. Thus, the right-
handed Majorana neutrino mass matrix is real and sym-
metric and has the form with four texture zeroes shown in
(14). In the more general case in which the Dirac fermions
and right-handed neutrino mass matrices are represented
by Hermitian matrices, that can be written in polar form as
A = PYAP, where P is a diagonal matrix of phases and A is
a real symmetric matrix; the symmetry of the left-handed
Majorana neutrino mass matrix also fixes all phases in the
mass matrix of the right-handed neutrinos at the numerical
value ¢, = n. Hence, the only undetermined phases in
the mass matrix of the left-handed Majorana neutrinos M,
are the phases ¢, , coming from the mass matrix of the
Dirac neutrinos.

IV. MIXING MATRICES

The quark and lepton flavor mixing matrices, Upysys and
Vcku, arise from the mismatch between diagonalization of
the mass matrices of u and d type quarks [10] and the
diagonalization of the mass matrices of charged leptons
and left-handed neutrinos [25], respectively,

Upuns = U;fU,,, Vekm = UUU;- 47

Therefore, in order to obtain the unitary matrices appearing
in (47) and get predictions for the flavor mixing angles and
CP violating phases, we should specify the mass matrices.
In the quark sector, the unitarity of Vg, leads to the
relations 3, V;;Vy, = 6 and 3.;V;; Vi, = 6. The vanish-
ing combinations can be represented as triangles in a
complex plane. The area of all triangles is equal to half
of the Jarlskog invariant, J, [26], which is a rephasing
invariant measure of CP violation. The term unitarity
triangle is usually reserved for the triangle obtained from

PHYSICAL REVIEW D 82, 073010 (2010)

the relation V,,V;, + V.,Vi, + V,,V;, = 0. In this case
the Jarlskog invariant is

Jy = 3mV, ViV, Vel (48)
and the inner angles of the unitarity triangle are

o= arg(— thVx*b)
Via V;b
VeaVi,

B = (- etls)
ViV, (49)
ViV

vy = arg(— —ud " ub f‘kb).

For the lepton sector, when the left-handed neutrinos are
Majorana particles, the mixing matrix is defined as [27]
Upyns = U U K where K = diag[1, ¢/, /2] is the di-
agonal matrix of the Majorana CP violating phases. Also
in the case of three neutrino mixing there are three CP
violation rephasing invariants [25], associated with the
three CP violating phases present in the Upyys matrix.
The rephasing invariant related to the Dirac phase,
analogous to the Jarlskog invariant in the quark sector, is
given by

J; = 3m[ULURU U, (50)

The rephasing invariant J; controls the magnitude of CP
violation effects in neutrino oscillations and is a directly
observable quantity. The other two rephasing invariants
associated with the two Majorana phases in the Upyns
matrix can be chosen as

S; =3m[U, U], S, = JIm[U U, (51)

These rephasing invariants are not uniquely defined, but
the ones shown in Egs. (50) and (51) are relevant for the
definition of the effective Majorana neutrino mass, m1,,, in
the neutrinoless double beta decay.

A. Mixing matrices as functions
of the fermion masses

The unitary matrices U, ; occurring in the definition of
Vekwm» Eq. (47), may be written in polar form as U, , =
O£ 4Pu.q- In this expression, P, ; is the diagonal matrix of
phases appearing in the four texture zeroes mass matrix
(15). Then, from (47), the quark mixing matrix takes the
form

Vi = OLP“" 90y, (52)

where PU“~9 = diag[1, ¢'?, ¢/¢] with ¢ = ¢, — ¢4, and
O, 4, are the real orthogonal matrices (25) that diagonalize
the real symmetric mass matrices M;. A similar analysis
shows that Upy,ys may also be written as Upyyg = U;r U,,
with U,,; = P,,;0,,;. This matrix takes the form

Ubyys = O P D0,K, (53)
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where P~ = diag[1, /™1, ¢/®2] is the diagonal matrix of
the Dirac phases, with ®; = 2¢ — ¢, and &, = ¢ — ¢,.
The real orthogonal matrices O,,; are defined in Eq. (25).
Substitution of the expressions (18) and (26) in the unitary
matrices (52) and (53) allows us to express the mixing
matrices V¥, and U%,, ¢ as explicit functions of the
masses of quarks and leptons. For the elements of the
vih ., mixing matrix, we obtained the same theoretical

PHYSICAL REVIEW D 82, 073010 (2010)
expressions given by Mondragén and Rodriguez-Jauregui
[20]:

th th th

N Vaa Vi Vb
VCKM = Vcd Vcs Vcb ’ (54)

th th th

th VIA' th

where

Vi mgﬁlj;gidl Q;:lrgdl{\/(l —= 8,0 = 8)furfar + V8. 8uf iaf )e,
Vil ﬁlcfgtj%idz + Dmedz \/(1 8.1 = 8)fuifar + Voudafafa)e
R ‘/Dﬁ;}%(\/a = 5000 = 0084f1 ~ NBuT Tl )
Vey = - mupﬁz%idl l;:zngdl{\/(l = 8,)(1 = 8)fofar + Noubaf i fa)e™®
Ve = mgz%idz + DMZDdZ \/(1 8.)(1 = 8)fuiafar + Vubafuifa)e'?, (55)
= | @f:bdﬂu 8,0~ 82)8uf2 ~ VBTl af)e,
V= W = 0,00 = 00)fa ~ BTl
R \/Df;)ﬂ(«/au(l = 8001 = 8~ ST aTal )™,
yih — 1, M Mg 8,04 n ( fufafafa | \/8u5d(1 — 38,1 — 6d))€,-¢
DDy DD D3Dus

Here, the m’s, f’s, and D’s are defined in (18) and (26),
respectively. These take the form

- My

mu(d) - m ®) »
t

~ Me(s)

Mesy = m:(bs) ’

Suar = (1= 7ty = Sua),

Futap = (14 fite) = dua),

Diayn = (1= 8ya)Uityay + 1t ()1 = 1ty a)),
Diayy = (1 = 8ua)(yay + 1t ()1 + 7)),
Duays = (1 = 8,a))(1 = 1ty @))(1 + 1i(s)-

(56)

Now, with the help of Egs. (25) and (53), we obtain the
theoretical expression of the elements of the lepton
mixing matrix, U, <. This expression has the following
form:

Uh UBelB Uteif:
h i h i

Uins UM1 Ut el UleiP (57)
U Ube Ul

where
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) f1nfne® + 8,8, nfi.e'?),

\/@11 ), {\/(1 = 8)(1 = 8,)f11f e + V88, finf 1€

+ ‘/Dmle) (\/5V(1 = 8)(1 = 8,)fne™ = b6 fnfnfne'™),
nvs

= 8,)fnfne® +8,0,f11f.e"),

8)fnfne® + 88, finf.1e®), (58)

)1 = 8,)fne'® — o, fnfi1fiae'®),

\/@,3 i 1 \/61(1 8)(1 = 8,)f e =&, fufifne®),

m mp Sufm \/ m,
Ut = : ! f - 8,0
: Dy D DD !
m mu fnfuz
Ue = — !
: Dy D
Uﬂé _ ﬁl,uﬁlvlﬁ/lvzzsvfll
‘ D;D,s
ﬁle’;ﬁv lefVl n,
Uth —_ _ 2 1 ( 1—-6
b e, Dy, o
mem, fl2f1/2 v
Uth — 1 2 ( —5)(1 —
n2 DZZ \/DZZ 1)(
m,n, n, 6,fn m
Uth — _ e 41 Vy 12 + M { 5 1 _
b DpD,, \/ Dlzm\‘/ s
mehit, ., 6,f,
R S e
3
m, m m, 51fu2 J v
U‘Th = 2 5,(1 —
: DB DD Vz\/ :

8)(1 = 8,)f €™ — 8, frfinfie®),

Uth — ﬁlemumvlmvzalav + 8181/(1 - 81)(1 -
& Dl3 DI/3 DB DV3

In these expressions the 7’s, f’s, and D’s are defined in
(18) and (26), respectively. These take the form

~ My, (e)
o) =
v3(7
- _ My (w)
My, (w) = m :

foan = (L =11, () — 8,0)),

Fowp = (1 + 1, — 8,0),

Dyt = (1= 8,4) (1, (o) F 1y, () (1 — 7ot
Dyp = (L= 8,0y, (o) + 1y, () (1 + 7y, (),
Dy = (1= 8,0)(1 = 11y, () (1 + 7y, ().

(39)

Vl(e))!

B. The y? fit for the quark mixing matrix

We made a y? fit of the exact theoretical expressions for
the moduli of the entries of the quark mixing matrix
[(Vityp)i;| and the inner angles of the unitarity triangle

a®, B™ and y"M to the experimental values given by
Amsler [10]. In this fit, we computed the moduli of the
entries of the quark mixing matrix and the inner angles of
the unitarity triangle from the theoretical expression (55)
with the following numerical values of the quark mass
ratios [10]:

6V)ni‘1)1+ Mlﬂbz
) \/ DiD,s

i, = 2.5469 X 1075,
iy = 1.5261 X 1073,

i, = 3.9918 X 1073,

(60)
iy = 3.2319 X 1072,

The numerical values of the mass ratios were left fixed at
the values given in Eq. (60) and the parameters 6, and
were left as free parameters to be varied. Hence, in the y?
fit we have 6 degrees of freedom, namely, the nine observ-
able moduli of the entries in the Vg, matrix less the three
free parameters to be varied. Once the best values of the
parameters &,, 64, and ¢ were determined, we computed
the three inner angles of the unitary triangle from Eq. (49)
and the Jarlskog invariant from Eq. (48).

The resulting best values of the parameters &, and 6, are

5, =3.829 X 1073, 8, =4.08Xx107* (61)

and the Dirac CP violating phase is ¢ = 90°. The best
values for the moduli of the entries of the CKM mixing
matrix are given in the following expression:

0.22560 0.003369
) (62)
0.008 754 0.04094 0.99912

0.974 21
Vel = ( 0.22545 0.97335 0.041736

and inner angles of the unitary triangle

a®=91.24°, p"=2041°, yN"=6833°. (63)
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The Jarlskog invariant takes the value
h -5
Jy =29X107. (64)

All these results are in good agreement with the experi-
mental values. The minimum value of y? obtained in this
fit is 4.6 and the resulting value of y? for degree of freedom

. sz
is Join = 0.77.

C. The y? fit for the lepton mixing matrix

In the case of the lepton mixing matrix, we made a )(2
fit of the theoretical expressions for the moduli of the
entries of the lepton mixing matrix [(U%),ys);;| given in
Eq. (58) to the values extracted from experiment as given
by Gonzalez-Garcia [5] and quoted in Eq. (3). The com-
putation was made using the following values for the
charged lepton masses [10]:

m, = 0.5109 MeV,
m,, = 105.685 MeV, (65)
m, = 1776.99 MeV.

We took for the masses of the left-handed Majorana
neutrinos a normal hierarchy. This allows us to write the
left-handed Majorana neutrino mass ratios in terms of the
neutrino squared mass differences and the neutrino mass
m,, in the following form:

- \11 (Amd +Amy) | Amd,

2 ’ v 2 "
m,,3 77’1,,3

(66)

The neutrino squared mass differences were obtained from
the experimental data on neutrino oscillations given in
Gonzalez-Garcia [5] and we left the mass m,, as a free
parameter of the x? fit. Also, the parameters &,, 8,, @,
and @, were left as free parameters to be varied. Hence, in
this y? fit we have 4 degrees of freedom. From the best
values obtained for m,, and the experimental values of
Am3, and Am3,, we obtained the following best values for
the neutrino masses:

m, = 27X 1073 eV,
m, =9.1x1073 eV, 67)
m,, = 47X 1072 eV.

The resulting best values of the parameters 6, and &, are
0, = 0.06, o, = 0.522, (68)

and the best values of the Dirac CP violating phases are
®, = 7and &, = 37/2. The best values for the moduli
of the entries of the PMNS mixing matrix are given in the
following expression:

PHYSICAL REVIEW D 82, 073010 (2010)

0.820421 0.568408 0.061817
U, vs) = <0.385 027 0.613436 0.689 529). (69)
0.422689 0.548277 0.721615

The value of the rephasing invariant related to the Dirac
phase is

Jh =88 X 1073, (70)

In the absence of experimental information about the
Majorana phases 8 and 3,, the two rephasing invariants
S; and S,, Eq. (51), associated with the two Majorana
phases in the Upyyg matrix, could not be determined
from experimental values. Therefore, in order to make a
numerical estimate of Majorana phases, we maximized the
rephasing invariants S; and §,, thus obtaining a numerical
value for the Majorana phases B; and S3,. Then, the
maximum values of the rephasing invariants, Eq. (51), are

ST = —4.9% 107 SPY =34X107% (71

with 8, = —1.4° and B, = 77°. In this numerical analy-
sis, the minimum value of the y?, corresponding to the best
fit, is x> = 0.288 and the resulting value of y? for degree

2
of freedom is 5(7 = 0.075. All numerical results of the fit
are in very good agreement with the values of the moduli of
the entries in the matrix Upyyg as given in Gonzalez-

Garcia [5].

V. THE MIXING ANGLES

In the standard Particle Data Group parametrization, the
entries in the quark and lepton mixing matrices are pa-
rametrized in terms of the mixing angles and phases. Thus,
the mixing angles are related to the observable moduli of
quark (Iepton) Vega(Uppns) through the relations:

sinzeq(l) _ |Vus(Ue2)|2
12 1 - |Vub(U63)|2
2
sin?04) — Ve (U 3) (72)

1- |Vub(Ue3)|2’
Siﬂz@‘{gl) = Vi (U3)I*

Then, theoretical expression for the quark mixing angles as
functions of the quark mass ratios are readily obtained
when the theoretical expressions for the moduli of the
entries in the CKM mixing matrix, given in Egs. (55) and
(26), are substituted for |V;;| in the right-hand side of
Egs. (72). In this way, and keeping only the leading order
terms, we get

1

|~
=

+ My — D [T M cog dh

c me myg

(1+ 2901 + 39

=
N

. 0
sin?0?, = : (73)
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(V8. — 32

. th

sin?64; = Gt (74)
. B -5

sin20%; ~ e (V3w ~ V3u (75)

(1 + )

.

Now, the numerical values of the quark mixing angles may
be computed from Eq. (55) and the numerical values of the
parameters 6, and d,, Eq. (61), and the CP violating phase
¢ = 90° obtained from the x fit of |[V¥,,| to the experi-
mentally determined values [V¢y,,|. In this way we obtain
th th th

01, =13°, 01, = 2.38°, 61, =0.19°, (76)
in very good agreement with the latest analysis of the
experimental data [28], see (9). The numerical values of
the leptonic mixing angles are computed in a similar fash-
ion. The theoretical expressions for the lepton mixing
angles as function of the charged lepton and neutrino
mass ratios are obtained from Egs. (72) when the theoreti-
cal expressions for the moduli of the entries in the PMNS
mixing matrix, given in Eqgs. (58) and (26), are substituted
for |U;;| in the right-hand side of Eqs. (72). If we keep only
the leading-orders terms, we obtain

n2g = 1+, — 8, {myl
2 (14 ,)(1 = 8,)(1+ 52)(1 + 2 U,
+ e —5,) + 2‘/”?1 Me1-s,) cos@l},
my v, My
(77
o 8,4 8,f —\J5,0. . cos(d, — D
Sinzﬁég% S & f 2~COS( 1 2)’ (78)
(1 +29)(1 +m,,)
P W, T,
sin 291 ~ " {—e L
B+ 21+ ) b, (1-6,)
_ o [Me My, ] 79
, (-0, 1} (79)

From Egs. (59) we have that f,, =1+ m,, —§,. The
expressions quoted above are written in terms of the ratios
of the lepton masses. When the well-known values of the
charged lepton masses, the values of the neutrino masses,
Eq. (67), the values of the delta parameters Eq. (68), and
the values of the Dirac CP violating phases obtained from
the y? fit in the lepton sector are inserted in Eqgs. (77)—(79),

PHYSICAL REVIEW D 82, 073010 (2010)

we obtain the following numerical values for the mixing
angles:

lth

0, =34.7°, 04, =436°, 0l =35 (80)

which are in very good agreement with the latest experi-
mental data [5,8].

VI. QUARK-LEPTON COMPLEMENTARITY

The relations between mixing angles and the moduli of
the entries of the mixing matrices given in Egs. (72) allow
us to write the following identities:

tan(07, + 04,) =1+ Ay, (81)
where
oy, = Wasl0Ual + 10aD) = Wigl(Ual = 10D~ o
U [1Vial = U1V 4]
and
tan(0%; + 05;) = 1 + Ay, (83)
where
A23:IVL-bI(IUTsI+IUMI)—IthI(IUfsl—IU,le)’ 84)
U1Vl = U311V
and

|Vub| 1- |Ue3|2 + |Ue3|V1 - |Vub|2

\/1 - |Vub|2‘\/1 - |Ue3|2 - |Ue3”Vuh|
(85)

tan(07; + 0';) =

We notice that numerical values of A, and A,; obtained
from the experimentally determined |Vgy| and |Upyysl
are much smaller than 1,
AIZ <1 and A23 < 1,

for this reason, the identities (81)—(85) are sometimes
called quark-lepton complementarity relations.

The substitution of expressions (55) and (58) for the
moduli of the elements of the mixing matrices Vi¥,, and
UM, vs» allows us to express the small terms A, and A3 as

functions of the mass ratios of quarks and leptons. Then,
Eqgs. (81)—(85) take the following form:

u th ~u 7 ﬁlv Ne
tan(ofy + 0f) = 1+ A5, 24 B Be) g

me Mg M, m,

where
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th
AIZ

PHYSICAL REVIEW D 82, 073010 (2010)

B

o f,,z(l a1

o) )+ =5,) | = [T r = fwasa(1+ 25z -5,) )

Jar, )18, - Jﬂ+m—(1+ m () 5»)

Here, rather than writing a lengthy but not very illuminat-
ing exact expression, we give an approximate expression
for A, whose numerical value differs from the one
obtained using the exact expression by 12%. In the
derivation of Eq. (87) from (82) we used the following
approximations:

th ” M
IV?£| ~ M M _ 003152, (88)
|Vus ms Me

which differs from the exact value in less than 1%, and

US| _
lohl

’fle "ij (1 - 81/)}
w My

~ (0.688, (89)

which differs from the exact value i in less than 1%. The
identity (86) that defines A (%« Ma v /e jg frequently

m.’ g’ m, ’m

QU+ 291 +7,,) = 8, = 8.f,0]"7 + /6, F 8.1, (Jl + 5= (V8 =8 + (B, - JISZ))

(87)

written in terms of the angle &'l that measures the devia-
tion of (89, + #15) from z. Then Eq. (86) may also be
written as

tan(6% + 01%) = tan(4 + stlhz) =1+ A% (90)

From this expression, we get

et <2 oD

th
th — 12
el = arctan :
12 {2 + Atlhz} 2

which gives &'} as function of the mass ratios of quarks and
leptons. Smnlarly,

=

Vi

s i

tan(&23 +6053) =1+ A (

=
§1

(4
%
X

§z| 3

o

) 92)

o

§1‘

where

Al ~ - = (93)
[(1+ 290+ ,,) = 8, = 8ufun] 1+ 5 = (JB, = V/8? = VB, = VEIVE, T 8.T 0
Also,
m m ~ m1 m1 m 1/2
. NN Jé_d)[(l +E)(1 +m,,) - 5y( e Jm_) ]
tan(@% + 0[13) =~ _ _ r N — 1/2

\/”%—%(\/ﬁ_u—\/r?_d)zt(w%)(lwh 5V< T _ \/—) ]
(VS - E N R R (B oo 5
X . (94)

—\/—”(\/_ \/_ (V (1Vl 5V2 B \/7)
I

After substitution of the numerical values of the mass 961 + 01“1 —45° + 1° 97)

ratios of quarks and leptons in Eqs. (87)—(94), we obtain 23 ’

_ th th °

Al = AR =3.23X 1072 ©5) 0%, +6'3 =3.7°. (98)
tan(023 + Bl‘h) =6.53 X 1072, Equations (86) and (87) are hobtalned from an exact ana-
lytical expression for tan(ﬁ,2 + 0%) as a function of the
Hence, absolute values of the entries in the mixing matrices V¥,
" " and U}}}MNS, Egs. (81) and (82). In Eqgs. (55) and (58), the
o1, + 01, =45° +2.7°, (96)  elements of the mixing matrices Vi, and UM, are
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given as exact, explicit analytical functions of the quark
and lepton mass ratios. Let us stress that these expressions
are exact and valid for any possible values of the quark and
lepton mass ratios. From (87), it becomes evident that the
small numerical value of A' is due to the partial cancella-
tion of two large terms of almost the same magnitude but
opposite sign appearing in the numerator of the expression
in the right-hand side of Eq. (87), namely,

ma a1 e R < 0,)
mg  meL\m,, m, m,,

+ \/(1 + i1, )(1 — 6»] = 0.287, (99)

and
Ju +1iy,) fr — ”'fy2 1+ ( ) )) 0.22.
(100)

The approximate numerical equality of these two expres-
sions has its origin in the combined effect of the strong
hierarchy of charged leptons and u- and d-type quarks
which yields small and very small mass ratios, and the
seesaw mechanism type I which gives very small neutrino
masses but relatively large neutrino mass ratios.

We may conclude that the so-called quark-lepton com-
plementarity as expressed in (86) and (87) is more than a
numerical coincidence—it is the result of the combined
effect of two factors:

(1) The strong mass hierarchy of the Dirac fermions

which produces small and very small mass ratios of

1 m, m,
|(mee>|2 ~ - _ m,z, 1—4/=—=-—0-6,)])+
m 1
(1+ %)2(1 + ﬁl_Vl)2 my my,

“ >< cos2(w,; — w,3) + 2 mf‘m
(1 - 5 ( + mvz)(l - 61/)

o
+6Te (-5 )) o MO
i, (1 +m,,)

PHYSICAL REVIEW D 82, 073010 (2010)

u- and d-type quarks and charged leptons. The quark
mass hierarchy is then reflected in a similar hier-
archy of small and very small quark mixing angles.

(2) The normal seesaw mechanism type I which gives
very small masses to the left-handed Majorana neu-
trinos with relatively large values of the neutrino
mass ratio m,, /m,, and allows for large 6}, and 6,
mixing angles [see Eqs. (77)—(79)].

The two factors just mentioned contribute to the numerator
th . .
of A{, with two terms of almost equal magnitude but

h
opposite sign. Hence, the small numerical value of A‘l’;
occurring by partial cancellation of these two terms.

VII. THE EFFECTIVE MAJORANA MASSES

The square of the magnitudes of the effective Majorana
neutrino masses, Eq. (13), are

|<mll>|2 = ZmZ |UZ)|4 + 2Zm ml/k

J<k

XU U pI* cos2(wy; — wy), (101)

where w;; = arg{U,;}; this term includes phases of both
types, Dirac and Majorana.

The theoretical expression for the squared magnitude of
the effective Majorana neutrino mass of electron neutrino,
written in terms of the ratios of the lepton masses, is

m2_f2 m, (m m, m
vyJ 12 Vi Vi e Vi
+4 1-6
(1 ﬁlvz)z(l 51/)2 r”yz <J~”V2 \/f”p, }Tlllz ( V)

I/fl/2
2

mvzmvzfu25

x(m”l +2<1 _ M, ) ﬁ@(1 ) ))cos2(w — W,y) + 2 : v (1 +m”l)(2n~1 7
i, m,, )\, i, v el e (1 +m, )*(1— 5, ,, nn

2

+ \/’?e rfl”l (1- 5,,)) cos2(w,y — We3)}

m,U« sz

where w,, = B; and

m,, m
Lo 8e‘sva2

- |

1-5,)+ Z:l"’u—a)

Wo = arctan{—

(103)

Vi defin(l—8,)+
_J:;;:_c 6efv2(1 - 61}) tanﬂ2+

B, — i V»tanm}

+/8, (i, = yf5e (1= 6,))

W3 = arctan{

(104)
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In a similar way, the theoretical expression for the squared magnitude of the effective Majorana neutrino mass of the muon

neutrino is

I 2
IC T — . { M,
(1 + 22(1 + 202(1 + 1)

- 4\/’~”e Mo —6,)+60e ’?”l) + 2mylmy,fﬂ<@(1 —5,)+ 2\/@ Me (1 - 5V)<1 - 1))
- m

m,U« sz ml‘« sz

(1+ﬁ1V2)<1+m

4]

2 m%z
Jo. 2000 s (-0

vy [¢] ml’«

X cos2(w,; — W) + 2m,,1m,,3<1 + ’ﬁ’”l)(zay x \/”f Me ()~ )+ (1 = 5,)(5, + aefﬂ))

m,,

X cos2(w 1 — w,3) +2

mvsz3fV2
(1 + ’/hvz)(l - 51/)(

X cos2(w,, — wﬂ3)},

where

l/;lV

: 8€6Vf1/2

it
v2
=~ arctan ,

Vi (U= 8,) + 71— 8,)
® v

w (106)

wnl

and

w

(107)

n2

\/f;tanﬁl + \/5661/}
\/.7:2__ Vae‘svtanﬂl '

tanB; — \/f,n }
1+ JftanB, )

From these expressions and the numerical values of the
neutrinos masses given in Eq. (67), we obtain the following
expressions for effective Majorana masses with the phases
as free parameters:

|(m,)*> = {9.41 + 8.29cos(1° — 28;) + 4.3 cos(1°
— 2w,3) + 4.31cos2(B; — w,3)} X 1076 eV?,

=~ arctan{

w3 = arctan{ (108)

M3

(109)
where
0.15tanB, — 0.013
= arct . 110
Ve T AIC a“{o.ls n 0.013tan,82} (119)
Similarly,
[(m, ) = {4.8 + 0.17 cos2(44° — w,5)
+ 1.8c0os2(w,o — w3} X 1074 eV, (111)
where
0.65tanB, + 0.13}
=~ arct , 112
Wuz ™ 8LC an{o.ﬁs ~0.13 anpB, (112)
tan3, — 0.13 }
~ arctanj——— . 11
Waus = AT an{l +0.13tanf, (113

~V1 rhe
vy m/L V2
1+ @)((1 —8,)(8, + 8.f1) — 26V\/”f“ Me (1 — 6»)
sz vy m,Uv

(105)

In order to make a numerical estimate of the effective
Majorana neutrinos masses [(m,.)| and [(m, )|, we used
the following values for the Majorana phases B8, = —1.4°
and 3, = 77° obtained by maximizing the rephasing in-
variants S| and S,, Eq. (71). Then, the numerical value of
the effective Majorana neutrino masses are

[(mee)l = 4.6 X 1073 eV, Km0 = 2.1 X 1072 eV.

(114)

These numerical values are consistent with the very small
experimentally determined upper bounds for the reactor
neutrino mixing angle 65 [29].

VIII. CONCLUSIONS

In this communication, we outlined a unified treatment
of masses and mixings of quarks and leptons in which the
left-handed Majorana neutrinos acquire their masses via
the type-I seesaw mechanism, and the mass matrices of all
Dirac fermions have a similar form with four texture zeroes
and a normal hierarchy. Then, the mass matrix of the left-
handed Majorana neutrinos also has a texture with four
zeros. In this scheme, we derived exact, explicit expres-
sions for the Cabibbo (67,) and solar (6},) mixing angles as
functions of the quark and lepton masses, respectively. The
so-called quark-lepton complementarity relation takes the
form

0%, + 0 = 45° + &b (115)

The correction term, &', is an explicit function of the

ratios of quark and lepton masses, given in Eq. (91), which

reproduces the experimentally determined value,

ey = 2.7°, (116)

when the numerical values of the quark and lepton masses
are substituted in (91).
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Three essential ingredients are needed to explain the

correlations implicit in the small numerical value
of &'
(1) The strong hierarchy in the mass spectra of the

2

(1]

[10]

[11]
[12]
[13]

[14]
[15]

quarks and charged leptons, realized in our scheme
through the explicit breaking of the S5 flavor sym-
metry in the mass matrices with four texture zeroes,
explains the resulting small or very small quark
mixing angles; the very small charged lepton mass
ratios explain the very small value of 0113.

The normal seesaw mechanism that gives very small
masses to the left-handed Majorana neutrinos with
relatively large values of the neutrino mass ratio

PHYSICAL REVIEW D 82, 073010 (2010)

m,, /m, and allows for large 6, and 6}, mixing
angles.

The assumption of a normal hierarchy for the masses of the
Majorana neutrinos.
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