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A covariant spectator constituent quark model is applied to study the �N ! �ð1600Þ transition. Two
processes are important in the transition: a photon couples to the individual quarks of the �ð1600Þ core
(quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark

core contributions are estimated assuming �ð1600Þ as the first radial excitation of �ð1232Þ, the pion cloud
contributions are estimated based on an analogy with the �N ! �ð1232Þ transition. To estimate the pion

cloud contributions in the �N ! �ð1600Þ transition, we include the relevant intermediate states, �N, ��,

�Nð1440Þ and ��ð1600Þ. Dependence on the four-momentum transfer squared, Q2, is predicted for the

magnetic dipole transition form factor, G�
MðQ2Þ, as well as the helicity amplitudes, A1=2ðQ2Þ and A3=2ðQ2Þ.

The results at Q2 ¼ 0 are compared with the existing data.
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I. INTRODUCTION

With the extended energy range and the increased pre-
cision of recent accelerators, it is now possible to probe the
electromagnetic structure of baryon resonances beyond the
first resonance region. For example, the facilities like
CLAS (Jefferson Lab), MAMI (Mainz), ELSA (Boon),
LEGS (Brookhaven), BATES (MIT) and Spring-8
(Japan) are able to measure the electromagnetic transition
properties associated with the resonances such as
P33ð1232Þ, P11ð1440Þ, S11ð1535Þ and D13ð1520Þ [1].

To accommodate the data with higher four-momentum
transfer squared Q2 and center-of-mass energy W, an
improvement of the data analysis is mandatory, since
more baryons and mesons emerge in the possible inter-
mediate states. Then, the exact identification of the reso-
nances easily becomes controversial due to a large number
of channels taking place in a very small energy range.
Furthermore, the analysis made by various groups,
MAID [2], SAID [3], JLab-Yeveran [4,5] JLMS (JLab-
Moscow) [6], Bonn-Gatchina [7], Valencia [8], Giessen
[9], CMB [10] and KSU [11], is based on different reso-
nance poles and meson-baryon coupling constants. A simi-
lar situation exists also for the dynamical coupled-channel
reaction models, e.g., Mainz-Taipei [12], Jülich [13,14],
and EBAC [15–18] models. One of the most known issues
which drives them to study the baryon resonances is the
‘‘missing resonance problem,’’ that is, several states pre-
dicted by quark models have not yet been observed nor
identified by experiments [1,19].

Under such circumstances any theoretical studies for the
baryon resonances would help to uncover their properties.
For example, �ð1600Þ, the first excited state of �, may be
one of such interesting resonances worthwhile to study. It
has not yet been studied well so far. According to the
Particle Data Group (PDG) [20] �ð1600Þ is a three-star
resonance which decays preferentially to �N, �Nð1440Þ

and ��. Although the form factors associated with the
electroproduction of this resonance were studied some
time ago by a constituent quark model [21], it is only
recently that this resonance has been included in meson-
baryon reaction analysis models [1,5,7,22]. Recent experi-
ments show that the �ð1600Þ resonance can be very im-
portant in double pion production in nucleon-nucleon
collisions [23–25]. The �ð1600Þ resonance was also
studied in lattice QCD simulations [26,27] and QCD sum
rules [28].
Although the experimental access for the �ð1600Þ reso-

nance is still insufficient, it is very interesting to study it
theoretically for the following reasons. Similarly to its
ground state�ð1232Þ,�ð1600Þ can be described as a quark
core dressed by a meson cloud in the low Q2 region.
However, contrary to the�ð1232Þ case, meson cloud struc-
ture for the �ð1600Þ is expected to be much richer, since
more meson-baryon channels are associated with it [20].
To estimate the meson-baryon dressing for the �ð1600Þ,
one can in principle use dynamical coupled-channel mod-
els, but it is also necessary to understand the three-quark
core structure based on the underlying physics of QCD,
instead of using a phenomenological parametrization.
Thus, the use of a quark model, which includes the degrees
of freedom that dominate in the intermediate and higherQ2

region generally, is a natural consequence. Quark models
have also proven to be very useful in the studies of nucleon
and �ð1232Þ systems.
In this article we study the structure of �ð1600Þ and the

�N ! �ð1600Þ transition, by applying a covariant specta-
tor constituent quark model [29–39]. In this model one can
naturally assume the �ð1600Þ as the first radial excitation
of �ð1232Þ, similarly to the case of Nð1440Þ and N [34].
The interpretation of the �ð1600Þ resonance as the first
radial excitation of �ð1232Þ is sufficient for the present
approach to estimate the valence quark contributions for
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the �N ! �ð1600Þ transition. No extra parameters are
required. However, the transitions �N ! �ð1232Þ and
�N ! �ð1600Þ, are very different with respect to the
pion cloud effects. While the pion cloud contributions are
about 30–45% for the transition with the �ð1232Þ, the pion
cloud contributions would be more significant for the
transition with the �ð1600Þ. This is due to the increase of
relevant intermediate states, �N, ��, �Nð1440Þ and
��ð1600Þ.

Before discussing any details of the numerical results,
we can state that, solely from the quark core contributions,
the magnetic dipole transition form factors in the �N !
�ð1600Þ transition at Q2 ¼ 0 are negative (� 1:11), and
significantly undershoot the experimental data ( � þ0:20).
However, with the inclusion of the pion cloud contributions
which are dominant in the low Q2 region, the final result
approaches to the experimental data points.

This article is organized as follows. In Sec. II general
remarks are given for the �N ! � transitions, and the
theoretical background is introduced. In Secs. III and IV
contributions from the valence quarks and pion cloud are,
respectively, discussed for the �N ! �ð1600Þ transition.
In Sec. V reaction observables are discussed, and their
results are presented in Sec. VI. The conclusion is given
in Sec. VII.

II. GENERAL REMARKS ON THE �N ! �
TRANSITION

The electromagnetic transition between a spin 1=2
baryon (e.g., nucleon) and a spin 3=2 baryon (e.g., �)
with the positive parity, can be described in terms of three
independent form factors introduced by Jones and Scadron
[40]: G�

M (magnetic dipole), G�
E (electric quadrupole), and

G�
C (Coulomb quadrupole). An example is the �N !

�ð1232Þ transition.
It is well established that the �N ! �ð1232Þ transition

is dominated by the magnetic dipole form factor, G�
M

[1,31,32,41–44]. This can be easily understood in a naive
SU(6) quark model, since �ð1232Þ can be regarded as a
system in which one quark spin is flipped from the nucleon
system, therefore possible by a pure magnetic dipole tran-
sition. In fact, the magnetic dipole form factor, G�

M,
emerges naturally as a dominant form factor when only
the S-state structure in the quark-diquark system is in-
cluded for the �ð1232Þ wave function, and all the remain-
ing form factors vanish [31,41,42]. Although D-states can
contribute to the transition, they induce only small correc-
tions for G�

M, besides the contribution for the quadrupole
form factors, which are also small when compared with
G�

M [32,33].
However, it is well known that only the valence quark

contributions are insufficient to describe the �N !
�ð1232Þ transition [1,31,43,45–48]. The pion cloud con-
tributions, which a photon couples to the intermediate
pion-baryon states, must also be included additionally to

the valence quark contributions [1,12,15,18,31,32,43].
Thus, the �N ! �ð1232Þ transition form factor G�

M may
be split into two contributions,

G�
MðQ2Þ ¼ Gb

MðQ2Þ þG�
MðQ2Þ; (1)

where Gb
M and G�

M represent the contributions from the
quark core (also denoted by ‘‘bare’’), and those from the
pion cloud, respectively. The above separation is justified if
the pion is created by the baryon of a three-quark system,
and not by a single quark inside the baryon. Also, accord-
ing to the chiral perturbation theory, heavy meson loops are
suppressed, and the processes with one pion loop are
dominant in the low Q2 region [49,50]. Thus, we restrict
the pion-baryon intermediate states to the lowest order,
namely, ‘‘one pion in the air’’ in the following.
With the decomposition of Eq. (1), we can separate the

short-range contributions that are sensitive to the quark
structure (Gb

M) [18], and those of the long-range which
depend on the pion cloud (G�

M). We note that the same
decomposition Eq. (1) was also applied in several works
[12,15,18,51–53].
To estimate the quark core contributions Gb

M, one needs
a microscopic quark model of baryons. As for the pion
cloud contributionsG�

M, one can use a long-range effective
dynamics in the low Q2 region based on chiral symmetry.
According to chiral perturbation theory the two regimes
cannot in general be disentangled [54]. That separation is
possible only in a specific formalism, provided that the
scale of the quark core is defined.
In the covariant spectator quark model Gb

MðQ2Þ was
calculated for the �N ! �ð1232Þ transition by the pro-
cesses in which a photon directly couples to the constituent
quarks [31]. Here, the overlap integral between the nucleon
and � scalar wave functions played an important role [31],
as will be also discussed in Sec. III. The model for the
�ð1232Þ structure was calibrated by the core contributions
of the Sato-Lee model by switching off the pion cloud
effects [18]. Furthermore, the model was successfully able
to reproduce the quenched lattice QCD data [55] for heavy
pions, where the pion cloud effects are known to be small
[33,35]. These facts give us some confidence that the
valence quark contributions of the model are well under
control.
To describe the �N ! �ð1600Þ transition, we use the

same formalism which was successfully applied to study
the �N ! �ð1232Þ transition [31–33,35] and �ð1232Þ
elastic form factors [36,37]. As the �ð1600Þ resonance
shares many common properties with the �ð1232Þ reso-
nance such as spin and isospin, it is reasonable to assume
the �ð1600Þ as the first radial excitation of the �ð1232Þ,
and that it can also be described by an S-state approxima-
tion. Then, one can determine the �ð1600Þ wave function
completely by the orthogonality condition to that of the
�ð1232Þ. Using the �ð1600Þ wave function determined in
this way and the nucleon wave function determined in the
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previous study [29], we can estimate the valence quark
contributions for the transition magnetic dipole form fac-
tor, Gb

M, for the �N ! �ð1600Þ transition. The detail will
be given in next section.

On the other hand, the pion cloud contributions (G�
M) for

the �N ! �ð1232Þ transition in the spectator formalism
was estimated using an effective parametrization [31]. The
parametrization is consistent with the pion cloud contribu-
tions derived from the dynamical meson-baryon coupled-
channel models of Sato-Lee [18], and Mainz-Taipei [12].
The relative contributions of the pion cloud (G�

M=G
�
M) are

simulated by a dipole form factor which suppresses the
pion cloud contributions in the high Q2 region.

To take account of the pion cloud contributions G�
M in

the �N ! �ð1600Þ transition, we must include more pion-
baryon intermediate states than for the �N ! �ð1232Þ
transition. The detailed discussions concerning the pion
cloud effects are given in Sec. IV.

In the present work we adopt a hybrid approach to study
the �N ! �ð1600Þ transition, which was successfully ap-
plied for the �N ! �ð1232Þ transition. This hybrid ap-
proach has the following advantages. It can explain why
the bare contributions are insufficient to describe the elec-
tromagnetic transition form factors. Furthermore, it pro-
vides a simple parametrization for Gb

M that cannot be
derived from usual dynamical coupled-channel models.
Finally, it can also incorporate the pion cloud effects which
is justified by dynamical coupled-channel models, and
essential to describe the �N ! �ð1232Þ transition.

III. VALENCE QUARK CONTRIBUTIONS FOR
THE �N ! � TRANSITION

In the covariant spectator quark model a baryon is
described as a system of three constituent quarks: one
off-mass-shell quark free to interact with a electromagnetic
field, and two on-shell quarks that act as an on-shell
diquark with a mass mD. In this formalism [29] the
quark-diquark vertex is assumed to be zero at the singu-
larity point of the three-quark propagator, and this corre-
sponds to an effective description of confinement
[29,56,57]. The nucleon and �ð1232Þ states can be well
approximated by a quark-diquark system with zero relative
orbital angular momentum [29,31]. This S-state structure is
sufficient to reproduce the nucleon elastic form factor data
[29] and the dominant contributions for the �N !
�ð1232Þ transition [31]. We call this the S-state approach
or S-state approximation hereafter.

A. Transition current

In the spectator quark model the electromagnetic current
for a transition between an initial state �i and a final state
�f is given by,

J� ¼ 3
X
�

Z
k

��fðPþ; kÞj�I �iðP�; kÞ; (2)

where k is the diquark on-shell momentum,
R
k �

R
d3k

2EDð2�Þ3
with ED the diquark on-shell energy, P� (Pþ) is the initial
(final) momentum, q ¼ Pþ � P�, � is the diquark polar-
ization ð0;�1Þ and j�I the quark current. The factor 3
comes from the symmetrization in the quark flavor (see
Refs. [29,38,39] for details). In the above, the diquark
polarization and the baryon spin projection indices are
suppressed.
The constituent quark current can be decomposed by

j
�
I ¼ j1ðQ2Þ

�
�� � qq�

q2

�
þ j2ðQ2Þ i�

��q�
2M

; (3)

whereM is the nucleon mass. The Dirac (j1) and Pauli (j2)
quark form factors in the above are also decomposed into
the isoscalar and isovector components:

jiðQ2Þ ¼ 1

6
fiþðQ2Þ þ 1

2
fi�ðQ2Þ�3; ði ¼ 1; 2Þ: (4)

The quark form factors fi� are normalized to f1�ð0Þ ¼ 1
and f2�ð0Þ ¼ �� (isoscalar and isovector quark anoma-
lous moments). Their explicit expressions are given in
Refs. [29,31,32,38,39].

B. Baryon wave functions

In the S-state approach the nucleon wave function,
�NðP; kÞ, with P (k) being the nucleon (diquark) momen-
tum, can be written as [29],

�NðP; kÞ ¼ 1ffiffiffi
2

p ½	0
I	

0
S þ	1

I	
1
S�c NðP; kÞ; (5)

where 	0;1
I;S represents isospin (I) or spin (S) states corre-

sponding to the total magnitude of either 0 or 1 in the
diquark configuration [29]. In Eq. (5), c NðP; kÞ is the
nucleon scalar wave function to be specified later.
A generic � state (spin 3=2) with mass M� is repre-

sented in the S-state approach, as proposed in Ref. [31],

��ðP; kÞ ¼ �c �ðP; kÞ ~	1
I "


�
P u
ðPÞ; (6)

where P (k) is the total (diquark) momentum, u
 the

Rarita-Schwinger vector-spinor, "P the polarization vector

in the fixed-axis representation [30], ~	1
I is the isospin state

associated with the isospin-1 diquark in a spin 3=2 system
[31] and c �ðP; kÞ is a scalar wave function also to be
specified later. In the above, both nucleon and � wave
functions satisfy the Dirac equation with respective masses
[29,31,32].

C. Form factors

The �N ! � transition, between a nucleon and a � in
S-states, is characterized by a magnetic dipole form factor,

Gb
MðQ2Þ ¼ 8M

3
ffiffiffi
3

p ðM� þMÞ fvðQ
2ÞI�NðQ2Þ; (7)
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with

fvðQ2Þ ¼ f1�ðQ2Þ þM� þM

2M
f2�ðQ2Þ: (8)

In Eq. (7), I�NðQ2Þ is the overlap integral between the �
and nucleon S-state scalar wave functions:

I �NðQ2Þ ¼
Z
k
c �

�ðPþ; kÞc NðP�; kÞ: (9)

Equations (7)–(9) hold for a generic transition between a
spin 1=2 (N) and a spin 3=2 (�) baryons described by the
S-state approximation.

D. Model for the scalar wave functions

In the following we use notations, �, �� and N� for
�ð1232Þ, �ð1600Þ and Nð1440Þ, respectively, whenever
convenient.

To describe the momentum distribution of the quark-
diquark system in a baryon B, we introduce a scalar wave
function c B, which depends on the relative angular mo-
mentum and the radial excitation of the system. As the
baryon and the diquark are on-shell in the covariant spec-
tator model, the scalar wave function c B can be written as
a function of ðP� kÞ2 [29]. The dependence on these
momenta can be made in terms of the dimensionless
variable [29],

�B ¼ ðMB �mDÞ2 � ðP� kÞ2
MBmD

; (10)

where MB is the baryon mass (B ¼ N, N�, �, ��).
The nucleon scalar wave function c N is defined by [29]

c NðP; kÞ ¼ N0

mDð
1 þ �NÞð
2 þ �NÞ ; (11)

where �N is obtained by inserting MB ¼ M in Eq. (10),
and N0 the normalization constant [29]. In a parametriza-
tion where 
2 >
1, 
1 is associated with the long-range
physics, while 
2 the short-range physics.

As for the �, we use the form proposed in Ref. [31]
based on an S-wave ground state configuration,

c �ðP; kÞ ¼ N1

mDð�1 þ ��Þð�2 þ ��Þ2
; (12)

where N1 is the normalization constant, and �1 and �2 are
the parameters which control the momentum ranges with
�2 >�1. The �1 is associated with the long-range physics
in the� system [31]. Note that the difference in the form of
c � wave function from that of the nucleon in Eq. (11).
Namely, an extra power in c � exists, and this is preferred
by the magnetic dipole form factor (G�

M) data in the �N !
�ð1232Þ transition [31,32]. The description of the �N !
�ð1232Þ transition can be improved with the inclusion of
D-states, which induce also nonzero G�

E and G�
C form

factors. But the inclusion of D-states requires extra pa-
rameters [31,33]. In that case (with D-states) the two

parameters �1, �2 are degenerate [33]. In this study we
do not include anyD-states, since the S-states are sufficient
to describe well the �N ! �ð1232Þ transition, with only
two parameters in the valence quark sector.
The quality of the present model description for the

�N ! �ð1232Þ can be understood by comparing with the
G�

M data, or with the helicity amplitudes A1=2 and A3=2,

which will be shown in in Sec. V.
For the �� wave function we assume the same structure

as that of the � presented in Eq. (6), except for the scalar
wave function. To represent �� as the first radial excitation
of �, we write the �� scalar wave function in the form,

c �� ðP; kÞ ¼ N2

�4 � ���

ð�3 þ ��� Þ
1

mDð�1 þ ��� Þð�2 þ ��� Þ2 ;
(13)

where �3 ¼ �1 will be assumed later, and �4 is a new
parameter to be fixed by the orthogonality condition be-
tween the � and �� states. The normalization constant N2

will be fixed by
R
k jc �� j2 ¼ 1 at Q2 ¼ 0, similarly to the

nucleon and � cases [29,31,32,36,37].
The extra factor �4��R

ð�3þ�RÞ in Eq. (13) is motivated by the

wave functions obtained in a harmonic-oscillator potential
model for the three-quark system [21,58–60]. A similar
form was also applied for describing the Roper resonance
[34].
In the numerical calculation we will use �3 ¼ �1, as-

suming that the � and �� are described by the same short-
range structure. The difference between the � and ��
systems appear in the structure, �4 � ��� , scaled by the
long-range factor, �3 þ ��� . Thus, �4 is the only parame-
ter characteristic in the �� scalar wave function. With the
scalar wave functions for the � and �� respectively,
Eqs. (12) and (13), there is no guaranty that the orthogo-
nality condition is satisfied for an arbitrary value of�4. The
value of �4 will be determined by imposing the orthogo-
nality condition for the � and �� states. This will be
explained in next section. Thus, to write down the ��
wave function, no extra parameter is necessary, since the
parameters �1 and �2 have already been fixed by the �
wave function [31].

E. Orthogonality condition

The orthogonality between the �� and � states is en-
sured if the overlap integral of the�� and�wave functions
vanishes for Q2 ¼ 0. This leads to

Z
k
c �

�� ðP�� ; kÞc �ðP�; kÞjQ2¼0 ¼ 0; (14)

the orthogonality between the scalar wave functions. In the
�� rest frame the momenta of the � and �� corresponding
to Q2 ¼ 0 are
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P� ¼
�
M2

�� þM2
�

2M�

; 0; 0;�M2
�� �M2

�

2M�

�
;

P�� ¼ ðM�� ; 0; 0; 0Þ:
(15)

The condition Eq. (14) may be regarded as the simplest
generalization of the nonrelativistic orthogonality condi-
tion, where equal mass states are orthogonal when q2 ¼
�Q2 ¼ 0. See Ref. [34] for more details, where the same
orthogonality condition was applied for the nucleon and
Roper state.

IV. PION CLOUD

In the electromagnetic interactions with baryons there
are two main contributions: a photon couples to an indi-
vidual quark, which we will call core or ‘‘bare,’’ and a
photon couples to the meson-baryon intermediate states,
which we will call meson cloud. As mentioned already the
intermediate states, where the meson is a pion, are domi-
nant. In general, contributions from the pion cloud de-
crease with increasing Q2 but can be significant at low
Q2. Among all the processes, one pion ‘‘in the air’’ are the
most important according to chiral perturbation theory
[49,50,54]. In the lowest order the dominant processes
for the �B ! B� transition are shown in Fig. 1: (a) a
photon couples to the pion, and (b) a photon couples to
the baryon (vertex correction). The relative contributions
of the processes (a) and (b) are dependent on the systems
and observables in consideration. We note that the diagram
(b) represents two kinds of interactions: (b1) a photon
interacts with the baryon charge (electric), and (b2) a
photon interacts with the baryon anomalous magnetic mo-
ment (magnetic).

In elastic reactions both contributions (a) and (b1) must
be included consistently for the electric form factor to
satisfy the baryon charge conservation (see e.g.,
Ref. [39]). However, in inelastic transitions like the �N !
� transition, the dominant contributions are from the mag-
netic transition form factor. When there are two contribu-
tions (b1) and (b2), (b1) is dominant in general. Also
contributions from (a) dominate in general over (b). This
is justified by chiral perturbation theory. A diagram with
two baryon propagators with one pion loop is suppressed

compared to a diagram with two pion propagators [61].
Furthermore, in the study of the octet magnetic moments
with the same spectator formalism, it was indeed found
that the contributions from the diagram (a) are dominant
[39]. The contributions from the diagram (b) amount to at
most 9% of the diagram (a) for the magnetic moments
except for the � baryon case.1 Diagram (a) is also domi-
nant in the decuplet baryon magnetic moments [62].
Thus, in the present covariant spectator formalism, we

can assume the diagram (a) is dominant for the magnetic
form factor due to the pion cloud, and may neglect the
diagram (b) within an ambiguity of about 10%. Then, we
will only focus on the processes represented by the dia-
gram (a), a photon couples to the pion.
To describe the effect of the pion cloud in the �N ! �

and �N ! �� transitions, one needs a microscopic de-
scription for the pion-baryon interactions as well as the
photon-pion interactions. For this, treating the pion as a
pointlike particle, we use the formalism of the cloudy bag
model (CBM) [63,64]. In CBM, a pion couples to a baryon,
not to a quark nor exchanged among the quarks inside the
baryon. This is exactly the same approach as that of the
covariant spectator constituent quark model used in the
present study.2 CBM is particularly useful to describe the
pion cloud dressing. For the typical bag radius the one pion
‘‘in the air’’ processes are dominant and the interaction can
be treated perturbatively [65–67]. We can obtain various
pion-baryon coupling constant ratios, and carry out inter-
mediate state spin and isospin sums by the formalism based
on CBM. It provides a systematic method to calculate these
ingredients based on a SU(6) quark model. Thus, the
amplitudes associated with the diagram (a) are represented
in terms of the coupling constants, a coefficient comes
from the intermediate spin and isospin sums, and a scalar
integral involving the quark wave functions, all can be
estimated based on the formalism of CBM. In the end we
replace the respective contributions due to various inter-
mediate states by an effective covariant parametrization.
The formalism can be used to relate the pion cloud con-
tributions associated with different pion-baryon intermedi-
ate states. We note that the coupling constants used in the
present study are not obtained from CBM, but are calcu-
lated from the decay branches of the resonances using
effective Lagrangians. Only the relevant coupling constant
ratios are calculated based on the CBM formalism.
For the �N ! �ð1232Þ reaction, the pion cloud can

contribute for the form factors G�
M, G

�
E and G�

C in the

FIG. 1. Electromagnetic transition, �B ! B� with one pion
loop (pion cloud) through the intermediate states.

1The � baryon case is special, since it has a small bare
magnetic moment. It has no contributions from the diagrams
(a) but has only from the diagram (b), by the anomalous coupling
of the intermediate state � baryons, �þ, �0 and �� [39].

2Note that in the spectator constituent quark model the pro-
cesses where the pion is created and absorbed by the same quark
are already included in the constituent quark structure through
the quark electromagnetic form factors.
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spectator quark model [32,33]. Although the pion cloud
contributions for the quadrupole form factors can be ap-
preciable compared to the valence quark contributions
(fromD-states), these contributions are all small compared
to G�

M [32,33]. Thus, we consider only the pion cloud
contributions for the magnetic dipole form factor G�

M for
the �N ! �ð1232Þ and �N ! �ð1600Þ reactions.

In the following we first discuss the pion cloud contri-
butions for the �N ! � transition, and then discuss the
�N ! �� transition. Finally, we make a connection for the
pion cloud contributions between the two transitions.

A. �N ! �ð1232Þ transition
In the description of the �N ! � transition, the pion

cloud contributions for G�
M can be simulated by the pa-

rametrization [31,32],

G�
MðQ2Þ ¼ ��

�
�2

�

�2
� þQ2

�
2ð3GDÞ; (16)

whereGD ¼ ð1þQ2=0:71Þ�2 (Q2 inGeV2) is the nucleon
dipole form factor. Here, the parameter �� gives the pion
cloud contribution strength, and �� is a momentum cutoff
parameter. The simple parametrization of Eq. (16) can
describe well the main feature of the pion cloud contribu-
tions consistently with the more sophisticated dynamical
coupled-channel models [12,18]. With the parametrization
Eq. (16) we get a significant contribution for the pion cloud
contributions near Q2 ¼ 0 (46.4% at Q2 ¼ 0, using the
parametrization of Ref. [31]), and a fast falloff with in-
creasing Q2. The falloff of the pion cloud contributions is
controlled by �2

� ( ’ 1:22 GeV2) [31]. This consistently
leads to the dominance of the valence quark contributions
in the region Q2 > 3 GeV2.

Using the CBM [64,66,68–73] framework3 we can write
down the strength of the photon-pion coupling diagram (a)
in Fig. 1, in the low Q2 region as follows,

�� ¼ �2

ffiffiffi
2

3

s
Kf�NNf�N�ĈN� � 10

ffiffiffi
2

3

s
Kf�N�f���Ĉ��;

(17)

where K is a generic constant associated with the interac-

tion and the angular integration. The factor ĈBB0 represents
the ratio,

Ĉ BB0 ¼ CBB0 ðQ2Þ
CN�ðQ2Þ ; (18)

where CBB0 ðQ2Þ is a scalar integral that corresponds to the
diagram with the intermediate baryon B and the final
baryon B0 states, and CN�ðQ2Þ is the case of B ¼ N and
B0 ¼ �. The integrals CBB0 in CBM depend on the pion-
baryon form factor [63,64,66].

In Eq. (17) the first and the second terms correspond,
respectively, to the intermediate N and � states for the
diagram (a) in Fig. 1. In the ratio in Eq. (18) we expect that
theQ2 dependence largely cancels out, and may regard the
ratio as a constant in the low Q2 region, where the pion
cloud is dominant.
The coupling constant f�BB0 may be calculated using

effective Lagrangians. In the present study, we use the
relative strength to f�NN ¼ 1 (f2�NN=4� ¼ 0:08), since
what matters is the relative sign and ratio to the f�NN , as
will be discussed later.

B. �N ! �ð1600Þ transition
To extend the description of the pion cloud contributions

from the �N ! �ð1232Þ transition to the �N ! �ð1600Þ
transition, we include the dominant intermediate states. In
the processes with intermediate baryon state B, �N !
�B ! ��, we include the intermediate states, �N,
�Nð1440Þ and �� as observed by the �ð1600Þ decay
[20]. In addition, the ��ð1600Þ intermediate state is also
included. The strength of the pion cloud contributions from
these intermediate states can be calculated based on the
CBM formalism. In the following we denote the contribu-
tions from the processes, �N ! �B ! �ð1600Þ with B ¼
N, �, Nð1440Þ, �ð1600Þ, by �B

�. The explicit expressions
are given by

�N
� ¼ �2

ffiffiffi
2

3

s
Kf�NNf�N�� ĈN�� ;

�N�
� ¼ �2

ffiffiffi
2

3

s
Kf�NN�f�N��� ĈN��� ;

��
� ¼ �10

ffiffiffi
2

3

s
Kf�N�f���� Ĉ��� ;

���
� ¼ �10

ffiffiffi
2

3

s
Kf�N��f����� Ĉ���� ;

(19)

where, ĈBB0 is defined by Eq. (18).
With this procedure, we have reduced the estimate of the

pion cloud contributions for the �N ! �ð1600Þ to the
evaluation of the factor,

�0
� ¼ �N

� þ �N�
� þ ��

� þ ���
� : (20)

Because of the similarity between the �N ! �B !
�ð1600Þ and �N ! �B ! �ð1232Þ processes, one can
expect that �0

� can also be well approximated by a con-
stant, and the pion cloud contributions can be parameter-
ized by the same form as that for the �N ! �ð1232Þ
transition. Thus, as in Eq. (16), pion cloud contributions
for the G�

M form factor in the �N ! �B ! �ð1600Þ tran-
sition may be given by

G�
MðQ2Þ ¼ �0

�

�
�2

�

�2
� þQ2

�
2ð3GDÞ: (21)

3In our notation f�N� corresponds to f�N in CBM [64,66],
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C. Relation between the pion cloud contributions in the
�N ! �ð1232Þ and �N ! �ð1600Þ reactions

It may be a little crude, but as an exploratory study, we
neglect the mass differences of the baryons involved, and
using the formalism based on CBM [64,66,68–70]. As a

consequence we can write Ĉ�� ¼ ĈN�. Using the relation
from CBM, f�NN ¼ f���, together with the value f�NN ¼
1, we can rewrite Eq. (17) as

�� ¼ �12

ffiffiffi
2

3

s
Kf�N�ĈN�: (22)

In the above, the indexN� in ĈN� is explicit for a reminder

but note that ĈN� ¼ ĈNN . With the same approximation for

Eq. (19), namely, ĈBB0 ! ĈN�, and together with the result
of Eq. (22), we get the ratios:

�N
�

��

¼ 1

6

f�N��

f�N�

;

�N�
�

��

¼ 1

6
f�NN�

f�N��

f�N�

;

��
�

��

¼ 5

6
f�N�

f����

f�N�

¼ 5

6
f���� ;

���
�

��

¼ 5

6

f�N��

f�N�

:

(23)

The coupling constants, f�BB0 , can be calculated from
the B0 ! �B branching ratios with some effective
Lagrangians at the hadronic level. This will be discussed
in the next section.

D. Estimates of the coupling constants f�BB0

The interaction Lagrangians and definitions of the cou-
pling constants �BB0 relevant in this study are given in the
Appendix. Based on these interaction Lagrangians and
decay rate expressions, we obtain the absolute values of
the coupling constants. The data used for the calculation,
extracted from the Particle Data Group [20], are summa-
rized in Table I. To determine the relative signs for the

coupling constants we follow some quark models
[4,63,64,74]. For the �NN constant, we use the positive
value f�NN ¼ 1 (or f2�NN=4� ¼ 0:08), since what matters
is the relative sign and strength to f�NN . For the signs of
the coupling constants, f�NNð1440Þ, f�N� and f�N�ð1600Þ, we
take the same sign as that of the f�NN as suggested by the
quark model results [74]. For a detailed discussion about
the sign of f�NNð1440Þ see also Ref. [4]. Then, the relative

signs undetermined are those for f���ð1600Þ and

f�Nð1440Þ�ð1600Þ. Since � and �ð1600Þ differ only in radial

excitations (and thus mass), we assume the same relative
sign for these coupling constants. The same argument also
holds for the case where N is replaced by Nð1440Þ. As a
result all the coupling constants relevant in this study are
assigned to the same sign as that of the f�NN . The coupling
constants calculated in these manners, are presented in
Table I. The values obtained in the present study are similar
to those obtained in Refs. [14,74].

V. HELICITYAMPLITUDES AND FORM FACTORS

As already mentioned, the description of the �N ! �
transition is characterized by the three independent multi-
pole form factors,G�

M,G
�
E andG�

C [40]. These form factors

are exclusive functions of the four-momentum transfer
squared Q2 and frame independent. The physical proper-
ties of the �N ! � transition are usually expressed in
terms of the transition amplitudes in a particular frame.
As there are amplitudes associated with any photon polar-
ization including the longitudinal polarization, there are
three independent transition amplitudes, A1=2, A3=2 and

S1=2 [4,59]. The helicity amplitudes for the transitions,

�N ! � or �N ! �ð1600Þ at the final particle rest frame,
can be related with the form factors by [21]:

G�
MðQ2Þ ¼ �FðQ2Þ½ ffiffiffi

3
p

A3=2ðQ2Þ þ A1=2ðQ2Þ�; (24)

G�
EðQ2Þ ¼ �FðQ2Þ

�
1ffiffiffi
3

p A3=2ðQ2Þ � A1=2ðQ2Þ
�
: (25)

In the above the factor FðQ2Þ is given by

TABLE I. Data for resonances from PDG [20], and the coupling constants calculated. For
f�NN , we use f�NN ¼ 1 (f2�NN=4� ¼ 0:08) and the relation based on CBM [63,64,68–70],

f�NN ¼ f��� ¼ f����� . For the branching ratios, we take an average weighted by the error of
the selected results from PDG. Errors in coupling constants are estimated using Gaussian
quadrature.

Decay � (MeV) BR f�NB0

Nð1440Þ ! �N 300� 100 0:706� 0:014 0:367� 0:061
� ! �N 118� 2 1.00 2:160� 0:018
�ð1600Þ ! �N 350� 100 0:153� 0:019 0:477� 0:074

Decay � (MeV) BR f�B��

�ð1600Þ ! �� 350� 100 0:590� 0:100 0:653� 0:108
�ð1600Þ ! �Nð1440Þ 350� 100 0:130� 0:040 6:330� 1:329
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FðQ2Þ ¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM2

� �M2Þ
2½ðM� �MÞ2 þQ2�

s
2M

M� þM
; (26)

where e ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
is the magnitude of the electron charge,

with � ¼ 1=137:036 the fine-structure constant. There is
an extra relation between the transverse amplitude S1=2 and
G�

C, but we omit it since it is irrelevant in the present study.

In a model with an S-state approach for the nucleon and
� and the pion cloud contributes only for G�

M, G
�
M is

dominant, and one has G�
E � 0, G�

C � 0 [31,32]. In these

conditions with G�
EðQ2Þ ¼ 0 for an arbitrary Q2, we get

A3=2ðQ2Þ ¼ �
ffiffiffi
3

p
2FðQ2ÞG

�
MðQ2Þ; (27)

A1=2ðQ2Þ ¼ � 1

2FðQ2ÞG
�
MðQ2Þ: (28)

Thus, we can write the helicity amplitudes A1=2 and A3=2 in

terms of G�
M for an arbitrary Q2. As for the transverse

amplitude S1=2, which is proportional to G�
C, one has

S1=2 � 0.
The helicity amplitudes A1=2 and A3=2 for the �N !

�ð1232Þ in the S-state approach, as well as the contribu-
tions from the quark core, are presented in Fig. 2. From the
figure, one can see that the S-state approximation plus pion
cloud dressing (forG�

M) reproduces well the data for �N !
�ð1232Þ transition. Encouraged by this, we will use the
same approximation for the �N ! �ð1600Þ transition. The
S-state approach will be tested in next section.

VI. RESULTS

In this section we present numerical results for the form
factors and helicity amplitudes. Because of the approxi-
mation used in this exploratory study, it holds that G�

E ¼ 0

and G�
C ¼ 0 for all Q2. Thus, we have nonzero results only

for G�
M. The electric (E2) and Coulomb (C2) quadrupole

form factors both vanish, as well as the ratios, E2/M1 and
C2/M1. We start by the case Q2 ¼ 0 and compare the
results with the available experimental data. Next we dis-
cuss theQ2 dependence of the form factors and make some
predictions.
The experimental information for the �N ! �ð1600Þ

transition is restricted to the helicity amplitudes A1=2 and

A3=2 measured in the �ð1600Þ rest frame at the photon

point (Q2 ¼ 0). This is collected in Ref. [20] by PDG.
Particle Data Group selected three results: Awaji,
Crawford [75] and Arndt [76]. The result of Awaji has a
large uncertainty. The results from PDG together with the
result calculated forG�

Mð0Þ andG�
Eð0Þ by Eqs. (24) and (25)

are presented in the following section.

A. Analysis in the limit Q2 ¼ 0

We discuss first the contributions from the valence
quarks (Gb

M). In the S-state approach Gb
M is given by

Eq. (7). With the scalar wave function Eq. (12), and the
mass M�, we get the result for the �N ! �ð1232Þ tran-
sition. Similarly, with the scalar wave function Eq. (13),
and M� replaced by M�� , we can get the result for the
�N ! �ð1600Þ transition. Note that it is the scalar wave
function c � or c �� that characterizes the radial state
(ground state or first radial excited state). We adopt model
II in Ref. [31]: �1 ¼ 0:290 and �2 ¼ 0:393. The normal-
ization constant is N1 ¼ 2:95. The �� wave function is
determined by the scalar wave function Eq. (13) with �3 ¼
�1, where �1 is the parameter associated with the long-
range scale. The unknown parameter �4 is determined
by the orthogonality condition Eq. (14), which gives
�4 ¼ �0:0353. The corresponding normalization constant
for the �� scalar wave function is N2 ¼ 7:27. The parame-
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FIG. 2 (color online). Helicity amplitudes calculated for the �N ! �ð1232Þ transition in the S-state approach, with and without the
pion cloud contributions. Data are taken from the MAID analysis [2].
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ters associated with the nucleon scalar wave function are
given by model II of Ref. [29]. With these parameters
fixed, the overlap integral between the �� and nucleon
scalar wave function at Q2 ¼ 0 given by Eq. (9) with �
replaced by ��, is calculated:

I ��Nð0Þ ¼ �0:564: (29)

Then, the contributions from the valence quarks (bare) for
the magnetic dipole form factor at Q2 ¼ 0 of Eq. (7) result
to

Gb
Mð0Þ ¼ �1:113: (30)

Thus, the valence quark core contributions underesti-
mate largely the experimental values and differ in sign
from the data shown in Table III. We recall that in the
present approach G�

E � 0.
Now, we turn our discussion to the pion cloud contribu-

tions. The pion cloud contributions for the transition mag-
netic form factor are estimated by Eq. (21). The coefficient
�0
� can be obtained by Eqs. (20) and (23). This includes

contributions from the dominant intermediate baryon
states, N, Nð1440Þ, �, �ð1600Þ. These contributions de-
pend on the �BB0 coupling constants. The coupling con-
stants calculated from experimental data [20] are presented
in Table I. Using these values we calculate �0

�, and each
intermediate state contribution is listed in Table II. Then,
we get the total contribution for the pion cloud, relative to
those of the �N ! �ð1232Þ:

�0
�

��

¼ 0:944� 0:107: (31)

Once �0
� is fixed, the pion cloud contributions for G�

Mð0Þ
are determined by Eq. (21) with 3GDð0Þ ¼ 3:

G�
Mð0Þ ¼

�0
�

��

ð3��Þ ¼ 1:314� 0:148: (32)

Adding the valence quark contributions and the pion
cloud contributions, Eqs. (30) and (32), respectively, we
get

G�
Mð0Þ ¼ 0:202� 0:131: (33)

This result is compared with experimental data in Table III.
The more accurate data available [75,76] supports the
S-state approximation, and the consequentG�

M dominance.
The corresponding results for the helicity amplitudes,
A1=2ð0Þ and A3=2ð0Þ, are also presented in Table III.

B. Q2 dependence of G�
M

In our model the magnetic dipole form factor G�
MðQ2Þ is

given by the sum of Gb
MðQ2Þ and G�

MðQ2Þ. The valence
quark contributions are given by Eq. (7), which includes
the isovector factor fvðQ2Þ and the Q2 dependent overlap
integral I��NðQ2Þ between the�� and nucleon scalar wave
functions [see Eqs. (8) and (9)]. TheQ2 dependence of G�

M

is shown in Fig. 3. As for the pion cloud contributions G�
M,

these are determined by Eq. (21), once the coefficient �0
� is

known. The band in Fig. 3 shows the uncertainty in the
estimate of the coupling f�BB0 from the data listed in
Table I.
Each pion cloud contribution due to the different inter-

mediate states, N, N��, ��, is shown in Fig. 4, in an
accumulative manner. As the pion cloud contributions
from the different intermediated states are added one by
one, the result for G�

Mð0Þ approaches to the experimental
data points accordingly. In Fig. 4, uncertainties in the pion
cloud contributions are not shown for clarity. In the figure
one can see that the �� intermediate state gives the

TABLE II. Results for the coupling constants and �B
� [B ¼ N, Nð1440Þ, �, �ð1600Þ]. The

total contribution of the pion cloud is given by the sum of �B
�, which amounts to 0:9442��,

where �� ¼ 0:464 [31]. The uncertainty in the final result (Total) is obtained by adding the
errors in Gaussian quadrature.

�N ! �B ! �ð1600Þ f�NB f�B�ð1660Þ �B
�=��

�N ! �N ! �ð1600Þ 1.000 0.477 0:0368� 0:0057
�N ! �Nð1440Þ ! �ð1600Þ 0.361 6.330 0:1791� 0:0481
�N ! �� ! �ð1600Þ 2.160 0.653 0:5441� 0:0904
�N ! ��ð1600Þ ! �ð1600Þ 0.477 1.000 0:1842� 0:0287

Total 0:9442� 0:1065

TABLE III. Results at Q2 ¼ 0 compared with the selected data from PDG [20]. G�
E ¼ 0 is the consequence of the S-state

approximation.

A1=2ð0Þ ðGeV�1=2Þ A3=2ð0Þ ðGeV�1=2Þ G�
Mð0Þ G�

Eð0Þ
Awaji 1981 [20] �0:046� 0:013 þ0:025� 0:031 0:009� 0:181 �0:198� 0:073
Crawford 1983 [75] �0:039� 0:030 �0:013� 0:014 0:202� 0:127 �0:103� 0:102
Arndt 1996 [76] �0:018� 0:015 �0:025� 0:015 0:201� 0:098 �0:012� 0:057
Model �0:0154� 0:0113 �0:0266� 0:0196 0:202� 0:148 0.000
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dominant contribution. According to the values in Table II,
the �� intermediate state contribution is about 48–67% of
the total pion cloud contribution. The contributions from
the �N� and ��� intermediate states amount to about 33–
44% of the total pion cloud contribution. Figure 4 shows
also a faster falloff of the pion cloud contributions with
increasing Q2, compared to the Q2 dependence of the
quark core. This can be better seen in Fig. 5, where
absolute values of bare and pion cloud contributions are
compared. In the same figure one can also see the pion
cloud contributions are dominant near Q2 ¼ 0, while the
bare (quark core) contributions (Gb

M) become dominant in
the region Q2 > 0:5 GeV2.

C. Q2 dependence of A1=2 and A3=2

Q2 dependence of the helicity amplitudes, A1=2ðQ2Þ and
A3=2ðQ2Þ, can be obtained in the �ð1600Þ rest frame. In the

S-state approach discussed in Sec. V, the amplitudes are
given by Eqs. (24) and (25). The results are shown in Fig. 6.
In the figure the contributions of the quark core (bare) are
also shown. We predict from Fig. 6 that A1=2ðQ2Þ and

A3=2ðQ2Þ become positive for Q2 > 0:1 GeV2. This result

is consistent with the estimates made in Ref. [21], which
are based on the valence quark structure. The positive sign
in the helicity amplitudes for Q2 > 0:1 GeV2 is essentially
a consequence of the quark core dominance.

D. Discussion

Our results for G�
Mð0Þ (central value) are very close to

the experimental data of Refs. [75,76]. The result is also
consistent with the data of Awaji [20] within the error bars,
but the data are not consistent with G�

E � 0 of the present

approach. However, one should keep in mind that the
present results are based on the approximation of ignoring
the baryon mass differences in the estimate of the pion
cloud contributions, and on the dominance of the photon-
pion coupling diagram [diagram (a) in Fig. 1], which has a
10% ambiguity. Unfortunately, we cannot draw more defi-
nite conclusions, since the uncertainty associated with the
pion cloud contributions is 0.148, which is comparable
with the central value G�

Mð0Þ ¼ 0:202, and also relatively

large experimental errors exist. The large uncertainty in
our estimate lies mainly in the �� intermediate state, in
particular, the coupling constant f���� . An accurate value
of the coupling constant would reduce the final uncertainty
almost by a factor of 2. A better constraint of the pion cloud
contribution can be achieved once better experimental data
become available associated with the �� decay to extract
f���� . An alternative may be to use the coupling constants
from an independent model for the meson-baryon interac-
tion, where the coupling constants are constrained by many
observables. At the moment such well-constrained cou-
pling constants associated with the �ð1600Þ are not
available.
There is also uncertainty in the expression for the va-

lence quark contributions Gb
M. In the �� scalar wave

function Eq. (13), there is an extra degree of freedom
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FIG. 3 (color online). �N ! �ð1600Þ magnetic dipole form
factor.

0 0.2 0.4 0.6 0.8 1

Q
2
(GeV

2
)

-2

-1.5

-1

-0.5

0

0.5

G
M

*

Bare
Bare + π N
Bare + π N + π N*
Bare + π N + π N*+ π ∆
Bare + π N + π N*+ π ∆ + π ∆*

FIG. 4 (color online). Decomposition of the contributions for
the �N ! �ð1600Þ magnetic dipole form factor.

0 0.5 1 1.5 2

Q
2
(GeV

2
)

0

0.5

1

1.5

|G
M

* |

Pion cloud
Bare

FIG. 5 (color online). Absolute values of the bare and the pion
cloud contributions for the �N ! �ð1600Þ transition magnetic
form factor.

G. RAMALHO AND K. TSUSHIMA PHYSICAL REVIEW D 82, 073007 (2010)

073007-10



associated with the momentum scale parameter �3, which
sets the scale of the variation of the �� wave function
compared to that of the ground state �. As explained in
the text, we have fixed �3 by the long-range scale parame-
ter �1 (same short-range structure for � and ��). The
choice, �3 ¼ �2, would change the contributions of the
core to Gb

Mð0Þ ¼ �0:924, to be compared with the result
we have obtained, �1:113. An alternative method may be
to adjust the parameters by fitting to the data of the helicity
amplitudes or form factors, once they become available for
finite Q2. However, the advantage of the present approach
to focus on the long-range scale parameter has also been
proven to be good in the study of the �N ! P11ð1440Þ
transition form factors [34].

VII. CONCLUSIONS

In this article, we have studied the �ð1600Þ structure,
and the �N ! �ð1600Þ transition using a covariant spec-
tator formalism, with a simplified G�

M dominance model.
As far as the authors are aware, this is the first dynamical
study for the �N ! �ð1600Þ transition including both the
bare and meson cloud contributions. The role of the
�ð1600Þ resonance in the meson-baryon coupled-channel
models has not been settled yet. Thus, theoretical study of
this resonance can be a challenge for many baryon models.
Our results show that solely the contributions from the
quark core to the dominant form factor G�

M at Q2 ¼ 0
are negative and far below the existing experimental data
points, which are positive. However, the explicit inclusion
of the pion cloud contributions overcome the negative
contributions of the valence quark core to lead to the
positive sign, which is consistent with the experimental
positive values. The final result, although it has uncertain-
ties associated with the coupling constants and approxima-
tions used, is consistent with the experimental data.
Furthermore, the present study may provide a parametri-

zation for the �� core that can be used in coupled-channel
models.
It will be also very interesting to compare our estimate

of the quark core contributions with the lattice QCD simu-
lation data. Such simulations were performed in the past
for the �N ! �ð1232Þ transition [55]. Finally, we have
predicted the Q2 dependence of the G�

MðQ2Þ form factor.

Based on the recent analysis for the electromagnetic struc-
ture of the P11ð1440Þ,D13ð1520Þ, S11ð1535Þ and S11ð1650Þ,
it is expected that also P33ð1600Þ will be included in the
multipole analysis in the near future.
The method used to estimate the pion cloud contribu-

tions is based on the processes that a photon couples
directly to the pion, which may be justified by the previous
study for the octet baryon magnetic moments in the same
covariant spectator quark model, within about a 10% error.
Then, based on the cloudy bag model formalism, we have
made a connection for the pion cloud contributions be-
tween the �N ! �ð1232Þ and �N ! �ð1600Þ transitions,
by summing over all the intermediate spin and isospin
states. In this exploratory study, we have approximated
the masses of all the intermediate state baryons by an
average value of the N, Nð1440Þ, � and �ð1600Þ. In the
future we need to include explicitly the mass differences
and treat the pion-baryon intermediate states properly.
We can apply the present valence quark model of the

baryon with meson cloud dressing to other systems. One
possibility is the P11ð1440Þ and P11ð1710Þ resonances,
where the meson cloud dressing is expected to be very
important in the small Q2 region, since P11ð1440Þ is de-
scribed as the first radial excitation of the nucleon [34], and
the P11ð1710Þ resonance may also be considered as the
second radial excitation of the nucleon [21]. Another pos-
sible application of the model may be to study the octet to
decuplet baryon electromagnetic transitions, by extending
the treatment for the �N ! �ð1232Þ to the SU(3) sector,
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FIG. 6 (color online). Helicity amplitudes for the �N ! �ð1232Þ transition, calculated in the S-state approximation for the N and
�ð1600Þ. Data from PDG [20]. See Table III.
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where the meson cloud dressing, pion, in particular, is also
expected to be important [32,33].
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like to thank B. Juliá-Dı́az and H. Kamano for helpful
discussions. G. R. would like to thank Franz Gross and
the Jefferson Lab Theory Group for the invitation and
hospitality during the period of February and March in
2010. G. R. was supported by the Portuguese Fundação
para a Ciência e Tecnologia (FCT) under Grant
No. SFRH/BPD/26886/2006. This work is also supported
partially by the European Union (HadronPhysics2 project
‘‘Study of strongly interacting matter’’), and partially by
Jefferson Science Associates, LLC under U.S. DOE
Contract No. DE-AC05-06OR23177.

APPENDIX: DECAY RATES AND COUPLING
CONSTANTS ASSOCIATED WITH RESONANCES

In this appendix we calculate the coupling constants
f�BB0 necessary to estimate the pion cloud contributions
based on the available experimental data [20]. The neces-
sary coupling constants are f�N�, f�NNð1440Þ, f�N�ð1600Þ,
f���ð1600Þ, and f�Nð1440Þ�ð1600Þ. For the other coupling

constants, we use f�NN ¼ 1 (f2�NN=4� ¼ 0:08) and the
relation based on CBM [63,64], f�NN ¼ f��� ¼
f��ð1600Þ�ð1600Þ. First, we present the effective Lagrangian

densities used for the calculation of the coupling constants.
The Lagrangian densities used in the present study are

L�NN ¼ � f�NN

m�

½ �N���5�N� � @��;

L�NN� ¼ � f�NN�

m�

½ �N����5�N� � @�� þ H:c:;

L�N� ¼ f�N�

m�

½ �NT��� � @�� þ H:c:;

L�N�� ¼ f�N��

m�

½ �NT���� � @�� þ H:c:;

L�N��� ¼ f�N���

m�

½ �N�T���� � @�� þ H:c:;

L���� ¼ � f����

m�

½ ������5I�
�
�� � @�� þ H:c:;

(A1)

where � are the Pauli matrices, and T and I are the isospin
operators defined by ðTÞMm � P

�ð1� 1
2mj 32MÞê�� and

ðIÞMM0 �
ffiffiffiffi
15

p
2

P
�ð1� 3

2M
0j 32MÞê��, respectively. Then,

one can calculate decay rates and obtain the necessary
coupling constants associated with the resonances.
Widths, branching ratios, and calculated coupling con-
stants of the resonances are summarized in Table I.

Next, we give expressions for decay rates calculated
using the Lagrangian densities Eqs. (A1) to estimate the
coupling constants.
The coupling constants are estimated from the decay

rate expressions (see also Ref. [77]):

�ðNð1440Þ ! �NÞ

¼ 3
f2�NNð1440Þ

4�

ðMN þMNð1440ÞÞ2
m2

�

ðEN �MNÞj ~pj
MNð1440Þ

; (A2)

with

j ~pj ¼ �1=2ðM2
Nð1440Þ;M

2
N;m

2
�Þ

2MNð1440Þ
;

�ð� ! �NÞ ¼ f2�N�

12�m2
�

ðEN þMNÞj ~pj3
M�

; (A3)

with

j ~pj ¼ �1=2ðM2
�;M

2
N;m

2
�Þ

2M�

;

�ð�ð1600Þ ! �NÞ ¼ f2�N�ð1600Þ
12�m2

�

ðEN þMNÞj ~pj3
M�ð1600Þ

; (A4)

with

j ~pj ¼ �1=2ðM2
�ð1600Þ;M

2
N;m

2
�Þ

2M�ð1600Þ
;

�ð�ð1600Þ ! �Nð1440ÞÞ

¼ f2�Nð1440Þ�ð1600Þ
12�m2

�

ðENð1440Þ þMNð1440ÞÞj ~pj3
M�ð1600Þ

; (A5)

with

j ~pj ¼ �1=2ðM2
�ð1600Þ;M

2
Nð1440Þ; m

2
�Þ

2M�ð1600Þ
;

�ð�ð1600Þ ! ��Þ

¼ 15

4

f2���ð1600Þ
36�

ðM� þM�ð1600ÞÞ2
m2

�

M�j ~pj
M�ð1600Þ

��
E�

M�

�
� 1

�

�
�
2

�
E�

M�

�
2 � 2

�
E�

M�

�
þ 5

�
; (A6)

with

j ~pj ¼ �1=2ðM2
�ð1600Þ;M

2
�; m

2
�Þ

2M�ð1600Þ
;

where, �ðx; y; zÞ � x2 þ y2 þ z2 � 2xy� 2yz� 2zx.
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