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Constraints on a spin-independent interaction by the exchange of a neutral light boson are derived from

precision data on the electron anomalous magnetic moment and from atomic spectroscopy of hydrogen

and deuterium atoms. The mass range from 1 eV=c2 to 1 MeV=c2 is studied, and the effective coupling

constant �0 is allowed below the level of 10�11–10�13 depending on the value of the boson mass. The

mass range corresponds to the Yukawa radius from 0.0002 nm to 20 nm, which covers the distances far

above and far below the Bohr radius of the hydrogen atom.
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I. INTRODUCTION

Precision tests of quantum electrodynamics for bound
states and free particles allow us to verify various advanced
methods of measurements and calculations and determine
precision values of certain fundamental constants, such as
the Rydberg constant R1 and fine structure constant�. The
overall consistency of the results obtained for those con-
stants [1] proves, in particular, that we can consistently
describe various fundamental phenomena in a broad range
of distances and energies [2].

Meanwhile, an introduction of new physics could affect
various scales with different strength and violate the con-
sistency mentioned. If such a problem is not observed, one
sets various constraints on possible new physics.

In particular, various unification theories suggest addi-
tional particles (see, e.g., [3–6]). A specific kind of such
particles is a light neutral particle weakly interacting with
conventional matter consisting of electrons and nucleons.
Indeed, ‘‘lightness’’ in terms of particle physics ranges
from below 1 eV=c2 to above 1 GeV=c2. Stable neutral
particles of this kind can also be considered as a candidate
for dark matter [7].

In a broad range of distances one can consider an addi-
tional new interaction as a modification of the Coulomb
interaction, such as

�

r
! �effðrÞ

r
¼ �

r
þ �0

r
e��r: (1)

A similar substitute can also be written in momentum
space.

The particle is not necessarily stable in our considera-
tion. Generally, one should rather expect that a particle
coupled to charged particles decays into a few photons,
while a particle coupled to leptons could also decay to
neutrinos. (Decay into a pair of massive charged leptons
can be forbidden for light particles because of their light-

ness.) The substitute (1) is valid as long as the decay width
is much smaller than the mass �.
Comparing values of the fine structure constant � ob-

tained from experiments with different characteristic dis-
tances and momenta, one can check whether the Coulomb
coupling constant is really a constant. (We have in mind
that the vacuum polarization corrections responsible for
the ‘‘running coupling constant’’ have already been taken
into account.)
The most precise measurements of various physical

quantities are often aimed at the determination of the
values of fundamental constants. The related precision
data open a certain window of opportunities to verify the
constancy of the Coulomb coupling constant. There are
basically three important scales, which contribute to pre-
cision QED-related experiments.
The scale of distances related to the Bohr radius a0 ¼

1=ð�mecÞ is studied within hydrogen spectroscopy with
transitions involving the ground state and the low excited
state ð1s; 2sÞ. Distances of about 103a0 are accessible in
experiments on high Rydberg states in the hydrogen atom
(n ’ 30), while the Compton wavelength of the electron
�C ¼ ℏ=ðmecÞ is a characteristic distance involved in cal-
culations of the electron anomalous magnetic moment.
Altogether, the related distances vary from 2� 10�13 m

to 2� 10�7 m and related masses range from 1 eV=c2 to
1 MeV=c2. Indeed, in the case of the completely relativis-
tic calculation of a correction to the electron anomalous
magnetic moment, we cannot rely on a static component in
(1), but should deal with an interaction describing an
exchange by an intermediate particle.
Let us now consider precision QED-related experiments

for these three areas step by step.

II. ANCHOR EXPERIMENTS: MEASUREMENTS
ON LOW STATES IN THE HYDROGEN ATOM

[DISTANCES �ð1–4Þa0]

Amassive set of data on hydrogen and deuterium spectra
is available for low excited states related to physics from*savely.karshenboim@mpq.mpg.de
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one to a few Bohr radii. They are used here as an anchor for
further comparison with other distance/momentum scales.
We remind the reader that the Bohr radius a0 ’ 0:53�
10�10 m is a characteristic distance for the electron orbit at
the ground state. For the 2s state the characteristic distance
is �4a0.

Throughout the paper the relativistic units are applied in
which ℏ ¼ c ¼ 1. In these units a0 ¼ 1=�me. For the
Yukawa radius equal to the Bohr radius, the related mass
of the intermediate particle � is 3.5 keV, while the radius of
4a0 corresponds to 1 keV.

To understand the procedure of evaluation, one can
have in mind a simple picture with the nonrelativistic
Schrödinger equation, because all corrections beyond
such an approximation, which are due to QED and relativ-
istic effects, are well under control and can be introduced
when necessary [1,8,9].

Spectroscopic data, which are the most important statis-
tically, are related to the 1s� 2s transition [10,11] and to
the 2s� ns=d transitions for n ¼ 8, 10, 12 [12]. We
remind the reader that the theory of hydrogen levels can
be expressed in terms of the Rydberg constant R1 and the
proton charge radius [1,8,9]. Those constants are not
known from other experiments with a sufficient accuracy,
and their best values are determined from the spectroscopic
data under question (see, e.g., [1]). Therefore, to separate
these variables and to determine R1, one has to deal with at
least two different transitions [1,9,13].

One of the transitions utilized is 1s� 2s in hydrogen
and deuterium, for which the distances in the interval
between a0 and 4a0 are involved. As to the other transi-
tions, a certain weighted average of data for all 2s� ns=d
transitions is used. The value of the principal quantum
number n for the involved excited ns=d states is substan-
tially larger than 2, and because of that the related
Coulomb contribution is not larger than 1.5% and can be
neglected as a good approximation.

So, the Rydberg constant [1]

R1 ¼ 109 737 31:568 527ð73Þ m�1 (2)

corresponds to r� ð1� 4Þa0. This value of R1 can be
directly compared with another value related to a different
distance (see below for a comparison with a value related
to r� 103a0).

Alternatively, one can extract a value of the fine struc-
ture constant � from the result (2) by applying the relation

R1 ¼ �2mec

2h
: (3)

For this purpose one should combine a value of R1 with
h=M for a certain atom/particle and with a result or a chain
of results, which allows one to determine M=me (see [1]
for detail).

The key point in such a determination of � is a
measurement of h=M. There are two high-precision

independent experiments on that. The first measurement
is performed on caesium atoms [14], and the most recent
result leads to [14]

��1
Cs ¼ 137:036 000 0ð11Þ: (4)

All auxiliary data are taken from [1].
The other experiment has been performed on rubidium.

The most recent result is [15]

��1
Rb ¼ 137:035 999 45ð62Þ: (5)

The weighted average of these two results,1

��1
atom ¼ 137:035 999 59ð53Þ; (6)

is a value of the fine structure constant related to distances
from a0 to 4a0.

III. PRECISION MEASUREMENTS OF HIGHLY
EXCITED STATES IN THE HYDROGEN ATOM

(DISTANCES �103a0)

There is one more result on the determination of the
Rydberg constant, which is usually not included in the
adjustment [1] because it is somewhat less accurate than
the data quoted above and, more importantly, the result is
only a preliminary one. The value

R1 ¼ 109 737 31:568 34ð69Þ m�1 (7)

is obtained [17] from a transition between the Rydberg
states with n ’ 30 in the hydrogen atom. Since the value
resulted from a partial evaluation of possible systematic
effects, to be on the safe side the uncertainty in (7) is tripled
from its original value. As it was confirmed by the authors
of the experiment [18], that is a rather overconservative
estimation of the uncertainty.
Let us now constrain an effective interaction with mass

�, which is

4 eV � � � 1 keV: (8)

A contribution of an additional boson in such a case reads

R1 ¼
� ð�þ�0Þ2me

2 at r� a0
�2me

2 at r� 103a0:
(9)

This leads to a constraint [19]

�0 ¼ ð0:6� 2:3Þ � 10�13: (10)

This is the strongest constraint on a long-range spin-
independent interaction which can be derived from atomic
physics and fundamental constants.

1A somewhat less accurate previous rubidium result, ��1
Rb ¼

137:035 998 83ð91Þ, from the same group [16] has not been
included into averaging because of possible correlations. Once
we treat that result as completely independent, the average value
is ��1

atom ¼ 137:035 999 39ð46Þ [cf. (6)], which does not change
the final conclusions too much.
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IV. PRECISION PHYSICS AT THE COMPTON
WAVELENGTH (MOMENTUM �mec)

One can also compare physics at the Bohr radius and at
the Compton wavelength of an electron. A suitable tool for
that is an examination of various results on the fine struc-
ture constant. We have already discussed a value related to
a0 [see (6)]. Meanwhile, the most accurate value of the fine
structure constant comes from the anomalous magnetic
moment of an electron,

��1
g�2 ¼ 137:035 999 084ð51Þ; (11)

obtained by combining the experimental result [20] with
theory [21].

Comparing it with the value in (6), one can find a
constraint for

4 keV � � � 0:5 MeV: (12)

The results of the measurements can be presented as

� ¼
�
�þ �0 at q�me

� at q� 1=a0;
(13)

where we refer to momentum space and assume that
the intermediate particle is a pure vector. The constraint
reads [19]

�0 ¼ ð2:7� 2:9Þ � 10�11: (14)

If the particle has another spin or it is a pseudovector or a
combination of a vector and a pseudovector (such as the Z
boson), then the constraint is of the same order of magni-
tude, but a factor compatible with unity can appear.

V. FINAL CONSTRAINTS

Our results are summarized in Table I. We can extend
our analysis beyond the asymptotic limits. In particular, we
also present in Fig. 1 results which cover an intermediate
area of a few keV [19].

To extend the constraint to a region �� 1=a0 and ��
me, we have to modify observational equations (9) and (13).

Instead of (9) we find

R1 ¼
� ð�þ�0F 12ð�=ð�meÞÞÞ2me

2 at r� a0
ð�þ�0F 30ð�=ð�meÞÞÞ2me

2 at r� 103a0;
(15)

where

F 12ðxÞ ¼ 4

��
1

1þ x

�
2 � 2

�
1

1þ x

�
3 þ 3

2

�
1

1þ x

�
4
�

�
�

2

2þ x

�
2
; (16)

and for F 30ð�=ð�meÞÞ we have to consider a function

F 30ðxÞ ¼
1

ðnþ1Þ2
�

2
2þðnþ1Þx

�
2nþ1 � 1

n2

�
2

2þnx

�
2n�1

1=ðnþ 1Þ2 � 1=n2
; (17)

related to n ’ 30. The transitions studied in [17] were
transitions between the circular states (l ¼ n� 1): 27 !
28 and 29 ! 30.
The related constraint is

�0 ¼ ð0:6� 2:3Þ � 10�13

F 12ð�=ð�meÞÞ �F 30ð�=ð�meÞÞ : (18)

Equation (13) is to be substituted for

� ¼
�
�þ �0F g�2ð�=meÞ at q�me

�þ �0F 12ð�=ð�meÞÞ at q� 1=a0;
(19)

where the function [22]

F g�2ðxÞ ¼ 2

�
�ðx5 � 4x3 þ 2xÞ tan

�1
ffiffiffiffiffiffiffiffi
4�x2

x2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

þ ðx4 � 2x2Þ lnx� x2 þ 1

2

�

TABLE I. The constraint on the deviation of the effective long-
range interaction �ðrÞ=r from the Coulomb exchange [19]. Here,
�ðrÞ ¼ �ð1Þ þ �0 expð��rÞ. The a0 scale is related to hydro-
gen spectroscopy for transitions involving low states ð1s; 2sÞ.
The related distance range is r ¼ 0:5� 10�7 m (for � ¼ 4 eV),
0:5� 10�10 m (for � ¼ 4 keV), and 0:4� 10�12 m (for
� ¼ 0:5 MeV).

Range �ðrÞ � �ða0Þ Effect

4 eV � � � 1 keV ð�0:6� 2:3Þ � 10�13 H, n ¼ 30
4 keV � � � 0:5 MeV ð2:7� 2:9Þ � 10�11 ge � 2

ab

MeV
10 6 10 5 10 4 0.001 0.01 0.1 1

10 12

10 11

10 10

10 9

10 8

FIG. 1. Constraints on a long-term spin-independent interac-
tion from hydrogen spectroscopy and ge � 2, including a con-
straint from hydrogen spectroscopy with low and Rydberg states
(a), a comparison of low states, and ge � 2 (b). The lines are for
j�0j, and the confidence level corresponds to 1 standard deviation.
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is the function which is applied when one calculates the
hadronic vacuum polarization through integration over a
dispersion variable � ¼ ffiffiffi

s
p

.
The related constraint is

�0 ¼ ð2:7� 2:9Þ � 10�11

F g�2ð�=meÞ �F 12ð�=ð�meÞÞ : (20)

We summarize the behavior of the profile functionsF in
Fig. 2. Each of them is equal to unity for � ! 0 and equal
to zero for � ! 1. The unity region is the one where the
Yukawa potential is indistinguishable from the Coulomb
potential, and the effective Coulomb coupling constant
there is �þ �0. In the zero region the Yukawa potential
shrinks to a zero-radius potential and does not affect any
measurable values.

What is different in the profile functions is the character-
istic value of �, which separates the unity region from the
zero one and the shape of the transition area around it.

We present in Fig. 2 four rather than three profile func-
tions. Function F 30 is presented in two versions. This is
due to the fact that the result (7) is a preliminary one and
the evaluation has not yet been completed. The data in-
cluded two transitions, namely, 27 ! 28 and 29 ! 30, and
it is, in part, uncertain what their relative weights should be
in averaging. To clarify the issue, we present in Fig. 2 two
versions of the profile functions F 30, namely, for n ¼ 27
and n ¼ 29. One sees that the results are nearly identical in
the logarithmic scale. Because of that, for the final con-
straint in Fig. 1 we have applied a profile with n ¼ 28.

IV. SUMMARY

The interaction with an intermediate particle is not nec-
essarily universal. The hydrogen and deuterium data allow
one to conclude about �ep and �ed, while the anomalous

magnetic moment deals with �ee. (The uncertainty of the

anchor data involving hydrogen and deuterium is small, and
the accuracy of the constraint is determined in both cases
above by the other pieces of data. That allows one to reduce
the a0 related data to pure hydrogen data.) A possible
discrepancy between these two values could be interpreted
as related not only to the certain distance scale, but also to
the nonuniversality of one-particle exchange within a
broader range.
We remind the reader that the neutrality of a hydrogen

atom or a neutron (see, e.g., [23]) is a property related to a
macroscopic distance, and, in principle, a direct test of
whether there is an ultraweak long-range component of
the interaction of a hydrogen atom or a neutron at micro-
scopic distances is required. We will address this problem
elsewhere.
For the b constraint in Fig. 1, we have utilized two

values of the fine structure constant, namely, those from
ge � 2 and those from atomic physics. In principle, one
can use other less accurate values (see Fig. 3 and [1] for a
review of data and references) to compare with �g�2. This

produces a constraint similar to the b line in Fig. 1. It is
weaker for � � a�1

0 but has the same profile behavior,

while for � � a�1
0 the limitation increases more slowly

than the b line. However, as we see in Fig. 1, in this area the
a constraint is already applicable and such an extension of
the b constraints to the lower mass range cannot improve
the whole constraint.
Another issue is model dependence. The substitute (1) is

to constrain a situation with a single light intermediate
particle. If there are a few of them and their coupling
constants are comparable, the situation becomes more
complicated. Still, if the related coupling constants are of
the same sign, the results of the paper are still applicable.

F30 F21 Fg 2

MeV
10 6 10 5 10 4 0.001 0.01 0.1 1

0.0

0.2

0.4

0.6

0.8

1.0

F

FIG. 2. The profile functions which determine the coverage
of the constraints on a long-term spin-independent interaction
from hydrogen spectroscopy and the anomalous magnetic mo-
ment of an electron. The profile function F 30ðxÞ is with n ¼ 27
and n ¼ 29.

FIG. 3. Determination of the fine structure constant � in the
CODATA-2006 adjustment [1], where the references can be
found. The vertical band stands for the adjusted CODATA-
2006 value. The figure is reproduced from [26].
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However, if the Yukawa terms involve interactions with
different radii, while the coupling constants have compat-
ible absolute values and opposite signs, the constraint
derived is completely invalid. As an example, one can
consider a long-range correction of the form

�0 e
��1r � e��1r

r
;

where the masses are of the same order (e.g., �2 ¼ 2�1).
Indeed, in this case the sensitivity of atomic energy levels
to �0 is substantially reduced in most of the area, where the
constraint in Fig. 1 is effective.

In conclusion, we emphasize that atomic physics allows
one to access distances much larger than the Bohr radius,
and our limitation on �0 is valid for distances up to
0:02 �m. That can be compared with the limitation on
the fifth force from Casimir-effect experiments [24], which
also reached the range below 1 �m. Comparing the
strength, we note that in the case of the Casimir effect
the conventional parametrization for the Yukawa potential

is Gm1m2 ~�e
�r=~�=r, where mi is the mass of a bulk body

and G is the Newtonian gravitation constant. There is no
direct model-independent correspondence between mass-
related and charge-related parametrizations. The most im-
portant part of the conversion factor is Gm2

p � 6� 10�39

(since in bulk matter there is roughly 0.5–1 charge, e.g.,
baryon or lepton charge, per nucleon, the rough factor of
0.5 comes from the fact that we have an electron per 2–2.5
nucleons). Using this, we find that our constraints starting
from a distance below 30 nm, where the Casimir-
effect constraints stop, are weaker by a few orders of
magnitude. However, they are extended to shorter

distances, not accessible for the Casimir-force related
experiments.
More importantly, our constraint is complementary to

the Casimir-effect limitation. The latter deals with the
neutral bulk matter only and cannot constrain a massive
ultraweak photon ��. In contrast to that, our constraint in
Table I and in Fig. 1 covers such a case. Our results for the
coupling constant �0 related to �� are consistent with zero,
and the limitation at atomic distances is in the range of a
few parts in 1013 to a few parts in 1011, depending on the
details as discussed above.
The keV mass range has been partly explored by means

of astrophysics and cosmology. Such constraints [6,7,25]
mostly deal with real particles and their propagation
through matter. The details, such as the lifetime, various
couplings, and collision rates, are involved, and they may
be related to results in terms of �0 and � only through
certain model-dependent relationships. Our constraints,
free of such model-dependent suggestions, are comple-
mentary to those.
Another option, which is not covered by the Casimir

effect either, is due to a spin-dependent long-range inter-
action and will be considered elsewhere.
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[16] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa,
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