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We report results from an updated study of the suppressed decays B� ! DK� and B� ! D�K�

followed by D ! Kþ��, where Dð�Þ indicates a Dð�Þ0 or a �Dð�Þ0 meson, and D� ! D�0 or D� ! D�.

These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity triangle angle � due to

interference between the b ! c transition B� ! Dð�Þ0K� followed by the doubly Cabibbo-suppressed
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†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
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decay D0 ! Kþ��, and the b ! u transition B� ! �Dð�Þ0K� followed by the Cabibbo-favored

decay �D0 ! Kþ��. We also report an analysis of the decay B� ! Dð�Þ�� with the D decaying

into the doubly Cabibbo-suppressed mode D ! Kþ��. Our results are based on 467�
106 �ð4SÞ ! B �B decays collected with the BABAR detector at SLAC. We measure the ratios Rð�Þ of
the suppressed (½Kþ���DK�=��) to favored (½K��þ�DK�=��) branching fractions as

well as the CP asymmetries Að�Þ of those modes. We see indications of signals for the B� ! DK�

and B� ! D�
D�0K

� suppressed modes, with statistical significances of 2.1 and 2:2�, respectively, and

we measure:RDK ¼ ð1:1� 0:6� 0:2Þ � 10�2; ADK ¼ �0:86� 0:47þ0:12
�0:16,R

�
ðD�0ÞK ¼ð1:8�0:9�

0:4Þ�10�2; A�
ðD�0ÞK ¼þ0:77�0:35�0:12; R�

ðD�ÞK ¼ð1:3�1:4�0:8Þ�10�2;A�
ðD�ÞK ¼þ0:36

�0:94þ0:25
�0:41, where the first uncertainty is statistical and the second is systematic. We use a frequentist

approach to obtain the magnitude of the ratio rB � jAðB� ! �D0K�Þ=AðB� ! D0K�Þj ¼ ð9:5þ5:1
�4:1Þ%,

with rB < 16:7% at 90% confidence level. In the case of B� ! D�K� we find r�B � jAðB� !
�D�0K�Þ=AðB� ! D�0K�Þj ¼ ð9:6þ3:5

�5:1Þ%, with r�B < 15:0% at 90% confidence level.

DOI: 10.1103/PhysRevD.82.072006 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

I. INTRODUCTION

The standard model accommodates CP violation
through a single phase in the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix V [1]. In the
Wolfenstein parameterization [2], the angle � ¼
argð�VudV

�
ub=VcdV

�
cbÞ of the unitarity triangle is related

to the complex phase of the CKM matrix element Vub

through Vub ¼ jVubje�i�. A theoretically clean source of

information on the angle � is provided by B� ! Dð�Þ

K� decays, where Dð�Þ represents an admixture of Dð�Þ0

and �Dð�Þ0 states. These decays exploit the interference

between B� ! Dð�Þ0K� and B� ! �Dð�Þ0K� (Fig. 1) that

occurs when the Dð�Þ0 and the �Dð�Þ0 decay to common final
states.

In the Atwood-Dunietz-Soni (ADS) method [3], the D0

from the favored b ! c amplitude is reconstructed in the
doubly Cabibbo-suppressed decay Kþ��, while the �D0

from the b ! u suppressed amplitude is reconstructed in
the favored decay Kþ��. The product branching fractions
for these final states, which we denote as ½Kþ���DK�
(B� ! DK�) and ½Kþ���D�K� (B� ! D�K�), are small
(�10�7), but the two interfering amplitudes are of the
same order of magnitude, and large CP asymmetries are
therefore possible. The favored decay mode B� !
½K��þ�Dð�ÞK� is used to normalize the measurement and
cancel many systematic uncertainties. Thus, ignoring
possible small effects due to D mixing and assuming no
CP violation in the normalization modes, we define the

charge-specific ratios for Bþ and B� decay rates to the
ADS final states as

R�
DK � �ð½K����DK�Þ

�ð½K����DK�Þ
¼ r2B þ r2D þ 2rBrD cosð��þ �Þ; (1)

where rB ¼ jAðB� ! �D0K�Þ=AðB� ! D0K�Þj 	 10%
[4–7] and rD ¼ jAðD0 ! Kþ��Þ=AðD0 ! K��þÞj ¼
ð5:78� 0:08Þ% [8] are the suppressed to favored B and
D amplitude ratios. The rates in Eq. (1) depend on the
relative weak phase � and the relative strong phase � �
�B þ �D between the interfering amplitudes, where �B and
�D are the strong phase differences between the two B and
D decay amplitudes, respectively. The value of �D has
been measured to be �D ¼ ð201:9þ11:3

�12:4Þ
 [8], where we
have accounted for a phase shift of 180
 in the definition
of �D between Ref. [8] and this analysis.
The main experimental observables are the charge-

averaged decay rate and the direct CP asymmetry, which
can be written as

R DK � 1
2ðRþ

DK þR�
DKÞ ¼ r2B þ r2D þ 2rBrD cos� cos�;

(2)

ADK � R�
DK �Rþ

DK

R�
DK þRþ

DK

¼ 2rBrD sin� sin�=RDK: (3)

The treatment for theD�Kmode is identical to theDK one,
but the parameters r�B and ��

B are not expected to be
numerically the same as those of the DK mode. Taking
into account the effective strong phase difference of �
between the D� decays to D� and D�0 [9], we define the
charge-specific ratios for D� as

R ��
ðD�0ÞK � �ð½K����D�!D�0K�Þ

�ð½K����D�!D�0K�Þ
¼ r�2B þ r2D þ 2r�BrD cosð��þ ��Þ; (4)

FIG. 1. Feynmandiagrams forB� ! Dð�Þ0Kð�Þ� and �Dð�Þ0Kð�Þ�.
The latter is CKM and color-suppressed with respect to the
former.
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R ��
ðD�ÞK � �ð½K����D�!D�K

�Þ
�ð½K����D�!D�K

�Þ
¼ r�2B þ r2D � 2r�BrD cosð��þ ��Þ; (5)

with r�B ¼ jAðB� ! �D�0K�Þ=AðB� ! D�0K�Þj and �� �
��
B þ �D, where �

�
B is the strong phase difference between

the two B decay amplitudes. The charge-averaged ratios
for D� ! D�0 and D� ! D� are then:

R �
ðD�0ÞK � 1

2ðR�þ
ðD�0ÞK þR��

ðD�0ÞKÞ
¼ r�2B þ r2D þ 2r�BrD cos� cos��; (6)

R �
ðD�ÞK � 1

2ðR�þ
ðD�ÞK þR��

ðD�ÞKÞ
¼ r�2B þ r2D � 2r�BrD cos� cos��: (7)

Definitions of the direct CP asymmetries A�
ðD�0ÞK and

A�
ðD�ÞK follow Eq. (3).

This paper is an update of our previous ADS analysis
in Ref. [4], which used 232� 106B �B pairs and set
90% C.L. upper limits RDK < 0:029, R�

ðD�0ÞK < 0:023

and R�
ðD�ÞK < 0:045. In addition to an increased data

sample, new features in the analysis include a multidimen-
sional fit involving the neural network output used to
discriminate the signal from the continuum background,
rather than a simple cut on this variable as was done in the
previous analysis. We also include measurements of the
ratios of the doubly Cabibbo-suppressed to Cabibbo-

favored Dð�Þ� decay rates,

R ð�Þ�
D� � �ðB� ! ½K����Dð�Þ��Þ

�ðB� ! ½K����Dð�Þ��Þ ; (8)

and of the corresponding asymmetries. These measure-
ments are used as a check for the B� ! ½Kþ���Dð�ÞK�

ADS analysis. In the Dð�Þ� case, we expect that the ratio

rð�ÞðD�Þ
B of the Vub to Vcb amplitudes is suppressed by a

factor jVcdVus=VudVcsj compared to the Dð�ÞK case, if
we assume the same color suppression factor for both

decays. One expects therefore rð�ÞðD�Þ
B 	 rð�ÞB � tan2�c 	

5� 10�3 � rD, where �c is the Cabibbo angle and where

we have assumed rð�ÞB ¼ 10%. Neglecting higher order

terms, Rð�Þ
D� ’ r2D and Að�Þ

D� ’ 2rð�ÞB tan2�c sin� sin�ð�Þ=rD.
Hence, the maximum asymmetry possible for Dð�Þ� ADS

decays is 2rð�ÞB tan2�c=rD 	 18%.

II. THE BABAR DETECTOR AND DATA SET

The results presented in this paper are based on
467� 106 �ð4SÞ ! B �B decays, corresponding to an inte-
grated luminosity of 426 fb�1 (on-peak data). The data
were collected between 1999 and 2007 with the BABAR
detector [10] at the PEP-II eþe� collider at SLAC. In
addition, a 44 fb�1 data sample, with center-of-mass
(CM) energy 40 MeV below the �ð4SÞ resonance

(off-peak data), is used to study backgrounds from contin-
uum events, eþe� ! q �q (q ¼ u, d, s, or c).
The BABAR detector response to various physics

processes as well as to varying beam and environmental
conditions is modeled with simulation software based on
the GEANT4 [11] tool kit. We use EVTGEN [12] to model the
kinematics of B meson decays and JETSET [13] to model
continuum processes eþe� ! q �q.

III. ANALYSIS METHOD

A. Basic requirements

We reconstruct B� ! Dð�ÞK� and B� ! Dð�Þ�� with
the D decaying to K��þ (right-sign [RS] decays) and
Kþ�� (wrong-sign [WS] decays). Charge conjugate reac-
tions are assumed throughout this paper. For decays in-
volving a D�, both D� ! D�0 and D� ! D� modes are
reconstructed. Charged kaon and pion candidates must
satisfy identification criteria that are typically 85% effi-
cient, depending on momentum and polar angle. The mis-
identification rates are at the few percent level. We selectD
candidates with an invariant mass within 20 MeV=c2

(about 3 standard deviations) of the known D0 mass [14].
All D candidates are mass and vertex constrained. For
modes with D� ! D�0 or D� ! D�, the mass difference
�m between the D� and the D must be within 4 MeV=c2

(’ 4�) or 15 MeV=c2 ( ’ 2�), respectively, of the nomi-
nal mass difference [14].
For the WS decays B� ! ½K����DK�, two important

sources of background arise: the first from B� !
½��K��DK� (in which the K and � in the D decay are
misidentified as � and K) and the second from B� !
½K�K��D�� (when the K� �� pair has an invariant
mass within 20 MeV=c2 of the nominal D0 mass). To
eliminate the first background, we recompute the invariant
mass (Mswitch) of the h

þh0� pair in D0 ! hþh0� switching
the mass assumptions on the hþ and the h0�. We veto
candidates with Mswitch within 20 MeV=c2 of the D0

mass [14]. To eliminate the second background, we also
veto any candidate where the KK invariant mass is within
20 MeV=c2 of the D0 mass. To ensure the same selection
efficiencies, these criteria are applied both to B� !
½K����Dð�ÞK� and to B� ! ½K����Dð�ÞK� candidates.
These veto cuts are 88% efficient on signal decays, while
removing approximately 90% of the ½��K��DK� and
½K�K��D�� peaking background. Other possible back-
ground contributions faking the signal, like B� !
½K����0�DK�, are found to be negligible, thanks to the
�E and D mass cuts.
We identify B candidates using two nearly indepen-

dent kinematic variables that are customarily used
when reconstructing B-meson decays at the �ð4SÞ.
These variables are the energy-substituted mass, mES �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 þ ~p0 � ~pBÞ2=E2

0 � p2
B

q
and energy difference �E �

E�
B � 1

2

ffiffiffi
s

p
, where E and p are energy and momentum,
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the asterisk denotes the CM frame, the subscripts 0 and B
refer to the �ð4SÞ and B candidate, respectively, and s is
the square of the CM energy. For signal eventsmES ¼ mBþ

[14] and �E ¼ 0 within the resolutions of about
2:6 MeV=c2 and 17 MeV, respectively. We require that
all candidates have j�Ej< 40 MeV and we use mES in
the fit to extract the number of signal events.

The average number of B ! Dð�ÞK candidates recon-
structed per selected event is about 1.4 in B ! DK signal
Monte Carlo (MC) simulation events and about 2 for B !
D�K signal MC events. This is mostly due to the cross-feed
between the DK and the D�K final states. For all events

with multiple B ! Dð�ÞK candidates, we retain only one
candidate per event, based on the smallest value of j�Ej.
This method does not bias the sample since �E is not used
to extract the number of signal events. After this arbitra-
tion, less than 0.4% (0.5%) of the B ! DK (B ! D�K)
signal MC events selected are reconstructed as B ! D�K
(B ! DK). About 10% of the B ! D�

D�0K events selected

are reconstructed as B ! D�
D�K and about 2% of the B !

D�
D�K events selected are reconstructed as B ! D�

D�0K.

The B ! Dð�Þ� analysis is performed independently of

the B ! Dð�ÞK analysis, but uses the same multiple candi-
date selection algorithm. A summary of the selection effi-
ciencies for the WS modes ½K����Dð�Þh� (h ¼ K, �) and
the RS modes ½��K��Dð�Þh� is given in Table I.

B. Neural network

After these initial requirements, backgrounds domi-
nantly arise from continuum events, especially eþe� !
c �c, with �c ! �D0X, �D0 ! Kþ�� and c ! D0X, D0 !
K�þ anything. The continuum background is reduced by
using a multilayer perceptron artificial neural network with
2 hidden layers, available in the framework of the TMVA

package [15]. To select the discriminating variables used in
the neural network, we rely on a study performed for the
previous version of this analysis [4], and we consider the
seven quantities listed below:

(1) Two event shape moments L0 ¼ P
ipi, and L2 ¼P

ipicos
2�i, calculated in the CM frame. Here, pi is

the momentum and �i is the angle with respect to the
thrust axis of the B candidate; the index i runs over

all tracks and clusters not used to reconstruct the B
meson (rest of the event). These variables are sensi-
tive to the shape of the event, separating jetlike
continuum events from more spherical B �B events.

(2) The absolute value of the cosine of the angle in
the CM frame between the thrust axes of the B
candidate and the detected remainder of the event,
j cos�Tj. The distribution of j cos�Tj is approxi-
mately uniform for signal and strongly peaked at
one for continuum background.

(3) The absolute value of the cosine of the CM angle
between the B candidate momentum and the beam
axis, j cos�Bj. In this variable, the signal follows a
1� cos2�B distribution, while the background is
approximately uniform.

(4) The charge difference �Q between the sum of the

charges of tracks in theDð�Þ hemisphere and the sum
of the charges of the tracks in the opposite hemi-
sphere, excluding the tracks used in the recon-
structed B, and where the partitioning of the event
into two hemispheres is done in the CM frame. This
variable exploits the correlation occurring in c �c
events between the charge of the c (or �c) in a given
hemisphere and the sum of the charges of all parti-
cles in that hemisphere. For signal events, the
average charge difference is h�Qi ¼ 0, whereas
for the c �c background h�Qi 	 7

3 �QB, where QB

is the charge of the B candidate.
(5) The product QB �QK, where QK is the sum of the

charges of all kaons in the rest of the event. In many
signal events, there is a charged kaon among the
decay products of the other B in the event. The
charge of this kaon tends to be highly correlated
with the charge of the B. Thus, signal events tend to
have QB �QK  �1. On the other hand, most con-
tinuum events have no kaons outside of the recon-
structed B, and therefore QK ¼ 0.

(6) A quantity MK‘, defined to be zero if there are no
leptons (e or �) in the event, and, if a lepton is
found, taken to be equal to the invariant mass of this
lepton and the kaon from B (bachelor K). This
quantity differentiates between continuum back-
ground and signal because continuum events have
fewer leptons than B �B events. Furthermore, a large
fraction of leptons in c �c background events are from
D ! K‘�, where the kaon becomes the bachelor
kaon candidate, so that the average MK‘ in c �c
events is lower than in B signal events.

(7) The absolute value of the measured proper time
interval between the two B decays, j�tj. This is
calculated from the measured separation, �z, be-
tween the decay points of the reconstructed B and
the other B along the beam direction, and the known
Lorentz boost of the initial eþe� state. For contin-
uum background, j�tj is peaked at 0, with most

TABLE I. Selection efficiencies, after correction for known
data/MC differences, for B� ! ½K����Dð�Þh� (�WS) and B� !
½K����Dð�Þh� (�RS), and efficiency ratio �WS=�RS.

Channel �WS (%) �RS (%) �WS=�RS (10�2)

DK 26:5� 0:1 26:6� 0:1 99:6� 0:5
D�

D�0K 13:3� 0:1 13:2� 0:1 100:6� 1:1
D�

D�K 17:4� 0:1 17:5� 0:1 99:8� 0:8
D� 26:0� 0:1 26:5� 0:1 97:9� 0:5
D�

D�0� 14:3� 0:1 14:8� 0:1 96:4� 0:9
D�

D�� 18:8� 0:1 19:5� 0:1 96:3� 0:7
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events having j�tj< 2 ps, while it is less peaked

and can extend beyond 5 ps for B� ! Dð�Þh� signal
events.

The neural network is trained with simulated continuum

and signal ½K����Dð�ÞK� events. Only wrong-sign Dð�ÞK
candidates are used in the training, but the neural network

is used in the analysis of all the Dð�Þh� channels. The
distributions of the neural network output (NN) for
signal-enriched right-sign control samples are compared
with expectations from the MC simulation in Fig. 2(a)
(DK) and Fig. 2(d) (D�). The agreement is satisfactory.
In the same figure, the NN spectra of background control
samples (off-peak data) are compared with expectations
from continuum q �q MC. Since we do not expect these
distributions to be exactly the same for the right-sign and
wrong-sign background samples, they are shown sepa-
rately for the ½K����Dð�ÞK�[Fig. 2(b)], ½K����Dð�ÞK�
(Fig. 2(c)), ½K����Dð�Þ��[Fig. 2(e)) and ½K����Dð�Þ��
(Fig. 2(f)) channels. To increase the statistics, the mES and
�E requirements on the off-resonance and continuum MC
events have been relaxed, and the Dh� and D�h� contri-
butions have been summed, after checking that they are in
agreement with each other. Good agreement between data
and the simulation is observed in all channels. Good agree-

ment between the Dð�ÞK and the Dð�Þ� background NN
distributions is also visible in Fig. 2, while on the contrary

the background NN distribution of wrong-sign decays is
clearly different from the background NN distribution of
right-sign decays. We have examined the distributions of
all variables used in the neural network, and found good
agreement between the simulation and the data control
samples. Finally, we examined the NN distributions in
the signal MC for the different B signal channels, right-
sign and wrong-sign separately (D�, D��, DK, D�K) and
did not observe any significant difference between these
channels.

C. Fitting for event yields and Rð�Þ

The ratios Rð�Þ are extracted by performing extended
unbinned maximum likelihood fits to the set of variables
mES, NN, and Isign, where Isign is a discrete variable equal

to 0 for WS events and to 1 for RS events. We write the
extended likelihood L as

L ¼ e�N0

N!
N0N YN

j¼1

fðxjj�Þ;

where the vector x indicates the variables (mES, NN, and
Isign) and � indicates the set of parameters which are fitted

from the data. N is the total number of signal and back-
ground events, and N0 ¼ P

iNi is the expectation value for
the total number of events. The sum runs over the different
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FIG. 2 (color online). Signal and background distributions of the neural network output, and results of the NN verifications for DK
(a), Dð�ÞK (b, c), D� (d) and Dð�Þ� (e, f) candidates. (a, d): Dh� right-sign candidates, signal-enriched by a cut on the �E, mES signal
region. Shaded plain histograms are MC expectations for q �q background (dark gray/blue), b �b background (middle gray/green) and
B� ! Dh� signal events (light gray/yellow). Points with error bars are on-peak data. (b, e): Dð�Þh� wrong-sign background. (c, f):
Dð�Þh� right-sign background. Plots b, c, e, and f are normalized to unity. The dotted line histograms show the distribution of simulated
continuum events. The off-peak data used to check the NN are overlaid as data points. To increase the statistics, the mES and �E
requirements on the off-peak and continuum MC events have been relaxed, and Dh� and D�h� contributions have been summed.
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signal and background categories i which will be detailed
below. The probability density function (PDF) fðxjj�Þ is
written as the sum over the different signal and background
categories

fðxjj�;N0Þ ¼
P
i
Nifiðxjj�Þ

N0 ;

where fiðxj�Þ is the product FðmESÞ �GðNNÞ �HðIsignÞ
of an mES component FðmESÞ, a NN component GðNNÞ
and a two-bin histogram HðIsignÞ set to (1,0) for the WS

category and (0,1) for the RS category. The NN distribu-
tions are all modeled by histograms with 102 bins between
�1:02 and 1.02.

The fits are performed separately to each of the D�,
D�

D�0�, D
�
D��, DK, D�

D�0K and D�
D�K samples. They are

configured in such a way that Rð�Þ is an explicit fit pa-
rameter: for the B signal, we fit for the number of right-sign

decays NRS and the ratio Rð�Þ ¼ NWS=ðc� NRSÞ, where
NWS is the number of wrong-sign signal events and c is the
ratio of the wrong-sign to right-sign selection efficiencies.

For B ! Dð�ÞK, the factor c is consistent with unity within
the statistical precision of the simulation (Table I) and is set

to this value in the fits. For B ! Dð�Þ�, c differs slightly
from unity due to different particle identification cuts
applied at an early stage of the event selection and we
use therefore the values of Table I in the fits.

The following signal and background categories are
used to describe each sample in the fits:

(1) The right-sign signal B� ! ½K��þ�Dð�ÞK�=��: for
B� ! Dh� and B� ! D�

D�0h
� events, the mES

component is parametrized by a Gaussian function
GsigðmESÞ whose mean and width are determined

from the fit to data. For B� ! D�
D�h

� events, we

use the ‘‘Crystal Ball’’ lineshape [16], an empirical
smooth function that better describes the non-
Gaussian tail on the left side of the distribution.
The NN PDF NN sig is constructed from the NN

spectrum of the B� ! Dh� signal MC.
(2) The wrong-sign signal B� ! ½Kþ���Dð�ÞK�=��:

its mES and NN spectra have the same parametriza-
tions as the right-sign signal.

(3) The right-sign combinatorial background from q �q
(q ¼ u, d, s, c) events into ½K��þ�K� (DK) or
½K��þ��� (D�): its mES component is modeled
with the ARGUS function [17] Aq �qðmESÞ whose

shape and end point parameters, 	q �q and m0, are

allowed to vary in the fit. The NN PDFNN ðRSÞ
q �q is

constructed from the NN spectrum of ½K��þ�K�
(DK) or ½K��þ��� (D�) candidates in the q �q
continuum MC (Figs. 2(c) and 2(f)), where the �E
requirement has been extended to j�Ej< 200 MeV
and the DK and D�K (or D� and D��) samples
have been summed to increase the statistics.

(4) The wrong-sign combinatorial background from q �q
events into ½Kþ���K� (DK) or ½Kþ����� (D�):
its mES component is parameterized by the same
ARGUS function Aq �qðmESÞ used for the right-sign

component. The NN PDF NN ðWSÞ
q �q is constructed

from the NN spectrum of ½Kþ���K� (DK) or
½Kþ����� (D�) candidates in the q �q continuum
MC (Figs. 2(b) and 2(e)).

(5) The right-sign combinatorial background from B �B
events into ½K��þ�K� (DK) or ½K��þ��� (D�),
excluding the peaking background which is consid-
ered in category 7: its mES component is described

by an ARGUS function [17]AðRSÞ
B ðmESÞ with shape

parameter 	 ðRSÞB fixed to its value determined from

B �B MC, after removal of the B ! Dð�ÞK=� signal
events. The NN PDF used to describe this back-
ground is the PDF NN sig describing the NN

spectrum of the B� ! Dð�Þh� signal MC. The num-
ber of B �B right-sign combinatorial background
events is allowed to vary in the Dh� fits but is
fixed to the MC prediction in the D�h� fits (see
below).

(6) The wrong-sign combinatorial background from B �B
events into ½Kþ���K� (DK) or ½Kþ����� (D�),
excluding the peaking background which is consid-
ered in category 8: its mES component is described

by an ARGUS function [17] AðWSÞ
B ðmESÞ with

shape parameter 	 ðWSÞ
B fixed to its value determined

from the B �BMC, after removal of theB ! Dð�ÞK=�
signal events. The NN PDF used to describe this
background is the PDF NN sig describing the NN

spectrum of the B� ! Dð�Þh� signal MC. The num-
ber of B �B wrong-sign combinatorial background
events is allowed to vary in the Dh� fits but is fixed
in the D�h� fits (see below).

(7) The background from B �B events in the right-sign
component peaking in mES inside the signal region
(peaking background): this background is discussed
in more detail in Section IV. For the DK�, D��
and D�

D�0K
� categories, the peaking part of the B �B

background mES spectrum is described by the same
Gaussian function GsigðmESÞ as the signal. This

component is therefore indistinguishable from the
signal and its rate has to be fixed to the MC pre-
dictions. For the D�

D�0�
�, D�

D��
� and the D�

D�K
�

categories, the mES component is described by an
asymmetric Gaussian whose shape parameters and
amplitude for each category are determined from a
fit to the mES spectrum of B �B MC events, after

vetoing the B� ! Dð�Þh� signal component. For
all categories, the NN PDF used to describe this
background is the PDF NN sig describing the NN

spectra of the B ! Dð�Þh� signal MC.
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(8) The peaking background from B �B events in the
wrong-sign component: the treatment is similar to
the previous component but GsigðmESÞ is used to

describe the mES spectrum of the DK�, D��,
D�

D�0K
� and D�

D�K
� categories, while an asym-

metric Gaussian is used to describe the mES spec-
trum of the D�

D�0�
� and D�

D��
� categories.

To summarize, we fit for the number of right-sign signal
events NRS, the ratio R ¼ NWS=ðc� NRSÞ of wrong-sign
to right-sign events, the number of wrong-sign and right-

sign q �q combinatorial background events, Nðq �qÞ
WS and Nðq �qÞ

RS ,

and for Dh� the number of wrong-sign and right-sign B �B

combinatorial background events, NðB �BÞ
WS and NðB �BÞ

RS . We fix

to their MC expectations the numbers of wrong-sign and

right-sign B �B peaking background, NðB �B;pkÞ
WS and NðB �B;pkÞ

RS ,

as well as the number of B �B combinatorial background
events for D�h�. The other parameters fitted are the
reconstructed mES peak and resolution, mB and �mB

, and

the q �q continuum background shape parameter and end
point, 	q �q and m0.

IV. STUDY OF B �B BACKGROUNDS

We study the B �B background for each signal category
(D�, D�� DK, D�K) and charge combination (right-sign
and wrong-sign) using a sample of eþe� ! �ð4SÞ ! B �B
MC events corresponding to about 3 times the data lumi-
nosity. In addition, dedicated Monte Carlo signal samples
are used to estimate the background from B� ! Dh�
events and the background from the charmless decay
B� ! Kþ��K�. We identify three main classes of back-
ground events which can peak in mES inside the signal

region and mimic the Dð�Þ� and Dð�ÞK signal:
(1) Charmless B decays B� ! hþh�h� (h ¼ �, K):

we list in Table II the 3-body charmless decays
affecting our analysis, their branching fractions
[14] and the numbers of reconstructed events ex-
pected in the affected modes after the selection.
Because of the particle identification criteria used
in the analysis only decays with the same final state
particles as our signal modes contribute significantly
to the background. These events are indistinguish-
able from the Dh� signal if the K��þ invariant
mass is consistent with the D mass. The two decays

affected by a significant charmless background are
right-sign B� ! ½K��þ�D�� and wrong-sign
B� ! ½Kþ���DK�. UsingB� ! K��þ�� events
selected in the B �BMonte Carlo sample, we estimate
the efficiency of B� ! K��þ�� events to be re-
constructed as a ½K��þ�D�� candidate as ð0:26�
0:02Þ%. The corresponding background is estimated
to be 67:1� 9:7 events, where the error is domi-
nated by the statistical uncertainty on the B� !
K��þ�� branching fraction. The efficiency of
B� ! Kþ��K� events to be reconstructed as
½Kþ���DK� WS candidates is determined from a
high statistics dedicated B� ! Kþ��K� signal
Monte Carlo sample, and is found to be ð0:27�
0:01Þ%. The corresponding peaking background
from B� ! Kþ��K� events mimicking B� !
½Kþ���DK� WS decays is estimated to be
6:0� 0:8 events, where the error is dominated by
the statistical uncertainty on the B� ! Kþ��K�
branching fraction. From a fit to data selected in the
D mass sidebands, we cross-check this prediction
and find 6:5� 4:0 peaking events, in good agree-
ment with the MC prediction. We also check that,
because of the tight �m cut applied to the D� decay
products, the B� ! D�h� channels are not affected
by charmless peaking backgrounds.

(2) Events of the type B� ! Dh�: this background is
estimated by running the analysis on a sample of
B� ! Dh� signal MC events properly renormal-
ized to the data sample, and fitting the mES spectra
of the selected events to the sum of a Gaussian
signal and a combinatorial background. We find
that a peaking background of 2:6� 0:4 events is
predicted in the B� ! ½Kþ���DK� WS channel.
This component is dominated (2 events out of 2.6)
by decays B� ! ½K�Kþ�D�� failing the D mass
veto and by WS decays B� ! ½Kþ���D�� where
the �� is misidentified as a K�. For the D�K
channels, the B� ! ½K�Kþ�D�� contribution is
suppressed by the �m cut on the D�-D mass differ-
ence, and the WS D�� contribution is 0:5� 0:1
events for D� ! D�0 and 0:6� 0:2 events for
D� ! D�. Another background of the same type
occurs in the right-sign DK decays. It consists of
events B� ! ½K��þ�Dð�Þ�� where the bachelor��
is misidentified as a K�, which fake the RS signal
B� ! ½K��þ�Dð�ÞK�. This contribution is pre-

dicted by the simulation and has been verified in

the data by fitting the �E spectrum of Dð�ÞK candi-
dates in the mES signal region, which shows a

second peak due to Dð�Þ� candidates, shifted by
50 MeV with respect to the signal.

(3) Other decays: this component is estimated by fitting
the mES spectra of B �B MC events, after removing
the charmless and B� ! Dh� components. For

TABLE II. Charmless background channels and branching
fractions, Dh� channels affected by this background and back-
ground yields expected in our data sample.

Affected Estimated

Mode channel Bð10�6Þ Yield

K��þ�� D� RS 55� 7 [14] 67:1� 9:7
Kþ���� D� WS <0:9 [18] <1:1
K��þK� DK RS <0:2 [18] <0:2
Kþ��K� DK WS 5:0� 0:7 [19] 6:0� 0:8
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B� ! ½Kþ���DK� WS decays, the peaking com-
ponent is estimated to be 4� 3 events, where the
uncertainty is dominated by the statistical error on
the simulated data. The main sources of peaking
background which could be identified are listed in
Table III. They include �B0 ! D�þh� reconstructed
as B� ! D�0h�, semileptonic decays B0 !
D���eþ ��e (D

��� ! �Dð�Þ0��, �D0 ! Kþ��) where
the eþ is missed, faking the WS signal B� !
½Kþ���Dð�Þ��, and decays B� ! Dð�Þ
� faking
the RS signal B� ! ½K��þ�Dð�Þ��. The D���
states contributing in the B0 ! D���eþ ��e peaking
background to B� ! ½Kþ���Dð�Þ�� were found to
be dominantly the wide P-wave statesD��

0 andD0�
1 .

A 50% relative error on the B0 ! D���eþ ��e decay
rates was assumed when computing the associated

systematic uncertainty on Rð�Þ
D�.

A summary of the B �B background studies is given in

Table III, for B ! Dð�Þ� and B ! Dð�ÞK. For each chan-
nel, the mES spectra of events selected in the B �B MC
simulation (after removing the corresponding signal)
were fitted by the sum of a combinatorial background
component and a peaking component, using the same
parametrization described in Sec. III C. The average num-
ber of B �B combinatorial and peaking background events
predicted by the simulation are given in Table III, together
with the main sources of peaking events and the functional
shapes chosen to describe the peaking background. The
numbers of signal events expected are also given for com-
parison. For the B ! D�K WS channels, we could not
identify a specific source of peaking background due to
the lack of statistics in the simulation. For all channels, we
use the values of the peaking components summarized in
Table III in the maximum likelihood fit. Statistical uncer-
tainties in the expected yields are incorporated in the
corresponding systematic uncertainties.

V. RESULTS

A. Results for B ! Dð�Þ�

The results for B ! Dð�Þ� are displayed in Fig. 3 (right-
sign modes) and Fig. 4 (wrong-sign modes). They are
summarized in Table IV. Clear signals are observed in
the B ! D� and in the B ! D�

D�0� WS modes, with

statistical significances of 7� and 4:8�, respectively. The

significance is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnðL0=LmaxÞ

p
, where Lmax

andL0 are the likelihood values with the nominal and with
zero WS signal yield, respectively. For B ! D�

D�� WS

decays, the significance is only 2�, due to the large
peaking background. Below we discuss the sources of

systematic uncertainties that contribute to our Rð�Þ
D�

measurements:
(1) Signal NN shape: in the nominal fit, we use the NN

PDF from the B signal MC. To estimate the related
systematics, we refit the data using a signalNN PDF
extracted from the high purity and high statistics
B ! D� RS data, after subtracting the residual
continuum background contamination predicted by
the simulation. We set the systematic uncertainty to
the difference with the nominal fit result.

(2) B background NN shape: from a study of generic
B �B MC, it appears that the NN spectra of B back-
ground events in the mES-�E signal box are similar
to the signal (but suffer from very low statistics),
while the NN spectra of background events in an
enlarged mES-�E region differ significantly from
the signal and show less peaking close to 1. In the
nominal fit we assumed that both the peaking
and the nonpeaking B �B background components
could be described by the B ! D� signal NN
PDF. To estimate the related systematic error, we
used B �B generic background events selected in a
�E-mES enlarged window j�Ej< 200 MeV and

TABLE III. Expected numbers of signal and B �B background events, peaking background parametrization and dominant sources of

peaking backgrounds for B ! Dð�Þ� and B ! Dð�ÞK. NðcombÞ
B �B

is the combinatorial part of the background, parametrized by an ARGUS

function, and N
ðpeakÞ
B �B

is the component peaking in mES, parametrized by either a Gaussian function or a bifurcated Gaussian function.

The average event yield expected for the WS signal is computed assuming rð�ÞB ¼ 10% and no interference term ( cos�� cos� ¼ 0).

Mode Signal yield NðcombÞ
B �B

N
ðpeakÞ
B �B

Peaking background parametrization Peaking background sources

D�� WS 86 94� 6 11� 3 Gaussian D��
0 eþ�e

D�
D�0�

� WS 31 25� 8 29� 9 Bifurcated Gaussian D��
0 eþ�e, D

0�
1 eþ�e

D�
D��

� WS 25 111� 9 47� 7 Bifurcated Gaussian D��
0 eþ�e, D

0�
1 eþ�e, and Dð�Þ0
0

D�� RS 24240 307� 12 222� 10 Gaussian K��þ��, ðc �cÞK�

D�
D�0�

� RS 8931 621� 34 507� 33 Bifurcated Gaussian D�
�, D�þ��

D�
D��

� RS 7242 1225� 64 2432� 67 Bifurcated Gaussian D�
�, D�þ��, and D�
D�0�

�

DK� WS 26 107� 6 13� 3 Gaussian Dh�, K�Kþ��

D�
D�0K

� WS 9 17� 3 3� 2 Gaussian -

D�
D�K

� WS 7 68� 5 6� 2 Gaussian -

DK� RS 1944 51� 5 299� 11 Gaussian D��

D�
D�0K

� RS 618 56� 7 127� 8 Gaussian D�
D�0�

�

D�
D�K

� RS 503 66� 15 327� 17 Bifurcated Gaussian D�
D��

�, D�
D�0K

�
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mES > 5:20 GeV=c2 to build the NN PDF of the
nonpeaking part of the B �B background (keeping
the signal NN PDF to describe the peaking part of
this background) and repeated the fits, taking the

difference of the results as the associated systematic
uncertainty.

(3) Continuum background NN shape: to account for
possible differences between the simulation and the
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FIG. 3 (color online). Projections on mES (a, b, c) and NN (d, e, f) of the fit results for D� (a, d), D�
D�0� (b, e) and D�

D�� (c, f) RS
decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The points with error bars are data. The curves represent the fit projections for signal plus background (solid) and
background (dashed).
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FIG. 4 (color online). Projections on mES (a, b, c) and NN (d, e, f) of the fit results for D� (a, d), D�
D�0� (b, e) and D�

D�� (c, f) WS
decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The curves represent the fit projections for signal plus background (solid), the sum of all background components
(dashed), and q �q background only (dotted).
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data, we used the NN spectrum from off-peak data
instead of q �q MC (q ¼ u, d, s, c) to model this
component. We set the associated systematic uncer-
tainty to the difference of the two results, but the
error is dominated by the large statistical uncertainty
on the off-peak data sample.

(4) The shape parameters 	 ðWSÞ
B and 	 ðRSÞB of the ARGUS

functions describing the suppressed and favored B �B
combinatorial background: in the nominal fits, these
parameters are fixed to their values as determined
from B �B simulated events. To account for possible
disagreement between data and simulation, we re-
peated the fits varying these parameters in a con-
servative range.

(5) Peaking component in the B background: we varied
the yield of the peaking component by �1�, where
� is either the statistical error from a fit to generic
B �BMC or the uncertainty on the branching fraction
for known sources of peaking background.

(6) Uncertainty on the number of B �B combinatorial
background events: in theD�� (andD�K) fits where
this component has been fixed, we vary it by �25%
(the level of agreement between data and simulation
observed in the D� and DK fits) and we take the
difference with the nominal fit result as a systematic
uncertainty.

Model uncertainties, like the fit model used to parametrize
the mES PDF, or the number of bins in the neural network
PDF histogram, are found to be much smaller and are
neglected. The resulting systematic uncertainties are listed

in Table V. We add them in quadrature and quote the
results:

RD� ¼ ð3:3� 0:6� 0:4Þ � 10�3;

R�
ðD�0Þ� ¼ ð3:2� 0:9� 0:8Þ � 10�3;

R�
ðD�Þ� ¼ ð2:7� 1:4� 2:2Þ � 10�3;

where the first uncertainty is statistical and the second is

systematic. The values ofRð�Þ
D� are in good agreement with

the world average RD ¼ r2D ¼ BðD0 ! Kþ��Þ=BðD0 !
K��þÞ, RD ¼ ð3:36� 0:08Þ � 10�3 [8].
A separate fit to Bþ and B� candidates provides a

measurement of the corresponding asymmetries. We
obtain the following results:

AD� ¼ 0:03� 0:17� 0:04;

A�
ðD�0Þ� ¼ �0:09� 0:27� 0:05;

A�
ðD�Þ� ¼ �0:65� 0:55� 0:22;

where the uncertainties are dominated by the statistical

error. No significant asymmetry is observed for the Dð�Þ�
WS decays. The largest source of systematic uncertainty

on the Dð�Þ� asymmetries is from the uncertainty on the B
background peaking component.

B. Results for B ! Dð�ÞK

The results for B ! Dð�ÞK are displayed in Fig. 5
(RS modes) and Fig. 6 (WS modes). They are summarized
in Table VI. Indications of signals are observed in the

TABLE IV. Summary of fit results for Dð�Þ�.

Mode D� D�
D�0� D�

D��

Ratio of rates, Rð�Þ
D� (10�3) 3:3� 0:6 3:2� 0:9 2:7� 1:4

Number of signal events NWS 80� 14 28� 8 19� 10
Number of normalization events NRS 24662� 160 9296� 102 7214� 105
Bþ ratio of rates, Rð�Þþ

D� (10�3) 3:2� 0:8 3:5� 1:2 4:6� 2:2
B� ratio of rates, Rð�Þ�

D� (10�3) 3:4� 0:8 2:9� 1:2 1:0� 1:8
Asymmetry Að�Þ

D� 0:03� 0:17 �0:09� 0:27 �0:65� 0:55

TABLE V. Summary of systematic uncertainties on R for Dð�Þ�, in units of 10�3.

Source

�Rð10�3Þ �Rð10�3Þ �Rð10�3Þ
D� D�

D�0� D�
D��

Signal NN �0:1 �0:1 �0:1
B �B background NN �0:1 �0:1 �0:9
udsc background NN �0:1 �0:1 �0:3
B �B combinatorial background shape (mES) �0:2 �0:1 �0:2
Peaking background WS �0:2 �0:8 �2:0
Peaking background RS �0:0 �0:1 �0:1
B �B combinatorial background - �0:0 �0:4
Combined �0:4 �0:8 �2:2

P. DEL AMO SANCHEZ et al. PHYSICAL REVIEW D 82, 072006 (2010)

072006-12



)2 (GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

)2
E

ve
n

ts
/(

2.
5 

M
eV

/c

0

50

100

150

200

250

300

350

400
(a)

)2 (GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3

)2
E

ve
n

ts
/(

2.
5 

M
eV

/c

0

20

40

60

80

100

120
(b)

)2 (GeV/cESm

5.2 5.22 5.24 5.26 5.28 5.3
0

20

40

60

80

100)2
E

ve
n

ts
/(

2.
5 

M
eV

/c

(c)

NN

-1 -0.5 0 0.5 1

E
ve

n
ts

 / 
( 

0.
02

 )

0

50

100

150

200

250

300

350 (d)

NN

-1 -0.5 0 0.5 1

E
ve

n
ts

 / 
( 

0.
02

 )

0

20

40

60

80

100

120 (e)

NN

-1 -0.5 0 0.5 1

E
ve

n
ts

 / 
( 

0.
02

 )

0

20

40

60

80

100

120
(f)

FIG. 5 (color online). Projections on mES (a, b, c) and NN (d, e, f) of the fit results for DK (a, d), D�
D�0K (b, e) and D�

D�K (c, f) RS
decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The points with error bars are data. The curves represent the fit projections for signal plus background (solid) and
background (dashed).
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FIG. 6 (color online). Projections on mES (a, b, c) and NN (d, e, f) of the fit results for DK (a, d), D�
D�0K (d, e) and D�

D�K (c, f) WS
decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The points with error bars are data. The curves represent the fit projections for signal plus background (solid), the
sum of all background components (dashed), and q �q background only (dotted).
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B ! DK and in the B ! D�
D�0K WS modes, with statisti-

cal significances of 2:2� and 2:4�, respectively, (Fig. 7).
Accounting for the systematic uncertainties, the significan-
ces become 2:1� and 2:2�, respectively. For B ! D�

D�K

WS, no significant signal is observed.
The systematic uncertainties have been estimated by

testing different fit models and recomputing Rð�Þ
DK, as ex-

plained in Section VA. A summary of the different system-
atic uncertainties is given in Table VII. The uncertainties
on the NN describing the B �B combinatorial background
and the uncertainties on the B �B peaking background are
the two main contributions. For B� ! DK�, we find for
the ratio of the WS to RS decay rates

R DK ¼ ð1:1� 0:6� 0:2Þ � 10�2:

Expressed in terms of event yields, the fit result is 19:4�
9:6� 3:5 WS events. The results of fits to separate Bþ !
DKþ and B� ! DK� data samples are given in Table VI.
Projections of the fits to Bþ and B� data are shown in
Figs. 8 and 9, respectively. We fit Rþ

DK ¼ ð2:2� 0:9�
0:3Þ � 10�2 for the Bþ sample, corresponding to 19:2�
7:9� 2:6 events. On the contrary, no significant WS signal
is observed for the B� sample, and we fit R�

DK ¼ ð0:2�
0:6� 0:2Þ � 10�2. The statistical correlation between
Rþ

DK and R�
DK (or RDK and ADK) is insignificant.

The systematic errors on the asymmetries are estimated
using the method discussed previously. The main systematic

error on ADK is from the uncertainty on the number
of peaking B background events for the WS channel.
This source contributes þ0:11� 0:14 to ADK, and
�0:08� 10�2 to RDK, where the changes in the two
quantities are 100% negatively correlated (increasing the
peaking background increases ADK but decreases RDK).
The other sources of systematic uncertainty considered in
Table VII are 100% correlated between Rþ and R�, and
mostly cancel in the asymmetry calculation. By comparing
the number of Bþ and B� events reconstructed in the
½K����D�� analysis, where no significant asymmetry is
expected, the uncertainty due to the detector charge asym-
metry is estimated to be below the 1% level. Finally, we also
account for a possible asymmetry of the charmless B� !
K�K��� peaking background. The asymmetry of this
background has been measured to be 0� 10% [19] and
we estimate the corresponding systematic uncertainty by
assuming a�10% asymmetry of this background. The final
result for the asymmetry is

A DK ¼ �0:86� 0:47þ0:12
�0:16:

For B� ! D�
D�0K

�, we find for the ratio of the WS to

RS decay rates

R �
ðD�0ÞK ¼ ð1:8� 0:9� 0:4Þ � 10�2:

Expressed in terms of event yields, the fit result is 10:3�
5:5� 2:4 WS events. The results of fits to separate Bþ !

TABLE VI. Summary of fit results for Dð�ÞK.

Mode DK D�
D�0K D�

D�K

Ratio of rates, Rð�Þ
DK (10�2) 1:1� 0:6 1:8� 0:9 1:3� 1:4

No. of signal events NWS 19� 10 10� 5 6� 6
No. of normalization events NRS 1755� 48 587� 28 455� 29
Bþ Ratio of rates, Rð�Þþ

DK (10�2) 2:2� 0:9 0:5� 0:8 0:9� 1:6
B� Ratio of rates, Rð�Þ�

DK (10�2) 0:2� 0:6 3:7� 1:8 1:9� 2:3
Asymmetry Að�Þ

DK �0:86� 0:47 0:77� 0:35 0:36� 0:94
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DK for B� ! DK� (left), B� ! D�
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� (center) and B� ! D�

D�K
� (right).

Systematic uncertainties are not included.
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D�Kþ andB� ! D�K� data samples are given in Table VI.
Projections of the fits toBþ andB� data are shown in Figs. 8
and 9, respectively.WefindR��

ðD�0ÞK ¼ ð3:7� 1:8� 0:9Þ �
10�2 for the B� sample, corresponding to 10:2� 4:8� 2:4
events. On the contrary, no significant WS signal is observed
for the Bþ sample, and we find R�þ

ðD�0ÞK ¼ ð0:5� 0:8�
0:3Þ � 10�2. The systematic errors are estimated using the
same method as for B� ! DK�, separately for Bþ and B�
events. The main systematic error on the asymmetry
A�

ðD�0ÞK is from the uncertainty on the number of peaking

B background events for the WS channel. This source con-
tributes �0:09 to A�

ðD�0ÞK, and �0:3� 10�2 to R�
ðD�0ÞK,

where the twoquantities are anticorrelated. The other sources
of systematic uncertainties mostly cancel in the asymmetry
calculation, because they induce relative changes on R�þ

andR�� which are 100% correlated. The final result for the
asymmetry is

A �
ðD�0ÞK ¼ þ0:77� 0:35� 0:12:

The asymmetry for D�
D�0K has the opposite sign to the

asymmetry for DK, in agreement with the shift of approxi-
mately 180
 between �B and ��

B suggested by the measure-
ments of Refs. [5,7].
For B ! D�

D�K, we have no significant signal and fit

R �
ðD�ÞK ¼ ð1:3� 1:4� 0:8Þ � 10�2:

Expressed in terms of event yields, this result corresponds
to 5:9� 6:4� 3:2 events D�

D�K WS. We fit 211� 19 RS

B� events and 244� 20 RS Bþ events, and find for the
WS to RS ratios R��

ðD�ÞK ¼ ð1:9� 2:3� 1:2Þ � 10�2 and

TABLE VII. Summary of systematic uncertainties on R for Dð�ÞK, in units of 10�2.

Error source �Rð10�2Þ �Rð10�2Þ �Rð10�2Þ
DK D�

D�0K D�
D�K

Signal NN �0:1 �0:1 �0:3
B �B background NN �0:1 �0:3 �0:4
q �q background NN �0:1 �0:1 �0:1
B �B combinatorial background shape (mES) �0:1 �0:1 �0:1
Peaking background WS �0:2 �0:3 �0:6
Peaking background RS �0:0 �0:1 �0:1
Floating B �B combinatorial background - �0:1 �0:2
Combined �0:2 �0:4 �0:8
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FIG. 8 (color online). Projections onmES (a, b, c) and NN (d, e, f) of the fit results forDKþ (a, d),D�
D�0K

þ (b, e) andD�
D�K

þ (c, f)
WS decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The points with error bars are data. The curves represent the fit projections for signal plus background (solid), the
sum of all background components (dashed), and q �q background only (dotted).
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R�þ
ðD�ÞK ¼ ð0:9� 1:6� 0:7Þ � 10�2. The corresponding

asymmetry is

A �
ðD�ÞK ¼ þ0:36� 0:94þ0:25

�0:41:

VI. DISCUSSION

We use the B� ! Dð�ÞK� analysis results and a fre-
quentist statistical approach [20] to extract information on

rB and rð�ÞB . In this technique a �2 is calculated using the
differences between the measured and theoretical values
(including systematic errors) of the various ADS quantities
from Eqs. (1), (4), and (5). We assume Gaussian measure-
ment uncertainties. This assumption was checked to be
valid and conservative at low rB values with a full frequent-
ist approach [5]. For B� ! DK�, we have for instance

�2 ¼ ðRþ
DK �RþðthÞ

DK ðrB; �; �B; rD; �DÞÞ2=�2
Rþ

þ ðR�
DK �R�ðthÞ

DK ðrB; �; �B; rD; �DÞÞ2=�2
R�

þ ðrðmÞ
D � rDÞ2=�2

r þ ð�ðmÞ
D � �DÞ2=�2

�; (9)

where R�ðthÞ
DK ðrB; �; �B; rD; �DÞ is given by Eq. (1), and

where the two last terms constrain rD and �D to the values

rðmÞ
D and �ðmÞ

D of Ref. [8] within their errors �r and ��. The
choice of (Rþ

DK, R
�
DK) rather than (RDK, ADK) is moti-

vated by the fact that the set of variables (RDK, ADK) is
not well behaved (the uncertainty on ADK depends on
the central value of RDK), while (Rþ

DK, R
�
DK) are two

statistically independent observables. In the same way,
the two pairs of ADS observables (R�þ

ðD�0ÞK, R��
ðD�0ÞK)

and (R�þ
ðD�ÞK, R

��
ðD�ÞK) are used to extract r�B, while ac-

counting for the relative phase difference in the two D�

decays [9]. We allow 0  rð�ÞB  1, �180
  �  180
,
and�180
  �ð�Þ

B  180
. The minimum of the �2 for the

rð�ÞB , �, �ð�Þ
B , rD, and �D parameter space is calculated first

(�2
min). We then scan the range of rð�ÞB minimizing the �2
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FIG. 9 (color online). Projections on mES (a, b, c) and NN (d, e, f) of the fit results for DK� (a, d), D�
D�0K

� (b, e) and D�
D�K

� (c, f)
WS decays, for samples enriched in signal with the requirements NN > 0:94 (mES projections) or 5:2725<mES < 5:2875 GeV=c2

(NN projections). The points with error bars are data. The curves represent the fit projections for signal plus background (solid), the
sum of all background components (dashed), and q �q background only (dotted).
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FIG. 10 (color online). Constraints on rð�ÞB from the combined
B� ! ½K��Dð�ÞK� ADS measurements. The solid (dotted) curve
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value as a function of rð�ÞB . The horizontal lines show the

exclusion limits at the 1 and 2 standard deviation levels.

P. DEL AMO SANCHEZ et al. PHYSICAL REVIEW D 82, 072006 (2010)

072006-16



(�2
m) by varying �ð�Þ

B , �, rD, and �D. A C.L. for rB is
calculated using ��2 ¼ �2

m � �2
min and 1
 of freedom.

The results of this procedure are shown in Fig. 10 for the

C.L. curve as a function of rð�ÞB . The results are summarized
in Table VIII. For B� ! ½K��DK�, we find the minimum
�2 at rB ¼ ð9:5þ5:1

�4:1Þ%. This leads to the upper limit: rB <
16:7% at 90% C.L., to be compared to rB < 23% at
90% C.L. for the previous ADS analysis as performed by
BABAR [4] with 232� 106 B �B pairs, and to rB < 19% at
90% C.L. for the corresponding ADS analysis as per-
formed by Belle [6] with 657� 106 B �B pairs. We exclude
rB ¼ 0 with a C.L. of 95.3%. Similarly, for B� !
½K��D�K� we find r�B ¼ ð9:6þ3:5

�5:1Þ%. This leads to the

upper limit: r�B < 15:0% at 90% C.L., to be compared to
r�B < 16% at 90% C.L. for the previous BABAR ADS
analysis [4]. We exclude r�B ¼ 0 with a C.L. of 83.9%.

Using the above procedure we also determine the 2D

confidence intervals for � vs �ð�Þ
B shown in Figs. 11 and 12.

Choosing the solution with 0< �< 180
 favors a positive
sign for the strong phase �B (ADK < 0), and a negative
sign for the strong phase ��

B (A�
ðD�0ÞK > 0). This result is

in good agreement with the values of the strong phases
determined in Refs. [5,7]. Finally, Fig. 13 shows the C.L.
curve as a function of � when combining the DK and D�K
results.

VII. SUMMARY

In summary, using a data sample of 467� 106 B �B pairs,

we present an updated search of the decays B� ! Dð�ÞK�
where the neutral D meson decays into the Kþ�� final

state (WS). The analysis method is first applied to B� !
Dð�Þ��, where the D decays into the Cabibbo-favored
(K��þ) and doubly suppressed modes (Kþ��). We mea-
sureRD� ¼ ð3:3� 0:6� 0:4Þ � 10�3,R�

ðD�0Þ� ¼ ð3:2�
0:9� 0:8Þ � 10�3 and R�

ðD�Þ� ¼ ð2:7� 1:4� 2:2Þ �
10�3, in good agreement with the ratio RD of the sup-
pressed to favored D0 ! K� decay rates, RD ¼ ð3:36�
0:08Þ � 10�3 [8]. Both the branching fraction ratios
and the CP asymmetries measured for those modes,

TABLE VIII. Constraints on rð�ÞB from the combined B� !
½K��Dð�ÞK� ADS measurements.

Parameter 1� measurement 90% C.L. upper limit

rB ð9:5þ5:1
�4:1Þ% <16:7%

r�B from

D�0 ! D0�0 ð13:1þ4:2
�6:1Þ% <19:5%

D�0 ! D0� ð12:0þ10:0
�12:0Þ% <24:5%

all D�0 decays ð9:6þ3:5
�5:1Þ% <15:0%
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FIG. 11 (color online). One minus confidence level isocon-
tours on � vs �B from the B� ! ½K��DK� ADS measurement.
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FIG. 12 (color online). One minus confidence level isocon-
tours on � vs ��

B from the combined B� ! ½K��D�K� ADS
measurements.
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AD� ¼ ð3� 17� 4Þ � 10�2,A�
ðD�0Þ� ¼ ð9� 27� 5Þ�

10�2 and A�
ðD�Þ� ¼ ð65� 55þ20

�24Þ � 10�2, are consistent

with the expectations discussed in Sec. I.
We see indications of signals for the B ! DK and B !

D�
D�0K wrong-sign modes, with significances of 2:1� and

2:2�, respectively. The ratios of the WS to RS branching
fractions are measured to be RDK ¼ ð1:1� 0:6� 0:2Þ �
10�2 and R�

ðD�0ÞK ¼ ð1:8� 0:9� 0:4Þ � 10�2 for B !
DK and B ! D�

D�0K, respectively. The separate measure-

ments of Rð�Þ�
DK for Bþ and B� events indicates large CP

asymmetries, with ADK ¼ �0:86� 0:47þ0;12
�0:16 for B !

DK and A�
ðD�0ÞK ¼ þ0:77� 0:35� 0:12 for B ! D�K,

D� ! D�0. For the B ! D�
D�K WS mode, we see no

statistically significant evidence of a signal. We mea-
sure R�

ðD�ÞK ¼ ð1:3� 1:4� 0:8Þ � 10�2 and A�
ðD�ÞK ¼

þ0:36� 0:94þ0:25
�0:41. These results are used to extract the

following constraints on rð�ÞB :

rB ¼ ð9:5þ5:1
�4:1Þ%; r�B ¼ ð9:6þ3:5

�5:1Þ%:

Assuming 0<�< 180
, we also extract constraints on

the strong phases �ð�Þ
B , in good agreement with other

measurements Ref. [5,7].
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