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We analyze the existence of a dilaton in gauge theories with approximate infrared conformal symmetry.

To the extent that these theories are governed in the infrared by an approximate fixed point (walking), the

explicit breaking of the conformal symmetry at these scales is vanishingly small. If confinement and

spontaneous chiral-symmetry breaking set in at some infrared scale, the resultant breaking of the

approximate conformal symmetry can lead to the existence of a dilaton with mass parametrically small

compared to the confinement scale, and potentially observable at the LHC.
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I. INTRODUCTION

The spontaneous breaking of an approximate continuous
symmetry leads to the existence of a light pseudo–Nambu-
Goldstone boson (PNGB). The light pion in QCD, for
example, is the PNGB associated with the spontaneous
breaking of an approximate chiral symmetry. A long-
standing question is whether there can also exist a PNGB,
the dilaton, associated with the spontaneous breaking of an
approximate dilatation, or scale symmetry of some four-
dimensional gauge theories [1]. This breaking could arise,
for example, along with the spontaneous breaking of chiral
or other global symmetries of these theories.

Even with vanishing particle masses, however, the dila-
tation symmetry is present only classically, broken explic-
itly by the renormalization scale entering at the quantum
level. The divergence of the dilatation current D� is
proportional to the �-function �ð�Þ. There could be an
approximate dilatation symmetry if �ð�Þ is, in some sense,
small. If this approximate symmetry is broken spontane-
ously, a light dilaton would emerge as a PNGB. This notion
was explored in the 1980s, with the smallness of the �
function being due to the particular field content of the
theory, leading to ‘‘slow’’ running of the coupling. The
results were inconclusive [2–5].

Gauge theories with nontrivial infrared fixed points
(IRFP’s) provide a natural description of slow running
[6,7]. IRFP’s are known to exist if the fermion content of
the theory is such as to make the fixed point weak, and
therefore accessible in perturbation theory. For electro-
weak applications, though, the IRFP may have to be strong
enough (the fermion number small enough) to trigger
the spontaneous breaking of chiral symmetry. Walking
theories are those in which the supercritical IRFP is close
enough to criticality so that the scale of breaking is ‘‘small.’’
The IRFP then governs the theory for a range of momenta
above the breaking scale.

Recent lattice studies [8,9] indicate that relatively strong
IRFP’s do appear in certain gauge theories. Depending
on the number of fermions, these fixed points can be

subcritical, or somewhat supercritical, leading to walking
behavior. Here we examine the question of whether a
walking gauge theory can lead to the appearance of a
dilaton. Although the scale of chiral-symmetry breaking
is small relative to the scale characterizing the UV behav-
ior, this small scale is the physical confinement scale �.
Therefore, one can safely conclude that the theory contains
a dilaton only if it is parametrically light relative to this
scale.
A four-dimensional field theory with a dilatation sym-

metry is also invariant under the larger group of conformal
transformations. Since in the presence of an IRFP, the
interacting theory flows to one with conformal symmetry,
the fermion-number range that leads to this behavior while
maintaining asymptotic freedom is referred to as the con-
formal window. The existence of either exact or approxi-
mate conformal symmetry has led also to a study of these
theories based on the AdS/CFT correspondence, where the
dilaton is dual to a radion.
Our analysis of dilatation symmetry and its breaking is

for a vectorlike gauge theory with a critical fermion num-
ber separating the conformal window from a phase with
confinement and chiral-symmetry breaking. But the chiral-
symmetry breaking is not essential. The discussion could
also be framed in the context of, say, a chiral gauge theory
where a critical fermion number separates a conformal
phase from one with confinement and massless composite
fermion formation, but no chiral-symmetry breaking [10].

II. THE DILATATION CURRENT
AND ITS DIVERGENCE

We consider an SUðNÞ gauge theory with Nf massless

Dirac fermions. We take them to be in the fundamental
representation, although our discussion can be applied to
other representations as well. The Lagrangian is

L ¼ � 1

4
Ga

��0G
��
a0 þ i

XNf

j¼1

�c j
0ð@��� þ ig0taA

a
�0�

�Þc j0;

(1)
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where the 0 subscript denotes the unrenormalized coupling
constant and fields. It is corrected by higher-dimension,
irrelevant operators. Since the dominant terms are
dimension-4, there is an approximate, low-energy dilata-
tion symmetry at the classical level.

At the quantum level, even disregarding the irrelevant
operators, the dilatation current D�, related to the sym-
metric energy-momentum tensor ��� byD� ¼ ���x�, has
a nonvanishing divergence given by [11,12]

@�D� ¼ ��� ¼ �ð�Þ
4�

Ga
��G

a��: (2)

Here, � � �ð�Þ is the renormalized gauge coupling
defined at some scale�,�ð�Þ is the renormalization-group
(RG) � function, and Ga

�� is the renormalized field-

strength tensor. It is given by Ga
�� � @�A

a
� � @�A

a
� �

gðZ1=Z2ÞfabcAb
�A

c
�, where Aa

� is the renormalized gauge

field related to Aa
�0 by the wave-function renormalization

factor Z1=2
3 , Z2 is the fermion wave-function renormaliza-

tion factor, Z1 is the fermion–gauge boson coupling renor-
malization factor. To render the connected matrix elements
of the composite operator Ga

��G
a�� finite in perturbation

theory, additional subtractions are necessary [11,12]. The
connected matrix elements of ��� are then UV finite and
independent of the RG scale �.

The partially conserved axial current relation in QCD is
similar. With a quark-doublet field c ðxÞ and a common
quark massm, the divergence of the axial isospin current is
given by

@�j5a� ¼ 2mj5a; (3)

where j5a ¼ i �c�5�ac , with c ðxÞ the renormalized quark

field, related to the bare field by Z1=2
2 . Here, m � mð�Þ is

the renormalized quark mass with anomalous dimension
��ð�Þ, and the mass operator j5a has anomalous dimen-
sion �ð�Þ. Thus, Eq. (3), the analog of Eq. (2), is RG
invariant. Sincemð�Þ is small, the axial current is approxi-
mately conserved, and chiral perturbation theory can be
used to compute the mass of the pions.

III. INFRARED FIXED POINTS

For an SUðNÞ gauge theory with Nf flavors in the

fundamental representation, the � function is [13]

�ð�Þ � �
@�

@�
� � b0

2�
�2 � b1

4�2
�3 þ � � � ; (4)

where the two leading coefficients are scheme independent
with b0 ¼ ð11N � 2NfÞ=3. For b0 > 0 and small (Nf just

below 11N=2), a perturbative IRFP exists with strength
�� � �2�b0=b1 [14], and the theory becomes conformal
in the infrared. The value of �� increases as Nf decreases,

suggesting that it eventually exceeds a critical strength �c

for the spontaneous breaking of chiral symmetry and the
appearance of confinement.

The critical value Nc
f at which this happens is not likely

to be accessible in perturbation theory. Its determination
through an analysis of the gauge coupling and associated �
function therefore requires some nonperturbative scheme
for the definition of these quantities. Lattice simulations
are currently being employed for this purpose for a variety
of gauge groups and representation assignments for the
fermions [8]. Precise values for Nc

f are not yet determined,

but infrared conformal behavior is seen for a range of Nf

values, while chiral-symmetry breaking and confinement
are seen at lower values. Preliminary lattice evidence is
also consistent with the idea that the transition at Nf ¼ Nc

f

is second order or higher.
Walking sets in when Nf is close to but below Nc

f: 0<

Nc
f � Nf � Nc

f. (This can be viewed as requiring some

fine-tuning in theory space.) Adopting a nonperturbative
scheme for the definition of �ð�Þ, we expect 0<�� �
�c � �c � Oð1Þ. The scale of chiral-symmetry breaking
and the associated confinement scale are then of order the
scale � at which �ð�Þ crosses �c. It is vanishingly small
relative to the scale characterizing the perturbative UV
behavior as Nf ! Nc

f, and � is governed by the IRFP for

some range of scales above �.
In the neighborhood of an IRFP, either exact if Nf > Nc

f

or approximate in the case of walking, the simplest as-
sumption is that the � function has a linear zero. Lattice
evidence (Refs. [8,9]) directly supports this assumption for
the case Nf > Nc

f. We have

�ð�Þ ’ �sð�� � �Þ þOðð�� � �Þ2Þ; (5)

where s > 0 is the slope at � ¼ ��. In the walking case
(0<�� � �c � �c), Eq. (5) governs the evolution of� as
� ! � for a range of� above�. There, the solution to the
linearized RG equation takes the form

� ’ �� � ð�� � �cÞ
�
�

�

�
s
; (6)

and the � function is given approximately by

�ð�Þ ’ sð�c � ��Þ
�
�

�

�
s
: (7)

Since 0< s � Oð1Þ and 0<�� � �c � �c, the �
function is small for a range of � above �, suggesting
that conformal perturbation theory can be used to compute
the mass of a PNGB dilaton in analogy to the pion of QCD.
(It is also possible that the �-function zero is higher order
as in the scenarios of Ref. [15], with the corresponding �
function also small for a range of � above �.)

IV. PCAC AND THE PION MASS

We first review briefly the derivation of the partially
conserved axial current (PCAC) formula for the pion
mass. Defining the pion decay constant via

THOMAS APPELQUIST AND YANG BAI PHYSICAL REVIEW D 82, 071701(R) (2010)

RAPID COMMUNICATIONS

071701-2



h0jj5a� ðxÞj�bðpÞi ¼ �if�	
abp�e

�ipx; (8)

and using Eq. (3), one has

h0jj5að0Þj�bðp ¼ 0Þi ¼ � f�m
2
�

2m
	ab: (9)

With Q5a � R
d3xJ5a0 , we have the commutation rela-

tion ½iQ5a; J5b� ¼ 	ab �c c . Using the local version of this
relation and approximate current conservation,

i@�h0jTj5a� ðxÞj5bð0Þj0i ’ 	4ðxÞ	abh0j �c c j0i; (10)

where ‘‘T’’ means time ordered. Fourier transforming and
assuming pion pole dominance, one obtains

h�bðp ¼ 0Þjj5að0Þj0i ’ h0j �c c j0i
f�

	ab: (11)

Comparing Eqs. (9) and (11), the PCAC formula for the
pion mass is given by

m2
� ’ � 2mh0j �c c j0i

f2�
: (12)

Since the operator j5a has anomalous dimension �ð�Þ
equal and opposite to that of the mass m � mð�Þ, the
expression for m2

� is � independent. With � taken to be
above a GeVor so, mð�Þ is only a few MeV, and the above
expression gives the leading contribution to the pion mass
in chiral perturbation theory.

V. PCDC AND THE DILATON MASS

We can repeat the PCAC analysis to derive an expression
for the dilaton mass based on a partially conserved dilata-
tion current (PCDC). Taking Nf & Nc

f and assuming the

existence of a dilaton state j
ðpÞi, we define the dilaton
decay constant as [16]

h0j���ðxÞj
ðpÞi � f

3
ðp�p� � g��p2Þe�ipx; (13)

where p2 ¼ m2

 and j0i is the vacuum state corresponding

to spontaneously broken chiral and dilatation symmetry.
Taking the divergence of the corresponding matrix element
of D� ¼ ���x� and using Eq. (2), we have

@�h0jD�ðxÞj
ðpÞi ¼ h0j���ðxÞj
ðpÞi ¼ �f
m
2

e

�ipx:

(14)

To proceed, it is natural to think thatGa
��G

a��ðxÞwill be
the analogue of �c c ðxÞ in the PCAC discussion. But
although the connected matrix elements of Ga

��G
a��ðxÞ

such as h0jGa
��G

a��ðxÞj
ðpÞi are finite, this is not true of
its vacuum expectation value, which plays the defining role
in spontaneous dilatation-symmetry breaking [17]. It is
quartically cutoff dependent in perturbation theory.

We remove this piece by a subtraction procedure. We
have defined the running coupling and the renormalized
field strength Ga

�� at some scale � (with ��� being �

independent). From here on, for simplicity, we take � ¼
�� with � 	 1, satisfying �ð��Þ � �ð�Þ. We then define

½����� � �ð�Þ
4�

½Ga
��G

a����

� �ð�Þ
4�

Ga
��G

a�� � h0j�ð�Þ
4�

G2j0ip	��; (15)

where h0j�ð�Þ=4�G2j0ip	�� is the vacuum value com-

puted by including momentum components only above
��. This subtraction should be implementable in a non-
perturbative framework such as a lattice-based simulation,
as well as in perturbation theory.
The subtraction leaves h0j½�����j0i UV-cutoff indepen-

dent and free of dependence on the high-energy RG scale
associated with perturbative running which breaks the
dilatation symmetry explicitly. This definition is useful
only in the case of walking, where a hierarchy develops
between � and the high-energy scale. The quantity
h0j½Ga

��G
a����j0i serves as an order parameter for sponta-

neous dilatation-symmetry breaking, vanishing con-
tinuously as Nf ! Nc

f from below (� ! 0). It has been

defined in analogy to subtraction schemes defining the
‘‘gluon condensate’’ in QCD [18], but in a way appropriate
for the study of spontaneous dilatation-symmetry breaking.
To proceed as in the PCAC discussion, it is useful

to define a correspondingly subtracted energy-momentum
tensor ½���ðxÞ�� ¼ ���ðxÞ � ðg��=4Þh0jð�ð�Þ=4�Þ
G2j0ip	��, and subtracted dilatation current ½D�ðxÞ�� ¼
x�½���ðxÞ��, whose divergence is small in all matrix ele-
ments including its vacuum value. The corresponding
charge ½Q�� ¼ R

dx3½D�¼0ðxÞ�� is the generator of dila-
tation transformations. Since the underlying theory is ap-
proximately conformal at momentum scales of order� and
the operator ½����� has vanishing anomalous dimension,
we have ½i½Q��; ½������ ’ 4½�����.
Making use of the local version of this commutation

relation and using @�½D�ðxÞ�� ’ 0, we have

i@�h0jT½D�ðxÞ��½���ð0Þ��j0i ’ 4	4ðxÞh0j½�����j0i: (16)

The contribution of the vacuum intermediate state on
the left-hand side (LHS) is small (and, in fact, is exactly
canceled by the corresponding contribution to the ne-
glected term, ih0jT½���ðxÞ��½���ð0Þ��j0i, on the right-hand
side). Fourier transforming and assuming dilaton-state
dominance of the remaining piece on the LHS, and using
Eq. (13), we obtain

h
ðp ¼ 0Þj½���ð0Þ��j0i ’ 4

f

h0j½�����j0i: (17)

Comparing Eq. (17) with Eq. (14) (where ��� can be
replaced with ½�����), we arrive at the PCDC formula for
the dilaton mass

m2

 ’ � 4

f2

h0j½�����j0i: (18)
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For an order of magnitude estimate, we take f
 ’ �.
(In QCD f� ’ 0:3�.) From the definition Eq. (15), we then
expect h0j½Ga

��G
a����j0i ’ �4, since there remains no

larger momentum scale after the subtraction. Making the
simplest assumption that the IRFP is described by a linear
zero of the � function, we can use Eq. (7) to arrive at

m2

 ’ sð�� � �cÞ

�c

�2 ’ ðNc
f � NfÞ
Nc

f

�2; (19)

where we have used the fact that for Nf close to Nc
f,

ð�� � �cÞ=�c ’ Oð1ÞðNc
f � NfÞ=Nc

f. While this analysis

has invoked scheme-dependent quantities such as � and
�c, the final estimate, in terms of the physical confinement
scale �, must be scheme independent.

The parametric smallness of m
 relative to the con-
finement and chirality-breaking scale � (the electro-
weak breaking scale in a technicolor context) is due to
the parametric smallness of h0j½�����j0i ¼ ð�ð�Þ=4�Þ

h0j½Ga

��G
a����j0i. It is defined at a scale �� with

� 	 1, and does not contain important contributions from
scales below �. In the limit Nf ! Nc

f, since � ! 0, the

order parameter h0j½Ga
��G

a����j0i vanishes, but the dila-

ton mass vanishes more rapidly. By contrast, in the PCAC
case, h0j �c c j0i remains finite as m ! 0.

Expressions similar to Eq. (18) may be found in the
literature [5,19], but not employed in the present frame-
work of approximate infrared dilatation symmetry and not
indicating parametric smallness of m
. The physical pic-
ture here is that the dilaton is formed at scales * �. The
vector resonances, baryons, glueball states, etc., are also
expected to be formed at these scales, as are the chiral
NGB’s. They and the PNGB dilaton are the only lighter
states. The dilaton, with its vacuum quantum numbers, is
an admixture of gluon and fermion constituents, but para-
metrically lighter than other 0þþ states.

It will be important to explore and confirm these ideas in
a more dynamical framework, for example, through a study
of the vacuum energy functional. This was attempted in
Ref. [4], but using a quasiperturbative approach with un-
controlled truncations and questions of gauge dependence.
The only way we know to do this reliably is through lattice
simulations. The gauge-boson condensate h0jGa

��G
a��j0i,

both unsubtracted and subtracted, will play a central role
here. More directly, the existence of a parametrically light
dilaton in a walking theory can be studied by the simula-
tion of correlation functions involving operators with

vacuum (0þþ) quantum numbers. The spectral analysis
should exhibit a parametrically light state as well as, say,
glueball states with Oð�Þ masses.

VI. HIGHER-DIMENSION OPERATORS

A gauge theory is naturally corrected by higher-
dimension (irrelevant) operators entering at some ultravio-
let scale. In technicolor, these are the effective four-fermion
interactions responsible for quark and lepton masses, and
also for lifting the masses of some chiral NGB’s (those not
eaten by the W and Z). Since these operators explicitly
break dilatation symmetry, they also contribute to the mass
of the dilaton. An application of Dashen’s formula [20]
gives�m2


 ¼ h0j½Q; ½Q;H ��j0i=f2
, whereH is a higher-
dimension term in the Hamiltonian. The contribution to the
dilaton mass from such terms is suppressed providing either
that the anomalous dimension ofH is small enough at the
UV scale to maintain its dimension above 4 or that there is a
small overall coefficient.

VII. CONCLUSION AND DISCUSSION

We have argued that a parametrically light dilaton is a
natural feature of a walking gauge theory, one character-
ized by an approximate infrared fixed point somewhat
supercritical for the spontaneous breaking of the chiral
symmetries. There is no such state in a QCD-like theory.
The dilaton is narrow, decaying into the chiral NGB’s in
the model of this paper. With standard-model fields in-
cluded, it can potentially decay into longitudinal gauge
bosons, chiral PNGB’s, quarks, and leptons. The couplings
of the dilaton field to the standard-model fields can be
obtained from the standard-model Higgs couplings by
replacing vEW by f
. Its LHC phenomenology, dark matter
consequences, and flavor constraints have been studied
recently in Refs. [1,21–24].
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