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The components of the renormalized quantum energy-momentum tensor for a massive vector field

coupled to the gravitational field configuration of static 3þ 1 dimensional black strings in anti-de Sitter

space are analytically evaluated using the Schwinger-DeWitt approximation. The general results are

employed to investigate the pointwise energy conditions for the quantized matter field, and it is shown that

they are violated at some regions of the space-time, in particular the horizon of the black hole.
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Quantum theory and general relativity are two beautiful
parts of modern physics that, for more than a century, have
been developed in such an extent that our knowledge of the
universe at short and long scales has increased as never
before in the human history. With the help of the quantum
theory we can explain microworld phenomena. On the
other hand, the general theory of relativity allows us a
deep understanding of the large scale structure of the
universe. These two major achievements in theoretical
physics in the 20th century are still, nearly 100 years later,
going separate ways. There is not yet such a thing as a
theory of quantum gravity, but in their quest for the theory
of everything, the physicists try to bring them together.
Quantum gravitation is a tool that would be very important
to describe, among other things, the creation of the uni-
verse and its later development.

One of the approaches developed to consider quantum
effects in gravitation, called semiclassical gravity, consid-
ers the quantum dynamics of fields in a gravitational
background, which at this level of description is considered
as a classical external field. In the absence of a full theory
of quantum gravity, semiclassical gravity is a well estab-
lished physical theory that helps us to know the expected
behavior of a gravitational system under the influence of
the interaction between it and matter fields that obey the
laws of quantum theory [1].

In this approximate theory, fundamental information
about the quantum matter fields is contained in the renor-
malized quantum stress-energy tensor hT�

�iren, that can, in
principle, be constructed using a variety of mathematical
techniques, including analytical, semianalytical, and nu-
merical ones, see [2–17] and references therein.

For the important case of massive fields, one of the
developed approaches for determining hT�

�iren is based in

the calculation of the renormalized quantum effective

action for the quantized matter field, using the
Schwinger-DeWitt proper time technique to give an ex-
pansion of the effective action in terms of the field inverse
square mass. This is the celebrated Schwinger-DeWitt
expansion, in which the first three terms renormalize the
bare gravitational and cosmological constant, and add
some higher order terms to the Einstein gravitational
action. The next order term, proportional to m�2, where
m is the mass of the field, gives us the one-loop effective
action Wren for the matter field [3–6,14–17].
By functional differentiation of the one-loop effective

action, we can obtain the desired quantum stress tensor
using the standard formula

hT��iren ¼ 2ffiffiffiffiffiffiffi�g
p �Wren

�g�� : (1)

The above method has been applied to a number of
space-times of interest, including Schwarzschild [2,3],
Reisner-Nordstrom [2,14], charge dilatonic black holes,
and nonlinear electrically charged black holes in four
dimensions [15]. Also, in two recent papers we developed
the Schwinger-DeWitt technique for the calculation of the
renormalized stress-energy tensor of massive scalar and
spinor fields up to one-loop order in the space-time of static
four-dimensional black strings in anti-de Sitter space [16–
18]. For this interesting system, the problems of investigat-
ing the renormalized stress tensor components for confor-
mally coupled massless scalar fields were studied by
DeBenedictis in [19,20], who used the obtained hT�

�iren
for the calculation of gravitational backreaction of the
quantum field. In this work we complete the series of
papers [16,17] dedicated to the calculation of hT�

�iren for

massive fields in the static black string background, deter-
mining the components of this tensor for the case of a
massive vector field. We also investigate the fulfillment of
the pointwise energy conditions for the quantized field in
this gravitational background.
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The corresponding metric element for the static black
string space-time is

ds2 ¼ �
�
�2�2 � 4M

��

�
dt2 þ 1

ð�2�2 � 4M
��Þ

d�2

þ �2d’2 þ �2�2dz2; (2)

whereM is the mass per unit length of the string. As we can
see from (2), the considered metric has an event horizon

located at �þ ¼
ffiffiffiffiffi
4M3

p
� and the only true singularity is a

polynomial one at the origin.
The action for a single massive vector field A� with mass

m in some generic curved space-time in four dimensions is

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

4
F��F

�� þ 1

2
m2A�A

�

�
: (3)

The equation of motion for the field have the form

D̂
�
� ðrÞA� ¼ 0; (4)

where the second order operator D̂
�
� ðrÞ is given by

D̂
�
� ðrÞ ¼ �

�
�h�r�r� � R

�
� �m2�

�
� ; (5)

where h ¼ g��r�r� is the covariant D’Alembert opera-

tor, r� is the covariant derivative.

The usual formalism of quantum field theory gives an
expression for the effective action of the quantum field A�

as a perturbation expansion in the number of loops:

�ðA�Þ ¼ SðA�Þ þ
X
k�1

�ðkÞðA�Þ; (6)

where SðA�Þ is the classical action of the free field. The

one-loop contribution of the field A� to the effective action

is expressed in terms of the operator (5) as

�ð1Þ ¼ i

2
lnðDetD̂Þ; (7)

where DetF̂ ¼ expðTr lnF̂Þ is the functional Berezin

superdeterminant [6] of the operator F̂, and TrF̂ ¼
ð�1ÞiFi

i ¼
R
d4xð�1ÞAFA

AðxÞ is the functional supertrace

[6]. If the Compton’s wavelength of the field is less than the
characteristic radius of space-time curvature [3–6,14–17],
we can develop an expansion of the above effective action
in powers of the inverse square mass of the field. This
approximation is known as the Schwinger-DeWitt one, and
before applying this approach to the particular problem
considered in this work we make the following remarks. In
the first place, we mention that the Schwinger-DeWitt
technique is directly applicable to ‘‘minimal’’ second order
differential operators that have the general form

K̂
�
� ðrÞ ¼ ��

�h�m2��
� þQ�

� ; (8)

where Q�
� ðxÞ is some arbitrary matrix playing the role of

the potential.

As we can see, because of the presence of the non-
diagonal term in (5) it becomes a nonminimal operator,
and this fact is an obstacle to applying the Schwinger-
DeWitt technique. By fortune we can put (5) as a function
of some minimal operators, if we note that it satisfies

the identity D̂
�
� ðrÞðm2�

�
� �r�r�Þ ¼ m2ð��

�h� R
�
� �

m2�
�
� Þ.

Then the one-loop effective action for the nonminimal
operator (5) omitting an inessential constant can be
written as

i

2
Tr lnD̂�

� ðrÞ ¼ i

2
Trð��

�h� R�
� �m2��

� Þ

� i

2
Trðm2��

� �r�r�Þ: (9)

We can see in (9) that the first term is the effective action of
a minimal second order operator K

�
� ðrÞ with potential

�R
�
� . The second term can be transformed as

Tr½ 1
m2 r�r��n ¼ Tr½ 1

m2 r�hn�1r�� ¼ Tr½ 1
m2 h�n and

i

2
Trðm2�

�
� �r�r�Þ ¼ i

2
Trðm2 �hÞ: (10)

Then, the effective action for the massive vector field is
equal to the effective action of the minimal second order
operator K�

� ðrÞ minus the effective action of a minimal
operator S

�
� ðrÞ corresponding to a massive scalar field

minimally coupled to gravity.
Now using the Schwinger-DeWitt representation for

the Green’s function of the minimal operators, we can
obtain for the renormalized one-loop effective action
of the quantum massive vector field the expression
�ð1Þren ¼

R
d4x

ffiffiffiffiffiffiffi�g
p

Lren, where the renormalized effective

Lagrangian reads

L ren ¼ 1

2ð4�Þ2
X1
k¼3

ðTrað1Þk ðx; xÞ � Trað0Þk ðx; xÞÞ
kðk� 1Þðk� 2Þm2ðk�2Þ : (11)

The quantities ½að1Þk � ¼ að1Þk ðx; x0Þ and ½að0Þk � ¼ að0Þk ðx; x0Þ,
whose coincidence limit appears under the supertrace op-
eration in (11), are the Hadamard-Minakshisundaram-
DeWitt-Seeley coefficients for the minimal operators
K

�
� ðrÞ and S

�
� ðrÞ, respectively. As usual, the first three

coefficients of the DeWitt-Schwinger expansion, a0, a1,
and a2, contribute to the divergent part of the action and
can be absorbed in the classical gravitational action by
renormalization of the bare gravitational and cosmological
constants.
Restricting ourselves here to the terms proportional to

m�2, using integration by parts and the elementary prop-
erties of the Riemann tensor [6,14–17], we obtain for the
renormalized effective Lagrangian in the case of the
massive vector field considered in this work
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Lren ¼ 1

192�2m2

�
9

28
R��hR�� � 27

280
RhR� 5

72
R3

þ 31

60
RR��R

�� � 52

63
R�
� R�

�R
�
�

� 19

105
R��R��R

�
�
�
� þ 61

140
R��R

�
	��R

�	��

� 1

10
RR����R

���� � 67

2520
R��

��R��
	
R	


��

þ 1

18
R�

�
�
�R

�
	
�

R

	
�


�

�
: (12)

As we can see, this final expression of the one loop
effective for the massive vector field only differs from
that of the massive scalar and spinor fields in the numerical
coefficients in front of the purely geometric terms. For
hT��iren we obtain a very cumbersome expression that, as

in the case of (12), is different from that obtained for scalar
and spinor fields only in the numerical coefficients that
appear in front of the purely geometrical terms. For this
reason we do not put this very long expression for the stress
tensor here and refer the readers to our previous papers
[14–17].

It is interesting to mention that in a beautiful paper
Decáninis and Folacci [21] have presented irreducible
expressions for the metric variations of the gravitational
action terms constructed from the 17 curvature invariants
of order six in derivatives of the metric tensor, i.e. from the
geometrical terms appearing in the diagonal coefficient
a3ðx; xÞ of the Schwinger-DeWitt approximation, thus pro-
viding us with a general method to reduce the inevitable
differences in the final expressions obtained for these
quantities, due to the different simplification and canon-
ization schemes chosen.

From the general form of the geometric terms conform-
ing the general expression for the constructed hT�

�iren, we
see that it is covariantly conserved, thus indicating that it is
a good candidate for the expected exact one in our large
mass approximation.

After a direct calculation, we obtain for hT�
�iren in the

space-time of a static cylindrical black hole metric

hT�
�ðyÞiren ¼ 1

3360�2m2��6

�
a� þ��

y6
þ��

y9

�
; (13)

where we have defined the variable y ¼ �
�þ

and due to the

cylindrical symmetry we have hTz
ziren ¼ hT’

’iren. The

numerical coefficients are given in Table I for each index
�. The dependence of the components of hT�

�iren with y is
displayed in Figs. 1–3.
If we consider the general expression (13) at the horizon

of the cylindrical black hole, i.e., at y ¼ 1, we easily found
that the energy density % ¼ �hTt

tiren for the quantum
massive vector field is positive, in contrast with the results
found in previous work for the scalar and spinor fields
[16,17].
Inspection of Fig. 1 shows that the energy density is

positive everywhere. The principal pressures p1 ¼ �
 ¼
hT�

�iren and p2 ¼ p3 ¼ p ¼ hTz
ziren are negative at the

horizon. Figures 2 and 3 indicate that the radial pressure is
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FIG. 1 (color online). Radial dependence of the rescaled com-
ponent of the energy density % ¼ �hTt

t i of the quantum massive
vector field in the geometry of a static black string. The coeffi-
cient � ¼ 3360�2m2��6.
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FIG. 2 (color online). Radial dependence of the rescaled com-
ponent hT�

� i of the quantum massive vector field in the geometry
of a static black string. The coefficient � ¼ 3360�2m2��6.

TABLE I. Numerical coefficients in the general expression for
the quantum stress tensor of massive vector field in the space-
time of the cylindrical black hole.

� a� �� ��

t �25 387=4 �611=4
� �25 �399=4 175=4
z �25 405=4 �809=4
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negative in the region outside the horizon and that the other
pressures are negative everywhere. At the event horizon
%� 
 ¼ 0, %þ p < 0, and %� 
þ 2p < 0. Also we

have p <�% < %. The second of the above relations in-
dicates that the null energy condition (NEC) is violated at
the event horizon of the static black string. For the weak
energy condition to be satisfied, we need that the energy
density be positive, as is indeed the case at the horizon,
but we require that the NEC be satisfied. Then, in our case,
also the weak energy conditions are violated. If the NEC is
satisfied and the sum of the principal pressures and the
energy density of the field is positive, then the strong
energy condition (SEC) is valid. The dominant energy
condition (DEC) requires �% � pj � %. As we can see

from the above relations between the energy density and
the principal pressures at the horizon of the black string,
the massive vector field also violates the SEC and DEC.
The results of this work are expected to be employed to

investigate the backreaction of the quantum scalar field, on
the black string metric. For this purpose, the Einstein
equations for the metric should be solved after including
in them the calculated stress tensor for the black string
solution. Our results of the implementation of this program
will be published in the future.
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FIG. 3 (color online). Radial dependence of the rescaled com-
ponent hTz

z i of the quantum massive vector field in the geometry
of a static black string. The coefficient � ¼ 3360�2m2��6.
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