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Previously developed analytic models for the evolution of cosmic string and monopole networks are

applied to networks of monopoles attached to two or more strings; the former case is usually known as

cosmic necklaces. These networks are a common consequence of models with extra dimensions such as

brane inflation. Our quantitative analysis agrees with (and extends) previous simpler estimates, but we will

also highlight some differences. A linear scaling solution is usually the attractor solution for both the

radiation and matter-dominated epochs, but other scaling laws can also exist, depending on the universe’s

expansion rate and the network’s energy loss mechanisms.
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I. INTRODUCTION

Currently favored fundamental theories suggest that we
live on a four-dimensional slice of a higher-dimensional
universe, and while most forces are confined to our slice,
gravity may leak off. These so-called brane world models
may provide natural explanations for inflation (here known
as brane inflation), and topological defects may at the end
of it. The type of defect network that is formed and its basic
properties (from its energy scale to whether or not it is
long-lived) will depend on the specific details of the model
in question [1]. A thorough overview of the subject may be
found in the book by Vilenkin and Shellard [2] and in more
recent review articles [3–5].

Most of the past work on defects concerns the simplest
models of cosmic strings, on the grounds that they are
cosmologically benign, and are a generic prediction of
inflationary models based on grand unified theories [6,7]
or branes [8,9], while domain walls and monopoles tend to
be cosmologically dangerous and tightly constrained.
However, it is clear, particularly in the context of models
with extra dimensions, that networks containing more than
one type of defect will often be produced. Two examples
that have attracted considerable interest are semilocal
strings [10–12] and cosmic necklaces [13]. For the latter
these claims have been made both in the context of brane
inflation [14–16] and in string theory itself [17,18].

This is the third report on an ongoing project which is
addressing some of these issues. In the past we have
developed [19] an analytic model for the evolution of
networks of local and global monopoles [20–22]. The
model is analogous to the velocity-dependent one-scale
model for cosmic strings [23–25], which has been exten-
sively tested against field theory [26,27] and Goto-Nambu
simulations [27,28]. This was then extended [29] to the
case of monopoles attached to one string (the so-called

hybrid networks [30]), as well to vortons [31,32]. Here we
study defect networks where monopoles are attached to
two or more strings.
The behavior of necklaces and lattices is qualitatively

similar, and will be for the most part treated together in this
paper, though we will point out the small existing differ-
ences. However, their evolution differs in several key
aspects from both that of individual monopoles and that
of monopoles attached to a single string (usually called
hybrid networks) [19,29]. The main difference is that
necklaces and lattices form stable, long-lived networks,
which usually reach a scaling solution.

II. COSMIC NECKLACES AND LATTICES

We start with a brief overview of previous results on the
evolution of necklaces and lattices. This is by no means
exhaustive; the aim is to highlight the dynamical aspects
we will need to model. A more detailed discussion can be
found in [2] as well as in other earlier references that we
will point out where appropriate.
The defect networks of interest form via the symmetry

breaking pattern G ! K �Uð1Þ ! K � ZN . If G is a
semisimple group, the first phase transition produces
monopoles while in the second each monopole becomes
attached to N strings. If K is trivial all the (Abelian)
magnetic flux of the monopoles is confined into the strings,
and there are no unconfined fluxes. However, unconfined
non-Abelian magnetic fluxes can exist in the generic case.
The previously discussed hybrid case [29] corresponds to
N ¼ 1. Here we will discuss the case N � 2; N ¼ 2 cor-
responds to cosmic necklaces and N � 3 to cosmic
lattices.
The corresponding defect masses will be m�

ð4�=eÞ�m and �� 2��2
s , while the characteristic mono-

pole radius and string thickness are �m � ðe�mÞ�1 and
�s � ðe�sÞ�1. There are also scenarios where the inter-
mediate phase transition is absent, G ! K � ZN , in which*Carlos.Martins@astro.up.pt
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case an analogous network still forms but the role of the
monopoles is now played by solitons that are usually called
‘‘beads.’’ In this case the two energy scales are obviously
similar, that is �s � �m.

Up to the second transition (if it exists), the models for
plain monopoles [19] apply, but once the strings form a
separate treatment is needed. Two key differences are
immediately apparent. The evolution of isolated mono-
poles can be divided into a ‘‘free’’ (precapture) and a
post-capture period, with captured monopoles effectively
decoupling from the network and losing energy radiatively
until they decay (this is analogous to the evolution of
cosmic string loops). In the present context, the monopoles
are effectively captured by the strings, and one needs to
account explicitly not only for radiative losses (for ex-
ample, gauge radiation if there are unconfined magnetic
charges) but also for the force the strings exert on the
monopoles—depending on the context, the forces due to
the string(s) or the other monopoles may be the dominant
ones.

If all the strings attached to each monopole have the
same tension (which we will assume to be the case in the
present paper) then all the strings pull it with equal forces,
and therefore there is no tendency for a monopole to be
captured by the nearest antimonopole, unless their separa-
tion is of order �s. If there are N strings attached to each
monopole, its proper acceleration is given by the vector
sum of the tension forces exerted by the strings. At a back-
of-the-envelope level, each force is of order f��, and
hence one expects that a��=m. Monopoles should there-
fore be accelerated to relativistic speeds provided that the
characteristic length of string segments, Ls, is such that
�Ls � m, that is Ls=�s � �m=�s.

Aryal et al. [33] first studied the formation and statistical
properties of these networks, for N ¼ 2 and N ¼ 3, show-
ing that for N � 3 a single network is formed. In all cases
they find that the system is dominated by one infinite
network comprising more than 90% of the string length.
Some finite networks and closed loops do exist, in numbers
rapidly decreasing with their size. Finally, most of the
string segments have a length comparable to the typical
distance between monopoles (much larger segments being
exponentially suppressed). This justifies our assumption of
an intermonopole separation Lm, comparable to Ls.

The cosmological evolution of these networks was first
discussed by Vachaspati and Vilenkin [34], who argued
that assuming that the radiation of gauge quanta is the
dominant energy loss mechanism of the networks, they
reach scaling with a characteristic length scale L�
ð�2

s=�
2
mÞt and the monopoles become highly relativistic.

These networks can also lose energy by producing closed
loops of string and small nets. The effect of these is harder
to estimate, but as we shall discuss, it is fairly easy to
model phenomenologically.

Specifically they divide the network’s energy into string
and monopole parts, with �m ¼ ��, �s ¼ ð1� �Þ� and
an effective equation of state 3p=� ¼ �þ ð1� �Þð2v2

s �

1Þ with Vs being the string velocity and assuming vm � 1.
The evolution equation is then

_� ¼ �3Hð�þ pÞ � nw; (1)

where w� ðgaÞ2=6� for gauge radiation losses and L�
n�1=3 is both the length of string segments and the average
monopole distance. Assuming a self-similar evolution one

can also set �s ��n2=3.
For the case without unconfined magnetic fluxes (that is,

no radiation), they claim L / t�, expecting �< 1: there is
no scaling and the defects eventually dominate the energy
density of the universe. But note that in saying this, they are
specifically thinking of the radiation epoch (it is clear that
the behavior of their solution depends on several parame-
ters including the expansion rate).
The specific case of cosmic necklaces has subsequently

been studied by Brezinsky and Vilenkin [35]. They assume
no unconfined magnetic fluxes (hence no Coulomb forces
between the monopoles) and characterize the networks by
a dimensionless ratio r ¼ m=ð�LÞ with the average mass
per unit length of the necklaces being ðrþ 1Þ�. They also
neglect the effect of annihilations (though the validity of
this assumption has been challenged [36,37]), and find that
the system tends to evolve towards large r. Again the
necklaces are expected to evolve in a scaling regime,
with a characteristic network length scale �. The force
per unit length of string is f��=� and the acceleration
is a�1 � ðrþ 1Þ� so we expect that �� t

ffiffiffiffiffiffiffi

1þr
p , v� 1

ffiffiffiffiffiffiffi

1þr
p .

In the limit r � 1, the monopoles are subdominant and the
strings will behave approximately as ordinary ones. In the
limit r � 1, the strings are very slow and their separation
is small. This is a very simple toy model, as in fact r is
generically not a constant parameter, since d� �, so these
solutions are only approximate. Nevertheless, this ap-
proach has the advantage of algebraic simplicity, and we
shall show below that in appropriate circumstances it can
be related to more robust models. Analogous results have
been found with a somewhat different toy model [17].

III. QUANTITATIVE EVOLUTION

It is easy to start modeling these networks by using the
evolution equation derived in our previous work [19,29].
Most authors at this point focus on the evolution of the
strings, treating the monopoles (as it were) as a small
correction. Our approach, justified in [29], is precisely
the opposite—we focus on the evolution of the separation
between monopoles.
For this context the evolution equations for the charac-

teristic separation L and root-mean squared velocity v of
the monopoles are

3
dL

dt
¼ ð3þ v2ÞHLþQ? (2)

dv

dt
¼ ð1� v2Þ

�

ks
�2
s

�m

�Hv

�

: (3)
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We have neglected the term due to friction in both
equations (it is easy to show this is subdominant at late
times). The energy loss term Q? in the length-scale equa-
tion is a renormalized quantity, accounting for the various
losses present (including string intercommutings, radia-
tion, and annihilations), as discussed in our previous
work. There may be a velocity-dependence of some of
these contributions, but as we shall see monopoles will
typically have ultrarelativistic velocities v� 1 and there-
fore this dependence can be neglected. The velocity equa-
tion includes the force due to the strings (with a
phenomenological curvature parameter ks that is discussed
in [25]) but we have neglected that due to monopoles, since
if it exists (which is only the case for unconfined fluxes) it
is always smaller than that due to the strings. Indeed, using
the above definitions of mass scales and thicknesses one

finds that the ratio of the two forces is fm
fs
� km

ks
ð�s

L Þ2 � 1;

we expect the ki to be (dimensionless) coefficients of order
unity, though note that they should be different for neckla-
ces and lattices.

From the velocity equation we immediately confirm that
the monopole velocities will be driven towards unity, v !
1, as previously stated. As for the monopole length scale,
assuming a generic expansion rate a / t	, we find two
different regimes for slow and fast expansion rates

L ¼ Q?

3� 4	
t; 	 < 3=4 (4)

L / a4=3 / t4	=3; 	 � 3=4: (5)

The former explicitly requires a nonzero energy loss rate—
we will return to this point later. We therefore have linear
scaling both in the radiation and matter eras (as generically
claimed by previous authors, based on simpler qualitative
arguments). For monopoles L / t corresponds to the
monopole density decreasing relative to that of the back-
ground. However, for fast expansion rates the growth is
superluminal, and the network will eventually disappear.
An analogous scaling solution was already discussed in our
previous work on hybrid networks.

Its easy to establish a link between this analysis and that
of Vachaspati and Vilenkin [34] [which is embodied in
Eq. (1)] and thus to carry out a more detailed analysis of the
possible scaling solutions. Let us apply Eq. (1) to the
monopoles. We use both the notation and definitions of
our previous work and those of [34]. Since �m ¼ mn ¼
m=L3 and the monopole equation of state is 3p ¼ v2

m�, we
get by substitution

3
dL

dt
¼ ð3þ v2ÞHLþ L

�m

w: (6)

Now, Vachaspati and Vilenkin are assuming energy losses
through gauge radiation; noting that

w� ðgaÞ2
6�

�
�

�

�m

�

2 � _
gauge (7)

Qgauge � L
_
gauge

gauge

� L

�m

w (8)

we see that this evolution equation for L is exactly the same
as Eq. (2), matching the Q terms (which in our case can
phenomenologically account for further energy loss
channels).
We can also apply Eq. (1) to the strings. In this case

�s ¼ �n2=3 ¼ �=L2 and the string equation of state is
3p ¼ ð2v2

s � 1Þ�; again we find

2
dL

dt
¼ 2HLð1þ v2

sÞ þ w�: (9)

In this case we have w�� ð�s

�m
Þ2 �Q. Note the interesting

fact that the dimensionless parameter Q determines the
energy loss term for both the strings and the monopoles.
The above is the usual evolution equation for the cosmic
string correlation length [23–25], if one assumes a constant
string velocity—otherwise the energy loss term should
depend linearly on velocity.
The scaling solution for the monopoles has already been

discussed. For the case of the strings, the solution is also

the expected linear scaling L ¼ Q
2�2	ð1þv2

s Þ t, for constant
velocities and provided 	ð1þ v2

sÞ< 1. But this solution is
an attractor, as in the case of normal strings: for very large
length scales the string velocity would no longer be a
constant (the string velocity evolution equation would
drive it to smaller values), and a new equilibrium value
with a smaller lengthscale would be reached.
We can also consider more generic scaling solutions of

the above equations, i.e. allowing for the possibility of zero
energy losses (Q ¼ 0). Wewill confirm that scaling (L / t)
generically requires Q � 0. Starting again with the mono-
poles, for Q � 0 we have the two branches of the solution

discussed above. For Q ¼ 0 the solution is always L /
a4=3 / t4	=3; note that for 	 < 3=4 the length scale grows
subluminally while for 	 > 3=4 it grows superluminally. In
the absence of radiative energy losses, only a fast enough
expansion can dilute the network. We can also compare the

evolution of the monopole and background densities �m

�b
�

�m

m2
Pl

t2

L3 .For the linear scaling solution L / t this has the form

�m

�b
� 1

Q3
?

�

�m

mPl

�

2
�

T

mPl

�

2 / 1

t
: (10)

From this we see that if gauge radiation is present then the
energy density of the network is smaller than the back-
ground density. However, if the only radiative channel
available is gravitational radiation (in which case, as dis-
cussed in [29], Q? ¼ Qgrav � ð�s=mPlÞ2) then the network

energy density is in fact the dominant one. For the non-
scaling branch the density is �m

�b
/ t2�4	, and the behavior

depends on the cosmological epoch. Notice that during the
radiation era the density is a constant fraction of that of the
background.
These results can now be related with the toy-model

analysis of Berezinsky and Vilenkin. In the linear scaling
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regime we have r ¼ �m=�s / t�1 and therefore r ! 0 and
v ! 1 in agreement with our quantitative analysis. In the
nonscaling branch r / t2�4	, whose behavior again de-
pends on the cosmological epoch. The radiation epoch
corresponds to the interesting case r ¼ const, while faster
expansion rates (say, the matter-dominated epoch) dilute
the monopole density relative to that of strings. Slower
expansion rates (	 < 1=2), which sometimes occur in the
very early universe in string cosmology models, would
have a growing density ratio r.

IV. SUMMARYAND OUTLOOK

We have extended a recently developed analytic model
for the evolution of monopole [19] and hybrid networks
[29] to the case of monopoles attached to several strings.
We discussed their possible scaling solutions, generically
confirming the expectation that the network will reach
linear scaling (with its characteristic length scale L / t),
but also showing that other scaling behaviors can occur,

depending on the expansion rate of the universe and on the
energy loss mechanisms available to the network.
These models have the advantage of conceptual simplic-

ity, in addition to that of allowing a quantitative description
of the network’s evolution. Nevertheless, a further general-
ization will be required in order to more accurately de-
scribe the possible effects of a hierarchy of string tensions
[17,38,39]. A further interesting case, which requires addi-
tional dynamics, is that of semilocal strings [10,11], which
we will address in a subsequent publication.
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