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We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the gravity

dual of N ¼ 4 super-Yang-Mills on R3 � S1. We show that D-branes geometrize volume independence

in the center-symmetric vacuum and give supergravity predictions for the range of validity of reduced

large-N models at strong coupling.
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I. INTRODUCTION

Gauge-gravity duality is a powerful method to study
strongly coupled gauge dynamics. It relates a weakly
coupled theory of gravity to a lower dimensional large-N
gauge theory at strong coupling [1–3]. The best-understood
example is theAdS5=CFT4 correspondence betweenN ¼
4 supersymmetric Yang-Mills (SYM) theory on R4 and
weakly coupled type-IIB supergravity on AdS5 � S5,
where all available evidence suggests that the correspon-
dence is exact, at least to leading order in 1=N.

Another method to study gauge dynamics in lattice and
continuum formulations is the large-N volume indepen-
dence [4–9]. While much less appreciated than the AdS/
CFT correspondence, large-N volume independence is one
of the few exact results in gauge theories. The statement of
the volume-independence theorem is that large-N non-
Abelian quantum gauge theories toroidally compactified
on four-manifolds, M4 ¼ R4�k � ðS1Þk, have properties
that are independent of the ðS1Þk compactification radii.
More precisely, expectation values and connected correla-
tors of single-trace operators are the same in the reduced
and infinite-volume theories, to leading order in 1=N—if
the operators are neutral under the ðZNÞk center symmetry
and carry momenta in the compact directions quantized in
units of the inverse compactification radii. Volume inde-
pendence holds provided two basic quantum mechanical
conditions are satisfied: (i) translation symmetry is not
spontaneously broken, and (ii) ðZNÞk center symmetry is
not spontaneously broken.

In lattice-regularized gauge theories, where the lattice is
reduced to a single site, this equivalence is known as
‘‘large-N reduction’’ or ‘‘Eguchi-Kawai (EK) reduction’’
[4]. The necessary and sufficient conditions for the validity
of volume independence have been known since the early
1980s. However, the first examples of gauge theories which
satisfy them to arbitrarily small volumes were found only
recently [8,9]. Because of this, there has been a recent
resurgence of interest in this subject, particularly in the
lattice community—not only because small volume
large-N simulations are more cost effective, but also for
other reasons, such as lattice supersymmetry [10–15] (for

volume independence of torus compactifications of non-
commutative theories, see [16]). Furthermore, any gauge
theory which satisfies volume independence admits a com-
plementary volume-dependent domain, obtained by first
fixing N and taking the radii small, where subtle non-
perturbative aspects, such as the existence of a mass gap,
can be analyzed by semiclassical methods; see, e.g.,
[9,17,18]. The existence of a semiclassical domain is the
main advantage of studying the compactified theory, in-
stead of the theory on R4. For some center-symmetric
theories, there is evidence suggesting that the small radius
domain is the analytic continuation of the large or infinite
radius [9] (also see [19,20]), and the size of the circle times
N may be used as an analytic expansion parameter.
Volume independence holds for arbitrary values of the

coupling, including the strong-coupling limit of the gauge-
gravity correspondence. It is thus interesting to examine
the consistency of the two correspondences; at the very
least, this provides a consistency check on their exactness.
In this paper, we exhibit the simplest setup where volume
independence and AdS/CFT should hold simultaneously
(see the concluding section for comments on related earlier
work [21]). We consider the gravity dual of strongly
coupledN ¼ 4 SYM compactified on R3 � S1 and study
how volume independence arises. We show that in the
center-symmetric vacuumD-branes ‘‘geometrize’’ volume
independence, ensuring that the expectation value of, e.g.,
a Wilson loop in the uncompactified (R3) directions is
independent of the S1 compactification radius, for arbi-
trary interquark separation and in accordance with the
volume-independence theorem.

II. CENTER-SYMMETRY BROKEN VACUUM:
VOLUME DEPENDENCE

The type-IIB background dual to N ¼ 4 SYM com-
pactified on R3 � S1 of radius R0 is

ds2 ¼ u2

R2
3

�
�dt2 þX2

i¼1

dx2i þ R2
0d�

2

�
þ R2

3

u2
du2 þ R2

3d�
2
5:

(1)

This is compactified AdS5 � S5 of radius R3 � �1=4, in
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local Poincaré coordinates, expressed in terms of the en-
ergy variable u � r=l2s . We use string units ls ¼ 1 and
denote the ’t Hooft coupling of the dual SYM theory by
� � g2YMN. Compactification of a worldvolume direction
ofAdS5 leads to a conical singularity: As seen from (1), the
proper radius ofS1, equal to uR0=R3, becomes of the order

of the string scale at uR0 � �1=4. The masses of Kaluza-
Klein excitations and string winding modes become com-
parable, invalidating the supergravity approximation.

Thus, for energy scales uR0 < �1=4 the nonsingular gravity
description is given by the T-dual (along the x3 ¼ R0�
direction) type-IIA background of N D2-branes located
on a dual circle of size 1=R0.

The positions of the D2-branes on the dual circle corre-
spond to the eigenvalues of the Wilson loop � �
exp½iHS1 A� of the gauge field around the compact direc-

tion. Thus, a vacuum where all N D2-branes are located at
the same point on the dual circle breaks the center sym-
metry, as tr� ¼ N. The type-IIA gravity background cor-
responding to the center-broken vacuum is easy to
determine by the method of images and knowledge of the
background of N D2-branes in R1;9:

ds2 ¼ H2ð�rÞ�ð1=2Þ
�
�dt2 þX2

i¼1

dx2i

�

þH2ð �rÞ1=2ðd�r2 þ �r2d�2
6Þ: (2)

Here H2ð�rÞ ¼ 6�2gsN=�r5 is a harmonic function in the
seven dimensions transverse to the stack ofD2-branes, and
gs is the type-IIA string coupling. Instead of presenting
detailed formulas (given in, e.g., [22]), for our purposes it
suffices to only picture the brane arrangement. Taking x3 as
the compact direction, the metric of the center-broken
BPS-brane configuration is determined by a harmonic
function equal to the sum of the harmonic functions due
to each stack of N D2-branes separated a distance 1=R0

along x3, as shown in Fig. 1(a). Each stack of branes
creates an 1=�r5 ‘‘potential,’’ where �r2 ¼ x23 þ r2 and

r ( ¼ u) denotes the radial direction transverse to both
the D2-branes and the compact direction. It is clear from
the picture (and intuition from electrostatics) that when
u � 1=R0 the x3-translational invariance of the back-
ground is recovered and that at u ¼ r � 1=R0 the har-
monic function becomes �1=r4, identical to that of the
corresponding stack of D3-branes (recall that the type-IIA
coupling is gs ¼ g2YM=R0). Thus the type-IIA metric in the
center-broken vacuum reads, for uR0 � 1:

ds2 ¼ u2

R2
3

�
�dt2 þX2

i¼1

dx2i

�
þ R2

3

R2
0u

2
d�2 þ R2

3

u2
du2

þ R̂2
3d�

2
5; (3)

up to exponentially small corrections. The metric (3) is the
T-dual metric of (1) (in the sense of [23]) as evidenced by
the fact that only the d�2 terms are different (we do not

show the relation between the type-IIA and type-IIB dila-
tons, which is trivial to obtain). It is also clear that in the
center-broken vacuum the type-IIA metric will differ from
(3) once uR0 becomes of order unity or smaller.
We conclude that in the center-broken vacuum the back-

grounds (3) and (1) are equivalent for uR0 � 1, where the
x3 isometry is restored. Thus, for example, a calculation of
the expectation value of a Wilson loop of size R� T,
positioned in the x1 � t plane of the noncompact R3 can
be made via (3) so long as R � R0—so that the string
world sheet only probes the bulk geometry in the uR0 � 1
region, close to the ‘‘UV-brane’’ (recall the ‘‘energy-
distance’’ relation u�R� 1 for the minimum value u� of
u probed by a Wilson loop of size R [24]). Thus, Wilson
loops of interquark separation R � R0 are unaffected by
the compactification, as one would naively expect.
However, the world sheet relevant for Wilson loops with
R � R0 probes the bulk geometry further away from the
UV, as now u�R0 � 1, a region where (3) receives correc-
tions due to the compactification.
Hence, in the center-symmetry breaking vacuum, the

Wilson loop (and other correlators) exhibit volume depen-
dence. This is consistent with expectations from compac-
tified field theory that the Wilson loop with interquark
separation R � R0 should be sensitive to the R3 � S1

compactification. In fact, a dual gravity analysis [25] of
the Wilson loop in the compactified N ¼ 4 SYM theory
shows that the behavior of the quark-antiquark potential

changes from 1=R, at short distances R � R0, to 1=R
2=3 in

an intermediate D2-brane region, and back to 1=R in the
far-infraredM2-brane region (the latter describes the three-
dimensional 16 supercharge CFT that N ¼ 4 SYM flows
to upon a center-symmetry breaking compactification
[26]).

X

X3

r [U (Energy)]

a) Equi−potential surfaces of center−broken D2−branes

b) Equi−potential surfaces of center−symmetric D2−branes

r [U (Energy)]

S1

S1

3

FIG. 1 (color online). Center-symmetric and center-broken
D2-branes on the dual ~S1 of radius 1=R0.
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III. CENTER-SYMMETRIC VACUUM: VOLUME
INDEPENDENCE

Consider now the center-symmetric vacuum of the
N ¼ 4 SYM theory on R3 � S1. According to EK reduc-
tion, appropriate observables should now exhibit S1-size
independence.

In the type-IIA picture, a center-symmetric vacuum
corresponds to a configuration of N D2-branes distributed
equidistantly on the dual circle—since their positions on
the dual S1 correspond to the eigenvalues of �, now
clearly tr�k ¼ 0, for all k � 0ðmodÞN. The metric dual
to the center-symmetric D2-brane configuration can simi-
larly be computed using the method of images. The differ-
ence is that now single D2-branes are spaced a distance
1=ðNR0Þ apart along the compact x3 direction, as shown in
Fig. 1(b). The harmonic function determining the back-
ground is, again, the sum of the 1= �r5 ‘‘potentials’’ of the
individual D2-branes (with �r2 ¼ x23 þ r2, as before), re-

sulting in the D2-brane harmonic function which deter-
mines the metric, as in (2):

H
sym
2 ðr; x3Þ ¼

X1
n¼�1

XN
k¼1

6�2gs

½r2 þ ðx3 � 2�
R0N

k� 2�n
R0
Þ2�5=2 :

(4)

By Poisson resummation, (4) takes the form:

R4
3

u4

�
1þ X1

m¼1

ðmuNR0Þ2K2ðmuNR0Þ cosðmx3NR0Þ
�
; (5)

where K2 is the modified Bessel function.
The crucial difference with respect to the center-broken

vacuum discussed in [22] is the appearance of a factor ofN
in the correction term in (5). Hence, the x3 isometry is now
recovered for much smaller values of r ( ¼ u, the energy
scale). It is clear [from (5) or from electrostatics] that now
the condition for isometry restoration is uNR0 � 1, in-
stead of uR0 � 1 in the center-broken vacuum. Thus the
background dual to the center-symmetric vacuum is also
given by (3) but is now valid for uNR0 � 1. We note that
while near each individual D2-brane the supergravity ap-
proximation is not to be trusted (because large curvatures
occur and physics is described by an IR free Abelian
theory), no large curvatures appear in the background (3)
and (5) at u � 1=ðNR0Þ, i.e., at any finite distance away
from the D2-branes (similar backgrounds are also consid-
ered in [27]).

The fact that the center-symmetric vacuum is described
by (3) for any u � 1=ðNR0Þ immediately implies that a
Wilson loop of any size (strictly speaking of size R �
NR0) will be insensitive to the compactification. Thus, the
potential between two static quarks exhibits the behavior
characteristic of the four-dimensional N ¼ 4 CFT,

VðRÞ � �1=2=R, at all scales, despite the fact that one
dimension is compactified and conformal symmetry of
the background is explicitly broken.

In the language of nonperturbative orbifold equivalences
[8], the neutral-sector observables in the compactified
‘‘daughter’’ theory enjoy the conformal symmetry of its
‘‘parent’’ theory on R4, at leading order in N. However, it
should also be noted that the daughter theory also pos-
sesses a non-neutral sector aware of the compactification
radius. The main point is that for neutral-sector observ-
ables, the space may be viewed as having an effective size
Reff ¼ R0N and thus N ¼ 1 is a decompactification limit.
It is clear that other quantities will also exhibit volume

independence—for example, correlation functions of
single-trace operators that only carry momentum in the
noncompact directions will also be insensitive to the com-
pactification, as required by EK reduction. EK reduction
also requires that expectation values of Wilson loops ex-
tending also in S1, but not winding around the compact
direction (i.e., center-symmetry neutral ones), exhibit vol-
ume independence; however, explicitly verifying their vol-
ume independence in the gravity dual appears more
challenging to us than for the observables we consider.
Finally, we briefly note a slight refinement of the con-

dition for volume independence inferred from the gravity
dual. In our discussion above, we did not consider the
behavior of the type-IIA dilaton. In fact, examining its
behavior shows that the effective string coupling becomes

large when uNR0 � �5=4—thus, the region of validity of
volume independence that can be inferred from the type-
IIA dual of the center-symmetric vacuum would be

uNR0 � �5=4, instead of simply uNR0 � 1. However,
the type-IIA description can be uplifted to 11-dimensional
supergravity (M theory) [25]. The size of the 11th direc-
tion, parameterized by x11, is related to the type-II cou-
plings as R11 ¼ gs ¼ �=ðNR0Þ and the center-symmetric
D2 brane configuration is replaced by a similar configura-
tion of M2-branes located a distance 1=ðNR0Þ apart along
x3, as shown in Fig. 2. For u � R11 ¼ �

NR0
� 1=ðNR0Þ the

M2-brane background can be written in a form:

ds11 ¼ e�2�=3ds210 þ e4�=3dx211; (6)

where ds210 is the type-IIA metric (3) and� is the type-IIA

dilaton. As this background is dual to (3), it follows that the
regime of volume independence is uNR0 � �, improving

on the type-IIA bound uNR0 � �5=4. A bound on the
validity of volume independence of the form uNR0 �
maxð1; �Þ can also be inferred from field-theory consider-
ations and is consistent with the strong-coupling bound
from supergravity obtained here (see [28] for a field-
theory analysis of N ¼ 4 SYM in the volume-
independence context). At asymptotically low energies
uNR0 � 1, 11-dimensional supergravity breaks down for
center-symmetric M2-branes, consistent with the free
Abelian long-distance dynamics, unlike the coincident
M2-branes case where the IR physics is non-Abelian and
superconformal.
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IV. CONCLUSIONS

We considered the simplest case where EK reduction of
a four-dimensional gauge theory is valid simultaneously
with gauge-gravity duality. Our considerations indicate
thatN ¼ 4 SYM compactified on R3 � S1 indeed exhib-
its volume independence in the center-symmetry preserv-
ing vacuum. The gravity dual of four-dimensionalN ¼ 4
SYM gives the first explicitly solvable realization of vol-
ume independence above two dimensions (where EK re-
duction is manifest in the large-N limit of the exactly
solvable pure YM lattice theory [29]), at least in the present
context—previously, large-N volume (temperature) inde-
pendence of the confined phase has been exhibited in
studies of gravity duals beginning with [30]. Our findings
can also be viewed as providing a check on the weakest
form of the AdS/CFT correspondence.

It would be interesting to consider how EK reduction
works when more than one dimension is compactified,
especially with regard of how center-symmetry preserva-
tion is reflected in the brane and gravity setups. The R3 �
S1 case is special in this respect, as one is free to choose a

classical center-symmetric vacuum state, not washed away
by quantum fluctuations which become strong as more
dimensions are compactified. We note that Ref. [21] pre-
viously considered large-N reductions in the holographic
picture with all dimensions compactified, but the matching
of observables and the question of fluctuations raised
above were not studied.
It may also be interesting to study volume independence

for confining gauge theories with known gravity duals, as
well as by exploiting the analogy between the 1=N and
genus expansion in gauge and string theories. For example,
[31] showed that free energy of YM theory receives con-
tributions only from Riemann surfaces of genus	 1 in the
confined phase ½OðN0Þ�, but it receives a contribution from
genus zero in the deconfined phase ½OðN2Þ�. This is noth-
ing but the temperature independence of confined phase
and temperature dependence of the deconfined phase, to
leading order inN. In this context, for example, the double-
trace deformation stabilizing the theory to the confined
phase [9,18] may have a stringy interpretation in terms of
analytic continuation of the winding-number unbroken
phase of [32] to small radii.
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