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We consider a D2-brane in the pp-wave backgrounds obtained from AdS4 � CP3 when electric and

magnetic fields have been turned on. Upon fixing the light-cone gauge, light-cone Hamiltonian and

Bogomolni-Prasad-Sommerfield configurations are obtained. In particular we study Bogomolni-Prasad-

Sommerfield configurations with an electric dipole on the two-sphere giant and a giant graviton rotating in

transverse directions.Moreoverwe show that the gauge field livingon theD2-brane is replacedby a scalar field

in the light-cone Hamiltonian. We also present a matrix model by regularizing (quantizing) 2-brane theory.
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I. INTRODUCTION

AdS5=CFT4 correspondence identifies N ¼ 4 SU(N)
superconformal gauge theory to type IIB superstring
theory on the maximally supersymmetric AdS5 � S5

background (where ‘‘S’’ stands for sphere). This corre-
spondence is a weak/strong coupling corresponding and
this makes it a powerful tool to compute the strong cou-
pling region of either theory using the weak coupling of the
other. Albeit helpful, this property makes it difficult to test
AdS/CFT duality explicitly since neither type IIB super-
string on the AdS5 � S5 background nor strong coupling
gauge theory are well understood.

Another maximal supersymmetric solution of type IIb
supergravity is the pp-wave and it can be obtained by taking
the Penrose limit of AdS5 � S5. The superstring theory on
this background was explicitly solved [1]. Therefore in the
pp-wave background we know the string spectrum and can
check that whether the same spectrum exists on the gauge
theory side. Then we first need to understand how this
specific limit translates to the gauge theory side. It
was argued that the Penrose limit corresponds to consider-
ing a certain section of operators, namely, Berenstein-
Maldacena-Nastase (BMN) operators [2]. A study of
AdS/CFT correspondence in this specific limit opens a
new way to test this conjecture more precisely.

Another example of AdS/CFT duality is AdS4=CFT3.
N ¼ 8 CFT3 was an open question for years and it was
finally written in [3], the so-called Bagger-Lambert-
Gustavsson (BLG) theory which is a N ¼ 8 three dimen-
sional superconformal Chern-Simon theory. AdS4=CFT3

tells us that this theory is a suitable candidate to describe
multiple M2-branes. But after a while it was shown that the
BLG theory describes two coincident M2-branes [4].
Based on the BLG model, Aharony-Bergman-Jafferis-
Maldacena (ABJM) theory has been nominated to describe
the low energy of multiple M2-branes and to be dual to
M-theory on AdS4 � S7=Zk [5]. The ABJM model is a
N ¼ 6 three dimensional superconformal UðNÞ � UðNÞ

Chern-Simon theory of level k and �k. The duality be-
tween the ABJM model and type IIA string theory on

AdS4 � CP3 has been found when N1=5 � k � N [5].
The pp-wave background has been also studied in the

AdS4=CFT3 context. A Penrose limit of AdS4 � CP3 with
zero spacelike isometry was obtained in [6] and string
spectrum and BMN-like operators were obtained. Also,
pp-wave metrics with one flat direction and two spacelike
isometries were found in [7,8]. In this paper we consider a
D2-brane in a general pp-wave background [7] and will
then find light-cone (LC) Hamiltonian and Bogomolni-
Prasad-Sommerfield (BPS) configurations with electric
field. This paper is organized as follows. In the next section
wewill review pp-wave backgrounds and in Sec. III the LC
Hamiltonian for a D2-brane in pp-wave backgrounds will
be obtained by using a LC gauge. Then we replace the
gauge field on the D2-brane by a scalar field and find a
matrix model by applying a suitable prescription. In
Sec. IV, BPS configurations are given. The last section is
devoted to discussion.

II. PP-WAVE BACKGROUNDS

In this section wewill review three pp-wave backgrounds
which are coming from AdS4 � CP3 by taking the Penrose
limit. One of the differences between them is concerned
with the number of spacelike isometries. A general form of
these metrics has been written in [7] which leads to three
pp-wave backgrounds by choosing appropriate parameters.
It is important to notice that the only meaningful pp-wave
backgrounds in the AdS/CFT context are those which are
derived from the Penrose limit ofAdS4 � CP3. The general
form of pp-wave geometry is given by

ds2 ¼�4dxþdx� þX4
î¼1

ðdu2
î
�u2

î
ðdxþÞ2Þ

þ X2
a¼1

�
dx2a þdy2a þ

�
�2
a � 1

4

�
ðx2a þ y2aÞðdxþÞ2

þ 2ðð�a � 2�aÞxadya �ð�a þ 2�aÞyadxaÞdxþ
�
; (1)
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and by the following parameters we have:

no flat direction $ �a ¼ �a ¼ 0; (2a)

one flat direction $ �1 ¼ 1
2; �2 ¼ bþ 1

2; �1 ¼ 1
4; �2 ¼ 0; (2b)

two flat directions $ �a ¼ �1
2; �a ¼ 1

4; (2c)

where b is an arbitrary parameter. In addition, in the
AdS4 � CP3 background there are two- and four-form
Ramond-Ramond fields which after taking Penrose limit
become

Cþij ¼ � 1

gs
�ijkuk; Cþ ¼ � 1

gs
u4; (3)

where i, j ¼ 1, 2, 3, and gs is IIA string coupling constant.
It is important to notice that these pp-wave backgrounds
are not a deformation of the type IIA pp-wave background
coming from the reduction of the maximally supersym-
metric 11 dimensional pp-wave background [9].

AdS4 � S7 is a maximally supersymmetric background.
After taking the Zk orbifolding of S7 and reducing the M-
theory background AdS4 � S7=Zk to type IIA string back-
ground AdS4 � CP3, 24 out of 32 killing spinors remain
[10]. It was shown that the case (2a) also preserves 24
supercharges [11]. More supersymmetric pp-waves in M-
theory and their dimensional reduction to D0-brane or pp-
waves in type IIA and T-dualization to solutions in type
IIB theory are studied in [12]. Moreover, in each case of the
above pp-wave backgrounds coming from AdS4 � CP3,
the minimum bosonic symmetry is a SOð3Þ rotation acting
on ui as well as the translation symmetry in xþ and x�
directions.

III. LIGHT-CONE HAMILTONIAN

The low energy effective action for a D2-brane in the
general form of a pp-wave background is

S ¼
Z

d�d2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detN

p þ
Z

Cð3Þ þ
Z

Cð1Þ ^ F

¼
Z

d�d2�L; (4)

where

g�̂ �̂ ¼ �4@�̂x
�@�̂xþ þ

��
�2
a � 1

4

�
ðx2a þ y2aÞ � u2

î

�
� @�̂x

þ@�̂xþ þ @�̂x
I@�̂x

I þ 2ð�a � 2�aÞ
� xa@�̂ya@�̂x

þ � 2ð�a þ 2�aÞya@�̂xa@�̂xþ; (5a)

F�̂ �̂ ¼ @�̂A�̂ � @�̂A�̂; (5b)

N�̂ �̂ ¼ g�̂ �̂ þ F�̂ �̂: (5c)

g�̂ �̂ (�̂ and �̂ denote world-volume indices) is an induced

metric on the brane and xI ¼ ðuî; xa; yaÞ. Cð3Þ, and Cð1Þ are
introduced in (3) and F�̂ �̂ is the field strength of the Uð1Þ
gauge field living on the D2-brane.

In the LC gauge we fix a part of the area preserving
diffeomorphism invariance which mixes world-volume
time and spatial coordinates. In order to fix the LC gauge
we separate the space and time indices on the brane world
volume as ��̂ ¼ ð� ¼ �0; �rÞ, r ¼ 1, 2. The LC gauge is
fixed by choosing

xþ ¼ �: (6)

In order to ensure that the above condition is respected by
dynamics we use the time-space mixing part of the area
preserving diffeomorphism and set [13]

N0r þ Nr0 � G0r ¼ G0r ¼ ðg� FgFÞ0r ¼ 0: (7)

G�̂ �̂ is the symmetric part of N�̂ �̂ which has the interpre-
tation of an open string metric [14] with G�̂ �̂ its inverse.

We noted that in the pp-wave background, xþ and x� are
cyclic variables and their conjugate momenta are constants
of motion. Then

pþ ¼ @L
@ð@�x�Þ ¼ � 2

gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detN
p

N00; (8)

and the LC Hamiltonian is

H LC ¼ p� ¼ @L
@ð@�xþÞ : (9)

From the above equation we have

H LC ¼ pþ
�
@�x

� � 1

2

��
�2
a � 1

4

�
ðx2a þ y2aÞ � u2

î

�

� 1

2
ð�a � 2�aÞxa _ya þ 1

2
ð�a þ 2�aÞya _xa

� 1

2pþgs
�ijkuifuj; ukg � 2Bu4

3pþgs

�
; (10)

where B ¼ F12 and fF;Gg ¼ �rs@rF@sG. The last two
terms of the above Hamiltonian are coming from the
Chern-Simons term (last two terms) of the action (4).
Next we should eliminate @�x

�. Using (5a), N00 is

N00 ¼ �4@�x
� þ

�
�2
a � 1

4

�
ðx2a þ y2aÞ � ðuîÞ2 þ ð _xIÞ2

þ 2ð�a � 2�aÞxa _ya � 2ð�a þ 2�aÞya _xa: (11)

Let us recall the definition of detN which is

detN ¼ detðNrsÞðN00 � N0rN
rsNs0Þ; (12)

where NrpNps ¼ �r
s. It is important to note that N00 � 1

N00

because of off-diagonal electric-magnetic fields and hence
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N00 ¼ detðNrsÞ
detN

: (13)

The above two equations together with (8) lead to

N00 ¼ �
�

2

pþgs

�
2
detðNrsÞ þ N0rN

rsNs0: (14)

By means of (14) the LC Hamiltonian (10) becomes

H LC ¼ pþ
��

1

pþgs

�
2
detNrs � 1

4
N0rN

rsNs0 þ 1

4
ð _xIÞ2

� 1

4

��
�2
a � 1

4

�
ðx2a þ y2aÞ � ðuîÞ2

�

� 1

2pþgs
�ijkuifuj; ukg � 2Bu4

3pþgs

�
; (15)

where Chern-Simon terms have been added. In the case of
the D2-brane the first term in the Hamiltonian is

detNrs ¼ detgrs þ detFrs ¼ 1
2fxI; xJg2 þ B2: (16)

The second term of (15) can be simplified by using the
momentum conjugate to the gauge field which is

pr
E ¼ @L

@F0r

¼ 1

2gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detN
p

N0r; (17)

and one can then show

�pþN0rN
rsNs0 ¼ 16

pþ pr
Egrsp

s
E ¼ 16

pþ pr
E@rX

Ips
E@sX

I

¼ ð4pI
EÞ2

pþ : (18)

Putting all these together we find the LC Hamiltonian to be

H LC ¼ ð2pI
EÞ2

pþ þ ðpîÞ2
pþ þ pþ

4

�
2pa

x

pþ � ð�a þ 2�aÞya
�
2

þ pþ

4

�
2pa

y

pþ þ ð�a � 2�aÞxa
�
2 þ 1

2pþg2s
fxI; xJg2

þ B2

pþg2s
� pþ

4

��
�2
a � 1

4

�
ðx2a þ y2aÞ � ðuîÞ2

�

� 1

2gs
�ijkuifuj; ukg � 2Bu4

3gs
; (19)

where the third term in (15) was replaced by the following
conjugate momenta:

pî ¼ @L

@ð@�uîÞ
¼ �pþ

2
_uî;

pa
x ¼ @L

@ð@�xaÞ ¼ �pþ

2
½ _xa � ð�a þ 2�aÞya�;

pa
y ¼ @L

@ð@�yaÞ ¼ �pþ

2
½ _ya þ ð�a � 2�aÞxa�:

(20)

Matrix model

The BMN (Banks-Fischler-Shenker-Susskind) matrix
model is an interesting candidate for the discrete light
cone quantization (DLCQ) of M-theory in terms of D0-
branes in maximally supersymetric 11 dimensional pp-
wave background (flat space) [2,15]. The Hamiltonian of
this model is obtained as a regularized version of the M2-
brane LC hamiltonian in 11 dimensional pp-wave back-
ground [16,17]. Moreover another matrix model describing
the DLCQ of type IIB string theory on the maximally
supersymetric ten dimensional pp-wave background has
been introduced in [18], namely, the tiny graviton matrix
model. By regularizing the spherical D3-brane in the ten
dimensional pp-wave background, the Hamiltonian of the
tiny graviton matrix model is obtained. In the following,
the gauge field on the D2-brane is replaced by a scalar field
and, by using the logic of [16,17], a matrix model is
introduced.
The gauge field living on a D2-brane has only one

physical degree of freedom and it can be replaced by a
scalar field in three dimensions. We are going to replace
electric and magnetic fields in the LC Hamiltonian by
derivative of scalar field. In the case of the D2-brane, it
is easy to show that

L DBI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg

�
1þ 1

2
F�̂ �̂F

�̂ �̂

�s

¼ � 1

2p
detgþ p

2

�
1þ 1

2
F�̂ �̂F

�̂ �̂

�
; (21)

where p is a Lagrangian multiplier (and DBI refers to
Dirac-Born-Infeld). Let us define

F�̂ �̂ ¼ 	��̂ �̂ 
̂t
̂; (22)

where 	 and t
̂ are arbitrary constant and vector, respec-
tively. By using the equation of motion for the gauge field
coming from (21) together with (22) we find

t
̂ ¼ @
̂’; Pr
E ¼ 	�rs@s’; B ¼ 	 _’: (23)

Terms including electric and magnetic fields in the LC
Hamiltonian are thus simplified as follows:

ð2pI
EÞ2

pþ ¼ 1

2pþg2s
fxI; ’g2;

B2

pþg2s
� 2Bu4

3gs
þ pþ

4
u24 ¼ pþ

�
p’

pþ � 1

3
u4

�
2 þ 5pþ

36
u24;

(24)

where 	 ¼ 1
2
ffiffi
2

p
gs
and p’ ¼ _’

	gs
. Since we are looking for a

DLCQ description we need to compactify x� on a circle of
radius R�

x� � x� þ 2�R�: (25)

This leads to the quantization of the LC momentum pþ
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pþ ¼ J

R�
: (26)

By following [17,18], we replace xÎ, pÎ with J � J
matrices, i.e.,

xÎ $ XÎ; pÎ $ JPÎ; (27)

together with

pþ Z
d2� $ 1

R�
Tr; fF;Gg $ J½F;G�; (28)

where xÎ ¼ ðxI; ’Þ. Equation (19) then becomes

H ¼ R�Tr
�
ðPiÞ2 þ 1

4

�
2Pa

x � 1

R�
ð�a þ 2�aÞYa

�
2

þ
�
P’ � 1

3R�
U4

�
2 þ 1

4

�
2Pa

y þ 1

R�
ð�a � 2�aÞXa

�
2

þ 1

2g2s
½XÎ; XĴ�2 þ 5

36R2�
U2

4 �
1

4R2�

��
�2
a � 1

4

�

� ðX2
a þ Y2

aÞ � ðUiÞ2
�
� 1

2R�gs
�ijkUi½Uj;Uk�

�
:

(29)

Inspired by [17,18], this matrix model describes the DLCQ
of M-theory on the uplifted pp-wave backgrounds obtained
from AdS4 � CP3.

As mentioned earlier, the background pp-waves consid-
ered here (1) are not a deformation of the dimensionally
reduced 11 dimensional maximally supersymmetric pp-
wave. Hence, as can also be seen from (29), the matrix
model is not a deformation of the BMN matrix model.
Nonetheless, the zero energy vacuum configurations of
(29) which are given through Xa ¼ Ya ¼ U4 ¼ 0 and

H ¼ 1

4R�
Tr

��
Ui � R�

gs
�ijk½Uj;Uk�

�
2
�

(30)

are the same as those of BMN matrix model [2,16]. These
vacuum configurations are of the form concentric fuzzy
sphere giant graviton.

IV. BPS CONFIGURATION

In this section we study BPS configurations involving
electromagnetic fields. The case of our interest is the static
electromagnetic fields. Our solutions include giant gravi-
ton and deformed giant graviton. Moreover a giant graviton
rotating in transverse directions will be found as a BPS
state.

A. Giant-like solution

We start with the case where ui � 0 while other fields
are set to be zero. In this case the LC Hamiltonian is

H LC ¼ pþ

4

�
u2i þ

2

ðpþgsÞ2
fui;ujg2 � 2

pþgs
�ijku

ifuj;ukg
�

¼ pþ

4

�
ui � 1

pþgs
�ijkfuj;ukg

�
2
: (31)

We consider the following ansatz:

ui ¼ 


2
pþgsJi; (32)

where 
 is a constant and Ji’s satisfy

fJi; Jjg ¼ �ijkJk; (33)

which specifies a two-sphere whose radius is one. By
substituting (32) in the LC Hamiltonian we then have

H LC ¼ 1
16ðpþÞ3g2s
2ð1� 
Þ2: (34)

The usual BPS argument tells us that H LC is minimized
when


 ¼ 0 or 
 ¼ 1: (35)

The above solutions (35) are graviton (
 ¼ 0) and giant
graviton1 (
 ¼ 1) where their radii are zero and 1

2p
þgs,

respectively. These are 1
2 BPS [12 out of 24 in the case (2a)]

configurations whose LC energy is zero and preserve
SOð3Þ symmetry.
One can turn on a constant magnetic field on the spheri-

cal D2-brane, i.e., B ¼ F12 ¼ constant. This magnetic
field does not change the spherical shape and the radius
of the giant graviton but moves its center of mass from
u4 ¼ 0 to u4 ¼ 3B

pþgs
.

B. BIGGons solution

For the pure electric field, (19) simplifies to

H LC ¼ 4

ðpþÞ2 ððP
i
EÞ2 þ ð~uiÞ2Þ

¼ 4

ðpþÞ2 ðð~u
i � RijPj

EÞ2 � 2~uiRijPj
EÞ; (36)

where ~ui ¼ ðpþÞ3=2
4 ðui � 1

pþgs
�ijkfuj; ukgÞ and Rij is a SOð3Þ

rotation. Hence, the BPS equation is

~u i ¼ RijPj
E: (37)

This BPS equation was discussed in Sec. 3.1 of [13] for the
case of a three sphere giant graviton where the electric field
is turned on. There, the shape deformation induced by the
electric field sourced by two equally and opposite point
charges placed on the North and South Poles of the
three spherical brane was obtained. The findings of [13]
generalize BIons [20] to spherical D3-brane BIGGons.

1The giant graviton in the AdS4 � CP3 background is dis-
cussed in [19].
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Remarkably, (37) and its solutions are the same to those
found in [13]. In other words we have found BIGGons
solutions for spherical D2-branes. Physically this family of
solutions describes open strings ending on a two-sphere
giant graviton.

C. Rotating giant graviton solution

Another family of solutions that we consider are rotating
giant gravitons. We turn on uið�; �rÞ, xað�Þ, and yað�Þ
fields and the LC Hamiltonian thus becomes

H LC¼pþ

4

�
ui� 1

pþgs
�ijkfuj;ukg

�
2

þ
�
pa
x �1

2
pþ
þya

�
2þ

�
pa
y �1

2
pþ
�xa

�
2

þð�
þ��a�2�aÞpa
xyaþð�a�2�a�
�Þpa

yxa;

(38)

where


2� ¼ ð�a � 2�aÞ2 �
�
�2
a � 1

4

�
: (39)

If the coefficients of the last two terms in (38) are equal
they will show an angular momentum. Let us consider case
(2a). In this case 
� ¼ 1

2 and hence2

H LC ¼ pþ

4

�
ui � 1

pþgs
�ijkfuj; ukg

�
2 þ

�
pa
x � 1

4
pþya

�
2

þ
�
pa
y � 1

4
pþxa

�
2 � 1

2
ðpa

xya � pa
yxaÞ: (40)

The BPS equations are given by

ui ¼ 1

pþgs
�ijkfuj; ukg; pa

x ¼ � 1

4
pþya;

pa
y ¼ � 1

4
pþxa;

(41)

and the LC Hamiltonian is

H LC ¼ 1
16p

þðx2a þ y2aÞ ¼ Lxaya : (42)

The above solution (41) describes a giant graviton rotating
in the xa � ya plane whose angular momentum is
1
16p

þðx2a þ y2aÞ. This configuration is 1
4 BPS and preserves

SOð3Þ � Uð1Þ � Uð1Þ. Obviously one can also consider a
giant graviton rotating in the x1 � x2 or y1 � y2 plane.

V. CONCLUSION

There are three different pp-wave backgrounds coming
from AdS4 � CP3 where they have a different number of
spacelike isometry. We consider a D2-brane in these
pp-wave backgrounds and the LC Hamiltonian of this
system is found by applying LC gauge fixing. There is a
contribution coming from the gauge field living on the D2-
brane in the LC Hamiltonian considered as a electric and
magnetic fields. We show that in three dimensions these
fields are replaced by the derivative of a scalar field. Using
the idea of a matrix model [16,17], we propose a matrix
theory describing M-theory on the uplifted pp-wave
backgrounds.
We then find BPS configurations. Half-BPS solutions are

graviton and giant graviton with SOð3Þ symmetry. For a
pure electric field, we reproduce BIGGons configurations
describing open strings ending on a giant graviton. These
are 1

4 BPS configurations.

A giant graviton rotating in transverse directions is
another 1

4 BPS configuration. Our solution has SOð3Þ �
Uð1Þ � Uð1Þ symmetry and rotates in the xa � ya plane.
Rotation can be easily extended to other planes in trans-
verse directions.

ACKNOWLEDGMENTS

It is a great pleasure to thank M.M. Sheikh-Jabbari for
valuable discussions and comments. We would like to
thank M. Vincon for reading the manuscript carefully.

[1] R. R. Metsaev and A.A. Tseytlin, Phys. Rev. D 65, 126004
(2002).

[2] D. E. Berenstein, J.M. Maldacena, and H. S. Nastase, J.
High Energy Phys. 04 (2002) 013.

[3] J. Bagger and N. Lambert, J. High Energy Phys. 02
(2008) 105; Phys. Rev. D 77, 065008 (2008); 75,
045020 (2007).

[4] M. Van Raamsdonk, J. High Energy Phys. 05 (2008) 105.

[5] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,
J. High Energy Phys. 10 (2008) 091.

[6] T. Nishioka and T. Takayanagi, J. High Energy Phys. 08
(2008) 001.

[7] G. Grignani, T. Harmark, A. Marini, and M. Orselli, J.
High Energy Phys. 06 (2010) 34.

[8] G. Grignani, T. Harmark, and M. Orselli, Nucl. Phys.
B810, 115 (2009).

2A similar solution exists for the case 
� ¼ � 1
2 .

D2-BRANE IN THE PENROSE LIMITS OF AdS4 � CP3 PHYSICAL REVIEW D 82, 065027 (2010)

065027-5

http://dx.doi.org/10.1103/PhysRevD.65.126004
http://dx.doi.org/10.1103/PhysRevD.65.126004
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1088/1126-6708/2008/02/105
http://dx.doi.org/10.1088/1126-6708/2008/02/105
http://dx.doi.org/10.1103/PhysRevD.77.065008
http://dx.doi.org/10.1103/PhysRevD.75.045020
http://dx.doi.org/10.1103/PhysRevD.75.045020
http://dx.doi.org/10.1088/1126-6708/2008/05/105
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://dx.doi.org/10.1088/1126-6708/2008/08/001
http://dx.doi.org/10.1088/1126-6708/2008/08/001
http://dx.doi.org/10.1007/JHEP06(2010)034
http://dx.doi.org/10.1007/JHEP06(2010)034
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.019
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.019


[9] M. Alishahiha, M.A. Ganjali, A. Ghodsi, and S. Parvizi,
Nucl. Phys. B661, 174 (2003).

[10] T. Nishioka and T. Takayanagi, J. High Energy Phys. 10
(2008) 082.

[11] K. Sugiyama and K. Yoshida, Nucl. Phys. B644, 128
(2002); S. j. Hyun and H. j. Shin, J. High Energy Phys.
10 (2002) 070.

[12] M. Cvetic, H. Lu, and C.N. Pope, Nucl. Phys. B644, 65
(2002).

[13] M. Ali-Akbari and M.M. Sheikh-Jabbari, J. High Energy
Phys. 10 (2007) 043.

[14] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)
032.

[15] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind,
Phys. Rev. D 55, 5112 (1997).

[16] K. Dasgupta, M.M. Sheikh-Jabbari, and M. Van
Raamsdonk, J. High Energy Phys. 05 (2002) 056.

[17] B. de Wit, J. Hoppe, and H. Nicolai, Nucl. Phys. B305,
545 (1988).

[18] M.M. Sheikh-Jabbari, J. High Energy Phys. 09 (2004)
017.

[19] B. Chandrasekhar and B. Panda, arXiv:0909.3061; A.
Hamilton, J. Murugan, A. Prinsloo, and M. Strydom, J.
High Energy Phys. 04 (2009) 132; J. L. Carballo, A. R.
Lugo, and J. G. Russo, J. High Energy Phys. 11 (2009)
118; T. Nishioka and T. Takayanagi, J. High Energy Phys.
10 (2008) 082.

[20] C. G. Callan and J.M. Maldacena, Nucl. Phys. B513, 198
(1998).

M. ALI-AKBARI PHYSICAL REVIEW D 82, 065027 (2010)

065027-6

http://dx.doi.org/10.1088/1126-6708/2008/10/082
http://dx.doi.org/10.1088/1126-6708/2008/10/082
http://dx.doi.org/10.1016/S0550-3213(02)00820-9
http://dx.doi.org/10.1016/S0550-3213(02)00820-9
http://dx.doi.org/10.1088/1126-6708/2002/10/070
http://dx.doi.org/10.1088/1126-6708/2002/10/070
http://dx.doi.org/10.1016/S0550-3213(02)00792-7
http://dx.doi.org/10.1016/S0550-3213(02)00792-7
http://dx.doi.org/10.1088/1126-6708/2007/10/043
http://dx.doi.org/10.1088/1126-6708/2007/10/043
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1103/PhysRevD.55.5112
http://dx.doi.org/10.1088/1126-6708/2002/05/056
http://dx.doi.org/10.1016/0550-3213(88)90116-2
http://dx.doi.org/10.1016/0550-3213(88)90116-2
http://dx.doi.org/10.1088/1126-6708/2004/09/017
http://dx.doi.org/10.1088/1126-6708/2004/09/017
http://arXiv.org/abs/0909.3061
http://dx.doi.org/10.1088/1126-6708/2009/04/132
http://dx.doi.org/10.1088/1126-6708/2009/04/132
http://dx.doi.org/10.1088/1126-6708/2009/11/118
http://dx.doi.org/10.1088/1126-6708/2009/11/118
http://dx.doi.org/10.1088/1126-6708/2008/10/082
http://dx.doi.org/10.1088/1126-6708/2008/10/082
http://dx.doi.org/10.1016/S0550-3213(97)00700-1
http://dx.doi.org/10.1016/S0550-3213(97)00700-1

