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Antonio Accioly,1,2,3,* José Helayël-Neto,1,2,† and Eslley Scatena3,2,‡
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The effects of a nonzero photon rest mass can be incorporated into electromagnetism in a simple way

using the Proca equations. In this vein, two interesting implications regarding the possible existence of a

massive photon in nature, i.e., tiny alterations in the known values of both the anomalous magnetic

moment of the electron and the gravitational deflection of electromagnetic radiation, are utilized to set

upper limits on its mass. The bounds obtained are not as stringent as those recently found; nonetheless,

they are comparable to other existing bounds and bring new elements to the issue of restricting the photon

mass.
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I. INTRODUCTION

In general, systems of heavy vector bosons are non-
renormalizable. There are, however, two important excep-
tions to this rule: (i) gauge theories with spontaneous
symmetry breakdown, and (ii) Abelian theories with neu-
tral vectorial bosons coupled to conserved currents [1]. The
latter, i.e., the ‘‘conserved current models’’, contain at least
one massive boson, whose source is conserved. These
systems can be constructed through the following general
prescription [2]:

(i) Begin with a Lagrangian which is invariant under a
nonsemisimple group of local gauge transformations
(i.e., a group containing an invariant Abelian
subgroup).

(ii) Arrange for spontaneous symmetry breaking (if
any) such that the vacuum expectation value of the
scalar field is invariant under at least one invariant
(single-parameter) Abelian subgroup (thus, at this
stage the corresponding Abelian vector is massless
and coupled to a conserved current).

(iii) Add (in the R gauge) an arbitrary mass term for the
same Abelian vector.

Massive electrodynamics (or, Proca electrodynamics), i.e,
the electrodynamics that can be embedded into the stan-
dard SUð2Þ �Uð1Þ model and in which the photon has a
small mass, is the simplest system of this type, besides
being the most straightforward extension of standard QED.
Indeed, Proca’s electromagnetic field theory can be con-
structed in a unique way by adding a mass term to the
Lagrangian for the electromagnetic field, namely,

L ¼ � 1

4
F2
�� � J�A

� þ 1

2
m2A2

�; (1)

where F��ð¼ @�A� � @�A�Þ is the field strength, and J�
is the (electric) current. The parameterm can be interpreted
as the photon rest mass. In this spirit, the characteristic
scaling length m�1 becomes the reduced Compton wave-
length of the photon, which is the effective range of the
electromagnetic interaction.
Massive QED is not only simpler theoretically than the

standard theory [3], it also provides a fairly solid frame-
work for analyzing (through the Proca equations) the far-
reaching implications the existence of a massive photon
would have for physics. Actually, some of these possible
effects, such as variation of the speed of light, deviation in
the behavior of static electromagnetic fields and longitu-
dinal electromagnetic radiation, have been thoroughly
studied by means of a number of different approaches
over the past several decades [4–6]. It is worth mentioning
that both the Aharonov-Bohm and the Aharonov-Casher
effects are present in massive QED. The former was ana-
lyzed by Boulware and Deser [7] who showed that it
reduces smoothly to the original result, while the latter
was studied by Fuchs [8]. Nonetheless, the system of
‘Maxwell þ photon mass þ magnetic charge’ equations
is not consistent [3,4].
Interestingly enough, the possibility of a nonzero photon

mass remains, as it was pointed out by Adelberger, Dvali,
and Gruzinov [9], one of the most important issues in
physics, as it would shed a new light on some fundamental
questions, such as charge conservation, charge quantiza-
tion, the possibility of charged black holes and magnetic
monopoles. We also remark that the popular view that
gauge invariance implies a zero photon mass is not correct.
In reality, a minimal dynamics obeying gauge invariance,
i.e., the Maxwell action, does imply zero photon mass;
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nevertheless, by enlarging the dynamics, for instance, by
adding another field interacting with the photon field, both
gauge invariance and nonzero mass can be accommodated
simultaneously [6].

The purpose of this paper is to set upper bounds on the
photon mass supposing that it is described by Proca elec-
trodynamics. To accomplish this goal we shall analyze two
interesting but not yet explored consequences of the pos-
sible existence of a massive photon in nature: the very
small alteration in the usual anomalous magnetic moment
of the electron and the tiny change in the ordinary gravi-
tational deflection of the electromagnetic radiation. These
issues are analyzed in detail in Secs. II and III, respectively.
To conclude, a discussion about the order of magnitude of
the bounds estimated in the aforementioned sections, is
presented in Sec. IV.

In our conventions ℏ ¼ c ¼ 1, and the signature is
ðþ ���Þ.

II. A QUANTUM BOUND

As is well-known, QED predicts the anomalous mag-
netic moment of the electron correctly to ten decimal
places. Therefore, it is perfectly reasonable that we use
this astonishing result, one of the great triumphs of QED, to
estimate a quantum bound on the photon mass. How can
we do that? By computing the anomalous magnetic mo-
ment of the electron to order �, where � is the fine
structure constant, in the framework of massive QED and
expanding afterward the result in powers of ðm

�Þ2, where m
and � are, respectively, the photon and the electron
masses. The first term of this expansion must necessarily
coincide with that calculated by Schwinger in 1948 [10],
while the second one is the most important correction
related to the parameter m of massive QED. Now, taking
into account that the latter must be less than 10�10 (the
theoretical result predicted by QED for the anomalous
magnetic moment of the electron [11] agrees in 1 part in
1010 with the experimental one [12]), we promptly find an
upper bound for the photon mass.

Let us then perform the computations. We begin by
recalling that the anomalous magnetic moment of the
electron stems from the vertex correction for the scattering
of the electron by an external field, as it is shown in Fig. 1.

For an electron scattered by an external static magnetic
field and in limit q ! 0, the gyromagnetic ratio is given by
[13]

g ¼ 2½1þ F2ð0Þ�:
The form factor of the electron, F2ð0Þ, corresponds to a

shift in the g� factor, usually quoted in the form F2ð0Þ �
g�2
2 , and yields the anomalous magnetic moment of the

electron.
On the other hand, from the quadratic part of Lagrangian

(1) we immediately obtain the propagator for the massive

QED, namely,

D�� ¼ � ���

k2 �m2
þ k�k�

m2ðk2 �m2Þ : (2)

By employing this expression in the calculation of the
diagram in Fig. 1, it can be shown that

F2ð0Þ ¼ �

�

Z 1

0
d�1d�2d�3�ð1� ��iÞ

� �1ð�2 þ �3Þ
ð�2 þ �3Þ2 þ �2�1

;

where �2 � ðm�Þ2. We remark that the term
k�k�

m2ðk2�m2Þ that
appears in Eq. (2) was omitted ab initio from the calcu-
lations concerning F2ð0Þ because the propagator for the
massive photon always occurs coupled to conserved
currents.
In order to avoid unnecessary algebraic computations as

far as the evaluation of F2ð0Þ is concerned, we rewrite this
expression as follows:

F2ð0Þ ¼ X� Y;

where

X � �

�

Z 1

0
d�1d�2d�3�ð1� ��iÞ �1

�2 þ �3

; (3)

Y � ¼ �

�

Z 1

0
d�1d�2d�3�ð1� ��iÞ

�
�

�1

�2 þ �3

� �1ð�2 þ �3Þ
ð�2 þ �3Þ2 þ �2�1

�
: (4)

Integrating the expression (3) first with respect to �3 and
subsequently with respect to �2 gives

X ¼ �

�

Z 1

0
d�1

Z 1��1

0
d�2

�1

1� �1

¼ �

2�
: (5)

Similarly, the expression (4) yields

FIG. 1. Vertex correction for electron scattering by an external
field.
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Y ¼ �

�

Z 1

0
d�1

�2�2
1

ð1� �1Þ2 þ �2�1

¼ �

�

�
�2 � ð�4 � 2�2Þ ln�þ �5 � 4�3 þ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� �2
p

� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �2

p

�

�
: (6)

From (5) and (6) we get

F2ð0Þ ¼ �

�

�
1

2
� �2ð1þ 2 ln�Þ þ �4 ln�

þ 4�3 � 2�� �5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �2

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �2

p

�

�
: (7)

Recalling that � � 1, we arrive at the conclusion that

F2ð0Þ � �

2�

�
1� �

�
m

�

�
�

�
3

2
þ 4 ln

�
m

�

���
m

�

�
2

þO
��
m

�

�
3
��

: (8)

As we have already commented, the first term in the above
equation is equal to that calculated by Schwinger in 1948
(since then F2ð0Þ has been calculated to order�8 for QED),
while the second one is the most important correction
concerning the parameter m of massive QED. Since theory
and experiment agree within errors to�1 in 1010 for F2ð0Þ,
we promptly obtain

�m

�
< 10�10; (9)

implying m< 1:6� 10�10 MeV.
Recently, the measurement of the anomalous magnetic

moment of the muon reached the fabulous relative preci-
sion of 0.5 ppm [14,15]. Accordingly, it would be interest-
ing to find another quantum bound on the photon mass
using this phenomenon and make afterward a comparison
with the bound estimated via the electron. Now, taking into
account that for the muon [16]

F
ðexpÞ
2 ð0Þ � FðSMÞ

2 ð0Þ ¼ ð295� 88Þ � 10�11;

where FðSMÞ
2 ð0Þ denotes the prediction of the standard

model [17], we find m< 3:4� 10�7 MeV, 3 orders of
magnitude higher than the bound derived from the anoma-
lous magnetic moment of the electron. Consequently, we
shall not consider this bound in our discussions.

III. A GRAVITATIONAL BOUND

It is a generally acknowledged fact that the gravitational
deflection of light by the sun can be measured more
accurately at radio wavelengths with interferometry tech-
niques than at visible wavelengths with available optical
techniques [18]. Indeed, at present the very long baseline
interferometry (VLBI) is the most accurate technique we

have at our disposal for measuring radio-wave gravita-
tional deflection [19–21]. The gravitational bending, in
turn, is one of the most impressive predictions of general
relativity. In addition, the recent measurements of the
gravitational bending of radio waves using the VLBI
have improved considerable on the previous results in the
gravitational bending experiments near the solar limb [22].
Accordingly, we shall use these results to estimate an upper
limit on the photon mass. To do that we need, in first place,
the unpolarized differential cross section for the scattering
of a massive photon (described by Proca’s electrodynam-
ics) by an external weak gravitational field. On the other
hand, it was recently shown that the unpolarized differen-
tial cross sections for the gravitational scattering of differ-
ent quantum particles are spin dependent [23] (See
Table I). Nonetheless, for small angles, the cross sections
for the massive (massless) particles are one and the same,
regardless of the spin. In fact, when the spin is ‘‘switched
off’’, i.e., for small angles (� � 1), it is fairly straightfor-

ward to see from Table I that for m ¼ 0, d	
d� � 16G2M2

�4
,

while for m � 0, d	
d� � 16G2M2

�4
ð1þ �

2Þ2. In short, for small

angles the results of Table I are in perfect agreement with
those predicted by Einstein’s geometrical theory.
Consequently, the differential cross section we are search-
ing for is independent of the spin of the massive particle
and can be written as

d	

d�
¼ 16G2M2

�4

�
1þ �

2

�
2
: (10)

The above differential cross section can be related to a
classical trajectory with impact parameter b via the relation

bdb ¼ � d	

d�
�d�: (11)

TABLE I. Unpolarized differential cross sections for the scat-
tering of different quantum particles by an external weak gravi-
tational field generated by a static point particle of massM. Here
m is the particle mass, s the spin, � the scattering angle, G the
Newtonian constant, and � � m2

p2 ¼ 1�v2

v2
, with v and p being the

velocity and three-momentum, in this order, of the incident
particle.

m s d	
d�

0 0 ðGM
sin2�2

Þ2

� 0 0 ðGM
sin2�2

Þ2ð1þ �
2Þ2

0 1
2 ðGM

sin2�2
Þ2cos2 �

2

� 0 1
2 ðGM

sin2�2
Þ2½cos2 �

2 þ �
4 ð1þ �þ 3cos2 �

2Þ�
0 1 ðGM

sin2�2
Þ2cos4 �

2

� 0 1 ðGM
sin2�2

Þ2½13 þ 2
3 cos

4 �
2 � �

3 ð1� 3�
4 � 4cos2 �

2Þ�
0 2 ðGM

sin2�2
Þ2ðsin8 �

2 þ cos8 �
2Þ
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From (10) and (11) we arrive at the conclusion that

� ¼ 4MG

b

�1� m2

2E2

1� m2

E2

�
; (12)

which in the ultrarelativistic limit, i.e., E 	 m, reduces to

� ¼ �E

�
1þ m2

2E2

�
; ¼ �E

�
1þ m2

8�2�2

�
; (13)

where E and � are, respectively, the energy and the fre-
quency of the ingoing massive photon, and �E � 4MG

b .

The first term in the expression (13) coincides with that
obtained by Einstein in 1916 by solving the equation of
light propagation in the field of a static body [24], whereas
the second one is the most important correction due to the
massm of the massive photon. On the other hand, the angle
of gravitational bending measured by the experimental
groups is expressed in general trough the relation [25]

�exp ¼ 1þ 


2
�E; (14)

where 
 is the deflection parameter characterizing the
contribution of space curvature to gravitational deflection.
From Eqs. (13) and (14), we then get

�E
m2

8�2�2
< �E

�
1� 1þ 


2

�
; (15)

implying

m< 2��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� 
j

q
: (16)

Not long ago, Fomalont et al. [22] determined the de-
flection parameter 
 ¼ 0:9998� 0:0003 (68% confidence
level), using the VLBI at 43, 23 and 15 GHz to measure the
solar gravitational deflection of radio waves. Their results
come mainly from 43 GHz observations where the refrac-
tion effects of the solar corona were negligible beyond 3
degrees from the sun [26].

Using the result for the deflection parameter found by
Fomalont et al. and assuming that the massive photon
passing near the solar limb has a frequency � ¼ 43 GHz
(which is perfectly justifiable in view of the argument
previously provided), we conclude that m< 3:5�
10�11 MeV.

We remark that Eq. (12) can also be deduced à la
Einstein, namely, by finding an approximate solution to
the geodesic equation of motion of a massive test particle
in the Schwarzschild field. By adopting this approach, an
expression for the angle of particle deflection by the sun
was obtained to order ðGM

b Þ3 in Ref. [27]. This kind of

deduction, however, is a time-consuming work. On the
other hand, Golowich, Gribosky, and Pal [28], instead of
taking the usual geometrical approach, considered the
phenomenon of light bending as a quantum scattering
problem. This treatment, which is not only instructive but
also straightforward when the gravitational field is weak,

allowed them to easily obtain an expression for the gravi-
tational deflection of massive particles to order GM

b . An

identical result was found by Mohany, Nieves, and Pal [29]
using a method pioneered by Ohanian and Ruffini [30].
At this point, some comments are in order.
(i) According to general relativity, photons are not only

deflected but also delayed by the curvature of space-time
produced by any mass. And more, the bending and delay
are proportional to 
þ 1. Consequently, time delay tech-
niques can also be employed to set up bounds on the
photon mass. It is interesting to note that a few years
ago, Bertotti, Iess, and Tortora [31] reported a measure-
ment of the frequency shift of radio photons to and from
the Cassini spacecraft as they passed near the sun that led
to a result for 
 which agrees with the predictions of
standard general relativity with a sensitivity that ap-
proaches the level at which, theoretically, deviations are
expected in some cosmological models [32,33].
(ii) Equation (13) was derived on the assumption that the

field responsible for the photon deflection is a static gravi-
tational field. Nonetheless, as is well-known, neither the
sun nor the planets are at rest in the solar system. Actually,
they are moving with respect to both the barycenter of the
solar system and the observer. This motion will certainly
bring about velocity-dependent corrections to the general-
relativistic equation of the gravitational deflection of light.
As a consequence, the aforementioned motion-induced
correction to the gravitational deflection of light shall
correlate with the correction to the photon’s mass exhibited
in Eq. (13). This fact leads us to pose an important ques-
tion: Currently, is modern technology sensitive enough to
detect these tiny relativistic effects caused by the depen-
dence of the gravitational field on time? Kopeikin [34]
claims that ‘‘future gravitational light-ray deflection ex-
periments [35], radio ranging BepiColombo experiment
[36], laser ranging experiments ASTROD [37] and
LATOR [38] will definitely reach the precision in measur-
ing �
PPN, ��PPN and ��PPN that is comparable with the post-
Newtonian corrections to the static time delay and to the
deflection angle caused by the motion of the massive
bodies in the solar system [39].’’ Here, deviation from
general relativity is denoted with the comparative PPN
parameter �
PPN � 
PPN � 1, ��PPN � �PPN � 1, and
��PPN � �PPN � 1. On the other hand, one can show, using
the equation for the post-post-Newtonian time delay, �t,
which was obtained by Kopeikin by coupling the PPN
parameters with the velocity-dependent terms, that for
gravitational experiments with light propagating in the
field of the sun,

�t � ð1þ ��Þ ln
�
r1 þ r2 þ r12
r1 þ r2 � r12

�
; (17)

with

�� � �
PPN � 2�
; (18)
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where �
ð¼ 5:3� 10�8Þ is the solar velocity (in natural
units) with respect to the barycenter of the solar system, r12
is the coordinate distance between the emission and ob-
servation points, r1, r2 are radial distances to the emission
and observation points, respectively. Now, noticing that the
LATOR and ASTROD space missions are going to mea-
sure the �
PPN parameter with a precision approaching to
10�9 [37,38], we arrive at the conclusion that in the near-
future, the explicit velocity-dependent correction to the
static time delay in the solar gravitational field must ap-
parently be taken into account. Let us then answer the
question raised above. For the sake of simplicity we restrict
our discussion to measurements of light bending by the sun
obtained trough VLBI techniques. Currently the experi-
mental groups have determined the parameter �
PPN using
the VLBI with an accuracy of 10�4 [22]. Therefore, the
alluded velocity-dependent correction is too small and
can be neglected in the determination of �
PPN. Actually,
the detection of so small, an effect is beyond current
technology.

(iii) Nowadays, as we have already pointed out, the
VLBI is the most accurate technique we have at our dis-
posal for measuring radio-wave gravitational deflection on
a regular basis [19–21]. It was only superseded by the
multiple frequency Doppler-tracking of Cassini spacecraft
[31].

(iv) Measuring light deflection with optical techniques
may turn out more advantageous for determining the pa-
rameter 
 in a foreseeable future [40].

IV. DISCUSSION

We discuss now whether or not the bounds we have
found could be improved. To begin with, we consider the
quantum limit. A quick glance at Eq. (9) clearly shows that
a better agreement between theory and experiment con-
cerning the anomalous magnetic moment of the electron
necessarily leads to an improvement on the quantum
bound. Consequently, there is a great probability of obtain-
ing a better quantum bound on the photon mass in the
foreseeable future. We analyze in the sequel how a better
limit on the photon mass might be obtained using Eq. (16).
First, if the deflections measured using the VLBI could be

made with greater accuracy the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� 
jp

would be

reduced giving, as a result, a better gravitational estimate.
According to Fomalont et al. [22], a series of designed
experiments with the VLBI could increase the accuracy of
the future experiments by at least a factor of 4. Second, if
deflection measurements can be obtained at lower frequen-
cies, while maintaining the value of the deflection parame-
ter 
, the gravitational bound will be improved in direct
proportion to the frequency. This point, however, needs to
be dealt with carefully. In fact, as we have already men-
tioned, up till now the best results obtained for the gravi-
tational deflection via the VLBI are those that come mainly
from 43 GHz where the refraction effects of the solar
corona are negligible beyond 3 degrees from the sun.
Incidentally, the lowest frequency employed by the radio
astronomers was 2 GHz. However, the measurements made
at this frequency are less reliable because of the refraction
effects of the solar corona. Actually, the radio astronomers
use in their experiments a mixing of different frequencies
but the most significant contributions come in general from
�43 GHz. This possibility of increasing the gravitational
limit is then very limited.
Certainly, the bounds we have found on the photon mass

are higher than the recently recommended limit published
by the Particle Data Group [12]. They are nevertheless
comparable to other existing bounds (See Table II) and
bring new elements to the issue of restricting the photon
mass. Accordingly, they do have some merits. We discuss
their main qualities in the following.
(i) The theory adopted to describe the photon mass has

the correct limit.
(ii) The bounds are based on exact calculations per-

formed in the framework of QED and general rela-
tivity, respectively; besides, the most accurate
experimental data currently available have been
taken as input.

(iii) The conceptual approaches adopted to estimate the
bounds are new.

(iv) The methods used for placing the bounds are inter-
esting in their own, although they do not lead to the
most stringent limits. Indeed, the quantum bound is
estimated using one of the most renowned predic-
tions of QED—the anomalous magnetic moment of
the electron, while the gravitational bound is ob-
tained using the properties of gravity. Essentially,

TABLE II. Some upper bounds on the photon mass obtained by measuring the dispersion in the speed of light in different ranges of
the electromagnetic spectrum (in chronological order).

Author (year) Type of measurement Limits on m(MeV)

Froome (1958) [41] Radio-wave interferometer 2:4� 10�13

Warner et al. (1969) [42] Observations on Crab Nebula pulsar 2:9� 10�14

Bay et al. (1972) [43] Pulsar emission 1:7� 10�19

Brown et al. (1973) [44] Short pulses radiation 7:9� 10�7

Schaefer (1999) [45] Gamma ray bursts (GRB980703) 2:4� 10�17

Gamma ray bursts (GRB930229) 3:4� 10�12
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the point is that a massive photon is bent in a
gravitational field by a different amount than a
massless photon. Thus, observations of light bend-
ing by the sun allow one to place limits on the
photon mass.

(v) The bounds are essentially a measurement of the
agreement between theory and experiment. Since
the two limits are of the same order, they may be
used to give an idea of how much the theoretical
prediction deviates from the experimental result.
For the quantum and semiclassical bounds we
have estimated this lower limit is m�1 � 2 cm.
Thus, the more the value of m�1 increases, the
more the concordance between theory and experi-
ment increases. In other words, a null mass for the
photon would imply a perfect agreement between
theory and experiment

(vi) Recently, Adelberger, Dvali, and Gruzinov [9]
questioned the validity of some bounds on the
photon mass available in the literature. They claim
that if m arises from a Higgs effect, these limits are
invalid because the Proca vector potential of the
galactic magnetic field may be neutralized by vor-
tices giving a large-scale magnetic field that is
effectively Maxwellian. However, these criticisms

do not apply to our computations because they are
based on the plausible assumption of large galactic
vector potential; furthermore, in our case m does
not arise from a Higgs effect.

Last but not least, we would like to draw the reader’s
attention to the article by Barton and Dombey [46] in
which it is demonstrated that the Casimir effect is not
sensitive to a small photon mass. To accomplish this,
they showed that the contribution to the Casimir force
due to the photon mass is proportional to m4, being, as a
consequence, negligible compared with the leading finite-
mass correction to the contribution from the transverse
modes. On the other hand, if the galactic magnetic field
is in the Proca regime, the very existence of the observed
large-scale magnetic field gives m� 10�26 eV [9].
Therefore, the electron anomalous magnetic moment and
the deflection of light by the sun, like the Casimir effect,
are insensitive to a photon mass less than the allowed
already established limits.
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