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We give a theoretical framework to obtain a low-energy effective theory of quantum chromodynamics

(QCD) towards a first-principle derivation of confinement/deconfinement and chiral-symmetry breaking/

restoration crossover transitions. In fact, we demonstrate that an effective theory obtained using simple but

nontrivial approximations within this framework enables us to treat both transitions simultaneously on

equal footing. A resulting effective theory is regarded as a modified and improved version of nonlocal

Polyakov-loop extended Nambu-Jona-Lasinio (nonlocal PNJL) models proposed recently by Hell,

Rössner, Cristoforetti, and Weise, and Sasaki, Friman, and Redlich, extending the original (local) PNJL

model by Fukushima and others. A novel feature is that the nonlocal NJL coupling depends explicitly on

the temperature and Polyakov loop, which affects the entanglement between confinement and chiral-

symmetry breaking, together with the cross term introduced through the covariant derivative in the quark

sector considered in the conventional PNJL model. The chiral-symmetry breaking/restoration transition is

controlled by the nonlocal NJL interaction, while the confinement/deconfinement transition in the pure

gluon sector is specified by the nonperturbative effective potential for the Polyakov loop obtained recently

by Braun, Gies, Marhauser, and Pawlowski. The basic ingredients are a reformulation of QCD based on

new variables and the flow equation of the Wetterich type in the Wilsonian renormalization group. This

framework can be applied to investigate the QCD phase diagram at finite temperature and density.
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I. INTRODUCTION

The relation between confinement and chiral-symmetry
breaking is one of the long-standing puzzles in theoretical
physics. Recently, strong interest on this issue revived in
extreme environments especially at high temperatures and
baryon densities, stimulated by the heavy-ion programs at
GSI, CERN SPS, RHIC, and LHC, see, e.g., [1,2] for a
review. Quantum chromodynamics (QCD) for strong in-
teractions is a fundamental theory for solving this problem.

In pure Yang-Mills theory, i.e., in the limit of infinitely
heavy quark mass mq ! 1 of QCD, the Polyakov-loop

average hLi, i.e., the vacuum expectation value of the
Polyakov-loop operator L, can be used as a criterion for
quark confinement [3]. The Polyakov-loop operator L is a
gauge-invariant operator charged under the center group
ZðNcÞ of the color gauge group SUðNcÞ. The Polyakov-
loop average hLi vanishes hLi ¼ 0 and quarks are confined
at low temperatures T < Td where the global center sym-
metry ZðNcÞ is intact, while it is nonzero hLi � 0 and
quarks are deconfined at high temperature T > Td where
the global center symmetry ZðNcÞ is spontaneously broken.
Thus, we can define Td as a critical temperature for con-
finement/deconfinement phase transition.

When dynamical quarks in the fundamental representa-
tion of the gauge group are added to the Yang-Mills theory,
the center symmetry is no longer exact. On the other hand,

QCD with massless quarks mq ! 0 exhibits chiral sym-

metry SUðNfÞL � SUðNfÞR. The chiral condensate h �c c i,
i.e., the vacuum expectation value of a gauge-invariant
composite operator �c c , is used as an order parameter
for chiral-symmetry breaking. The chiral condensate
h �c c i is nonzero h �c c i � 0 at low temperatures T < T�

where the chiral symmetry is spontaneously broken, while
it vanishes h �c c i ¼ 0 at high temperature T > T� where

the chiral symmetry is restored. Thus, we can define T�

as a critical temperature for chiral-symmetry breaking/
restoration phase transition.
For realistic quark mass (with finite and nonzero mq:

0<mq <1), there are no exact symmetries directly re-

lated to the phase transitions, since both the center and
chiral symmetries are explicitly broken, and hLi and h �c c i
are approximate order parameters. In this case, there is no
critical temperature Tc in the strict sense, and the transition
can be a crossover transition for which the pseudocritical
temperature T�c is defined such that the susceptibility takes
the maximal value at T ¼ T�c . If quarks are in the funda-
mental representation, deconfinement (a rise in the
Polyakov-loop average) happens at the temperature where
the chiral symmetry is restored (chiral condensate de-
creases rapidly). The chiral and deconfinement transitions
seem to coincide, T�d ¼ T�� ’ Tc [4,5], although the prop-

erty of the phase transition, e.g., the critical temperature
and the order of the transition depend on the numbers of
color Nc and flavor Nf. Whereas, for quarks in the adjoint
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representation, deconfinement and chiral-symmetry resto-
ration do not happen at the same temperature, rather T�� �
T�d [6]. Although there exist theoretical considerations on

the interplay between chiral-symmetry breaking and con-
finement at zero baryon density [7], the underlying reasons
for the coincidence are still unknown and uncertain at
nonzero baryon density [8–10].

The hadronic properties, especially chiral dynamics at
low energy have been successfully described by chiral
effective models such as the linear sigma model [11], the
Nambu-Jona-Lasinio (NJL) model [12–14], the chiral ran-
dom matrix model [15], chiral perturbation theory [16],
and so on. However, those models based on chiral symme-
try lack any dynamics coming from confinement dictated
by the Polyakov loop, although there are some efforts to
clarify the interplay between chiral dynamics and the
Polyakov loop [17,18].

Recent chiral effective models with the Polyakov-loop
degrees of freedom augmented called the Polyakov-loop
extended NJL (PNJL) model or quark-meson model
[19–26] are successful from a phenomenological point of
view to incorporate a coupling between the chiral conden-
sate and the Polyakov-loop. However, these PNJL/quark-
meson models are still far from treating the chiral
condensate and the Polyakov loop on an equal footing,
except for the work [26] where the back coupling of the
matter sector to the glue sector was discussed by changing
the phase transition parameter. In fact, the gluonic part in
these models has several fitting parameters which are
determined only from lattice QCD data.

Here we must mention a preceding work for a first-
principle derivation of confinement/deconfinement and
chiral-symmetry breaking/restoration crossover phase
transition based on the flow equation [27] of the functional
renormalization group [28,29] given by Braun, Haas,
Marhauser, and Pawlowski [30] for the full dynamical
QCD with 2 massless flavors (at zero and imaginary
chemical potential). In this work, the Yang-Mills theory
is fully coupled to the matter sector by taking into account
the Polyakov-loop effective potential [31] obtained in a
nonperturbative way put forward by Braun, Gies, and
Pawlowski [32] and Marhauser and Pawlowski [33].

The main purpose of this paper is to provide a theoretical
framework (a reformulation of QCD) which enables one to
describe in a unified way the chiral dynamics and confine-
ment signaled by the Polyakov loop. We give an important
step towards a first-principle derivation of confinement/
deconfinement and chiral-symmetry breaking/restoration
crossover transition. In fact, we demonstrate that a low-
energy effective theory of QCD obtained in simple but
nontrivial approximations within this framework enables
one to treat both transitions simultaneously on equal
footing.

The basic ingredients in this paper are a reformulation of
QCD based on new variables [34–51] and the flow equation

of the Wetterich type in the Wilsonian renormalization
group [27–29]. The reformulation was used to confirm
quark confinement in pure Yang-Mills theory at zero
temperature and zero density based on a dual supercon-
ductor picture [52]. In this paper, it is extended to QCD
at finite temperature and density. In principle, our frame-
work can be applied to any color gauge group and arbitrary
number of flavors. For technical reasons, however, we
study two color QCD with two flavors in this paper.
The three color and/or three flavor case will be studied in
a subsequent paper. In future publications, this framework
will be applied to investigate the QCD phase diagram
at finite density. We hope that this paper will give an
insight into this issue complementary to other works,
e.g., [30].
In Sec. II, we give a reformulation of QCD written in

terms of new variables and explain why the reformulated
QCD is efficient to study the interplay between confine-
ment and chiral-symmetry breaking.
In Sec. III, we choose a specific gauge (modified

Polyakov gauge) to simplify the representation of the
Polyakov loop. We can choose any gauge to calculate
the Polyakov-loop average and the chiral condensate, since
both are gauge-invariant quantities and should not depend
on the gauge chosen.
In Sec. IV, we give a definition of the Polyakov-loop

operator and examine how the Polyakov-loop average is
related to the average of the time component of the gauge
field.
In Secs. V and VI, we study the confinement/deconfine-

ment phase transition in pure SUð2Þ Yang-Mills (YM)
theory at finite temperature. We exploit the Wilsonian
renormalization group in our framework to obtain the
effective potential Veff of the Polyakov loop L, whose
minimum gives the Polyakov-loop average hLi. It is known
that the Weiss potential VW [31] calculated in the pertur-
bation theory to one loop exhibits spontaneous center-
symmetry breaking, i.e., deconfinement, irrespective of
the temperature T. This result can be used at high tempera-
ture where the perturbation theory will be trustworthy due
to asymptotic freedom, while the nonperturbative approach
is necessary to treat the low-temperature case. The Weiss
potential can be improved according to the Wilsonian
renormalization group to obtain a nonperturbative effective
potential which is valid even at low temperature.
In Sec. V, we write down the flow equation of the

Wetterich type for the effective potential of the Polyakov
loop in our framework. In fact, the effective potential
obtained by solving the flow equation in a numerical way
shows the existence of confinement phase below a certain
temperature Td. This solution was shown for the first time
by Marhauser and Pawlowski [33] and by Braun, Gies, and
Pawlowski [32], see [53] for the previous works. In this
sense, this section is nothing but the translation of their
results [32,33] into our framework.

KEI-ICHI KONDO PHYSICAL REVIEW D 82, 065024 (2010)

065024-2



In Sec. VI, we give a qualitative understanding for the
confinement/deconfinement transition given in Sec. V
based on the Landau-Ginzburg argument. We answer a
question why the center-symmetry restoration occurs as
the temperature is decreased, by observing the flow equa-
tion for the coefficient of the effective potential.

In Sec. VII, we describe the low-energy effective inter-
action among quarks by a nonlocal version of the (gauged)
NJL model in which the effect of confinement is explicitly
incorporated through the Polyakov-loop dependent non-
local interaction. The resulting effective theory is regarded
as a modified and improved version of nonlocal PNJL
models proposed recently by Hell, Rössner, Cristoforetti,
and Weise [22], Sasaki, Friman, and Redlich [23], and
Blaschke, Buballa, Radzhabov, and Volkov [24], extending
the original (local) PNJL model by Fukushima [19]. The
nonlocal (gauged) NJL model can be converted to the
nonlocal (gauged) Yukawa model to be bosonized to study
the chiral dynamics.

In Sec. VIII, we show that the nonlocal NJL interaction
among quarks becomes temperature dependent through the
coupling to the Polyakov loop. This is a first nontrivial
indication for the entanglement between the chiral-
symmetry breaking and confinement. This feature was
overlooked in conventional PNJL models.

In Sec. IX, we consider how to understand the entangle-
ment between confinement and chiral-symmetry breaking
in our framework. This is just a short sketch for our
strategy following the line given in the preceding sections.

The final section is used to summarize the results and
give some perspective in the future works. Some technical
materials are collected in the Appendices.

II. REFORMULATION OF QCD

To fix the notation, we write the action of QCD in terms
of the gluon field A� and the quark field c

SQCD ¼ Sq þ SYM;

Sq :¼
Z

dDx �c ði��D�½A� � m̂q þ�q�
0Þc ;

SYM :¼
Z

dDx
�1
2

trðF ��½A�F ��½A�Þ;

(1)

where c is the quark field,A� ¼AA
�TA is the gluon field

with suðNcÞ generators TA for the gauge group G ¼
SUðNcÞ (A ¼ 1; � � � ; dimSUðNcÞ ¼ N2

c � 1), m̂q is the

quark mass matrix, �q is the quark chemical potential,

�� are the Dirac gamma matrices (� ¼ 0; � � � ; D� 1),
D�½A� :¼ @� � igA� is the covariant derivative in

the fundamental representation, F ��½A� :¼ @�A� �
@�A� � ig½A�;A�� is the field strength, and g is the

QCD coupling constant. In what follows, we suppress the
spinor, color, and flavor indices.

The main purpose of this paper is to give a theoretical
framework for extracting a low-energy effective theory

which enables one to discuss the confinement/deconfine-
ment and chiral-symmetry breaking/restoration (crossover)
transition simultaneously on an equal footing. We refor-
mulate QCD in terms of new variables which are efficient
for this purpose. We start with decomposing the original
SUðNÞ Yang-Mills field A�ðxÞ ¼AA

�ðxÞTA into two

pieces V� ¼V A
�ðxÞTA and X� ¼XA

�ðxÞTA

A �ðxÞ ¼V�ðxÞ þX�ðxÞ; (2)

to rewrite the original QCD action into a new form

Sq ¼
Z

dDxf �c ði��D�½V � � m̂q þ�q�
0Þc

þ gJ � �X�g;
SYM ¼

Z
dDx

��1
4
ðF A

��½V �Þ2 � 1

2
X�AQAB

��X�B

� 1

4
ðig½X�;X��Þ2

�
þ SFP; (3)

where J �A :¼ g �c��TAc is the color current,D�½V � :¼
@� � ig½V�; �� is the covariant derivative in the adjoint

representation, and

QAB
��½V � :¼GAB½V �g��þ 2gfABCF C

��½V �;
GAB½V � :¼�ðD�½V �D�½V �ÞAB

¼�ð@��ACþgfAECV E
�Þð@��CBþ gfCFBV �FÞ

¼�@2��ABþ g2fAECfBFCV E
�V �F

þ 2gfABEV E
�@

�þ gfABE@�V E
�: (4)

In what follows we use the notation A �B for two Lie-
algebra valued functions A ¼AATA and B ¼ BATA in
the sense that A �B :¼AABA ¼ 2 trðABÞ and espe-
cially A2 :¼A �A ¼AAAA.
Historically, the decomposition of Yang-Mills theory

into new variables has been proposed by Cho [34] and
Duan and Ge [35] independently, and readdressed later by
Faddeev and Niemi [36]. The decomposition was further
developed by Shabanov [37].
The decomposition (2) is performed such thatV� trans-

forms under the gauge transformation just like the original
gauge field A�

V �ðxÞ!V 0
�ðxÞ¼�ðxÞðV�ðxÞþ ig�1@�Þ��1ðxÞ; (5)

while X� transforms like an adjoint matter field

X �ðxÞ ! X0
�ðxÞ ¼ �ðxÞX�ðxÞ��1ðxÞ: (6)

In the decomposition (2), we introduce a new field

n ðxÞ ¼ nAðxÞTA; (7)

with a unit length in the sense that nAðxÞnAðxÞ ¼ 1, which
we call the color field. In the decomposition (2), the color
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field nðxÞ plays a crucial role as follows. The color field is
defined by the following property. It must be a functional
or composite operator of the original Yang-Mills field
A�ðxÞ such that it transforms according to the adjoint

representation under the gauge transformation

n ðxÞ ! n0ðxÞ ¼ �ðxÞnðxÞ��1ðxÞ: (8)

The color field plays the key role in the reformulation.
Once a color field is given, the decomposition is uniquely
determined by solving a set of defining equations and hence
V�ðxÞ andX�ðxÞ are written in terms ofA�ðxÞ and nðxÞ.
For G ¼ SUð2Þ, the defining equations are given by

(I) covariant constantness of color field nðxÞ in V�ðxÞ
0 ¼ D�½V �nðxÞ; (9)

(II) orthogonality of X�ðxÞ to nðxÞ
0 ¼ X�ðxÞ � nðxÞ: (10)

Then the decomposition for G ¼ SUð2Þ is uniquely deter-
mined as

V�ðxÞ ¼ c�ðxÞnðxÞ þ ig�1½nðxÞ; @�nðxÞ�;
c�ðxÞ :¼A�ðxÞ � nðxÞ;
X�ðxÞ ¼ ig�1½D�½A�nðxÞ;nðxÞ�:

(11)

To arrive at the result (3), we have used the following
facts. See Appendix A for the details.

(i) The OðXÞ terms vanish, 12F
��½V � � ðD�½V �X� �

D�½V �X�Þ ¼ 0, from the property of the new var-

iables as shown using the defining equations of the
decomposition (2). This is somewhat similar to the
usual background field method in whichOðXÞ terms
in the quantum fluctuation field X� are eliminated

by requiring that the background field V� satisfies

the classical Yang-Mills equation of motion, i.e.,
D�½V �F��½V � ¼ 0. In our case, however, V�

does not necessarily satisfy the classical equation
of motion.

(ii) To obtain QAB
��½V � in (4), an OðX2Þ term is

eliminated, � 1
2X

�ADAC
� ½V �DCB

� ½V �X�B ¼ 0, by

imposing the condition

D�½V �X� ¼ 0: (12)

For the reformulated QCD to be equivalent to
the original QCD, we must impose such a constraint
to avoid mismatch in the independent degrees of
freedom, which is called the reduction condition
[38,41].

(iii) The OðX3Þ term vanishes, 1
2 ðD�½V �X��

D�½V �X�Þ � ig½X�;X�� ¼ 0, since D�½V �X��
D�½V �X� is orthogonal to ½X�;X��.

For G ¼ SUð2Þ,V can be chosen in such a way that the
field strength F ½V � of the field V is proportional to n

F ��½V �ðxÞ :¼ @�V �ðxÞ�@�V�ðxÞ� ig½V�ðxÞ;V �ðxÞ�
¼nðxÞG��ðxÞ; (13)

where G�� is a gauge-invariant antisymmetric

tensor of rank 2, i.e., F 0��½V �ðxÞ ¼ F ��½V 0� �
ðxÞ ¼ �ðxÞF ��½V �ðxÞ��1ðxÞ ¼ n0ðxÞG��ðxÞ. The ex-

plicit form ofG�� is written in terms ofA�ðxÞ and nðxÞ as
G��ðxÞ ¼ @�½nðxÞ �A�ðxÞ� � @�½nðxÞ �A�ðxÞ�

þ ig�1nðxÞ � ½@�nðxÞ; @�nðxÞ�: (14)

In the present approach, we wish to regard the field
decomposition as a change of variable from the original
gluon field to new variables describing a reformulated
Yang-Mills theory in the quantum level [38,40,41] (see,
[42–47,54,55] for the corresponding lattice gauge formu-
lation). To achieve this goal, first of all, nðxÞ must be
written as a functional ofA�ðxÞ and thereby all new fields

are written in terms of the original gluon fieldA�ðxÞ. Such
a required relationship between A�ðxÞ and nðxÞ is given
by the reduction condition, which is given as a variational
problem of obtaining an absolute minimum of a given
functional. The condition for local minima is given in the
form of a differential equation. For G ¼ SUð2Þ,

½nðxÞ; D�½A�D�½A�nðxÞ� ¼ 0: (15)

This is another form of (12). See [38] in the SUð2Þ case and
[41] in the SUðNÞ case for the full details.
Remarkable properties of new variables are as follows.

First, we remind you of the role played by the field V .
(i) The variableV� alone is responsible for the Wilson

loop operator WC½A� and the Polyakov-loop opera-
tor L½A� in the sense that

WC½A� ¼ WC½V �; L½A� ¼ L½V �; (16)

where the Wilson loop operator is defined by

WC½A� :¼N �1 tr
�
P exp

�
ig

I
C
dx�A�ðxÞ

��
;

(17)

where P denotes the path ordering and the normal-
ization factorN is the dimension of the representa-
tion R, in which the Wilson loop is considered, i.e.,
N :¼ dR ¼ dimð1RÞ ¼ trð1RÞ. The Polyakov-loop
operator will be defined later. In other words, X�

does not contribute to the Wilson loop and the
Polyakov loop in the operator level. This is because
the defining equation for the decomposition is a
(necessary and) sufficient condition for a gauge-
invariant Abelian dominance (or V dominance)
in the operator level. This proposition was first
proved in [48] for SUð2Þ and for SUðNÞ in the
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continuum [49] and for SUðNÞ on a lattice [50]. On
the lattice, the equality does not exactly hold due to
nonzero lattice spacing �, but the deviation vanishes
in the continuum limit of the lattice spacing � going
to zero, �! 0. It should be remarked that both the
Wilson loop operator and the Polyakov-loop opera-
tor are gauge-invariant quantities and that their
average does not depend on the gauge-fixing condi-
tion adopted in the calculation.

(ii) We can introduce a gauge-invariant magnetic mono-
pole current k in Yang-Mills theory (without matter
fields) where k is the (D� 3) form. For D ¼ 4 and
G ¼ SUð2Þ,
k�ðxÞ :¼ @�

�G��ðxÞ;
G�� :¼ n �F ��½V �

¼ @�c� � @�c� þ ig�1n � ½@�n; @�n�; (18)

where f�� is gauge-invariant field strength. This is

because the field strength F ��½V � :¼ @�V � �
@�V� � ig½V�;V �� is proportional to n

F ��½V � ¼nf@�c��@�c�þ ig�1n � ½@�n;@�n�g:
(19)

(iii) The gauge-invariant ‘‘Abelian’’ dominance [56,57]
(or V dominance) and magnetic monopole domi-
nance [58] (constructed fromV ) in quark confine-
ment have been confirmed at T ¼ 0 (and �q ¼ 0)

by comparing string tensions calculated from the
Wilson loop average by numerical simulations by
[43] for SUð2Þ and by [45] for SUð3Þ. Here it
should be remarked that the Abelian dominance is
the dominance for the vacuum expectation value
(or average)

hWC½A�i ’ hWC½V �i; hL½A�i ’ hL½V �i: (20)

Next, we pay attention to the role played by the remain-
ing field X. In the absence of dynamical quarks (corre-
sponding to the limit mq ¼ 1 of QCD, i.e.,

gluodynamics), XA
� decouples in the low-energy regime

as the correlator hXA
�ðxÞXA

�ðyÞi behaves like a massive

correlator with mass MX. In fact, numerical simulations
demonstrate for G ¼ SUð2Þ and D ¼ 4 [44]

MX ¼ 1:2� 1:3 GeV: (21)

We can understand this result as follows. The fieldX� can

acquire the (gauge-invariant) mass dynamically. This
comes from a fact that, in sharp contrast to the field A�,

a ‘‘gauge-invariant mass term’’ for X� can be introduced

1
2M

2
XX

A
�ðxÞXA

�ðxÞ; (22)

since XA
�ðxÞXA

�ðxÞ is a gauge-invariant operator.

Moreover, this mass term can originate from a vacuum
condensation of ‘‘mass dimension 2,’’ hXB

� ðxÞXB
� ðxÞi � 0

as proposed in [59]. In fact, this condensation can be
generated through self-interactions OðX4Þ among X�

gluons, M2
X ’ hXB

� ðxÞXB
� ðxÞi, as examined in [40,54]. It

is instructive to remark that the value (21) agrees with the
earlier result of the off-diagonal ‘‘gluon mass’’ MA in the
maximally Abelian gauge [60] for the SUð2Þ case, MA ’
1:2 GeV. See [61] for the SUð3Þ case, MA ’ 1:1 GeV. In
maximally Abelian gauge, it was shown that even at finite
temperatures Abelian dominance (diagonal part domi-
nance and off-diagonal part suppression) holds for the
spatial propagation of gluons in the long distance greater
than 0.4 fm. It was observed that the diagonal gluon
correlator largely changes between the confinement and
the deconfinement phase, while the off-diagonal gluon
correlator is almost the same even in the deconfinement
phase [62]. Although the similar results are expected to
hold in our formulation, this observation must be checked
directly, as will be confirmed in [63].
In the presence of dynamical quarks (mq <1), XA

� is

responsible for chiral-symmetry breaking in the following
sense. We consider to integrate out the field XA

� in a naive

way. This helps us to obtain an intuitive and qualitative
understanding for the interplay between the chiral-
symmetry breaking and confinement. Later, this integra-
tion procedure will be reconsidered from the viewpoint of
the renormalization group to obtain a systematic improve-
ment of the result.
Here we neglect OðX4Þ terms, which will be taken into

account later. Then the integration over XA
� can be

achieved by the Gaussian integration according to [40].
Consequently, a nonlocal 4 fermion-interaction is generated

SQCDeff ¼ S
glue
eff þ S

gNJL
eff ;

Sglueeff
:¼

Z
dDx
�1
4
ðF ��½V �Þ2 þ i

2
lndetQ½V �AB��

� i lndetG½V �AB;
SgNJLeff

:¼
Z

dDx �c ði��D�½V � � m̂q þ i�0�Þc

þ
Z

dDx
Z

dDy
g2

2
J �

A ðxÞQ�1½V �AB��ðx; yÞJ �
BðyÞ;
(23)

where the last term � lndetGAB in S
glue
eff comes from the

Faddeev-Popov determinant associated with the reduction
condition (12) (see, [39] for the precise form).
This is a nonlocal version of a gauged NJL model

(realized after Fierz transformation). The chiral-symmetry
breaking/restoration transition and the phase structure of a
local version of gauge NJL models were first studied by
solving the Schwinger-Dyson equation in the ladder ap-
proximation for QED-like [64–66] (see, [67] for a review)
and QCD-like [68] running gauge coupling constants.
They are confirmed later by a systematic approach of the
renormalization group [69].
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The range of the nonlocality is determined by the corre-
lation length �, which is characteristic of the color ex-
change through gluon fields. Therefore, this correlation
length � is identified with the inverse of the effective
mass MX, i.e., � ’ M�1X . In fact, ðQ�1ÞAB��ðx; yÞ is the X
field correlator; see (3).

In other words, MX is identified with the ultraviolet
cutoff � below which the effective NJL model appears
and works well. Interesting enough, MX is nearly equal to
the ultraviolet cutoff adopted in the NJL model

ffiffiffiffiffiffi
p2

q
& �4 ¼ 1:4 GeV; jpj & �3 ¼ 0:6 GeV; (24)

see [14].
We can decompose the gauge field A� into the low-

energy (light) mode p <MX and high-energy (heavy)
mode p >MX

A�ðpÞ ¼A�ðpÞ	ðM2
X � p2Þ þA�ðxÞ	ðp2 �M2

XÞ:
(25)

In the above treatment, X�ðpÞ is supposed to have only

the high-energy mode. The low-energy mode, if any, will
be responsible for the vacuum condensation [40]. For the
precise understanding, we need the renormalization group
treatment as given later and the implications for the
nonlocal NJL model will be discussed there.

III. GLUON SECTOR AND GAUGE FIXING

The Polyakov-loop operator L and the chiral operator
�c c are gauge-invariant quantities. Therefore, their aver-
age does not depend on the gauge-fixing procedure adopted
in the calculation. We can choose a gauge in which the
actual calculation becomes easier than other gauges.

In what follows, we treat the time component V 0 and
space component V j of V� differently to consider the

finite-temperature case. We consider the following
Polyakov gauge modified for new variables in our refor-
mulation. If the color field nAðxÞ is uniform in time,

@0n
AðxÞ ¼ 0, nAðxÞ ¼ nAðxÞ; (26)

then V 0 reduces to

V A
0 ðxÞ ¼ c0ðxÞnAðxÞ ðA ¼ 1; 2; 3Þ: (27)

Moreover, if c0ðxÞ is uniform in time,

@0c0ðxÞ ¼ 0, c0ðxÞ ¼ c0ðxÞ; (28)

then V 0 reduces to

V A
0 ðxÞ ¼ c0ðxÞnAðxÞ ðA ¼ 1; 2; 3Þ; (29)

which satisfies

@0V A
0 ðxÞ ¼ 0 ðA ¼ 1; 2; 3Þ: (30)

In this setting, V j is given by

V A
j ðxÞ ¼ cjðxÞnAðxÞ þ g�1�ABC@jnBðxÞnCðxÞ: (31)

(1) In order to simplify the calculation of the Polyakov
line, we adopt the Polyakov gauge in which the
gauge field is diagonal and time independent: for
the background field V A

0 ðxÞ,
V A

0 ðxÞ ¼ c0ðxÞ�A3; (32)

which leads to

@0V A
0 ðxÞ ¼ 0: (33)

This is realized, if we take the gauge 1

nAðxÞ ¼ �A3: (34)

In this gauge, the space component reads

V A
j ðxÞ ¼ cjðxÞ�A3; (35)

which is not time independent, @0V A
j ðxÞ ¼ 0.

(2) We expand the theory around the nontrivial uniform
background g�1T’�A3 for the time componentV A

0 ,
while the trivial background for space components
V A

j
2

V A
0 ðxÞ ¼ c0ðxÞ�A3;

c0ðxÞ ¼ g�1T’þ v0ðxÞ;
V A

j ðxÞ ¼ 0þ vA
j ðxÞ;

(36)

such that hc0ðxÞi ¼ g�1Th’i þ hv0ðxÞi ¼ g�1Th’i
with hv0ðxÞi ¼ 0 and hvA

j ðxÞi ¼ 0. Here the

prefactor g�1T ¼ ðg
Þ�1 was introduced just for
the purpose of simplifying the expression of the
Polyakov loop; see (41).

(3) We take into account the expansion up to quadratic
in the fluctuation fields v0 and vj, which we call the

quadratic approximation.
In the calculation of QAB

��, if we neglect all fluctuation

fields v0 and vj, namely, V A
0 ðxÞ ¼ g�1T’�A3 and

1This is an oversimplified choice for the color field nðxÞ. By
this choice, we cannot separate the nonperturbative contribution
coming from topological configurations such as the magnetic
monopole. It is desirable to take into account color field degrees
of freedom explicitly to see the effect of the magnetic monopole
in the confinement/deconfinement transition [70].

2I have assumed that the spatial component ofV� has a trivial
background. In view of logical consistency, one must expand the
spatial and temporal components around nontrivial backgrounds,
and then one must search for the minima of the effective
potential calculated as a function of two variables, i.e., the
temporal and spatial backgrounds. In this paper, it is assumed
that a minimum is realized at vanishing spatial background and
that the neglection of the spatial background does not so much
affect the confinement/deconfinement transition temperature.
Indeed, it must be checked whether this assumption is good or
not.
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V A
j ðxÞ ¼ 0, then we can put F C

��½V � ¼ 0 in QAB
��, and

QAB
�� is diagonal in the Lorentz indices

QAB
�� ¼ GABg��;

GAB ¼ ��AB@2� þ ð�AB � �A3�B3ÞðT’Þ2 þ 2�AB3T’@0:

(37)

In this approximation, we have

GAB ¼ ��AB@2‘ �DAC
0 ½V �DCB

0 ½V �; (38)

with

�DAC
0 ½V �DCB

0 ½V � ¼ ��AB@20 þ 2�AB3T’@0

þ ð�AB � �A3�B3ÞðT’Þ2: (39)

Thus we rewrite the gluon part S
glue
eff ½V � as

S
glue
eff ½V � ¼

1

2


Z

d3xV 0ðxÞð�@j@jÞV 0ðxÞ

þ 1

2

Z
d4xV A

TðxÞf��AB@2‘ � �AB@20gV B
T ðxÞ

þ 1

2

Z
d4xV A

LðxÞf��AB@20gV B
LðxÞ;

þ i

2
lndetQ½V �AB�� � i lndetG½V �AB; (40)

where 
 is the inverse temperature 
 :¼ 1=T, andV T and
V L denote the transverse and longitudinal components of
V�, respectively.

IV. POLYAKOV LOOP

For G ¼ SUð2Þ, the Polyakov-loop operator LðxÞ ¼
L½V 0ðx; �Þ� is defined by

LðxÞ :¼ 1

2
trðPÞ;

PðxÞ :¼ P exp

�
ig

Z 
¼1=T

0
dx0V A

0 ðx; x0Þ
�A

2

�
;

(41)

where PPy ¼ 1 and detP ¼ 1. In the above gauge choice,

PðxÞ ¼ exp

�
ig
c0ðxÞnAðxÞ�A

2

�
:

After a suitable (t-independent) gauge transformation, the
color field nAðxÞ is eliminated

LðxÞ ¼ 1

2
tr

�
exp

�
ig
c0ðxÞ�3

2

��
¼ cos

�
g
c0ðxÞ

2

�
: (42)

Owing to periodicity and center symmetry, we can
restrict the Polyakov-loop average to hLi � 0 for
G ¼ SUð2Þ. Then the Polyakov-loop average hL½V �i is
bound from above by L½hV 0ðx; �Þi�

0 	 hL½V 0ðx; �Þ�i 	 L½hV 0ðx; �Þi� ¼ cos

�h’i
2

�
; (43)

where we have only to consider the range 0 	 ’ 	 �. This
inequality follows from the Jensen inequality, since cosðxÞ
is concave for 0 	 x 	 �=2; see [33].
In the case of mq ¼ 1, if the center symmetry is broken

hLi> 0, namely, deconfinement takes place, then the vac-
uum [as a minimum of the effective potential Veffð’Þ] is
realized at h’i<�. If the vacuum is realized at h’i ¼ �,
then the center symmetry is restored hLi ¼ 0, namely,
confinement occurs. The relation (42) yields the relation-
ship for the average between the gauge field and the
Polyakov-loop operator

harccosLðxÞi ¼ g
hc0ðxÞi
2

¼ h’i
2

; (44)

where the left-hand side is the average of an gauge-
invariant object (since L is gauge invariant) and happens
to agree with the average hV 3

0i of the gauge field in the
Polyakov gauge. It is also shown [33] that the converse is
true: In the center-symmetry-restored phase, h’i ¼ �,
since

h’i
2
¼ harccosLðxÞi ¼ arccoshLðxÞi ¼ �

2
: (45)

Therefore, hV 0i or h’i in the Polyakov gauge gives a
direct physical interpretation as an order parameter for the
confinement/deconfinement (order-disorder) phase transi-
tion. The effective potential UeffðhLiÞ of the Polyakov-loop
average hLi could be different from the effective potential
VeffðhV 0iÞ of the gauge field average hV 0i in the following
sense. Although both potentials give the same critical tem-
perature Td as a boundary between hLi ¼ 0 and hLi � 0,
the value of the effective potential UeffðhL½V 0�iÞ does not
necessarily agree with UeffðL½hV 0i�Þ ¼ VeffðhV 0iÞ at a
given temperature T, since we have only an inequality
hL½V 0�i 	 L½hV 0i�. This difference could affect the criti-
cal exponent and other physical quantities of interest.
Therefore, the result obtained from VeffðhV 0iÞ must be
carefully examined.

V. DERIVING THE CONFINEMENT/
DECONFINEMENT TRANSITION

In this section, we restrict our consideration to the pure

glue case. We show that the pure gluon part S
glue
eff can

describe confinement/deconfinement transition signaled
by the Polyakov-loop average hLi. In this section, we
completely follow two remarkable papers by Marhauser
and Pawlowski [33] and by Braun, Gies, and Pawlowski
[32], which succeeded to show the transition for the first
time based on the functional renormalization group. In the
next section, we explain how these results are understood
from the Landau-Ginzburg argument.
We consider the flow equation called the Wetterich

equation [27] for the k (RG scale)-dependent effective
action �k
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@t�k½�� ¼ 1

2
STr

�� ~�

��y
�k½�� �

 

��
þ R�;k

��1 � @tR�;k

�
;

(46)

where t is the renormalization group (RG) time t :¼ lnk
� ,

@t :¼ @
@t ¼ k d

dk for some reference scale (UV cutoff)� and

R�;k is the regulator function for the field �. Here STr

denotes the supertrace introduced to include both the com-
mutative field (gluon) and the anticommutative field
(quark, ghost). See [28,29] for reviews of the functional
renormalization group.

If we restrict our consideration to the pure glue case SYM
under the gauge nAðxÞ ¼ �A3, then the relevant fields� are
V A

�ðxÞ,XA
�ðxÞ and Faddeev-Popov ghosts (ghost and anti-

ghost) CAðxÞ, �CAðxÞ, i.e., �y ¼ ðV A
�;XA

�; CA; �C
AÞ. In this

section, we use the Euclidean formulation. In the modified
Polyakov gauge and within the quadratic approximation
adopted in Sec. III,

@t�k ¼ 1

2
Tr

�� ~�

�V y �k

�
 

�V
þ Rk

��1 � @tRk

�

þ @t
1

2
Trfln½QAB

�� þ �AB���Rk�g
� @t Trfln½GAB þ �ABRk�g; (47)

where the second contribution in the right-hand side comes
from the X field and the last one from the ghosts fields
[39], and we have used the same regulator function Rk for
the gluon and ghost up to the difference due to the tensor
structure.

We neglect backreactions of the V 0 potential on the
other gauge fields V j, as in the treatment [33]. Assuming

an expansion around V j ¼ 0, �ð2Þk :¼ ~�
�V y �k

�
 

�V
is block

diagonal like the regulators, and the flow equation can be
decomposed into a sum of two contributions: under the
approximation (37),

@t�k ¼ 1

2
Tr

��
1

�ð2Þk þ Rk

�
��
� @tRk;��

�

þ @t Trfln½GAB þ �ABRk�g; (48)

where the gluon regulator Rk;�� is a block-diagonal matrix

in field space,

Rk;00 ¼ R0;k ¼ Z0Ropt;kðp2Þ;
Rk;0j ¼ 0 ¼ Rk;j0;

Rk;j‘ ¼ RT;kTj‘ðpÞ ¼ ZjTj‘ðpÞRopt;kT ðp2Þ;
(49)

where Tj‘ :¼ �j‘ � pjp‘

p2
m

is the transverse projection

operator and Ropt;kðp2Þ is the (3 dimensional) optimized

choice [71]

Ropt;kðp2Þ ¼ ðk2 � p2Þ	ðk2 � p2Þ: (50)

The first term in the right-hand side encodes the quan-
tum fluctuations of V 0, while the second one encodes
those of the other components of the gauge field and
ghosts. In the present truncation, the second term is a total
derivative with respect to t, and does not receive contribu-
tions from the first term. Therefore, we can evaluate the
flow of the second contribution, and use its output
VT;kðV 0Þ as an input for the remaining flow

@t�k ¼ 1

2


Z d3p

ð2�Þ3
��

1

�ð2Þk þ RV

�
00
@tR0;k

�
þ @tVT;k;

(51)

where for ! ¼ 2�Tn

VT;k :¼ Trfln½GABþ�ABRk�g

¼ T
X
n2Z

Z d3p

ð2�Þ3 tr ln½
~GABð!;pÞþ�ABðk2T �p2Þ

�	ðk2T �p2Þ�

¼ T
X
n2Z

Z d3p

ð2�Þ3 tr ln½�
ABp2�D2

0þ�ABðk2T�p2Þ

�	ðk2T �p2Þ�

¼ T
X
n2Z

4�
Z kT

0

dpp2

ð2�Þ3 tr ln½�
ABk2T�D2

0�

�T
X
n2Z

4�
Z kT

0

dpp2

ð2�Þ3 tr ln½�
ABp2�D2

0�þVW: (52)

Here we have introduced the Weiss potential VW which
was obtained by a one-loop calculation [31]

VW ¼ Tr ln½GAB�

¼ T
X
n2Z

Z d3p

ð2�Þ3 tr ln½ ~GABðp0 ¼ !;pÞ�

¼ T
X
n2Z

Z d3p

ð2�Þ3 tr ln½p2 þ ð!þ T’Þ2�

þ T
X
n2Z

Z d3p

ð2�Þ3 tr ln½p2 þ ð!� T’Þ2�; (53)

where we have neglected the ’-independent (or
V 0-independent) contributions.
The closed form of the Weiss potential is obtained after

summing up the Matsubara frequencies

VWð’Þ ¼ T4

�
� 1

6
ð’� �Þ2 þ 1

12�2
ð’� �Þ4 þ �2

12

�

ðmod 2�Þ: (54)

The Weiss potential VW is g2 independent and the overall
curve scales as T4. VW has the symmetries VWð�’Þ ¼
VWð’Þ and VWð’þ 2�nÞ ¼ VWð’Þ. VWð’Þ has the
minima at ’ ¼ 2�n, and the Polyakov loop has the
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nonvanishing value L ¼ cos’2 ¼ ð�1Þn, implying decon-

finement; see Fig. 1. Therefore, VWð’Þ is considered to be
valid at very high temperature where the perturbation
theory is trustworthy. In Fig. 2, we observe

lim
k#0

VT;k ¼ VT;0 ¼ VW; lim
k"1

VT;k ¼ 0: (55)

After integrating over the fields other than V 0, we are
lead to the effective action of V 0,

�k½V 0� ¼ 

Z

d3x

�
� 1

2
Z0V 0ðxÞ@j@jV 0ðxÞ

þ V
glue
eff;k½V 0�

�
;

V
glue
eff;k½V 0� ¼ VT;k½V 0� þ �Vk½V 0�: (56)

Then the flow equation is reformulated for �Vk with the
external input VT;k


@tð�Vk½V 0�Þ ¼ 1

2


Z d3p

ð2�Þ3
��

1

�ð2Þk þ Rk

�
00
@tR0;k

�
;

(57)

where

�ð2Þk ½V 0� ¼ 
fZ0p
2 þ @2

V 0
Vk½V 0�g: (58)

Using the specific regulator, R0;k ¼ Z0ðk2 � p2Þ	ðk2 �
p2Þ, which yields

@tR0;k ¼ ½@tZ0ðk2 � p2Þ þ 2Z0k
2�	ðk2 � p2Þ; (59)

we can perform the momentum integration analytically.


@tð�Vk½V 0�Þ

¼ 2

3

1

ð2�Þ2
ð
k=5þ 1Þk5

Z�1k g2
2@2’ðVT;k½V 0� þ �Vk½V 0�Þ þ k2
;

(60)

where we have introduced the running coupling �k

defined by

g2k :¼ Z�1k g2; �k :¼ g2k
4�
¼ Z�1k

g2

4�
; (61)

and the anomalous dimension 
k defined by


k :¼ @t lnZk ¼ �@t ln�k: (62)

By introducing the dimensionless RG scale k̂ and the

dimensionless effective potential V̂ defined by

k̂ :¼ 
k ¼ k=T; V̂ :¼ 
4V ¼ V=T4; (63)

the flow equation is simplified as

@k̂�V̂k̂½V 0� ¼ 1

6�2

ð1þ 
k=5Þk̂2
1þ 4��k

k̂2
@2’ðV̂T;k̂½V 0� þ�V̂k̂½V 0�Þ

;

(64)

where all scales are measured in units of temperature. It
turns out that the input in solving the flow equation is just a
running gauge coupling constant �k. A specific choice for
the running gauge coupling constant is given in Fig. 3. For
the derivation from the renormalization group, see [72].
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0.8

V w: Vw T4

normalized SU 2 Weiss potential V w

1 2 3 4 5 6

1.0

0.5

0.5

1.0
L

SU 2 Polyakov loop L

FIG. 1 (color online). (Upper panel) (Normalized) SUð2Þ
Weiss potential V̂W as a function of ’. (Lower panel) SUð2Þ
Polyakov loop L as a function of ’, L ¼ cosð’2Þ.
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FIG. 2 (color online). V̂T;k for different values of k̂ (reprinted
from [33]).
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The flow is initialized in the broken phase at any tempera-
ture. By solving the flow equation in a numerical way with
an input for the running gauge coupling given in Fig. 3, the

full effective potential V̂eff (normalized to 0 at ’ ¼ 0) is
obtained in Fig. 4 for various temperature.

According to [33], a second order phase transition oc-
curs at a critical temperature

Td ¼ 305þ40�55 MeV; Td=
ffiffiffiffi
�
p ¼ 0:69þ:04�:12; (65)

with the string tension
ffiffiffiffi
�
p ¼ 440 MeV. This agrees within

errors with the lattice result Td=
ffiffiffiffi
�
p ¼ 0:709. Moreover,

these results were confirmed by considering another gauge
[32].

VI. UNDERSTANDING THE EXISTENCE OF
CONFINEMENT TRANSITION ACCORDING
TO THE LANDAU-GINZBURG ARGUMENT

In this section, we show that some qualitative aspects of
the deconfinement/confinement transition found in the pre-

vious section can be understood without detailed numerical
works, although the precise value of the transition tem-
perature Td cannot be determined without them.
For G ¼ SUð2Þ in the pure Yang-Mills limit mq ! 1,

the effective potential VglueðLÞ for the Polyakov loop L

must be invariant under the center symmetry Zð2Þ.
Therefore, VglueðLÞ is an even function of L, i.e., VglueðLÞ ¼
Vglueð�LÞ where L is real valued L ¼ L�. Thus the

Landau-Ginzburg argument suggests that the effective

potential Vglue
eff ðLÞ for G ¼ SUð2Þ has the power-series

expansion in L near the transition point L ¼ 0

V
glue
eff ðLÞ ¼ c0 þ c2

2
L2 þ c4

4
L4 þOðL6Þ: (66)

As the vacuum is specified as the minima of the effective
potential, the confinement/deconfinement transition tem-
perature Td is determined from the condition c2ðTdÞ ¼ 0
so that the low-temperature (T < Td) confinement phase
hLi ¼ 0 is realized for c2ðTÞ> 0, while the high-
temperature (T > Td) deconfinement phase hLi � 0 is
realized for c2ðTÞ< 0, provided that the positivity
c4ðTÞ> 0 is maintained across the transition temperature.
Consequently, the transition is of the 2nd order.
Indeed, we confirm that the Landau-Ginzburg descrip-

tion is correct and valid for the confinement/deconfinement
transition, by making use of the flow equation given in the
previous section. This is a microscopic justification of the
Landau-Ginzburg argument for the confinement/decon-
finement transition. In our treatment, however, it is more

convenient to write the effective potential V
glue
eff in terms of

the angle variable ’ (rather than L) around the transition
point’ ¼ � (instead of L ¼ 0). Defining ~’ :¼ ’� �, we

find that V
glue
eff ð~’Þ must be an even function V

glue
eff ð~’Þ ¼

V
glue
eff ð� ~’Þ due to the center symmetry and hence odd terms

(e.g., ~’, ~’3) do not appear

V
glue
eff ð~’Þ ¼ C0 þ C2

2
~’2 þ C4

4!
~’4 þOð~’6Þ: (67)

At sufficiently high temperature, we observe that

C2ðTÞ< 0 and hence Vglue
eff has the minimum at ~’ � 0

(()L � 0) leading to deconfinement. In order to show
the existence of the confinement/deconfinement transition
at T ¼ Td, C2ðTÞ must change the signature C2ðTÞ> 0
below this temperature T < Td and hence the minimum
occurs at ~’ ¼ 0 (()L ¼ 0) leading to confinement.
Therefore, the confinement/deconfinement temperature
Td is determined by C2ðTdÞ ¼ 0, provided that the posi-
tivity C4ðTÞ> 0 is maintained.
For this purpose, we study the scale dependent effective

potential Vglue
eff;k at k > 0

V
glue
eff;k ¼ C0;k þ C2;k

2
~’2 þ C4;k

4!
~’4 þOð~’6Þ; (68)

FIG. 3 (color online). The running gauge coupling constant
�s for temperatures T ¼ 0, 150, 300, 600 MeV (reprinted
from [33]).
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FIG. 4 (color online). Full effective potential V̂
glue
eff , normalized

to 0 at ’ ¼ 0 (reprinted from [33]).
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and see how it evolves towards the limit k! 0 according
to the flow equation to obtain the physical effective poten-

tial V
glue
eff

:¼ V
glue
eff;k¼0.

As in (56), V
glue
eff;k is decomposed into two pieces

V
glue
eff;k ¼ V̂T;k̂ þ�V̂k̂; (69)

where we have defined the dimensionless potential accord-

ing to the rescaling (63). The first part V̂T;k̂ is the

(k-dependent) perturbative part (52) obtained essentially
by the one-loop calculation with the regulator function Rk

being included. For this part, the closed analytical form can

be obtained; see Appendix B. While the second part �V̂k̂

represents the nonpertubative part which is initially zero

�V̂k̂jk¼� ¼ 0 and is generated in the evolution of the

renormalization group. This part is obtained only by solv-
ing the flow Eq. (64) and its analytical form is not available
(at this moment).

We expand V̂T;k̂ in powers of ~’ ¼ ’� �

V̂ T;k̂ ¼ A0;k þ A2;k

2
~’2 þ A4;k

4!
~’4 þOð~’6Þ; (70)

where coefficients are drawn as functions of k in Fig. 5; see
Appendix B for their closed analytical forms.

Suppose that �V̂k̂ is of the form

�V̂k̂ ¼ a0;k þ a2;k
2

~’2 þ a4;k
4!

~’4 þOð~’6Þ: (71)

A flow equation (64) for the effective potential (56) is
reduced to a set of coupled flow equations for coefficients
in the effective potential (69) with (70) and (71)

@k̂a2;k ¼ �
ð1þ 1

5
kÞk̂2
6�2

4��k

k̂2
ðA4;k þ a4;kÞ

½1þ 4��k

k̂2
ðA2;k þ a2;kÞ�2

;

@k̂a4;k ¼ þ
ð1þ 1

5
kÞk̂2
6�2

6½4��k

k̂2
ðA4;k þ a4;kÞ�2

½1þ 4��k

k̂2
ðA2;k þ a2;kÞ�3

;

..

.
(72)

which are coupled first-order ordinary but nonlinear dif-
ferential equations for coefficients. In Appendix C, we see
that this form (71) is justified as a solution of the flow
equation. In fact, it is easy to see that @k̂a1;k ¼ 0 and

@k̂a3;k ¼ 0 are guaranteed from the flow equation, if the

effective potential has no odd terms at arbitrary k.
Therefore, if an initial condition, a1;k ¼ 0 ¼ a3;k at

k ¼ � is imposed, then a1;k 
 0 and a3;k 
 0 are main-

tained for 0 	 k 	 � by solving the flow equation. In
performing numerical calculations, however, one must
truncate the infinite series of differential equations up to
some finite order to obtain a manageable set of equations.

We can understand qualitatively why a 2nd order phase
transition from the deconfinement phase to the confine-
ment phase can occur by lowering the temperature.
The flow starts from a2;k ¼ 0 and hence C2;k ¼ A2;k þ

a2;k < 0 (because of A2;k < 0) at k ¼ �� 1. We assume

C4;k ¼ A4;k þ a4;k > 0 for 0 	 k 	 �, as a necessary con-

dition for realizing a 2nd order transition. Otherwise, we
must consider the higher-order terms, e.g., Oð’6Þ. (This
assumption is assured to be true by numerical calculations
of the full effective potential [32,33], as reproduced in the
previous section.) This assumption allows us to analyze
just one differential equation for obtaining qualitative
understanding

@k̂a2;k ¼ �
ð1þ 1

5
kÞ
6�2

4��kðA4;k þ a4;kÞ
½1þ 4��k

k̂2
ðA2;k þ a2;kÞ�2

: (73)

Then the right-hand side of (73) is negative, since the
running coupling constant �k is positive and 1þ 1

5
k is

positive; see Figs. 6 and 7. Consequently, a2;k started at

zero becomes positive a2;k > 0 just below � and increases

(monotonically) as k decreases; see Fig. 8.

Note that the denominator can vanish 1þ 4��k

k̂2
ðA2;k þ

a2;kÞ ¼ 0 at some k� (since C2;k ¼ A2;k þ a2;k < 0 or 0<
a2;k <�A2;k) where the right-hand side of (73) becomes

negative infinity and a2;k blows up there. To avoid this
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FIG. 5 (color online). A2;k and A4;k as functions of k̂.
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pathology and to obtain the solution all the way down to
the limit k! 0, a2;k must grow relatively rapidly so that

jA2;k þ a2;kj � 1 towards the limit k! 0.
An important observation of the flow equation (73) is

that the explicit temperature dependence comes from
the running coupling constant alone. At zero temperature,
the running coupling constant is well parametrized by the
fitting function [73]

�k ¼ 4�� 0:709=Nc

ln½eþ a1ðk2Þa2 þ b1ðk2Þb2�
; (74)

where a1 ¼ 5:292, a2 ¼ 2:324, b1 ¼ 0:034, b2 ¼ 3:169 in
units of GeV.
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s k The running gauge coupling constant

FIG. 6 (color online). The running gauge coupling constant �k

at T ¼ 0:001, 0.125, 0.25, 0.50, 1.0 GeV, from the top at the
lowest temperature T ¼ 0:001 GeV to the bottom at the highest
temperature T ¼ 1:0 GeV. (Upper panel) �k as functions of k.
(Lower panel) �k as functions of k̂. For a given temperature,
there is a critical value k̂c separating the deep IR region (76)
from the higher momentum region (75). The discontinuity of the
derivative seen at k̂c comes from a crude approximation in which
we have taken into account just the first linear term (i.e., c1 ¼
c2 ¼ � � � ¼ 0) in the expansion (76), and can be avoided if we
take into account higher-order terms as explained below (76).
However, this is not essential to see qualitative behaviors of the
solution of the flow equation.
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FIG. 7 (color online). The anomalous dimension 
k as func-
tions of k̂ at T ¼ 0:001, 0.125, 0.25, 0.50, 1.0 GeV. In each graph
for a given temperature, there is a critical value k̂c of k̂ separating
the deep IR region 
k ’ �1 from the higher momentum (inter-
mediate and UV) region 
k > 0. The temperature is distin-
guished by k̂c ranging from the smallest value at the highest
temperature T ¼ 1:0 GeV to the largest value at the lowest
temperature T ¼ 0:001 GeV where 
k ’ �1 for k̂ < k̂c and

k ’ 0 for k̂ > k̂c. The discontinuity of the derivative seen at
k̂c is due to the same reason as that explained in Fig. 6 and is not
essential to see qualitative behaviors of the solution of the flow
equation.

FIG. 8. a2;k vs �A2;k as functions of k̂ for T < Td.
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For the perturbative region k� T, i.e., k̂� 1, we adopt

this form: k2 ¼ T2k̂2,

�k ¼ g2k
4�
¼ 4�� 0:709=Nc

ln½eþ a1ðT2k̂2Þa2 þ b1ðT2k̂2Þb2� : (75)

For the nonperturbative region k < 2�T, i.e., k̂ < Oð1Þ, we
adopt the running coupling which is governed by an infra-
red fixed point [72]

�k ¼ ��3d
k

T
þ c1

�
k

T

�
2 þ c2

�
k

T

�
3 þ � � �

¼ ��3dk̂þ c1k̂
2 þ c2k̂

3 þ � � � ; (76)

where coefficients c1; c2; . . . are determined such that the
coupling at zero temperature (75) and its derivative with
respect to k are connected continuously with this ansatz
(76) at the scale set by the lowest nonvanishing bosonic
Matsubara mode ! ¼ 2�T. However, the running cou-
pling constant at small momenta (76) does not contribute
to the explicit T dependence in the scaled flow equation,

since it is written in terms of the scaled k̂ alone and hence
denoted by a common curve going through the origin for
any temperature T in the second figure of Fig. 6. Therefore,
the running coupling at very small momentum region
cannot be responsible for the confinement/deconfinement
transition at finite temperature, if this observation is cor-
rect. As can be seen from the second figure of Fig. 6, the
dominant contribution comes from the intermediate mo-
mentum region above Oð1Þ GeV. Thus, we can avoid the
issue of the gauge-fixing artifact in the deep IR region due
to Gribov copies in the zero-temperature case; see, e.g.,
[74,75] and reference therein.

We consider a solution of the reduced (or normalized)

flow equation as a function of k̂, rather than k, for a given
temperature T. Then the difference between high- and low-
temperature phases attributes to the behavior of the running

coupling constant�k as a function of k ¼ Tk̂, which brings
the explicit T dependence to the reduced flow equation. In

the case of high-temperature T � 1, k ¼ Tk̂ becomes

large for a wide range of k̂ and the running coupling
constant �k remains relatively small. The resulting slow
increase of a2;k keeps a2;k small such that C2;k ¼ A2;k þ
a2;k < 0 or a2;k <�A2;k even at k ¼ 0. This leads to the

center-symmetry breaking at high temperature.

In the case of low temperature T � 1, k ¼ Tk̂ becomes

small for the same range of k̂ and the running coupling
constant �k gets into the intermediate region of Oð1Þ GeV
rapidly and becomes larger as the temperature becomes
smaller. At sufficiently low temperature, a2;k increases in

decreasing k̂ so rapidly that a2;k eventually reaches to the

point A2;k þ a2;k ¼ 0 or a2;k ¼ �A2;k at a certain value

k̂ ¼ k̂0. In other words, the graph of a2;k intersects with that

of �A2;k at k̂ ¼ k̂0. In the region 0< k< k0 where C2;k ¼
A2;k þ a2;k > 0 or a2;k >�A2;k, the flow equation reads

@k̂a2;k ’ �
ð1þ 1

5
kÞ
6�2

ðA4;k þ a4;kÞk̂4
4��kðA2;k þ a2;kÞ2

; (77)

the right-hand side gets small negative, and a2;k becomes

flat near the IR limit; see Fig. 8. Finally, a2;k reaches the

value realizing C2;k ¼ A2;k þ a2;k > 0 or a2;k >�A2;k at

k ¼ 0. This leads to the recovery of the center symmetry.
The difference is clearly seen from the second figure of
Fig. 6 where the running gauge coupling �k is drawn as a

function of k̂ for various temperatures.
In our treatment, the difference between the three-

dimensional RG scale kT and the four-dimensional one k
is neglected by equating two scales kT ¼ k just for sim-
plifying the analysis, since it is enough for obtaining a
qualitative understanding for the transition. This is not the
case for obtaining quantitative results, see Appendix C of
[33] for the precise treatment on this issue.

VII. QUARK PARTAND GAUGED
NONLOCAL NJL MODEL

We examine the quark self-interaction part Sint ¼R
dDx

R
dDy 1

2J
�AðxÞg2ðQ�1½V �ÞAB��ðx; yÞJ �BðyÞ. In esti-

mating the effect of Q�1½V �, we take the same approxi-
mation as the above. Consequently, the inverse
ðQ�1ÞAB��½V � is diagonal in the Lorentz indices:

ðQ�1ÞAB��½V �
¼ g��ðG�1ÞAB½V �

¼ g��

1
2 ½F’þF�’� � 1

2i ½F’�F�’� 0

1
2i ½F’�F�’� 1

2 ½F’þF�’� 0

0 0 F0

0
BB@

1
CCA; (78)

where F’ is defined by

F’ði@Þ :¼ 1

ði@‘Þ2 þ ði@0 þ T’Þ2

¼ 1

ði@�Þ2 þ ðT’Þ2 þ 2T’i@0
: (79)

In what follows, we consider only the diagonal parts of
ðG�1ÞAB½V �. This is achieved by the procedure

g2

2
ðQ�1ÞAB��ðx; yÞ ¼ g���ABGðx� yÞ; (80)

which yields

G ðx� yÞ ¼ g2

2
ðQ�1ÞAB��ðx; yÞ

g��

D

�AB

N2
c � 1

: (81)

Then the nonlocal interaction is obtained as

G ðx� yÞ ¼ g2

2

trðG�1Þ
N2

c � 1
¼ g2

2

F’ þ F�’ þ F0

3
: (82)
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This approximation is used just for simplifying the Fierz
transformation performed below and hence it can be
improved by taking into account the off-diagonal parts of
G�1 if it is necessary to do so.

For D ¼ 4, we use the Fierz identity [76] to rewrite the
nonlocal current-current interaction as

Sint ¼
Z

d4x
Z

d4yJ �AðxÞGðx� yÞJ �AðyÞ

¼
Z

d4x
Z

d4yGðx� yÞX
�

c�ð �c ðxÞ��c ðyÞÞ

� ð �c ðyÞ��c ðxÞÞ
¼

Z
d4x

Z
d4zGðzÞX

�

c�f �c ðxþ z=2Þ��c ðx� z=2Þg

� f �c ðx� z=2Þ��c ðxþ z=2Þg; (83)

where the �� are a set of Dirac spinor, color, and flavor
matrices, resulting from the Fierz transform, with the

property �0�
y
��0 ¼ ��. Although the Fierz transformation

induces mixings and recombinations among operators, the
resulting theory must maintain the symmetries of the origi-
nal QCD Lagrangian. A minimal subset of operators sat-
isfying the global chiral symmetry SUð2ÞL � SUð2ÞR
which governs low-energy QCD with two flavors is the
color singlet of scalar-isoscalar and pseudoscalar-isovector
operators. Thus, by restricting �� hereafter to

�� :¼ ð1; i�5 ~�Þ (84)

and ignoring other less relevant operators (vector and
axial-vector terms in color singlet and color octet chan-
nels), we arrive at a nonlocal gauged NJL model

SgNJLeff ¼
Z

d4x �c ðxÞði��D�½V � � m̂q þ i�0�qÞc ðxÞ
þ Sint;

Sint ¼
Z

d4x
Z

d4zGðzÞ½ �c ðxþ z=2Þ��c ðx� z=2Þ
� �c ðx� z=2Þ��c ðxþ z=2Þ�: (85)

This form is regarded as a gauged version of the
nonlocal NJL model proposed in [22]. The function GðzÞ
is replaced by a coupling constant G times a normalized
distribution CðzÞ

G ðzÞ :¼ G

2
CðzÞ;

Z
d4zCðzÞ ¼ 1: (86)

The standard (local) gauged NJL model follows for the
limiting case CðzÞ ¼ �4ðzÞ with R

d4zCðzÞ ¼ 1.
In contrast to [22], however, G and C are determined in

conjunction with the behavior of the Polyakov loop L or ’

at temperature T: using the Fourier transform ~GðpÞ of G,
they are expressed as

G

2
¼ ~Gðp ¼ 0Þ; ~CðpÞ ¼ ~GðpÞ=~Gðp ¼ 0Þ; (87)

where

~GðpÞ ¼ g2

2

~F’ðpÞ þ ~F�’ðpÞ þ ~F0ðpÞ
3

;

~F’ðpÞ ¼ 1

p2 þ ðT’Þ2 þ 2T’p0

:

(88)

Note that ~F’ðp ¼ 0Þ and hence G diverge at T ¼ 0. This

comes from an improper treatment of the T ¼ 0 part. To
avoid this IR divergence at T ¼ 0, we add the T ¼ 0
contribution M2

0 ’ M2
X and replace F’ði@Þ by

F’ði@Þ ¼ 1

ði@‘Þ2 þ ði@0 þ T’Þ2 þM2
0

¼ 1

ði@�Þ2 þ ðT’Þ2 þ 2T’i@0 þM2
0

; (89)

and

~F ’ðpÞ ¼ 1

p2 þ ðp0 þ T’Þ2 þM2
0

¼ 1

p2 þ ðT’Þ2 þ 2T’p0 þM2
0

: (90)

In fact, such a contribution 1
2M

2
0 comes in GAB as an addi-

tional termM2
0�

AB from theOðX4Þ terms [note thatOðX3Þ
terms are absent for G ¼ SUð2Þ], as already mentioned
above.
Another way to avoid this IR divergence is to introduce

the regulator term which is needed to improve the one-loop
perturbative result and obtain a nonperturbative one
according to the Wilsonian renormalization group:

�Sk ¼
Z

dDx
1

2
XA

�ðxÞ½�ABg��Rkði@Þ�XB
� ðxÞ

¼
Z dDp

ð2�ÞD
1

2
~XA

�ð�pÞ½�ABg��
~RkðpÞ� ~XB

� ðpÞ; (91)

where k is the RG scale and ~RkðpÞ is the Fourier transform
of Rkði@Þ. The regulator function Rk introduces a mass
proportional to k2, which plays a similar role to M2

0 in

the above, as long as k > 0.
The NJL model [12] is well known as a low-energy

effective theory of QCD to describe the dynamical break-
ing of chiral symmetry in QCD (at least in the confinement
phase), see, e.g., [13,14]. The theory given above by

SQCDeff ¼ S
glue
eff þ S

gNJL
eff is able to describe chiral-symmetry

breaking/restoration and quark confinement/deconfine-

ment on an equal footing where the pure gluon part S
glue
eff

describes confinement/deconfinement transition signaled
by the Polyakov-loop average. We can incorporate the
information on confinement/deconfinement transition into
the quark sector through the covariant derivative D½V �
and the nonlocal NJL interaction G (G and C), in sharp
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contrast to the conventional PNJL model where the entan-
glement between chiral-symmetry breaking/restoration
and confinement/deconfinement was incorporated through
the covariant derivativeD½V � alone and the nonlocal NJL
interaction G is fixed to the zero-temperature case. In our
theory, the nonlocal NJL interaction G (G and C) is auto-
matically determined through the information of confine-
ment/deconfinement dictated by the Polyakov loop L
(nontrivial gluon background), while in the nonlocal
PNJL model [22] the low-momentum (nonperturbative)
behavior of C was not controlled by first principles and
was provided by the instanton model.

To study chiral dynamics, it is convenient to bosonize
the gauged nonlocal NJL model as done in [22]. The non-
local gauged NJL model (85) can be bosonised as follows:
define

��ðxÞ :¼ ð�ðxÞ; ~�ðxÞÞ: (92)

To eliminate the quadratic term in the nonlocal currents,
we insert the unity

1 ¼
Z

D�D ~� exp

�
�
Z

d4zCðzÞ
Z

d4x
1

2G
½��ðxÞ

þG �c ðxþ z=2Þ��c ðx� z=2Þ�½��ðxÞ
þG �c ðxþ z=2Þ��c ðx� z=2Þ��

�
; (93)

where we have used
R
d4zCðzÞ ¼ 1. Then we have the

gauged Yukawa model:

Z
D �cDc e�S

gNJL
eff ¼

Z
D �cDc

Z
D�D ~� expf�SgYeff g;

(94)

where with x0 :¼ xþ z=2, y0 :¼ x� z=2,

S
gY
eff ¼

Z
d4x0

Z
d4y0 �c ðx0Þ

�
�4ðx0 � y0Þð�i��D�½V �

þ m̂q þ i�4�qÞ þ 1

2
Cðx0 � y0Þ��

�
��

�
x0 þ y0

2

�

þ���
�
x0 þ y0

2

���
c ðy0Þ þ

Z
d4x

1

2G
��ðxÞ���ðxÞ;

(95)

or

SgYeff ¼
Z d4p

ð2�Þ4
d4p0

ð2�Þ4
�c ðpÞ

�
ð2�Þ4�4ðp�p0Þ

�ð���ðp�þg ~V�ðpÞÞþ m̂qþ i�4�qÞ

þ1

2
~C
�
pþp0

2

�
��½��ðp�p0Þþ���ðp�p0Þ�

�
c ðp0Þ

þ
Z d4p

ð2�Þ4
1

2G
��ðpÞ���ðpÞ: (96)

Finally, the bosonized theory of the gauged NJL model
is obtained by way of the gauged Yukawa model by
integrating out quark fields as

Z
D �cDc e�S

gNJL
eff ¼

Z
D�D ~�

Z
D �cDc expf�SgYeff g

¼
Z

D�D ~� expf�Sbosoneff g; (97)

where the bosonised action Sbosoneff is

Sbosoneff ¼�Tr ln
�
�4ðx0 � y0Þð�i��ð@�� igV�Þþ i�4�qÞ

þ m̂qþ 1

2
Cðx0 � y0Þ��

�
��

�
x0 þ y0

2

�

þ���
�
x0 þ y0

2

���
þ
Z

d4x
1

2G
��ðxÞ���ðxÞ; (98)

or

Sbosoneff ¼ �Tr ln
�
ð2�Þ4�4ðp� p0Þ½���ðp� þ g ~V�Þ

þ i�4�q� þ m̂q þ 1

2
~C
�
pþ p0

2

�
��½��ðp� p0Þ

þ���ðp� p0Þ�
�
þ

Z d4p

ð2�Þ4
1

2G
��ðpÞ���ðpÞ:

(99)

VIII. IMPLICATIONS OF THE POLYAKOV
LOOP FOR CHIRAL-SYMMETRY BREAKING

AT FINITE TEMPERATURE

The thermodynamics of QCD can be studied based on
our effective theory derived in this paper in the similar way
to the nonlocal PNJL model [22]. But this must be done by
including the effect of gluon properly. In the PNJL model,
the effect of the gluon was introduced by the standard
minimal gauge coupling procedure, i.e., replacing the nor-
mal derivative @� by the covariant derivative D�½A� :¼
@� � igA�. In our effective theory, the effect of the gluon

is introduced through the NJL coupling constant G and
the nonlocality function C, in addition to the minimal
coupling D�½V �. The nonlocal NJL interaction among

quarks are mediated by gluons at finite temperature in
QCD. Therefore, both G and C characterizing nonlocal
NJL interaction inevitably have temperature dependence,
which could be different depending on whether quarks are
in confinement or deconfinement phases.
At T ¼ 0, QCD must be in the hadron phase where the

chiral symmetry is spontaneously broken, which means
that the NJL coupling constant Gð0Þ at zero temperature
must be greater than the critical NJL coupling constant Gc

Gð0Þ ¼ g2
1

M2
0

>Gc: (100)
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The nonlocality function or the form factor ~CðpÞ at T ¼ 0
behaves as

~GðpÞ ¼ g2

2

1

p2 þM2
0

; ~Gð0Þ ¼ g2

2

1

M2
0

; (101)

and

~CðpÞ ¼ M2
0

p2 þM2
0

: (102)

As an immediate outcome of our effective theory, this
determines the temperature dependence of the coupling
constant G of nonlocal NJL model. Using (87), we have

GðTÞ ¼ 1

3
g2
�

2

ðT’Þ2 þM2
0

þ 1

M2
0

�
; (103)

which lead to the NJL coupling constant normalized at
T ¼ 0

GðTÞ=Gð0Þ ¼ 1

3

�
2M2

0

ðT’Þ2 þM2
0

þ 1

�
: (104)

In the presence of the dynamical quark mq <1, the
Polyakov loop is not an exact order parameter and does not
show a sharp charge with discontinuous derivatives. Even
in this case, we can introduce the pseudocritical tempera-
ture T�d as a temperature achieving the peak of the suscep-

tibility. Below the deconfinement temperature T�d, i.e.,

T < T�d, therefore, L ’ 0 or ’ ’ �, the NJL coupling

constant G has the temperature dependence

GðTÞ=Gð0Þ ’ 1

3

�
2M2

0

�2T2 þM2
0

þ 1

�
ðT < T�dÞ: (105)

This naive estimation gives a qualitative understanding
for the existence of chiral phase transition. Since GðTÞ is
(monotonically) decreasing as the temperature T increases,
it becomes smaller than the critical NJL coupling constant

Gð0Þ ¼ g2
1

M2
0

>Gc; T " 1 ) G # 0: (106)

Thus, the chiral transition temperature T� will be deter-

mined (if the chiral-symmetry restoration and confinement
coexist or the chiral symmetry is restored in the confine-
ment environment before deconfinement takes place, i.e.,
T� 	 T�d) by solving

GðT�Þ 
 Gð0Þ
3

�
2M2

0

T2
��

2 þM2
0

þ 1

�
¼ Gc: (107)

Here we have assumed that the nonlocality function ~CðpÞ
gives the dominant contribution at p ¼ 0, namely, ~CðpÞ 	
~Cð0Þ ¼ R

d4zCðzÞ ¼ 1 and that the occurrence of the chiral
transition is determined by the NJL coupling constant
alone.

At finite temperature T, the form factor reads

Cðx� yÞ ¼ T
X
n2Z

Z d3p

ð2�Þ3
~Cðp0 ¼ !;pÞeip�ðx�yÞ

¼ T
X
n2Z

Z d3p

ð2�Þ3
M2

0

3

�
2

p2 þ ð!þ T’Þ2 þM2
0

þ 1

p2 þ!2 þM2
0

�
eip�ðx�yÞ

¼
Z d3p

ð2�Þ3
M2

0

6�p

�
2

sinhð�p=TÞ
coshð�p=TÞ � cosð’Þ

þ sinhð�p=TÞ
coshð�p=TÞ � 1

�
eip�ðx�yÞ; (108)

where we have defined �p :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

q
and used

T
X
n2Z

1

ð!þ CÞ2 þ �2p
¼ 1

2�p

sinhð�p=TÞ
coshð�p=TÞ � cosðC=TÞ :

(109)

The form factor C does not change so much around the
deconfinement temperature T � T�d (or ’� �). This is

reasonable since the form factor is nearly equal to the X
correlator Q�1, as already mentioned in Sec. II.
For more precise treatment, we must obtain the full

effective potential Veffð�;’Þ as a function of two order
parameters � (or h �c c i) and ’ (or hLi), and look for a set
of values ð�;’Þ ¼ ð�0; ’0Þ at which the minimum
Veffð�0; ’0Þ of Veffð�;’Þ is realized. Then ’ must be
replaced by ’0 in the above consideration. For this goal,
we must develop the RG treatment for the full theory. This
issue will be studied in a subsequent paper.

IX. HOW TO UNDERSTAND THE
ENTANGLEMENT BETWEEN CONFINEMENT

AND CHIRAL-SYMMETRY BREAKING

To discuss the entanglement between confinement and
chiral-symmetry breaking, we wish to obtain the total
effective potential VQCD of QCD written in terms of two
order parameters, i.e., the Polyakov-loop average hLi and
chiral condensate h �c c i, so that its minima determine the
vacuum for a given set of parameters mq, T and �q when

Nc and Nf are fixed. Here mq " 1 is the pure Yang-Mills

limit and mq # 0 is the chiral limit.

The effective potential for the quark part is obtained by
integrating out quark degrees of freedom. The simplest
form is obtained, e.g., from the bosonized model as

Vquark ¼ �Tr lnfi��@� þmq þ C�� gA4�
4 þ i�q�

4g
þ 1

2G
�2: (110)

Then the RG scale k dependent effective potential Vquark
k

for the quark part must be given as the solution of the flow
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equation. In the same approximation as the above, it is
written in terms of two order parameters � and ’

V
quark
k ð�;’Þmq;T;�q

¼ �TX
n2Z

Z d3p

ð2�Þ3 tr ln½i!n�
0 � pj�

j

þmq þ CðpÞ�� T’T3�
4 þ i�q�

4

þ Rquark
k � þ 1

2G
�2; (111)

where T3 ¼ �3=2 and R
quark
k is the regulator function for

quarks. In the limit k # 0, indeed, Vquark
k (111) reduces to

Vquark (110). The effective potential Vquark
k (111) depends

onmq, T, and�q whenNc andNf are fixed. Because of the

p0 dependence of the ‘‘mass’’ function MðpÞ which is an
immediate consequence of the nonlocality of the present
NJL model, it is difficult to obtain the closed analytical
form by performing the summation over the Matsubara
frequencies.

In our strategy, a full effective potential VQCD
eff;k ð�;’Þ of

QCD is given by summing three parts:

VQCD
eff;k ð�;’Þ ¼ V

glue
k ð’Þ þ V

quark
k ð�;’Þ þ�VQCD

k ð�;’Þ;
(112)

with the pure gluon part V
glue
k ð’Þ ¼ VT;k (56);

Vglue
k ð’Þ ¼ Trfln½GAB þ �ABRk�g;

¼ Trfln½��AB@2� þ ð�AB � �A3�B3ÞðT’Þ2
þ 2�AB3T’@0 þ �ABRk�g; (113)

with the quark part (111),

Vquark
k ð�;’Þ ¼ 1

2G
�2 � Tr lnfi��@� þmq þ C�

� T’T3�
4 þ i�q�

4 þ R
quark
k g; (114)

and a nonperturbative part�VQCD
k ð�;’Þ induced in the RG

evolution according to a flow equation. We assume that the
total effective action of QCD obtained after integrating out
the fields other than those relevant to chiral symmetry and
confinement is the form

�k ¼
Z 1=T

0
dx4

Z
d3x

�
1

2
Z0½@jV 0ðxÞ�2 þ 1

2
Z�½@j�ðxÞ�2

þ VQCD
eff;k ð�;’Þ

�
; (115)

and obeys the flow equation

@t�k ¼ 1

2
Tr

�� ~�

��y
�k

�
 

��
þ Rk

��1 � @tRk

�

þ 1

2
Tr

�� ~�

�V y �k

�
 

�V
þ Rk

��1 � @tRk

�
: (116)

If the flow equation was solved, we would have obtained

the effective potential of QCD, VQCD
eff;k ð�;’Þ, which has the

following power-series expansion with respect to two
variables � and ~’ in the neighborhood of the transition
point where � ¼ 0 ¼ L according to the Landau argument
(as demonstrated in the pure glue case).

VQCD
eff ð�; ~’Þ¼Vgð~’ÞþVqð�ÞþVcð�; ~’Þ;

Vgð~’Þ¼C0þC1 ~’þC2

2
~’2þC3

3
~’3þC4

4
~’4þOð~’6Þ;

Vqð�Þ¼E2

2
�2þE4

4
�4þOð�6Þ;

Vcð�; ~’Þ¼F1�
2 ~’þ��� ; (117)

where Vgð’̂Þ denotes a part written in terms of ’̂ alone, and
Vqð�Þ denotes a part written in terms of � alone, while
Vcð�; ’̂Þ denotes the cross term between � and ’̂.
Once dynamical quarks are introduced, the exact center

symmetry in pure Yang-Mills theory is no longer intact.
Therefore, the QCD effective potential includes the explic-
itly center-symmetry breaking term. For G ¼ SUð2Þ, the
center symmetry ~’! �~’ is explicitly broken as C1 � 0,
C3 � 0 in Vgð’Þ, and F1 � 0 in Vcð�;’Þ. The existence of
the cross term is important to understand the entanglement
between center symmetry and chiral symmetry, as pointed
out by [19]. In fact, the one-loop calculation leads to C1 ¼
0:974 34Nf > 0 and F1 ¼ �0:106 103Nf < 0 (�q ¼ 0

case) which appears to be a good indication for this pur-
pose and serves as the initial condition in solving the flow
equation.
In the paper by Schaefer, Pawlowski, and Wambach

[26], a sort of backreaction from quarks has been intro-
duced to improve the effective potential of the Polyakov
loop, while the NJL coupling remains local. In contrast,
this paper introduces a backreaction from gluons to im-
prove the NJL interaction, leading to the nonlocal NJL
coupling. However, this does not mean that two treatments
are considered to be alternative. In the presence of dynami-
cal quarks, the running coupling � is changed due to
fermionic contributions. In [26], this effect has been taken
into account as a modification of the expansion coefficient
in the effective potential of the Polyakov loop, resulting in,
e.g., the Nf flavor-dependent deconfinement temperature

TdðNfÞ. Remembering that the input of our analysis is just

a running coupling, a sort of backreaction from quarks
considered in [26] is easily included into our framework
by using the running coupling modified by quark contri-
butions. Thus, the treatment in this paper is already able to
take into account backreactions from quarks and gluons
mentioned above.
This section is a sketch of our strategy of understanding

the entanglement between center symmetry and chiral
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symmetry. The detailed analysis will be given in a subse-
quent paper.3

X. CONCLUSION AND DISCUSSION

In this paper, we have presented a reformulation of QCD
and suggested a framework for deriving a low-energy
effective theory of QCD which enables one to study the
deconfinement/confinement and chiral-symmetry restora-
tion/breaking crossover transition simultaneously on an
equal footing. A resulting low-energy effective theory
based on this framework can be regarded as a modified
(improved) version of the nonlocal PNJL model [22]. In
our framework, the basic ingredients are a reformulation of
QCD based on new variables and the flow equation of the
Wetterich type for the Wilsonian renormalization group.

A lesson we learned in this study is that a perturbative
(one-loop) result can be a good initial condition for solving
the flow equation of the renormalization group to obtain
the nonperturbative result. In gluodynamics, recently, it has
been demonstrated [32,33] that the existence of confine-
ment transition, i.e., recovery of the center symmetry
signaled by the vanishing Polyakov-loop average can be
shown by approaching the phase transition point from the
high-temperature deconfinement phase in which the center
symmetry is spontaneously broken. Indeed, the effective
potential for the Polyakov loop obtained in the one-loop
calculation which we call the Weiss potential leads to the
nonvanishing Polyakov-loop average, i.e., spontaneous
breaking of the center symmetry.

For the gluon sector, to understand the existence of
confinement transition by approaching from the deconfine-
ment side, we have given the Landau-Ginzburg description
in the neighborhood of the (crossover) phase transition
point by analyzing the flow equation of the functional
renormalization group. The deconfinement/confinement
phase transition is consistent with the second order tran-
sition for G ¼ SUð2Þ, while the first-order transition is
expected for G ¼ SUð3Þ. The detailed study of the SUð3Þ
case will be given in a subsequent paper.

The input for solving the flow equation was just a
running gauge coupling constant, in sharp contrast to
the PNJL model including several parameters. From the
viewpoint of a first-principle derivation, this is superior to
phenomenological models with many input parameters.

For the quark sector, it is possible to obtain the chiral-
symmetry breaking/restoration transition from the first
principle. However, we need more hard works, especially,
to discuss the QCD phase diagram at finite density and the
critical endpoint. A possibility in this direction from the
first principle of QCD was demonstrated in one-flavor
QCD based on the functional renormalization group [78].
It will be possible to treat chiral dynamics and confinement
on an equal footing based on our framework along this line
[79]. Still, however, we must overcome some technical
issues to achieve the goal of understanding full phase
structures of QCD. The detailed studies will be hopefully
given in a subsequent paper.
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APPENDIX A: REFORMULATION OF QCD

We apply the decomposition (2) to the QCD Lagrangian.
The quark part is decomposed according to (2) as

L q :¼ �c ði��D�½A� � m̂0 þ i��0Þc
¼ �c ði��D�½V � � m̂0 þ i��0Þc þ g �c��X�c ;

(A1)

where the covariant derivative D�½V � is defined by

D �½V � :¼ @� � igV�: (A2)

The Yang-Mills part is treated as follows. For the general
decomposition A�ðxÞ ¼V�ðxÞ þX�ðxÞ, the field

strength F �� is decomposed as

3It is known that the appearance of a mixed term �2 ~’ plays an
essential role in the chiral-confinement entanglement. Such a
term appears in the original PNJL model and leads to the 2
crossovers happening almost simultaneously. In the following
paper posted to the archive after this paper was submitted for
publication, it has been shown [77] that an effective Polyakov
loop-dependent four-quark interaction derived by this paper
yields stronger correlation between the chiral and deconfinement
transitions, making T� � Td more tight, than the usual PNJL
model.
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F��½A� :¼ @�A� � @�A� � ig½A�;A��
¼ F ��½V � þ @�X� � @�X� � ig½V�;X��
� ig½X�;V �� � ig½X�;X��

¼ F ��½V � þD�½V �X� �D�½V �X�

� ig½X�;X��; (A3)

where the covariant derivative D�½V � in the background

field V � is defined by

D�½V � :¼ @�1� ig½V�; ��; (A4)

or, equivalently,

D�½V �AC :¼ @��
AC þ gfABCV B

�: (A5)

The Lagrangian density LYM ¼ � 1
4F ��½A� �F ��½A�

of the Yang-Mills theory is decomposed as

L YM ¼ �1
4F��½A�2 (A6)

¼�1
4F ��½V �2� 1

2F
��½V � � ðD�½V �X��D�½V �X�Þ

� 1
4ðD�½V �X��D�½V �X�Þ2

þ 1
2F ��½V � � ig½X�;X��þ 1

2ðD�½V �X�

�D�½V �X�Þ � ig½X�;X��� 1
4ðig½X�;X��Þ2: (A7)

Here the third term on the right-hand side of the above
equation is rewritten using integration by parts (or up to
total derivatives) as

1
4 ðD�½V �X� �D�½V �X�Þ2 ¼ 1

2ð�X� �D�½V �D�½V �X� þX� �D�½V �D�½V �X�Þ
¼ 1

2X
� � f�D�½V �D�½V �g�� þD�½V �D�½V �gX�

¼ 1
2X

�Af�ðD�½V �D�½V �ÞABg�� � ½D�½V �; D�½V ��AB þ ðD�½V �D�½V �ÞABgX�B

¼ 1
2X

�Af�ðD�½V �D�½V �ÞABg�� þ gfABCF C
��½V � þD�½V �ACD�½V �CBgX�B;

(A8)

where we have used

½D�½V �; D�½V ��AB ¼ ½D�½V �AC;D�½V �CB�
¼ �gfABCF C

��½V �: (A9)

Thus, we obtain

LYM ¼ �1
4F ��½V �2 � 1

2F
��½V � � ðD�½V �X�

�D�½V �X�Þ � 1
2X

�AWAB
��X�B

þ 1
2ðD�½V �X� �D�½V �X�Þ � ig½X�;X��

� 1
4ðig½X�;X��Þ2; (A10)

where we have defined

WAB
�� :¼ �ðD�½V �D�½V �ÞABg�� þ 2gfABCF C

��½V �
þD�½V �ACD�½V �CB: (A11)

In the usual background field method, the OðXÞ term is
eliminated by requiring that the back ground field V
satisfies the equation of motion D�½V �F ��½V � ¼ 0

1
2F

��½V � � ðD�½V �X� �D�½V �X�Þ
¼ �1

2ðD�½V �F ��½V � �X� �D�½V �F��½V � �X�Þ
¼ 0: (A12)

In our framework, V does not necessarily satisfy
the equation of motion. Nevertheless, the OðXÞ term van-
ishes from the defining equations which specify the decom-
position. For G ¼ SUð2Þ, D�½V �n ¼ 0 and X� � n ¼ 0

lead to

F ��½V � � ðD�½V �X�Þ
¼ G��n � ðD�½V �X�Þ
¼ G��½@�ðX� � nÞ �X� �D�½V �n�
¼ 0: (A13)

In order for the reformulated theory written in terms of new
variables to be equivalent to the original QCD, we must
impose the reduction condition [38]:

D�½V �X� ¼ 0: (A14)

This eliminates the last term of WAB
�� in (A11).

Moreover, the OðX3Þ term is absent, i.e.,

1
2 ðD�½V �X� �D�½V �X�Þ � ig½X�;X�� ¼ 0; (A15)

since D�½V �X� �D�½V �X� is orthogonal to

½X�;X��; see [38,41,49].
Thus, the Yang-Mills Lagrangian density reads

L YM ¼ �1
4F

A
��½V �2 � 1

2X
�AQAB

��X�B

� 1
4ðig½X�;X��Þ2; (A16)

where we have defined

QAB
�� :¼ �ðD�½V �D�½V �ÞABg�� þ 2gfABCF C

��½V �:
(A17)

For G ¼ SUð2Þ, the OðX3Þ term is absent, because
F ��½V � and �ig½X�;X�� are parallel to n (this is also

the case for the sum F ��½V � � ig½X�;X��), while
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D�½V �X� �D�½V �X� is orthogonal to n (which fol-

lows from the fact n �X� ¼ 0). For G ¼ SUð2Þ, there-
fore, we have

F C
��½V � ¼ nCG��½V �: (A18)

Then the SUð2Þ gluon part is rewritten into

L YM ¼ �1
4ðG��½V �Þ2 � 1

2X
�AQAB

��½V �X�B

� 1
4ðig½X�;X��Þ2; (A19)

where

QAB
��½V � ¼ �ðD�½V �D�½V �ÞABg��

þ 2g�ABCnCG��½V �: (A20)

APPENDIX B: COEFFICIENTS IN THE
EFFECTIVE POTENTIAL

We expand V̂T;k̂ defined by

V̂ T;k̂ ¼ V̂W þ 4
Z k̂T

0

dp̂p̂2

ð2�Þ2 flnð1� 2e�k̂T cos’þ e�2k̂T Þ � lnð1� 2e�p̂ cos’þ e�2p̂Þg; (B1)

in a power series of ~’ by using the expansion� cos’ ¼ � cosð�þ ~’Þ ¼ cosð~’Þ ¼ 1� 1
2 ~’

2 þ 1
24 ~’

4 þOð~’6Þ as follows:

V̂T;k̂ ¼ V̂W þ
Z k̂T

0

dp̂p̂2

�2

�
ln

�
1þ 2e�k̂T � e�k̂T ~’2 þ 1

12
e�k̂T ~’4 þ e�2k̂T þOð~’6Þ

�

� ln

�
1þ 2e�p̂ � e�p̂ ~’2 þ 1

12
e�p̂ ~’4 þ e�2p̂ þOð~’6Þ

��

¼ V̂W þ
Z k̂T

0

dp̂p̂2

�2

�
ln

�
ð1þ e�k̂T Þ2 � e�k̂T ~’2 þ 1

12
e�k̂T ~’4 þOð~’6Þ

�

� ln

�
ð1þ e�p̂Þ2 � e�p̂ ~’2 þ 1

12
e�p̂ ~’4 þOð~’6Þ

��

¼ V̂W þ
Z k̂T

0

dp̂p̂2

�2

�
lnð1þ e�k̂T Þ2 þ ln

�
1� e�k̂T

ð1þ e�k̂T Þ2 ~’
2 þ e�k̂T

12ð1þ e�k̂T Þ2 ~’4 þOð~’6Þ
�

� lnð1þ e�p̂Þ2 � ln

�
1� e�p̂

ð1þ e�p̂Þ2 ~’
2 þ e�p̂

12ð1þ e�p̂Þ2 ~’
4 þOð~’6Þ

��
: (B2)

By using logð1þ xÞ ¼ x� 1
2 x

2 þOðx3Þ, therefore, V̂T;k̂ has the polynomial expansion

V̂ T;k̂ ¼ A0;k þ A2;k

2
~’2 þ A4;k

4!
~’4 þOð~’6Þ; (B3)

where the coefficient is given by the integral form

A2;k

2
¼ � 1

6
þ

Z k̂T

0

dp̂p̂2

�2

�
e�p̂

ð1þ e�p̂Þ2 �
e�k̂T

ð1þ e�k̂T Þ2
�
;

A4;k

4!
¼ 1

12�2
�

Z k̂T

0

dp̂p̂2

�2

��6e�2p̂ þ e�p̂ð1þ e�p̂Þ2
12ð1þ e�p̂Þ4 ��6e

�2k̂T þ e�k̂T ð1þ e�k̂T Þ2
12ð1þ e�k̂T Þ4

�
;

A0;k ¼
Z k̂T

0

dp̂p̂2

�2
flnð1þ e�k̂T Þ2 � lnð1þ e�p̂Þ2g:

(B4)

The integration can be performed analytically and the coefficient has the closed form

A2;k

2
¼ � 1

6
þ 1

�2

�
� ess3

3ð1þ esÞ2 þ
ess2

1þ es
� 2 logð1þ esÞs� 2Li2ð�esÞ � �2

6

���������s¼k̂T
;

A4;k

4!
¼ 1

12�2
þ e2sð�2s3 þ ðs2 þ 6Þ coshðsÞsþ 6sþ 3ðs2 � 2Þ sinhðsÞ � 3 sinhð2sÞÞ

18ð1þ esÞ4�2

��������s¼k̂T
;

(B5)
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where LinðzÞ ¼ PolyLog½n; z� is the polylogarithm func-
tion, and, in particular, the dilogarithm satisfies Li2ðzÞ ¼R
0
z
logð1�tÞ

t dt which is known as the Spence integral.

Note that the function e�x̂
ð1þe�x̂Þ2 is monotonically decreas-

ing in x and hence the second term in A2;k is positive

(non-negative). The coefficient A2;k is negative and mono-

tonically increasing in k and approaches zero for k! 1
A2;k

2
¼ � 1

6
; � 1

6
	 A2;k

2
< 0 for k 2 ½0;1Þ;

(B6)

or

� 1

3
	 @2

@~’2
V̂T;k̂j~’¼0 < 0 for k 2 ½0;1Þ: (B7)

This is because

Z k̂T

0
dp̂p̂2 e�p̂

ð1þ e�p̂Þ2 !
Z 1
0

dp̂p̂2 e�p̂

ð1þ e�p̂Þ2 ¼
1

6
�2;

(B8)

Z k̂T

0
dp̂p̂2 e�k̂T

ð1þ e�k̂T Þ2 ¼
1

3
k̂3T

e�k̂T

ð1þ e�k̂T Þ2 ! 0: (B9)

The coefficient A4;k is positive and approaches 0 for

k! 1, although A4;k is not monotonically decreasing in k.

A4;0

4!
¼ 1

12�2
;

A4;k

4!
> 0 for k 2 ½0;1Þ: (B10)

This is because

Z k̂T

0
dp̂p̂2

��6e�2p̂ þ e�p̂ð1þ e�p̂Þ2
12ð1þ e�p̂Þ4

�
! 1

12
;

Z k̂T

0
dp̂p̂2

��6e�2k̂T þ e�k̂T ð1þ e�k̂T Þ2
12ð1þ e�k̂T Þ4

� (B11)

¼ 1

3
k̂3T

��6e�2k̂T þ e�k̂T ð1þ e�k̂T Þ2
12ð1þ e�k̂T Þ4

�
! 0: (B12)

APPENDIX C: FLOW EQUATION FOR THE
COEFFICIENT

Suppose that �V̂k̂ is of the form

�V̂k̂ ¼ a0;k þ a1;k ~’þ a2;k
2

~’2 þ a3;k
3!

~’3 þ a4;k
4!

~’4

þOð~’6Þ: (C1)

The left-hand side of the flow equation reads

@k̂�V̂k̂ ¼ @k̂a0;k þ @k̂a1;k ~’þ @k̂
a2;k
2

~’2 þ @k̂
a3;k
3!

~’3

þ @k̂
a4;k
4!

~’4 þOð~’6Þ: (C2)

The flow equation @k̂an;k for the coefficient of ~’n is ex-

tracted by differentiating both sides of the flow equation n
times and by putting ~’ ¼ 0. The left-hand side is

@k̂an;k ¼
@n

@~’n @k̂�V̂k̂j~’¼0: (C3)

Define

fð’Þ :¼ 4��k

k̂2
ðV̂T;k̂ þ �V̂k̂Þ: (C4)

The right-hand sides of the flow equation @k̂an;k are calcu-
lated from

@

@~’

�
1

1þ @2’fð’Þ
�
¼ �@3’fð’Þ
½1þ @2’fð’Þ�2

; (C5)

@2

@~’2

�
1

1þ @2’fð’Þ
�
¼ �@4’fð’Þ
½1þ @2’fð’Þ�2

� 2
�½@3’fð’Þ�2
½1þ @2’fð’Þ�3

;

(C6)

@3

@~’3

�
1

1þ @2’fð’Þ
�

¼ �@5’fð’Þ
½1þ @2’fð’Þ�2

� 2
�3@4’fð’Þ@3’fð’Þ
½1þ @2’fð’Þ�3

þ 6
�½@3’fð’Þ�3
½1þ @2’fð’Þ�4

; (C7)

@4

@~’4

�
1

1þ @2’fð’Þ
�

¼ �@6’fð’Þ
½1þ @2’fð’Þ�2

� 2
�4@5’fð’Þ@3’fð’Þ � 3½@4’fð’Þ�2

½1þ @2’fð’Þ�3

þ 6
�6@4’fð’Þ½@3’fð’Þ�2
½1þ @2’fð’Þ�4

� 24
�½@3’fð’Þ�4
½1þ @2’fð’Þ�5

; � � �

(C8)

If f is an even polynomial in ~’, then the flow equation is
simplified

@k̂a1;k ’
@

@~’

�
1

1þ @2’fð’Þ
���������~’¼0

¼ 0; (C9)

@k̂a2;k ’
@2

@ ~’2

�
1

1þ @2’fð’Þ
��������� ~’¼0

¼ �@4’fð’Þ
½1þ @2’fð’Þ�2

�������� ~’¼0
;

(C10)
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@k̂a3;k ’
@3

@~’3

�
1

1þ @2’fð’Þ
���������~’¼0

¼ 0; (C11)

@k̂a4;k ’
@4

@~’4

�
1

1þ @2’fð’Þ
���������~’¼0

¼ �@6’fð’Þ
½1þ @2’fð’Þ�2

��������~’¼0
þ6 ½@4’fð’Þ�2
½1þ @2’fð’Þ�3

�������� ~’¼0
; . . .

(C12)

Therefore, with an initial condition, a1;k ¼ 0 ¼ a3;k at

k ¼ �, the flow equations in the above

@k̂a1;k ¼ 0; @k̂a3;k ¼ 0; (C13)

guarantee the solution

a1;k 
 0; a3;k 
 0 ð0 	 k 	 �Þ: (C14)
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