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The vacuum expectation value of fermionic current is evaluated for a massive spinor field in spacetimes

with an arbitrary number of toroidally compactified spatial dimensions in the presence of a constant gauge

field. By using the Abel-Plana type summation formula and the zeta-function technique we present the

fermionic current in two different forms. Nontrivial topology of the background spacetime leads to the

Aharonov-Bohm effect for the fermionic current induced by the gauge field. The current is a periodic

function of the magnetic flux with the period equal to the flux quantum. In the absence of gauge field it

vanishes for special cases of untwisted and twisted fields. Applications of general formulas to Kaluza-

Klein type models and to cylindrical and toroidal carbon nanotubes are given. In the absence of magnetic

flux the total fermionic current in carbon nanotubes vanishes, due to the cancellation of contributions from

two different sublattices of the hexagonal lattice of graphene.
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I. INTRODUCTION

In many physical problems we need to consider some
model on a background of a manifold having compact
spatial dimensions along which dynamical variables satisfy
some prescribed periodicity conditions. An incomplete list
of applications where the topological effects play an im-
portant role includes Kaluza-Klein type models, super-
gravity, and superstring theories. From an inflationary
point of view, universes with compact dimensions, under
certain conditions, should be considered as a general rule
rather than an exception [1]. Models of a compact universe
with nontrivial topology may play an important role by
providing proper initial conditions for inflation. An inter-
esting application of the field theoretical models with non-
trivial topology of spatial dimensions appeared in
nanophysics recently [2]. The long-wavelength description
of the electronic states in graphene can be formulated in
terms of Dirac-like theory in three-dimensional spacetime
with the Fermi velocity playing the role of a speed of light
(see, e.g., Refs. [3,4]). Single-walled carbon nanotubes are
generated by rolling up a graphene sheet to form a cylinder,
and the background spacetime for the corresponding
Dirac-like theory has a topology R2 � S1. The compacti-
fication in the direction along the cylinder axis gives
another class of graphene structures called toroidal carbon
nanotubes with the background topology R1 � ðS1Þ2 [5].

The compactification of spatial dimensions leads to a
number of interesting field theoretical effects which in-
clude instabilities in interacting field theories, topological
mass generation, and symmetry breaking. In quantum field

theory the boundary conditions imposed on fields along
compact dimensions change the spectrum of vacuum fluc-
tuations. The resulting energies and stresses are known as
the topological Casimir effect. (For the topological Casimir
effect and its role in cosmology see [6–10], and references
therein.) Note that Casimir forces between material
boundaries are presently attracting much experimental
attention [11]. In the Kaluza-Klein–type models this effect
has been used as a stabilization mechanism for moduli
fields which parametrize the size and the shape of the extra
dimensions. The Casimir energy can also serve as a model
of dark energy needed for the explanation of the present
accelerated expansion of the universe (see [12], and refer-
ences therein).
The effects of the toroidal compactification of spatial

dimensions on the properties of quantum vacuum for vari-
ous spin fields have been discussed by several authors (see,
for instance, [6–13], and references therein). One-loop
quantum effects for the scalar and fermionic fields in
de Sitter spacetime with toroidally compactified dimen-
sions are studied in Refs. [14,15]. In previous papers
[16,17] we have investigated the fermionic condensate
and the vacuum expectation value of the energy-
momentum tensor for a massive spinor field in higher-
dimensional spacetimes with toroidally compactified spa-
tial dimensions. These expectation values are among the
most important quantities that characterize the properties
of the quantum vacuum. Another important characteristic
is the vacuum expectation value of fermionic current.
Although the corresponding operator is local, due to the
global nature of the vacuum, this quantity carries important
information about the global properties of the background
spacetime. In addition to describing the physical structure
of the quantum field at a given point, the current acts as the
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source in the Maxwell equations. It therefore plays an
important role in modeling a self-consistent dynamics in-
volving the electromagnetic field.

In the present paper, we investigate one-loop quantum
effects on the fermionic current arising from vacuum fluc-
tuations of a massive fermionic field on the background of
spacetimes with an arbitrary number of toroidally compac-
tified spatial dimensions. We will assume generalized pe-
riodicity conditions along the compactified dimensions
with arbitrary phases and the presence of a constant gauge
field. A nonzero gauge field defined on a topologically
nontrivial background leads to the Aharonov-Bohm effect
for the vacuum expectation value of fermionic current.
Note that fermionic current in spacetime with nontrivial
topology induced by a cosmic string has been investigated
in Refs. [18].

This paper is organized as follows. In the next section,
we consider the vacuum expectation value of the fermionic
current in the background spacetime with spatial topology
Rp � ðS1Þq in the presence of a constant gauge field. The
corresponding expression is derived by using the Abel-
Plana–type summation formula. An equivalent representa-
tion is obtained in Sec. III within the framework of the
generalized zeta-function approach. In Sec. IV we apply
the general formula for the evaluation of the fermionic
current in cylindrical and toroidal nanotubes within the
framework of Dirac-like model for electrons in graphene.
The main results are summarized in Sec. V.

II. VACUUM EXPECTATION VALUE OF THE
FERMIONIC CURRENT

We consider the quantum fermionic field c on a back-
ground of (Dþ 1)-dimensional flat spacetime with spatial
topology Rp � ðS1Þq, pþ q ¼ D. The Cartesian coordi-
nates along uncompactified and compactified dimensions
are denoted as zp ¼ ðz1; . . . ; zpÞ and zq ¼ ðzpþ1; . . . ; zDÞ,
respectively. The length of the lth compact dimension we
denote as Ll. Hence, for coordinates one has�1< zl <1
for l ¼ 1; . . . ; p, and 0 � zl � Ll for l ¼ pþ 1; . . . ; D.
We assume that along the compact dimensions the field
obeys the generic quasiperiodic boundary conditions,

c ðt; zp; zq þ LlelÞ ¼ e2�i�lc ðt; zp; zqÞ; (1)

with constant phases �l and with el being the unit vector
along the direction of the coordinate zl, l ¼ pþ 1; . . . ; D.
Condition (1) includes the periodicity conditions for both
untwisted and twisted fermionic fields as special cases with
�l ¼ 0 and �l ¼ 1=2, respectively. As is discussed below,
the special cases �l ¼ 0, �1=3 are realized in nanotubes.

Dynamics of the massive spinor field is governed by the
Dirac equation

i��D�c �mc ¼ 0; D� ¼ @� þ ieA�; (2)

where A� is the vector potential for the external electro-

magnetic field. In the discussion below we assume that

A� ¼ const. Though the corresponding magnetic field

strength vanishes, the nontrivial topology of the back-
ground spacetime leads to Aharonov-Bohm–like effects
for physical observables. In particular, as it is shown below,
the expectation value of fermionic current depends on A�.

In the (Dþ 1)-dimensional spacetime, the Dirac matrices

are N � N matrices with N ¼ 2½ðDþ1Þ=2�, where the square
brackets mean the integer part of the enclosed expression.
We assume that these matrices are given in the Dirac
representation:

�0 ¼ 1 0
0 �1

� �
; �� ¼ 0 ��

��þ
� 0

� �
;

� ¼ 1; 2; . . . ; D:

(3)

From the anticommutation relations for the Dirac matrices
one has ���

þ
� þ ���

þ
� ¼ 2���. In the case D ¼ 2 we

have N ¼ 2 and the Dirac matrices are taken in the form
�� ¼ ð�P3; i�P1; i�P2Þ, with �P� being the 2� 2 Pauli

matrices. We are interested in the effects of nontrivial
topology on the vacuum expectation value (VEV) of fer-
mionic current j� ¼ �c��c , where �c is the Dirac con-
jugated spinor. Note that the fermionic condensate and the
VEV of the energy-momentum tensor in the model under
consideration were evaluated in Ref. [16] in the absence of
gauge field.
By expanding the field operator in terms of annihilation

and creation operators, the VEV of fermionic current is
presented as the sum over all modes

h0jj�j0i ¼ X
�

�c ð�Þ
� ðxÞ��c ð�Þ

� ðxÞ; (4)

where fc ðþÞ
� ; c ð�Þ

� g is the complete set of positive- and

negative-frequency eigenfunctions satisfying the periodic-
ity conditions (1) along compact dimensions. Here, � is a
set of quantum numbers specifying the solutions. The
dependence of the eigenfunctions on the spacetime coor-
dinates can be taken in the form eik�r�i!t, with the wave
vector k. From the Dirac equation for the positive- and
negative-frequency solutions we find

c ðþÞ
� ¼ AðþÞ

� eik�r�i!t wðþÞ
�

!�eA0�m
ðk�eAÞ2 ðk� eAÞ � �þwðþÞ

�

 !
;

(5)

c ð�Þ
� ¼ Að�Þ

� e�ik�rþi!t
!þeA0�m
ðkþeAÞ2 ðkþ eAÞ � �wð�Þ

�

wð�Þ
�

 !
;

(6)

where � ¼ ðk; �Þ, A� ¼ ðA0;�AÞ, and � ¼
ð�1; �2; . . . ; �DÞ. In these expressions wðþÞ

� , � ¼
1; . . . ; N=2, are one-column matrices having N=2 rows

with the elements wðþÞ
�l ¼ ��l and wð�Þ

� ¼ iwðþÞ
� . The fre-
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quency and the wave vector are connected by the relation

ð!� eA0Þ2 ¼ ðk� eAÞ2 þm2 for the function c ð�Þ
� .

The coefficients Að�Þ
� are found from the orthonormali-

zation condition
R
d3xc ð�Þþ

� c ð�Þ
�0 ¼ ���0 , where ���0 is

understood as the Dirac delta function for continuous in-
dices and the Kronecker delta for discrete ones. From this
condition one finds

Að�Þ2
� ¼ 1

ð2�ÞpVq

�
1þ ð!� eA0 �mÞ2

ðk� eAÞ2
��1

; (7)

where Vq ¼ Lpþ1 � � �LD is the volume of the compact

subspace.
We decompose the wave vector into components along

the uncompactified and compactified dimensions: k ¼
ðkp;kqÞ, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2

q

q
. The eigenvalues for the compo-

nents along the compact dimensions are determined from
boundary conditions (1):

kl ¼ 2�ðnl þ �lÞ=Ll; nl ¼ 0;�1;�2; . . . ;

l ¼ pþ 1; . . . ; D:
(8)

For the components along the uncompactified dimensions
one has �1< kl <1, l ¼ 1; . . . ; p.

Substituting the eigenfunctions (6) into the mode-sum
formula (4) and by using the properties of Dirac matrices
one finds

h0jj0j0i ¼ N

2Vq

Z dkp

ð2�Þp
X

nq2Zq

1; (9)

h0jjlj0i ¼ N

2Vq

Z dkp

ð2�Þp
X

nq2Zq

ðkþ eAÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ eAÞ2 þm2
p ; (10)

with l ¼ 1; 2; . . . ; D and nq ¼ ðnpþ1; . . . ; nDÞ. In order to

give a meaning to divergent expressions, it is necessary to
regularize them. Here we use a Pauli-Villars gauge-
invariant regularization. An alternative way is to introduce
a cutoff function. Introducing regulator fields with large
massesMs, s ¼ 1; 2; . . . ; S, for the regularized expressions
one finds

h0jj0j0ireg ¼ N

2Vq

Z dkp

ð2�Þp
X

nq2Zq

XS
s¼0

Cs; (11)

h0jjlj0ireg ¼ N

2Vq

Z dkp

ð2�Þp
X

nq2Zq

XS
s¼0

Csðkþ eAÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ eAÞ2 þM2
s

p ;

(12)

with C0 ¼ 1 and M0 ¼ m. Under the conditionsP
S
s¼0 CsM

2n
s ¼ 0, n ¼ 0; 1; . . . ; ½D=2�, these expressions

are finite. After the renormalization subtractions the regu-
lator is removed, taking the limit Ms ! 1, s � 1. From
formula (11) it follows that the VEV of the temporal
component of the fermionic current is renormalized to
zero. Shifting the integration variable in (12), we directly
see that h0jjlj0ireg ¼ 0 for the components with l ¼
1; . . . ; p. Hence, the renormalized VEV of the fermionic
current is different from zero only for the components
along the compact dimensions.
Shifting the integration variables, kl þ eAl ! kl, l ¼

1; . . . ; p, for these components one finds

h0jjrj0ireg ¼ N

2Vq

Z dkp

ð2�Þp
X

nq2Zq

XS
s¼0

2�Csðnr þ ~�rÞ=Lrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þP

D
l¼pþ1½2�ðnl þ ~�lÞ=Ll�2 þM2

s

q ; (13)

with r ¼ pþ 1; . . . ; D, and we have introduced the nota-
tion

~� l ¼ �l þ eAlLl=ð2�Þ: (14)

Hence, the VEV of the fermionic current depends on
components of the vector potential along the compact
dimensions alone. We present the second term on the right
of (14) as eAlLl=ð2�Þ ¼ Nl þ �l, where Nl is an integer
number and �l is the fractional part. As it is seen from
formula (13), only the fractional part leads to nontrivial
effects. Another point to be mentioned is that the presence
of a gauge field leads to the shift of the phases in the
quasiperiodic boundary conditions along compact dimen-
sions. This feature is applicable to the fermionic conden-
sate and the VEVof the energy-momentum tensor as well.

In particular, the formulas for these quantities in the pres-
ence of a constant gauge field are obtained from the
corresponding formulas in Ref. [16] by the replacement
�l ! ~�l.
The property that the VEVs depend on the phases �l

and on the vector potential components along compact
dimensions in the combination (14) can also be seen by

the gauge transformation A� ¼ A0
� þ @��ðxÞ, c ðxÞ ¼

c 0ðxÞe�ie�ðxÞ, with the function �ðxÞ ¼ A�x
�. The new

function c 0ðxÞ satisfies the Dirac equation with A0
� ¼ 0

and the quasiperiodicity conditions similar to (1) with the
replacement �l ! ~�l. Corresponding eigenspinors are
given by expressions (5) and (6) with A ¼ 0, and the
eigenvalues for the wave vector components along com-
pact dimensions are defined by kl ¼ 2�ðnl þ ~�lÞ=Ll.
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In the new gauge, the regularized VEVs are given by
Eqs. (11) and (12) with A ¼ 0. The latter coincide with
(11) and (12) after the shift kl þ eAl ! kl, l ¼ 1; . . . ; p, of
the integration variables for the components along uncom-
pactified dimensions.

We will evaluate the VEV of fermionic current by two
equivalent methods: by applying the Abel-Plana–type
summation formula and using the zeta-function technique.
In the first approach we apply to the series over nr in
Eq. (13) the following summation formula:

X1
nr¼�1

gðnr þ ~�rÞfðjnr þ ~�rjÞ

¼
Z 1

0
du½gðuÞ þ gð�uÞ�fðuÞ

þ i
Z 1

0
du½fðiuÞ � fð�iuÞ� X

	¼�1

gði	uÞ
e2�ðuþi	~�rÞ � 1

: (15)

This formula is obtained by combining the summation
formulas given in Ref. [19] (see also [16]). In the special
case of gðxÞ ¼ 1, ~�r ¼ 0 formula (15) reduces to the
standard Abel-Plana formula (for the applications of the
Abel-Plana formula and its generalizations in quantum
field theory see [6,20,21]). Taking in Eq. (15)

gðxÞ ¼ 2�x=Lr;

fðxÞ ¼ ½k2
p þ!2

nr
q�1

þ ð2�x=LrÞ2��1=2;
(16)

with

!2
nr
q�1

¼ XD
l¼pþ1;l�r

½2�ðnl þ ~�lÞ=Ll�2 þm2; (17)

and nr
q�1 ¼ ðnpþ1; . . . ; nr�1; nrþ1; . . . ; nDÞ, we see that the

first integral on the right-hand side of this formula van-
ishes. The contribution of the second integral to the regu-
larized VEV is finite in the limit Ms ! 1, s � 1, and in
this term the regulator can be safely removed. By using the
expansion 1=ðey � 1Þ ¼ P1

n¼1 e
�ny in the integrand of the

second integral, the integrals with the separate terms in this
expansion are evaluated explicitly and one finds

Xþ1

nr¼�1

2�ðnr þ ~�rÞ=Lrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ

P
D
l¼pþ1½2�ðnl þ ~�lÞ=Ll�2 þm2

q
¼ 2Lr

�

X1
n¼1

sinð2�n~�rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ!2

nr
q�1

q
K1ðnLr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ!2

nr
q�1

q
Þ;

(18)

where K�ðxÞ is the modified Bessel function. The equality
in Eq. (18) is understood in the sense of the renormalized
value.

By taking into account the result (18), from Eq. (13),
after the integration over kp, for the renormalized VEVone

finds

h0jjrj0i ¼ 2NLr

ð2�Þp=2þ1Vq

X1
n¼1

sinð2�n~�rÞ
ðnLrÞp=2

� X
nr
q�1

2Zq�1

!p=2þ1
nr
q�1

Kp=2þ1ðnLr!nr
q�1

Þ; (19)

with !nr
q�1

defined by Eq. (17). As it is seen from this

formula, the VEV of fermionic current is a periodic func-
tion of AlLl with the period of the flux quantum �0 ¼
2�=e (2�@c=e in standard units). It is antisymmetric about
~�r ¼ 1=2. In the absence of the gauge field the VEV of
fermionic current vanishes for special cases of untwisted
and twisted fields. Of course, this result directly follows
from the symmetry of the problem for these special cases
under the reflection zr ! �zr. Note that LD

r h0jjrj0i is a
function of the ratios Ll=Lr and mLr. As expected, in the
large mass limit,mLr 	 1, the fermionic current along the
direction zr is exponentially suppressed.
Let us consider asymptotic limits of the VEV of fermi-

onic current. For large values of Lr, Lr=Ll 	 1, the main
contribution comes from the term with n ¼ 1 and to the
leading order we have

h0jjrj0i ¼ NLr sinð2�~�rÞ
ð2�LrÞðpþ1Þ=2Vq

!ðpþ1Þ=2
0 e�Lr!0 ; (20)

where !2
0 ¼

P
D
l¼pþ1;l�rð2��l=LlÞ2 þm2 and �l ¼

minðjnl þ ~�ljÞ.
In the limit when the length of one of the compactified

dimensions, say zl, l � r, is large, Ll ! 1, the main
contribution into the sum over nl in Eq. (19) comes from
large values of jnlj and we can replace the summation by
the integration in accordance with

1

Ll

Xþ1

nl¼�1
fð2�jnl þ ~�lj=LlÞ ¼ 1

�

Z 1

0
dyfðyÞ: (21)

The integral over y is evaluated by using the formula from
Ref. [22], and from Eq. (19) the corresponding formula is
obtained for the topology Rpþ1 � ðS1Þq�1.
Now let us consider the limit when the length of one of

the compact dimensions, say zD, is small compared with
Lr: LD 
 Lr. In this case, in the summation over nD the
main contribution comes from the term with minimum
value of jnD þ ~�Dj. If the parameter ~�D is an integer,
the dominant contribution comes from the term with nD ¼
�~�D (zero mode along the direction zD) and from (19) we
obtain

h0jjrj0i ¼ �D

LD

h0jjrj0iRp�ðS1ÞD�1�p ; (22)

where h0jjrj0iRp�ðS1ÞD�1�p is the fermionic current in

(D� 1)-dimensional space with spatial topology Rp �
ðS1ÞD�1�p and with the lengths of compact dimensions
Lpþ1; . . . ; LD�1. In Eq. (22), �D ¼ 1 for even D and �D ¼
2 for odd D. If the parameter ~�D is noninteger and
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�DLr=LD 	 1, the argument of the modified Bessel func-
tion in Eq. (19) is large. By using the corresponding
asymptotic formula, to the leading order we find

h0jjrj0i � 4NL�p
r

ð2�Þðpþ3Þ=2Vq

X1
n¼1

sinð2�n~�rÞ
nðpþ1Þ=2

� X
nr
q�22Zq�2

bðpþ1Þ=2
nr
q�2

e
�nbnr

q�2 ; (23)

where

b2nr
q�2

¼ ð2��DLr=LDÞ2 þ
XD�1

l¼pþ1;l�r

½2�ðnl þ ~�lÞLr=Ll�2

þ L2
rm

2; (24)

with nr
q�2 ¼ ðnpþ1; . . . ; nr�1; nrþ1; . . . ; nD�1Þ. In this case

the VEVof fermionic current is exponentially suppressed.
In the special case with a single compact dimension we

have p ¼ D� 1, q ¼ 1, !nr
q�1

¼ m, and the general for-

mula (19) simplifies to

h0jjrj0i ¼ 2NmðDþ1Þ=2

ð2�ÞðDþ1Þ=2
X1
n¼1

sinð2�n~�rÞ
KðDþ1Þ=2ðnLrmÞ
ðnLrÞðD�1Þ=2 :

(25)

For a massless field this expression takes the form

h0jjrj0i ¼ N�ððDþ 1Þ=2Þ
�ðDþ1Þ=2LD

r

X1
n¼1

sinð2�n~�rÞ
nD

: (26)

For odd values D the series in this formula is summed in
terms of the Bernoulli polynomials BDðxÞ and one finds

h0jjrj0i ¼ ð�1ÞðDþ1Þ=2 2ðD�1Þ=2�D=2

�ðD=2þ 1ÞLD
r

BDð~�rÞ; (27)

for 0 � ~�r � 1. In Fig. 1 we plot the VEV of fermionic
current in the simplest Kaluza-Klein model with D ¼ 4 as
a function of parameters ~�r andmLr. In Kaluza-Klein type
models the fermionic current with the components along
compact dimensions is a source of cosmological magnetic
fields.

III. ZETA-FUNCTION APPROACH

In this section, for the evaluation of the VEV of fermi-
onic current we follow a different route based on the zeta-
function method [7,23,24]. This allows us to obtain an
alternative representation. To start we note that the mode
sum for the fermionic current can be written as

h0jjrj0i ¼ �N

L2
r

Xþ1

nr¼�1
ðnr þ ~�rÞ
ð1=2Þ; (28)

where the generalized zeta function


ðsÞ ¼ Lr

Vq

Z dkp

ð2�Þp
X

nr
q�1

2Zq�1

�
�
k2
p þ

XD
l¼pþ1;�r

½2�ðnl þ ~�lÞ=Ll�2 þm2
r

��s
(29)

is introduced with the notation

m2
r ¼ m2 þ ½2�ðnr þ ~�rÞ=Lr�2: (30)

As it follows from Eq. (28), for the evaluation of the
renormalized VEV of fermionic current we need to have
the analytic continuation of the zeta function 
ðsÞ at the
point s ¼ 1=2.
With this aim we first integrate over the wave vector

along the uncompactified dimensions:


ðsÞ ¼ �ðs� p=2ÞLr

ð4�Þp=2�ðsÞVq

X
nr
q�1

2Zq�1

�
� XD
l¼pþ1;�r

½2�ðnl þ ~�lÞ=Ll�2 þm2
r

�
p=2�s

: (31)

An exponentially convergent expression for the analytic
continuation of the multiseries in Eq. (31) can be obtained
by using the generalized Chowla-Selberg formula [25].
The application of this formula to Eq. (31) gives the
following result:


ðsÞ ¼ mD�2s�1
r

ð4�ÞðD�1Þ=2
�ðs� ðD� 1Þ=2Þ

�ðsÞ þ 21�smD�2s�1
r

ð2�ÞðD�1Þ=2�ðsÞ
� X0

nr
q�1

2Zq�1

cosð2�nr
q�1 � �q�1Þ

� fðD�1Þ=2�sðmrgðLq�1;n
r
q�1ÞÞ; (32)

0.0

0.5

1.0

r

0

2

4

mLr

0.2

0.0

0.2

FIG. 1. The VEVof fermionic current, L4
rh0jjrj0i, in the model

with spatial topology R3 � S1 as a function of the phase ~�r and
the parameter mLr.
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with Lq�1 ¼ ðLpþ1; . . . ; Lr�1; Lrþ1; . . . ; LDÞ and �q�1 ¼
ð~�pþ1; . . . ; ~�r�1; ~�rþ1; . . . ; ~�DÞ. In Eq. (32) we have intro-

duced the notation f�ðxÞ ¼ K�ðxÞ=x�. The prime on the
summation sign in (32) means that the term nq ¼ 0 should

be excluded from the sum and

gðLq�1;n
r
q�1Þ ¼

� XD
i¼pþ1;�r

L2
i n

2
i

�
1=2

: (33)

The part in the fermionic current containing the second
term on the right-hand side of Eq. (32) is finite at the
physical point and, hence, the analytic continuation is
needed for the part with the first term alone. In order to
do this, we apply the summation formula (15) to the
corresponding series over nr. After transformations similar
to those already used in the derivation of Eq. (19) and by
making use of the standard properties of the gamma func-
tion, one finds

�ðs� ðD� 1Þ=2Þ
2Lrð4�ÞðD�1Þ=2�ðsÞ

Xþ1

nr¼�1

2�ðnr þ ~�rÞ=Lr

m2sþ1�D
r

¼ ð2mÞðD�2sÞ=2þ1

ð4�ÞD=2�ðsÞ
X1
n¼1

sinð2�n~�rÞ
KðD�2sÞ=2þ1ðnLrmÞ

ðnLrÞðD�2sÞ=2 :

(34)

As it can easily be checked, the right-hand side of this
relation is finite at s ¼ 1=2. Combining Eqs. (28), (32), and
(34), for the VEVof fermionic current we find the follow-
ing representation:

h0jjrj0i ¼ 2NmðDþ1Þ=2

ð2�ÞðDþ1Þ=2
X1
n¼1

sinð2�n~�rÞ
KðDþ1Þ=2ðnLrmÞ
ðnLrÞðD�1Þ=2

þ NL�2
r

ð2�ÞD=2�1

Xþ1

nr¼�1
ðnr þ ~�rÞmD�2

r

� X0

nr
q�1

2Zq�1

cosð2�nr
q�1 � �q�1Þ

� fD=2�1ðmrgðLq�1;n
r
q�1ÞÞ: (35)

Note that in the limit Ll ! 1, l � r, the second term on
the right-hand side of this formula vanishes and we obtain
the vacuum fermionic current in the model with a single
compact dimension. The latter coincides with Eq. (25).

Formula (35) is further simplified by using the relation

Xþ1

nr¼�1
½2�ðnr þ ~�rÞ=Lr�mD�2

r fD=2�1ðmryÞ

¼
ffiffiffiffi
2

�

s
L2
rm

Dþ1
Xþ1

nr¼1

nr sinð2�nr ~�rÞfðDþ1Þ=2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ n2rL

2
r

q
Þ:

(36)

This relation is obtained by integrating the Poisson’s
resummation formula

Pþ1
n¼�1 FðxÞ�ðx� nÞ ¼Pþ1

n¼�1 FðxÞe2i�nx with the function FðxÞ defined by the

left-hand side of Eq. (36). The integral for the right-hand
side is evaluated using the formula from Ref. [22]. By
taking into account Eq. (36), from Eq. (35) we find

h0jjrj0i ¼ 2NmDþ1Lr

ð2�ÞðDþ1Þ=2
X1
nr¼1

nr sinð2�nr ~�rÞ

� X
nr
q�1

2Zq�1

cosð2�nr
q�1 ��q�1Þ

� fðDþ1Þ=2ðmgðLq;nqÞÞ; (37)

with the notation

gðLq;nqÞ ¼
� XD
i¼pþ1

L2
i n

2
i

�
1=2

: (38)

The equivalence of two representations (19) and (37) for
the VEVof fermionic current is seen using the relationX
nr
q�1

2Zq�1

cosð2�nr
q�1 � �q�1ÞfðDþ1Þ=2ðmgðLq;nqÞÞ

¼ ð2�Þðq�1Þ=2Lr

Vqm
Dþ1

X
nr
q�1

2Zq�1

!ðD�qÞ=2þ1
nr
q�1

fðD�qÞ=2þ1ðnLr!nr
q�1

Þ:

(39)

The proof of this relation can be found in the Appendix of
Ref. [16]. The advantage of the representation (19), as
compared with Eq. (37), is that in the case of a massless
field, for large values of nl the separate terms in the
multiseries decay exponentially instead of power-law de-
cay in Eq. (37).

IV. FERMIONIC CURRENT IN CARBON
NANOTUBES

Carbon nanotubes have attracted much attention re-
cently due to the experimental observation of a number
of novel electronic properties. In this section we apply
general results obtained above for the electrons in cylin-
drical and toroidal carbon nanotubes. A single-wall cylin-
drical nanotube is a graphene sheet rolled into a cylindrical
shape. The electronic band structure of graphene close to
the Dirac points shows a conical dispersion EðkÞ ¼ vFjkj,
where k is the momentum measured relatively to the Dirac
points and vF � 108 cm=s represents the Fermi velocity
which plays the role of a speed of light. The corresponding
low-energy excitations can be described by a pair of two-
component spinors, c A and c B, corresponding to the two
different triangular sublattices of the honeycomb lattice of
graphene (see, for instance, [2,3]). The Dirac equation for
these spinors has the form

ðiv�1
F �0D0 þ i�lDl �mÞc J ¼ 0; (40)

where J ¼ A; B, l ¼ 1; 2, andD� is defined in Eq. (2) with

e ¼ �jej for electrons. To keep the discussion general, we
have included in Eq. (40) the mass (gap) term. The gap in
the energy spectrum is essential in many physical applica-
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tions. This gap can be generated by a number of mecha-
nisms (see, for example, [3,26–28]). In particular, they
include the breaking of symmetry between two sublattices
by introducing a staggered on-site energy [3] and the
deformations of bonds in the graphene lattice [26].
Another approach is to attach a graphene monolayer to a
substrate, the interaction with which breaks the sublattice
symmetry [27]. For metallic nanotubes we have periodic
boundary conditions (�l ¼ 0) along the compact dimen-
sion and for semiconductor nanotubes, and depending on
the chiral vector, we have two classes of inequivalent
boundary conditions corresponding to �l ¼ �1=3. These
phases have opposite signs for the sublattices A and B.

The presence of the gauge field in Eq. (40) leads to the
Aharonov-Bohm effect in carbon nanotubes [29]. This
effect manifests itself in a periodic energy gap modulation
and conductance oscillations as a function of enclosed
magnetic flux with a period of the order of the flux quan-
tum. Similar oscillations arise in the VEV of fermionic
current along compact dimensions. We consider the cases
of cylindrical and toroidal nanotubes separately.

A. The case D ¼ 1

We start with the simplest case D ¼ 1 with a compact
dimension of the length L1 ¼ L. The corresponding phase
in the periodicity condition we denote �1 ¼ �. As it is
seen below, this case can be considered as a model of a
toroidal nanotube in the limit when the length of the one of
compact dimensions is small. The corresponding effective
two-dimensional Dirac-like theory is discussed in
Refs. [30]. By summing the contributions coming from
two sublattices with opposite signs of �, for the VEV of
fermionic current one finds

hj1i¼4vFm

�

X1
n¼1

cosð2�n�Þsinð2�n�=�0ÞK1ðmLnÞ; (41)

where 2��=�0 ¼ eA1L=ð@cÞ with � being the magnetic
flux. The corresponding vector potential can be generated
by the magnetic field perpendicular to the plane of torus
and located inside a coaxial cylinder with radius smaller
than L=ð2�Þ. For a massless case from here we have hj1i ¼
vF

P
j¼�Ið�=�0 þ j�Þ=L, where we have defined the

function

I ðxÞ ¼ 2

�

X1
n¼1

sinð2�nxÞ
n

¼
�
1� 2fxg; fxg> 0
2jfxgj � 1; fxg< 0

: (42)

The fractional part fxg on the right-hand side of this for-
mula is defined in accordance with the Mathematica func-
tion FractionalPart[x]. In Fig. 2 we have plotted the VEV
(41) as a function of the magnetic flux for different values
of the parameter mL (numbers near the curves). The
dashed lines correspond to a massless case. For the left
and right panels � ¼ 0 and � ¼ 1=3, respectively. The
electric current corresponding to the VEVof the fermionic
current is of order jejvF=L. Note that the persistent cur-
rents in normal metal rings with this order of magnitude
have been recently measured in Refs. [31].

B. Cylindrical nanotubes

A single-wall cylindrical nanotube is a rolled-up gra-
phene sheet in the hollow cylindrical structure. For the case
of cylindrical nanotube we have spatial topology R1 � S1

with the compactified dimension of length L. The nanotube
is characterized by its chiral vector Ch ¼ ðnw;mwÞ, with
nw andmw being integers determining the circumference in

accordance with L ¼ jChj ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2w þm2

w þ nwmw

p
. Here

a ¼ 2:46 �A is the lattice constant for graphene. A zigzag
nanotube corresponds to the special caseCh ¼ ðnw; 0Þ, and
an armchair nanotube corresponds to the case Ch ¼
ðnw; nwÞ. All other cases correspond to chiral nanotubes.
The electronic properties of carbon nanotubes can be either
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FIG. 2. The VEVof fermionic current in the D ¼ 1 model for the periodicity conditions with � ¼ 0 (left panel) and � ¼ 1=3 (right
panel) as a function of the magnetic flux.
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metallic or semiconductorlike depending on the chiral
vector. In the case nw �mw ¼ 3qw, qw 2 Z, the nanotube
will be metallic, and in the case nw �mw � 3qw the nano-
tube will be a semiconductor with an energy gap inversely
proportional to the diameter.

For the case under discussion D ¼ 2 and the general
formula for the VEV of fermionic current takes the form
(N ¼ 2, �pþ1 � �)

h0jj2j0i ¼ 1

�L2

X1
n¼1

sinð2�n~�Þ 1þ nLm

n2enLm
; (43)

with the notation ~� ¼ �þ eA2L=ð2�Þ, and h0jj1j0i ¼ 0.
In metallic nanotubes � ¼ 0 and for semiconductor nano-
tubes � ¼ �1=3. For graphene sheet we have two spinors
that describe Bloch states residing on the two different
sublattices. Summing the contributions from these sublat-
tices and taking into account that, for these two sublattices
the phases � have opposite signs, for the total fermionic
current we find

hj2iðcnÞ ¼ 2vF

�L2

X1
n¼1

cosð2�n�Þ sinð2�n�=�0Þ 1þ nLm

n2enLm
;

(44)

where � ¼ 0 and 1=3 for metallic and semiconductor
nanotubes, respectively. In these formulas 2��=�0 ¼
eA2L=ð@cÞwith� being the magnetic flux passing through
the cross section of the nanotube. Note that in Eq. (44) (and
in the formulas below), we give the fermionic current for a
given spin component. The total current is obtained multi-
plying by the number of spin components which is 2 for
graphene.

As it is seen from Eq. (44), in the absence of the
magnetic flux the total fermionic current vanishes due to
the cancellation of contributions from two sublattices. The
magnetic flux breaks this symmetry and an effective cur-

rent appears. However, it should be noted that, in general,
the mass terms in the Dirac equation for separate sublatti-
ces can be different. In this case an effective fermionic
current appears without an external magnetic field. In
Fig. 3 we plot the VEVof the fermionic current for various
values of the parameter mL (numbers near the curves) in
metallic (left panel) and semiconductor (right panel) cy-
lindrical nanotubes as a function of magnetic flux in units
of magnetic flux quantum.

C. Toroidal nanotubes

A toroidal nanotube corresponds to a finite graphene
sheet with the periodical boundary conditions along the
transverse and longitudinal directions. This form of carbon
structure was discovered in Refs. [5]. The carbon toroid is
determined by its chiral, Ch ¼ ðnw;mwÞ, and translational,
T ¼ ðpw; qwÞ, vectors. The parameters ðnw;mw; pw; qwÞ
define the geometric structure and physical properties of
toroidal nanotubes. For the geometry of a toroidal nano-
tube we have the spatial topology ðS1Þ2 with p ¼ 0 and
q ¼ 2, and the corresponding formulas for the VEV of
fermionic current are directly obtained from the general
results (19) and (37) (on the persistent currents in toroidal
carbon nanotubes see Refs. [32]). For a graphene sheet we
have two sublattices with opposite signs of the phases �l.
The total current is obtained by summing the correspond-
ing contributions, and one finds

hjriðtorÞ ¼ 2LrvF

�

X1
nr¼1

nr
X1

nl¼�1

cos½2�ðn1�1 þ n2�2Þ�
ðL2

1n
2
1 þ L2

2n
2
2Þ3=2

� 1þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1n

2
1 þ L2

2n
2
2

q
expðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1n

2
1 þ L2

2n
2
2

q
Þ

� sin½2�ðn1�1 þ n2�2Þ=�0�; (45)
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FIG. 3. The VEV of fermionic current in metallic (left panel) and semiconductor (right panel) nanotubes as a function of the
magnetic flux.
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where r; l ¼ 1; 2, l � r, and 2��l=�0 ¼ eAlLl=ð@cÞ. As
in the case of cylindrical nanotubes, due to the cancellation
of contributions coming from separate sublattices, the
fermionic current in toroidal nanotubes vanishes in the
absence of the magnetic flux. An alternative representation
is obtained by using formula (19):

hjriðtorÞ ¼ 2vF

�L2
l

X
�¼�

X1
nr¼1

sinð2�nr ~�ð�Þ
r Þ

� Xþ1

nl¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðnl þ ~�ð�Þ

l Þ�2 þ L2
l m

2
q

� K1ðnrðLr=LlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðnl þ ~�ð�Þ

l Þ�2 þ L2
l m

2
q

Þ;
(46)

with r; l ¼ 1; 2, l � r, and ~�ð�Þ
l ¼ ��l þ�l=�0. This

formula is further simplified when Al ¼ 0:

hjriðtorÞ ¼ 4vF

�L2
l

X1
n¼1

sinð2�nr�r=�0Þcosð2�nr�rÞ

� Xþ1

nl¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðnl þ�lÞ�2 þL2

l m
2

q

�K1ðnrðLr=LlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðnl þ�lÞ�2 þL2

l m
2

q
Þ: (47)

Note that in this case the component h0jjlj0iðtorÞ is nonzero
only for �1; �2 � 0.

Let us consider the asymptotic limit of the fermionic
current in toroidal nanotubes in the case L1 
 L2 for a
fixed value of mL2. First we consider the component

hj1iðtorÞ. For this component in Eq. (46) one has l ¼ 2. In
the limit under consideration the main contribution to the
series over n2 comes from large values, and we can replace
the summation by integration. The integral is evaluated
explicitly, and to the leading order the expression for

hj1iðtorÞ coincides with the corresponding result for cylin-
drical nanotubes given by (44) (with L ¼ L1). The behav-

ior of the component hj2iðtorÞ crucially depends on whether
the parameter ~�ð�Þ

1 is integer or not. When this parameter

is noninteger (for both � ¼ �) the argument of the modi-
fied Bessel function in Eq. (47) (with r ¼ 2, l ¼ 1) is
large and the dominant contribution comes from the
term with n2 ¼ 1 and from the term in the summation

over n1 with minimum value of jn1 þ ~�ð�Þ
1 j. The VEV

of fermionic current is exponentially suppressed: hj2iðtorÞ 
exp½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2��1L2=L1Þ2 þ L2

2m
2

q
�, with �1 ¼ minjn1 þ

~�ð�Þ
1 j. For nanotubes metallic along the direction z1 with

the length L1 and for A1 ¼ 0 one has ~�ð�Þ
1 ¼ 0. In this case

and for L1 
 L2 the main contribution to hj2iðtorÞ comes
from the term with n1 ¼ 0 in Eq. (46) and the quantity

L1hj2iðtorÞ coincides with the corresponding result in the

D ¼ 1 case [formula (41) with L ¼ L2 and � ¼ �2]. If

�1 � 0 and ~�ð�Þ
1 is an integer (note that this can be satisfied

for one of values �), the main contribution comes from the

term for which n1 þ ~�ð�Þ
1 ¼ 0. In this case only one of the

sublattices contributes to the fermionic current.
In Fig. 4 we plot the dependence of the fermionic current

hj2iðtorÞ in the massless case as a function of the ratio L1=L2

for different values of the phases ð�1; �2Þ (numbers near
the curves) and for �2=�0 ¼ 0:2, �1 ¼ 0. In this case the

component hj1iðtorÞ is nonzero for �1;2 � 0 only. As it was

shown above and clearly seen from Fig. 4, for large values

of the ratio L1=L2 the component hj2iðtorÞ of the fermionic
current tends to the corresponding quantity in a cylindrical
nanotube with circumference L2. In the opposite limit of
small values of L1=L2 the VEV tends to zero for a
semiconducting-type periodicity condition along the direc-
tion z1. Again, this is in agreement with the asymptotic
analysis given before.
The dependence of the fermionic current on the mag-

netic flux is presented in Fig. 5 for different values of the
ratio L1=L2. The left and right panels correspond to toroi-
dal nanotubes with phases ð�1; �2Þ ¼ ð1=3; 0Þ and
ð1=3; 1=3Þ, respectively.

V. CONCLUSION

We have investigated the VEVof fermionic current for a
massive spinor field in the background of flat spacetime
with spatial topology Rp � Sq. Along the compact dimen-
sions the field obeys generic quasiperiodic boundary con-
ditions (1). In addition, we have assumed the presence of a
constant gauge field. For the evaluation of the mode sum of
the fermionic current two different approaches have been
used. They give two alternative representations of the
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FIG. 4. The VEV of the current for a massless fermionic field
in a toroidal nanotube as a function of the ratio L1=L2 for
different values of the phases ð�1; �2Þ and for the magnetic
flux �2=�0 ¼ 0:2, �1 ¼ 0.
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vacuum current. In the first approach, we apply to the mode
sum the Abel-Plana–type summation formula (15). The
renormalized VEVof fermionic current components along
compact dimensions is given by formula (19). The time
component and the components along the uncompactified
dimensions vanish. The fermionic current depends on the
phases in the periodicity conditions and on the gauge
potential in the combination (14). It is a periodic function
of the magnetic flux with the period of the flux quantum. In
order to obtain an alternative representation of the vacuum
current, in Sec. III we have followed the zeta-function
approach. An exponentially convergent expression for the
analytic continuation of the corresponding mode sum is
obtained on the basis of the generalized Chowla-Selberg
formula. The corresponding expression for the components
of fermionic current along compact dimensions is given by
Eq. (37). The equivalence of two representations for the
VEVof the fermionic current is directly seen by using the
relation (36). As a numerical example, in Fig. 1 we have
depicted the dependence of the vacuum current in the five-
dimensional Kaluza-Klein model on the phases in the
periodicity conditions and on the mass of the field. In
this type of models the fermionic current with the compo-
nents along compact dimensions is a source of cosmologi-
cal magnetic fields.

In Sec. IV we gave an application of the general results
to the electrons of a graphene sheet rolled into cylindrical
and toroidal shapes. For the description of relevant low-
energy degrees of freedom we have followed a route based
on the effective field theory treatment of graphene in terms
of a pair of Dirac fermions. For this model we have D ¼ 2
and the topologies R1 � S1 and ðS1Þ2 for cylindrical and
toroidal nanotubes, respectively. Depending on the manner
the cylinder is obtained from the graphene sheet, the phases
in the periodicity conditions for the fields are equal to 0 for

metallic nanotubes and to �1=3 for semiconductor ones.
These phases have opposite signs for the two sublattices of
the hexagonal lattice of graphene. In cylindrical nanotubes
the total fermionic current is given by formula (44). In the
absence of magnetic flux, the total fermionic current van-
ishes due to the cancellation of contributions from two
sublattices. For toroidal nanotubes the two equivalent rep-
resentations for the VEVof fermionic current are given by
Eqs. (45) and (46). As in the case of cylindrical nanotubes,
due to the cancellation of contributions coming from sepa-
rate sublattices, the fermionic current vanishes in the ab-
sence of magnetic flux. However, the mass terms for two
sublattices can be different, and in this case an effective
fermionic current appears in the absence of the magnetic
flux.
In a way similar to that used in this paper, we can

investigate the effects of nontrivial topology on the VEV
of axial current in even dimensional spacetimes. It is well
known that in external electromagnetic and gravitational
fields the chiral anomaly appears in the divergence of the
axial current (for a review see [33]). However, in the
problem under consideration these anomalies are absent
as the spacetime is flat and the electromagnetic field tensor
vanishes.
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Perfetto, J. González, F. Guinea, S. Bellucci, and P.
Onorato, Phys. Rev. B 76, 125430 (2007); A. H. Castro
Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and
A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[5] H. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley,
S. J. Tans, and C. Dekker, Nature (London) 385, 780
(1997); R. Martel, H. R. Shea, and P. Avouris, Nature
(London) 398, 299 (1999).

[6] V.M. Mostepanenko and N.N. Trunov, The Casimir Effect
and Its Applications (Clarendon, Oxford, 1997).

[7] E. Elizalde, S. D. Odintsov, A. Romeo, A.A. Bytsenko,
and S. Zerbini, Zeta Regularization Techniques with
Applications (World Scientific, Singapore, 1994).

[8] K. A. Milton, The Casimir Effect: Physical Manifestation
of Zero-Point Energy (World Scientific, Singapore,
2002).

[9] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V.M.
Mostepanenko, Advances in the Casimir Effect (Oxford
University Press, Oxford, 2009).

[10] M. J. Duff, B. E.W. Nilsson, and C.N. Pope, Phys. Rep.
130, 1 (1986); A.A. Bytsenko, G. Cognola, L. Vanzo, and
S. Zerbini, Phys. Rep. 266, 1 (1996).

[11] G. L. Klimchitskaya, U. Mohidden, and V.M.
Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009).

[12] K. A. Milton, Gravitation Cosmol. 9, 66 (2003); E.
Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 70,
043539 (2004); E. Elizalde, J. Phys. A 39, 6299 (2006); B.
Greene and J. Levin, J. High Energy Phys. 11 (2007) 096;
P. Burikham, A. Chatrabhuti, P. Patcharamaneepakorn,
and K. Pimsamarn, J. High Energy Phys. 07 (2008) 013.

[13] J. S. Dowker and R. Critchley, J. Phys. A 9, 535 (1976); R.
Banach and J. S. Dowker, J. Phys. A 12, 2545 (1979); B. S.
DeWitt, C. F. Hart, and C. J. Isham, Physica (Amsterdam)
96A, 197 (1979); S. G. Mamayev and N.N. Trunov, Russ.
Phys. J. 22, 766 (1979); 23, 551 (1980); L. H. Ford, Phys.
Rev. D 21, 933 (1980); J. Ambjørn and S. Wolfram, Ann.
Phys. (N.Y.) 147, 1 (1983); S. G. Mamayev and V.M.
Mostepanenko, in Proceedings of the Third Seminar on
Quantum Gravity (World Scientific, Singapore, 1985);
Yu. P. Goncharov and A.A. Bytsenko, Phys. Lett. B 160,
385 (1985); Nucl. Phys. B271, 726 (1986); Classical
Quantum Gravity 4, 555 (1987); E. Elizalde, Z. Phys. C
44, 471 (1989); E. Ponton and E. Poppitz, J. High Energy
Phys. 06 (2001) 019; H. Queiroz, J. C. da Silva, F. C.
Khanna, J.M. C. Malbouisson, M. Revzen, and A. E.
Santana, Ann. Phys. (Leipzig) 317, 220 (2005); A. A.

Saharian and M. L. Mkhitaryan, arXiv:0911.1260 [Eur.
Phys. J. C (to be published)].

[14] A. A. Saharian and M.R. Setare, Phys. Lett. B 659, 367
(2008); S. Bellucci and A.A. Saharian, Phys. Rev. D 77,
124010 (2008).

[15] A. A. Saharian, Classical Quantum Gravity 25, 165012
(2008); E. R. Bezerra de Mello and A.A. Saharian, J. High
Energy Phys. 12 (2008) 081.

[16] S. Bellucci and A.A. Saharian, Phys. Rev. D 79, 085019
(2009).

[17] S. Bellucci and A.A. Saharian, Phys. Rev. D 80, 105003
(2009).

[18] V. B. Bezerra and E. R. Bezerra de Mello, Classical
Quantum Gravity 11, 457 (1994); E. R. Bezerra de
Mello, Classical Quantum Gravity 11, 1415 (1994); L.
Sriramkumar, Classical Quantum Gravity 18, 1015
(2001); E. R. Bezerra de Mello, Classical Quantum
Gravity 27, 095017 (2010); Yu. A. Sitenko and N.D.
Vlasii, Classical Quantum Gravity 26, 195009 (2009).

[19] E. R. Bezerra de Mello and A.A. Saharian, Phys. Rev. D
78, 045021 (2008).

[20] S. G. Mamayev, V.M. Mostepanenko, and A.A.
Starobinsky, Zh. Eksp. Teor. Fiz. 70, 1577 (1976) [Sov.
Phys. JETP 43, 823 (1976)].

[21] A. A. Saharian, The Generalized Abel-Plana Formula with
Applications to Bessel Functions and Casimir Effect
(Yerevan State University Publishing House, Yerevan,
2008); , Report No. ICTP/2007/082; arXiv:0708.1187.

[22] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
Integrals and Series (Gordon and Breach, New York,
1986), Vol. 2.

[23] E. Elizalde, Ten Physical Applications of Spectral Zeta
Functions, Lecture Notes in Physics (Springer-Verlag,
Berlin, 1995);

[24] K. Kirsten, Spectral Functions in Mathematics and
Physics (CRC Press, Boca Raton, FL, 2001).

[25] E. Elizalde, Commun. Math. Phys. 198, 83 (1998); J.
Phys. A 34, 3025 (2001).

[26] C. Chamon, Phys. Rev. B 62, 2806 (2000); C.-Y. Hou, C.
Chamon, and C. Mudry, Phys. Rev. Lett. 98, 186809
(2007).

[27] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly,
and J. van den Brink, Phys. Rev. B 76, 073103 (2007);
S. Y. Zhou et al., Nature Mater. 6, 770 (2007).

[28] G.W. Semenoff, V. Semenoff, and F. Zhou, Phys. Rev.
Lett. 101, 087204 (2008).

[29] H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993);
Physica (Amsterdam) 201B, 349 (1994); A. Bachtold
et al., Nature (London) 397, 673 (1999); S. Zaric et al.,
Science 304, 1129 (2004); U. S. Coskun et al., Science
304, 1132 (2004); J. Cao, Q. Wang, M. Rolandi, and H.
Dai, Phys. Rev. Lett. 93, 216803 (2004); B. Lassagne
et al., Phys. Rev. Lett. 98, 176802 (2007); M.-G. Kang
et al., Phys. Rev. B 77, 113408 (2008).

[30] K. Sasaki, Phys. Lett. A 296, 237 (2002); K. Sasaki, Phys.
Rev. B 65, 155429 (2002).

[31] H. Bluhm et al., Phys. Rev. Lett. 102, 136802 (2009);
A. C. Bleszynski-Jayich et al., Science 326, 272 (2009).

[32] M. F. Lin and D. S. Chuu, Phys. Rev. B 57, 6731 (1998);
M. Marganska and M. Szopa, Acta Phys. Pol. B 32, 427
(2001); S. Latil, S. Roche, and A. Rubio, Phys. Rev. B 67,

INDUCED FERMIONIC CURRENT IN TOROIDALLY . . . PHYSICAL REVIEW D 82, 065011 (2010)

065011-11

http://dx.doi.org/10.1088/1475-7516/2004/10/004
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevB.29.1685
http://dx.doi.org/10.1103/PhysRevB.29.1685
http://dx.doi.org/10.1016/0550-3213(93)90009-E
http://dx.doi.org/10.1103/PhysRevB.63.134421
http://dx.doi.org/10.1103/PhysRevB.63.134421
http://dx.doi.org/10.1103/PhysRevB.68.155402
http://dx.doi.org/10.1103/PhysRevB.68.155402
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/PhysRevLett.96.036402
http://dx.doi.org/10.1103/PhysRevB.76.125430
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/385780b0
http://dx.doi.org/10.1038/385780b0
http://dx.doi.org/10.1038/18589
http://dx.doi.org/10.1038/18589
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://dx.doi.org/10.1016/0370-1573(95)00053-4
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/PhysRevD.70.043539
http://dx.doi.org/10.1103/PhysRevD.70.043539
http://dx.doi.org/10.1088/0305-4470/39/21/S21
http://dx.doi.org/10.1088/1126-6708/2007/11/096
http://dx.doi.org/10.1088/1126-6708/2008/07/013
http://dx.doi.org/10.1088/0305-4470/9/4/009
http://dx.doi.org/10.1088/0305-4470/12/12/032
http://dx.doi.org/10.1016/0378-4371(79)90207-3
http://dx.doi.org/10.1016/0378-4371(79)90207-3
http://dx.doi.org/10.1103/PhysRevD.21.933
http://dx.doi.org/10.1103/PhysRevD.21.933
http://dx.doi.org/10.1016/0003-4916(83)90065-9
http://dx.doi.org/10.1016/0003-4916(83)90065-9
http://dx.doi.org/10.1016/0370-2693(85)90006-1
http://dx.doi.org/10.1016/0370-2693(85)90006-1
http://dx.doi.org/10.1016/S0550-3213(86)80035-9
http://dx.doi.org/10.1088/0264-9381/4/3/014
http://dx.doi.org/10.1088/0264-9381/4/3/014
http://dx.doi.org/10.1007/BF01415563
http://dx.doi.org/10.1007/BF01415563
http://dx.doi.org/10.1088/1126-6708/2001/06/019
http://dx.doi.org/10.1088/1126-6708/2001/06/019
http://dx.doi.org/10.1016/j.aop.2004.11.011
http://arXiv.org/abs/0911.1260
http://dx.doi.org/10.1016/j.physletb.2007.10.050
http://dx.doi.org/10.1016/j.physletb.2007.10.050
http://dx.doi.org/10.1103/PhysRevD.77.124010
http://dx.doi.org/10.1103/PhysRevD.77.124010
http://dx.doi.org/10.1088/0264-9381/25/16/165012
http://dx.doi.org/10.1088/0264-9381/25/16/165012
http://dx.doi.org/10.1088/1126-6708/2008/12/081
http://dx.doi.org/10.1088/1126-6708/2008/12/081
http://dx.doi.org/10.1103/PhysRevD.79.085019
http://dx.doi.org/10.1103/PhysRevD.79.085019
http://dx.doi.org/10.1103/PhysRevD.80.105003
http://dx.doi.org/10.1103/PhysRevD.80.105003
http://dx.doi.org/10.1088/0264-9381/11/2/017
http://dx.doi.org/10.1088/0264-9381/11/2/017
http://dx.doi.org/10.1088/0264-9381/11/6/006
http://dx.doi.org/10.1088/0264-9381/18/6/304
http://dx.doi.org/10.1088/0264-9381/18/6/304
http://dx.doi.org/10.1088/0264-9381/27/9/095017
http://dx.doi.org/10.1088/0264-9381/27/9/095017
http://dx.doi.org/10.1088/0264-9381/26/19/195009
http://dx.doi.org/10.1103/PhysRevD.78.045021
http://dx.doi.org/10.1103/PhysRevD.78.045021
http://arXiv.org/abs/0708.1187
http://dx.doi.org/10.1007/s002200050472
http://dx.doi.org/10.1088/0305-4470/34/14/309
http://dx.doi.org/10.1088/0305-4470/34/14/309
http://dx.doi.org/10.1103/PhysRevB.62.2806
http://dx.doi.org/10.1103/PhysRevLett.98.186809
http://dx.doi.org/10.1103/PhysRevLett.98.186809
http://dx.doi.org/10.1103/PhysRevB.76.073103
http://dx.doi.org/10.1038/nmat2003
http://dx.doi.org/10.1103/PhysRevLett.101.087204
http://dx.doi.org/10.1103/PhysRevLett.101.087204
http://dx.doi.org/10.1143/JPSJ.62.1255
http://dx.doi.org/10.1016/0921-4526(94)91112-6
http://dx.doi.org/10.1038/17755
http://dx.doi.org/10.1126/science.1096524
http://dx.doi.org/10.1126/science.1096647
http://dx.doi.org/10.1126/science.1096647
http://dx.doi.org/10.1103/PhysRevLett.93.216803
http://dx.doi.org/10.1103/PhysRevLett.98.176802
http://dx.doi.org/10.1103/PhysRevB.77.113408
http://dx.doi.org/10.1016/S0375-9601(02)00255-4
http://dx.doi.org/10.1103/PhysRevB.65.155429
http://dx.doi.org/10.1103/PhysRevB.65.155429
http://dx.doi.org/10.1103/PhysRevLett.102.136802
http://dx.doi.org/10.1126/science.1178139
http://dx.doi.org/10.1103/PhysRevB.57.6731
http://dx.doi.org/10.1103/PhysRevB.67.165420


165420 (2003); R. B. Chen et al., Carbon 42, 2837 (2004);
K. Sasaki and Y. Kawazoe, Prog. Theor. Phys. 112, 369
(2004); Z. Zhang, J. Yuan, M. Qiu, J. Peng, and F. Xiao, J.
Appl. Phys. 99, 104311 (2006); N. Xu, J.W. Ding, H. B.
Chen, and M.M. Ma, Eur. Phys. J. B 67, 71 (2009).

[33] S. B. Treiman, R. Jackiw, and D. J. Gross, Lectures on

Current Algebra and Its Applications (Princeton
University Press, Princeton, NJ, 1972); F. Bastianelli and
P. Van Nieuwenhuizen, Path Integrals and Anomalies in
Curved Space (Cambridge University Press, Cambridge,
U.K., 2006).

S. BELLUCCI, A. A. SAHARIAN, AND V.M. BARDEGHYAN PHYSICAL REVIEW D 82, 065011 (2010)

065011-12

http://dx.doi.org/10.1103/PhysRevB.67.165420
http://dx.doi.org/10.1143/PTP.112.369
http://dx.doi.org/10.1143/PTP.112.369
http://dx.doi.org/10.1063/1.2199981
http://dx.doi.org/10.1063/1.2199981
http://dx.doi.org/10.1140/epjb/e2009-00003-1

