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The purpose of this article is to extend the light-cone worldsheet lattice description of string theory to

include the Neveu-Schwarz model. We model each component of the fermionic worldsheet field by a

critical Ising model. We show that a simple choice of boundary conditions for the Ising variables leads to

the half-integer modes required by the model. We identify the G-parity operation within the Ising model

and formulate the procedure for projecting onto the even G-parity sector. We construct the lattice version

of the three open string vertex, with the necessary operator insertion at the interaction point. We sketch a

formalism for summing planar open string multiloop amplitudes, and we discuss prospects for numeri-

cally summing them. If successful, the methods described here could provide an alternative to lattice

gauge theory for computations in large N QCD.
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I. INTRODUCTION

Non-Abelian gauge theory in 4 space-time dimensions
can be regarded as the zero slope limit (�0 ! 0) of open
string theory [1] in a higher dimension (e.g. D ¼ 10),
provided that the open strings are required to end on D3-
branes [2]. For the conformally invariant N ¼ 4 super-
symmetric gauge theory, the AdS/CFT correspondence
asserts that, after reinterpreting the planar open string
multiloop diagrams as closed string trees, the �0 ! 0 limit
remains a string theory on the curved background AdS5 �
S5 [3]. In this sense N ¼ 4 is not just the limit of string
theory: it is a (closed) string theory. Moreover, the confor-
mal invariance ofN ¼ 4means that the gauge coupling is
a true parameter, and this closed string theory can be
analyzed semiclassically in the limit of large ’t Hooft
coupling Ng2.

For QCD, however, asymptotic freedom precludes such
a parametric semiclassical closed string limit. Even though
’t Hooft’s large N limit [4] of QCD should still have an
interpretation in terms of some kind of closed string back-
ground, the absence of a semiclassical approximation to
find and analyze that background casts doubt on the prac-
tical value of a closed string interpretation in actual calcu-
lations. We entertain here the possibility that, in this
circumstance, it may be more profitable to forego the
equivalence of QCD to some, as yet to be discovered,
closed string theory and instead to exploit the known
connection of large N QCD to open string theory, keeping
�0 > 0 as a regulator until the end of the analysis. The hope
is that some nonperturbative aspects of QCD, such as quark
confinement and the meson spectrum in ‘‘t Hooft’s’’ large
N limit, will be more tractable treated as an open string
theory with �0 > 0 than as a quantum field theory, its �0 !
0 limit.

Several years ago my collaborators and I showed how to
represent each gauge theory planar diagram as a light-cone
open string worldsheet path integral [5]. This work estab-
lished a direct formal connection of large N QCD to an
open string theory with �0 ¼ 0. The problem with keeping
�0 ¼ 0, however, is that the UV divergences of quantum
field theory are not properly regulated, so that various
counterterms must be bought in, order by order in the
loop expansion, to cancel UV induced artifacts that violate
Lorentz invariance [6]. Keeping �0 > 0 certainly mitigates
these problems, although it remains to be seen whether it
completely removes them. In any case the formalism for
planar graph summation [7] is on firmer foundation, and is
actually somewhat easier to implement, with �0 > 0.
The large N limit of gauge theory amounts to summing

all the planar Feynman diagrams of perturbation theory.
These diagrams are the �0 ! 0 limit of the planar open
string multiloop diagrams. Mandelstam [8] has given a
remarkably simple and intuitive representation of the latter
diagrams as path integrals over the worldsheets of the light-
cone quantized string [9]. Each loop in a given multiloop
diagram is represented as an internal worldsheet boundary
whose beginning describes a breaking string and whose
end describes two strings joining. For each fixed configu-
ration of these internal boundaries, the path integral is a
Gaussian integral over the transverse string coordinates
and the measure is precisely the natural lattice measure
for the quadratic action. Summing over the number, loca-
tion, and lengths of these internal boundaries with the same
measure accomplishes the sum over planar open string
diagrams [7].
While there is still some optimism that the large N limit

of the maximal supersymmetric (N ¼ 4) gauge theory
might be exactly solvable [3], it is doubtful that this will be
possible for the pure gauge theory underlying QCD.
However, it might well turn out that the representation of
the sum of planar diagrams by a light-cone worldsheet*thorn@phys.ufl.edu
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lattice system, as described in the previous paragraph, can
be studied on a computer, perhaps using Monte Carlo
algorithms. Such a numerical attack on QCD via its con-
nection to open string theory could have strengths and
weaknesses complementary to those of standard lattice
gauge theory simulations.

The basic framework for this approach to summing open
string planar loop diagrams was set up by Giles and me
(GT) over three decades ago [7] in the context of bosonic
open string theory in 26-dimensional space-time. The zero
slope limit of these diagrams (modulo complications from
the presence of the open string tachyon) would be 26- (not
4-) dimensional gauge theory. Recently, I explained how to
incorporate D3-branes into the GT formalism [10] in order
to arrange zero slope limits that were four dimensional
gauge theories, albeit coupled to 22 massless scalars cor-
responding to vibrations in the extra dimensions. There are
mechanisms to decouple such massless scalars (e.g. see
[11]), but the difficulties of the open bosonic string tachyon
would remain.

The open string Neveu-Schwarz model [12,13], re-
stricted to even G-parity open string states (NSþ ), has
no open string tachyon [14,15], so the multiloop planar
diagrams of the D ¼ 4 version of NSþ would have a large
N 4 dimensional gauge theory as a clean zero slope limit
[16]. But since the standard light-cone quantization works
only in the critical dimension [17–19], it is simpler to use
the ten-dimensional version of the model, employing D3-
branes to yield a four dimensional gauge theory. The 6
massless scalars can then be suppressed either by orbifold
projections or by using non-Abelian D3-branes [11].

The purpose of this article is to adapt the GTworldsheet
lattice formalism to the Neveu-Schwarz model. This re-
quires providing a viable lattice definition of the fermionic
worldsheet field H�ð�; �Þ of that model. Each (transverse)
component of H is a two-dimensional Majorana spinor
field. As always, putting fermion fields on a lattice involves
difficulties. Besides the inevitable fermion doubling, for
which there are a variety of remedies (Wilson fermions,
staggered fermions, domain wall fermions), there is the
difficulty that Grassmann path integrands do not have a
probabilistic interpretation, a prerequisite for Monte Carlo
methods. This last difficulty could be dealt with by inte-
grating out the fermions, but that would sacrifice locality,
rendering numerical simulations very costly. Fortunately,
for the two-dimensional worldsheet, there is another option
which we pursue here. This is based on the well-known fact
that the physics of the critical two-dimensional Ising model
is that of a free Majorana Fermi field. The partition func-

tion of the Ising model is a sum over Ising spins sij ¼ �1

with a positive definite Boltzmann factor, the exponent
of which is local in the spins. By replacing each component
of H with an Ising spin system, the light-cone lattice
formalism for summing the planar diagrams of the
Neveu-Schwarz model can be analyzed with Monte-
Carlo methods.
In this article we present and study a version of the Ising

model which achieves this purpose. In Sec. II we recall the
basic features of Onsager’s solution of the model which
employs a transfer matrix representation. We review the
diagonalization of the bulk transfer matrix in terms of
anticommuting spin matrices. In Sec. III we turn to the
issue of boundary conditions on an open strip, and show
that a simple condition on the original Ising spins at the
boundary produces the 1=2 integer modes required of the
Neveu-Schwarz field H. Section IV deals with the explicit
construction of the eigenoperators of the transfer matrix.
An important symmetry of the Neveu-Schwarz string is the
so-called G parity. In Sec. V we identify the symmetry of
the Ising model that becomes G parity in the continuum
limit. This is important for imposing the even G-parity
restriction in lattice simulations. Unfortunately, imposing
this restriction, in the most straightforward way, allows
minus signs and/or nonlocality to creep back into the path
summand, again posing potential difficulties for Monte-
Carlo methods. In Sec. VI, we discuss the 3 open string
vertex, which requires an operator insertion at the interac-
tion point. It is argued that, provided the even G-parity
restriction is maintained, these insertion factors can be
taken into the exponent and interpreted as a modification
of the worldsheet action. In Sec. VII we give a brief
discussion of the resulting representation of the sum over
planar diagrams. Concluding discussion is in a final
Sec. VIII.

II. BULK PROPERTIES OF THE ISING MODEL

We consider the two dimensional Ising model on an
M� N lattice specified by the partition function

Z ¼ X
�j
i¼�1

e
P

ij
ðJ�j

i�
j
iþ1

þJ0�j
i�

jþ1
i Þ=2

; (1)

where 1 � i � M and 1 � j � N. Onsager’s transfer ma-
trix representation of Z is

Z ¼ ðeJ0 � e�J0 ÞMN=2hfjT ðMÞNjii; (2)

ðeJ0 � e�J0 ÞM=2T ðMÞ ¼ Y
k

ðeJ0=2 þ �x
ke

�J0=2Þ exp
�
J

2

XM�1

i¼1

�z
i�

z
iþ1

�
;

T ðMÞ ¼ exp

�
�

2

XM
i¼1

�x
i

�
exp

�
J

2

XM�1

i¼1

�z
i�

z
iþ1

�
;

(3)
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tanh
�

2
¼ e�J0 ; (4)

where the states jii, jfi belong to anM-fold tensor product
of 2-spinors, and they are determined by the boundary
conditions at j ¼ 1, N, respectively. Here the �x;y;z

i are
M independent sets of 2� 2 Pauli spin matrices:

f�a
i ; �

b
i g ¼ 2�ab; ½�a

i ; �
b
j � ¼ 0; for i � j: (5)

An important property of the eigenvalue spectrum of
the transfer matrix T ðMÞ is an easy consequence of the
representation (3): it is geometrically symmetric about 1.
To see this note that if T has the eigenvalue T on the
state jTi, then it has the eigenvalue T�1 on the state

e�
P

k
�x
k
=2Q

k¼odd�
x
k

Q
l�

z
l jTi. As shown by Onsager, the

Ising model has a critical point when � ¼ J. For the
isotropic case J0 ¼ J, this occurs when sinhJ ¼ 1, or J ¼
lnð1þ ffiffiffi

2
p Þ.

As usual, it is most convenient to replace the Pauli
matrix dynamical variables with variables that anticom-
mute for different i using the Jordan-Wigner trick

Sy;zi � �y;z
iffiffiffi
2

p Yi�1

k¼1

�x
k; (6)

fSai ; Sbkg ¼ �ab�ik; (7)

whereupon the Onsager transfer matrix becomes

T ðMÞ ¼ e�i�
P

M
k¼1

Sy
k
Sz
ke�iJ

P
M�1
k¼1

Sz
kþ1

Sy
k : (8)

This choice for T imposes a particular set of boundary
conditions at k ¼ 1, M appropriate for the Ising spins
living on an open strip. If they lived on a cylinder, periodic
or antiperiodic boundary conditions would be appropriate.
We shall show that the boundary conditions chosen here
lead to a half-integer moded fermion field in the continuum
limit, which is what is needed to describe the Neveu-
Schwarz model [12,13].

It is straightforward to calculate the action of T by
conjugation on the S variables:

T SzkT
�1 ¼ cJc�S

z
k � icJs�S

y
k þ isJc�S

y
k�1 � sJs�S

z
k�1;

1< k � M; (9)

T SykT
�1 ¼ cJc�S

y
k þ icJs�S

z
k � isJc�S

z
kþ1 � sJs�S

y
kþ1;

1 � k <M; (10)

T Sz1T
�1 ¼ c�S

z
1 � is�S

y
1; (11)

T SyMT
�1 ¼ c�S

y
M þ is�S

z
M; (12)

where we have introduced the shorthand notation cJ �
coshJ, sJ � sinhJ, tJ � tanhJ, and similarly for J ! �.

We see thatT acts linearly on the S’s, which means that
the problem of finding eigenoperators for T is one of

linear algebra. The form of the right sides of (9) and (10)
suggests that an expansion of the S’s in eigenoperators will
involve plane wave k dependence:

Szk ¼
X
�

A�e
i�k; Syk ¼

X
�

B�e
i�k;

T ðA�; B�ÞT �1 ¼ t�ðA�; B�Þ:
(13)

We first consider the implications of the bulk recursion
relations, focusing on a particular mode �. Suppressing the
� subscripts on A, B, t, we find

tA ¼ cJc�A� icJs�Bþ isJc�Be
�i� � sJs�Ae

�i�;

tB ¼ cJc�Bþ icJs�A� isJc�Ae
þi� � sJs�Be

þi�:

The consistency of these two equations requires

jt� cJc� þ e�i�sJs�j2 ¼ jcJs� � e�i�sJc�j2; (14)

which simplifies to

t2 � 2tðcJc� � sJs� cos�Þ þ 1 ¼ 0: (15)

Since this equation is even under � ! �� each of the two
solutions,

t� ¼ cJc� � sJs� cos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcJc� � sJs� cos�Þ2 � 1

q
;

(16)

belong to both left (� < 0) and right (� > 0) moving plane
waves. This degeneracy is important in realizing definite
boundary conditions. Also from the equation, it immedi-
ately follows that tþt� ¼ 1.
The eigenoperators Aa, with eigenvalue ta, connect ei-

genstates of T with different eigenvalues. Because the
state space is of finite dimension, there is a maximum
eigenvalue ofT , Tmax, and a minimum eigenvalue: Tmin ¼
T�1
max by the symmetry of the eigenvalue spectrum. Let jGi

be the state with the maximum eigenvalue. Then, we must
have

AajGi ¼ 0; whenever ta > 1; (17)

because if ta > 1, then the eigenvalue of the state on the
left would be taTmax > Tmax. Assuming completeness of
the eigenoperators, i.e. that monomials of eigenoperators
acting on jGi span the whole state space, then the stateQ

ta<1AajGi is the eigenstate with the minimum eigenvalue

Tmin ¼ Tmax

Q
ta<1ta. It follows that T

2
max ¼

Q
ta>1ta:

Tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiY
ta>1

ta

s
: (18)

Identifying lnTmax ¼ �EG the ground state energy, we can
write this relation as

EG ¼ � 1

2

X
ta>1

lnta ¼ � 1

2

X
ta>1

!a; (19)

where we have defined the energy created by an eigenop-
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erator as ! ¼ � lnt. Then, since the eigenvalues t come in
reciprocal pairs, the!’s come in opposite sign pairs !� ¼
�!þ, and we can write !� ¼ �!, with the convention
that !> 0.

In order that infinitely long waves (� ! 0) cost zero
energy, we see from (16) that the Ising system must be
critical, that is � ¼ J. In this critical case we can simplify

t� ¼ 1þ ð1� cos�Þs2J
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos�Þs2J þ ð1� cos�Þ2s4J

q
; (20)

¼ 1þ 2s2Jsin
2 �

2
� 2

��������sJ sin�2
��������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2 �

2

s
; (21)

�
� ! 0 1� j�sJj: (22)

Once t is determined by consistency, we can then solve for
B in terms of A:

B ¼ t� cJc� þ e�i�sJs�
iðe�i�sJc� � cJs�Þ

A � RA: (23)

Notice that, according to the consistency condition, the
modulus of the numerator of R is equal to the modulus of
the denominator, so R is a pure phase. Putting in the
explicit forms for t�, we get

R� ¼ �isJs� sin��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcJc� � sJs� cos�Þ2 � 1

q
iðe�i�sJc� � cJs�Þ

: (24)

Specializing to the critical case, the form simplifies

R� ¼ ei�=2
�isJ cosð�=2Þ � sgnð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2ð�=2Þ
q

cJ
;

� ¼ J: (25)

When we apply boundary conditions to an open chain in
the next section, it will be necessary to consider linear
combinations of left and right moving plane waves. Then
we will take A, B as the coefficients of ei�k and A0, B0 as the
coefficients of e�i�k with � > 0 in both cases. Then
Eq. (24) stands and

B0 ¼ R0A0; (26)

R0� ¼ þisJs� sin��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcJc� � sJs� cos�Þ2 � 1

q
iðeþi�sJc� � cJs�Þ

¼ �R	�:

(27)

For the critical case, these equations become

R� ¼ ei�=2
�isJ cosð�=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2ð�=2Þ
q
cJ

;

� ¼ J; (28)

R0� ¼ e�i�=2
�isJ cosð�=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2ð�=2Þ
q
cJ

¼ �R	�;

� ¼ J: (29)

III. BOUNDARY CONDITIONS

Now, we turn to the issue of boundary conditions. The
simplest open chain model, given by the transfer matrix of
(8), will suffice for our purposes. The action of T on the
first (Sa1) and last (S

a
M) spins (11) and (12) must be made to

agree with the bulk recursive formulas (9) and (10) which
were satisfied with our plane wave ansatz. This can be
arranged by suitable definitions of Sa0 and SaMþ1, which do

not appear in T . The bulk recursions read for k ¼ 1, M:

T Sz1T
�1 ¼ cJc�S

z
1 � icJs�S

y
1 þ isJc�S

y
0 � sJs�S

z
0T SyM;

T �1 ¼ cJc�S
y
M þ icJs�S

z
M � isJc�S

z
Mþ1

� sJs�S
y
Mþ1:

Agreement will occur if we impose

ðcJ � 1Þðc�Sz1 � is�S
y
1Þ þ sJðic�Sy0 � s�S

z
0Þ ¼ 0; (30)

ðcJ � 1Þðc�SyM þ is�S
z
MÞ þ sJð�ic�S

z
Mþ1 � s�S

y
Mþ1Þ ¼ 0:

(31)

Then plugging the plane wave ansatz

Szk ¼ Aei�k þ A0e�i�k; Syk ¼ Bei�k þ B0e�i�k (32)

into these equations and rearranging leads to two different
expressions for � defined by A0 ¼ �A:

� ¼ � ei�ðcJ � 1Þðc� � iRs�Þ þ sJðiRc� � s�Þ
e�i�ðcJ � 1Þðc� � iR0s�Þ þ sJðiR0c� � s�Þ

; (33)

� ¼ �e2iM�
ðcJ � 1ÞðRc� þ is�Þ þ ei�sJð�ic� � Rs�Þ
ðcJ � 1ÞðR0c� þ is�Þ � e�i�sJðic� þ R0s�Þ

:

(34)

Remembering that R and R0 ¼ �R	 have already been
determined in (24) and (27), we see that these two equa-
tions determine � and a quantization condition on � from
the consistency of the two equations. We are particularly
interested in the critical case � ¼ J, for which the eigen-
value condition simplifies to

e2iM� ¼ ðei� � 1ÞcJ � ei� � 1

ðei� � 1ÞcJ þ ei� þ 1
¼ � 1� icJ tanð�=2Þ

1þ icJ tanð�=2Þ
� ei�ð�Þ: (35)
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We plot �ð�Þ in the critical case for three different values of
J ¼ � in Fig. 1. The graphical solution of (35) is shown in
Fig. 2, for J ¼ 1:5 and M ¼ 5. This graph makes it clear
that there are precisely M nontrivial eigenoperator solu-
tions for any value of cJ. The apparently (Mþ 1)th solu-
tion � ¼ 	 is spurious. This is because, in this case, the left
and right moving k dependence is identical (eik	 ¼ e�ik	)
and the limit � ! 	 implies C0 ! �C and D0 ! �D.
Thus the corresponding eigenoperators, proportional to
Cþ C0 and DþD0, vanish. For comparison, we show
�ð�Þ and the solution of the eigenvalue equation for several
noncritical values J < � in Fig. 3.

Applying an eigenoperator to an eigenstate of T with
eigenvalue T0 produces another eigenstate of T with ei-
genvalue tT0. We can say that the eigenoperator has in-
creased the energy of the state by an amount
!� ¼ � lnt� ¼ �!. We show !ð�Þ for a critical case
� ¼ J in Fig. 4 and for a noncritical case in Fig. 5. The fact
that the eigenvalue spectrum is nondegenerate guarantees
that the set of eigenoperators is complete.

The critical case allows a nontrivial continuum limit
M ! 1: In that limit there are finite energy excitations
which have � ¼ Oð1=MÞ. In this limit the eigenvalue
condition simplifies even further to

eið2MþcJÞ� ¼ �1þOð�2Þ; for M ! 1; �M fixed:

(36)

or � ¼ ðnþ 1=2Þ	=M, which is the mode quantization of
the Neveu-Schwarz worldsheet field.

IV. CONSTRUCTION OF EIGENOPERATORS

In this section we express the eigenoperators in terms of
the S’s. We write the eigenoperator as

A ¼ XM
k¼1

ðSzkUk þ SykVkÞ; T AT �1 ¼ tA: (37)

Then we easily derive the recursion relations satisfied by
the U, V:

tUk ¼ cJc�Uk � sJs�Ukþ1 þ icJs�Vk � isJc�Vk�1;

k ¼ 2; . . . ;M� 1; (38)

tVk ¼ cJc�Vk � sJs�Vk�1 � icJs�Uk þ isJc�Ukþ1;

k ¼ 2; . . . ;M� 1; (39)

tU1 ¼ c�U1 � sjs�U2 þ icJs�V1; (40)

tV1 ¼ �is�U1 þ cJc�V1 þ isJc�U2; (41)

0

0.5

1

1.5

2

2.5

3

θ

0.5 1 1.5 2 2.5 3

λ

FIG. 1. �ð�Þ for the critical case � ¼ J, and J ¼ 0 (highest
curve), J ¼ 1 (middle curve), and J ¼ 1:5 (lowest curve).

0

0.5

1

1.5

2

2.5

3

θ

0.5 1 1.5 2 2.5 3

λ
FIG. 2. Solution of (35) for J ¼ 1:5. The straight lines are
2M�� 2n	 for n ¼ 0; 1; . . . ;M� 1 for the case M ¼ 5. Note
that � ¼ 	 corresponding to n ¼ M, though a solution of (35), is
spurious as discussed in the text.
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tUM ¼ cJc�UM � isJc�VM�1 þ is�VM; (42)

tVM ¼ c�VM � icJs�UM � sJs�VM�1: (43)

The last four special cases will be included in the first two
generic equations if we put

isJV0 ¼ ðcJ � 1ÞU1; �isJUMþ1 ¼ ðcJ � 1ÞVM;

(44)

which specify the boundary conditions. As before, these
relations can be solved with the plane wave ansatz:

Uk ¼ Ceik� þ C0e�ik�; Vk ¼ Deik� þD0e�ik�;

(45)

leading to

D

C
¼ �i

t� cJc� þ ei�sJs�
cJs� � e�i�sJc�

; (46)

D0

C0 ¼ �D	

C	 ; (47)

0

1

2

3

4

5

6

θ

0.5 1 1.5 2 2.5 3

λ
FIG. 3. �ð�Þ for some noncritical cases: � ¼ 1:5 and J ¼ 0:3,
0.6, 0.9, 1.2 from the highest to second lowest curves. The lowest
curve is the critical case J ¼ 1:5, included for comparison. The
straight lines are 2M�� 2n	 for n ¼ 0; 1; . . . ;M� 1 for the
case M ¼ 5. Their intersections with the �ð�Þ curves show how
the solutions of the eigenvalue equation for the noncritical cases
approach the solution for the critical case as J ! �.

0

0.5

1

1.5

2

2.5

3

ω

0.5 1 1.5 2 2.5 3

λ
FIG. 4. The excitation energy !ð�Þ ¼ � lntþð�Þ for the criti-
cal case � ¼ J ¼ 1:5.
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1.5

2

2.5

3

ω

0.5 1 1.5 2 2.5 3

λ
FIG. 5. The excitation energy !ð�Þ ¼ � lntþð�Þ for the non-
critical case J ¼ 1, � ¼ 1:5.
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together with the consistency condition

t2 � 2tðcJc� � sJs� cos�Þ þ 1 ¼ 0; (48)

which is identical to (15). Note thatD=C is similar to B=A,
but not identical to it. This is because the matrix we are
diagonalizing is not Hermitian. Of course, since the char-
acteristic equation is the same for both eigenvalue prob-
lems, the eigenvalue spectrum will be identical. The
boundary conditions read

isJðDþD0Þ ¼ ðcJ � 1ÞðCei� þ C0e�i�Þ; (49)

� isJðCeiðMþ1Þ� þ C0e�iðMþ1Þ�Þ
¼ ðcJ � 1ÞðDeiM� þD0e�iM�Þ; (50)

which lead to

C0

C
¼ isJðD=CÞ � ðcJ � 1Þei�

isJðD	=C	Þ þ ðcJ � 1Þe�i�
; (51)

and to the consistency condition

e2iM� ¼ ðisJðD=CÞ � ðcJ � 1Þei�Þð�isJe
�i� þ ðcJ � 1ÞðD	=C	ÞÞ

ðisJðD	=C	Þ þ ðcJ � 1Þe�i�ÞððcJ � 1ÞðD=CÞ þ isJe
i�Þ ; (52)

¼ isJð1þ jD=Cj2Þ þ 2Reðe�i�D=CÞ þ 2icJ Imðe�i�D=CÞ
isJð1þ jD=Cj2Þ � 2Reðe�i�D=CÞ þ 2icJ Imðe�i�D=CÞ ; (53)

¼ isJ þ Reðe�i�D=CÞ þ icJ Imðe�i�D=CÞ
isJ � Reðe�i�D=CÞ þ icJ Imðe�i�D=CÞ : (54)

The last line follows because one can show that C=D is a
pure phase. Plugging the solution for t in the equation for
D=C and a little manipulation shows that

e�i� D

C
¼ �i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcJc� � sJs� cos�Þ2 � 1

q
þ isJs� sin�

cJs� cos�� sJc� þ icJs� sin�
;

(55)

! �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2jsin

2ð�=2Þ
q

þ isJ cosð�=2Þ
cJði sinð�=2Þ þ cosð�=2ÞÞ ; (56)

where the last line shows the simplifying critical limit � !
J. In this limit we also evaluate

Re

�
e�i� D

C

�
¼ � 1

cJ
cos

�

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2 �

2

s
þ sJ sin

�

2

�
;

(57)

sJ þ cJIm

�
e�i� D

C

�
¼ sin

�

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2Jsin

2 �

2

s
þ sJ sin

�

2

�
:

(58)

Then the quantization condition on � simplifies dramati-
cally to

e2iM� ¼ � cosð�=2Þ � icJ sinð�=2Þ
cosð�=2Þ þ icJ sinð�=2Þ

¼ � 1� icJ tanð�=2Þ
1þ icJ tanð�=2Þ ; (59)

which is, of course, identical to (35).

V. G PARITY ON THE LATTICE

In the Neveu-Schwarz model the G parity is a crucial
symmetry concept. The fermionic raising and lowering

operators br ¼ by�r are moded with respect to R ¼P
r>0rb�rbr by half odd integers. G parity is defined by

GbrG ¼ �br, and G2 ¼ 1. Defining fermion number as
NF ¼ P

r>0b�rbr, G is essentially ð�ÞNF . Because of the
circumstance that the b’s carry half odd mode number, we
could also write ð�ÞNF ¼ ð�Þ2R which leads to technical
simplifications in analyzing the model. The importance of
the symmetry is that, since the interactions conserve G
parity, it is consistent to restrict the open string spectrum to
be even underG parity. Since the lowest odd G-parity state
is a tachyon, and the lowest even G-parity state is a mass-
less vector, the restriction to even G parity removes the
tachyon, leaving a massless sector that can describe a
gauge boson. With this convention for even and odd, G ¼
�ð�ÞNF ¼ �ð�Þ2R.
There is no lattice analog of NF that commutes with the

transfer matrix of the Ising model. However, there is a
candidate for ð�ÞNF , namely G ¼ 


Q
k�

x
k, with 
2 ¼ 1.

This operator, which anticommutes with Sy;zk , commutes

with the transfer matrix. The Neveu-Schwarz model in D
space-time dimensions requires D� 2 transverse compo-
nentsH and thereforeD� 2 Ising systems, describable by
D� 2 sets of Pauli matrices �x;y;z

iA , A ¼ 1; . . . ; D� 2.
Then the total G-parity operator will be 


Q
kA�

x
kA. It

remains to fix the value of 
 ¼ �1. According to the
conventions of the Neveu-Schwarz model, we would like
it to have the value �1 on the ground state of the system
when it is critical. Since the ground state at general J has
only been determined implicitly by rather complicated
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equations, it would seem a daunting task to evaluate the
action of G on it. However, because G takes on only the
values�1, its value cannot change under the variation of a
continuous parameter. Thus, we can exploit simplifications
in the state that occur when J ! 0 at fixed � and M.

As we can see from Fig. 3, the eigenvalue problem varies
continuously as J decreases continuously from J ¼ � to
J ¼ 0. In the limit J ! 0 the eigenvalue equation smoothly
approaches

e2iM� ¼ e�2i�; ) � ¼ n	

Mþ 1
; n ¼ 1; . . . ;M:

(60)

Furthermore, the eigenvalues t�ð�Þ ! e��, independent of
lambda, and the eigenoperators approach

A�
n ! 2iC

XM
k¼1

ðSzk � iSykÞ sin
n	k

Mþ 1
: (61)

The A�
n increase the eigenvalue of a state by the factor e�.

Therefore, in the limit the ground state of the system must
be annihilated by all the A�

n . Since the mode functions
sinðn	k=ðMþ 1ÞÞ are complete, this limiting state must
satisfy

ðSzk � iSykÞjG0i ¼ 0; for all k ¼ 1; . . . ;M: (62)

But �x
k ¼ i�z

k�
y
k ¼ 2iSzkS

y
k, so it follows that

�x
kjG0i ¼ 2iSzkð�iSzkÞjG0i ¼ jG0i; for all k; (63)

Y
k

�x
kjG0i ¼ þjG0i: (64)

By continuity, we conclude that the ground state at all J <
� will have this same eigenvalue. This conclusion depends
on the equations determining the ground state not changing
discontinuously at some point. For example, if the eigen-
value of an eigenoperator changed from t > 1 to t < 1
(from !< 0 to !> 0) as J was varied, it would no longer
annihilate the ground state and vice versa. But the character
of the eigenvalue solutions does not allow this to happen,
as is evident from Fig. 3. In particular, note that the curve in
Fig. 5 stays well away from ! ¼ 0 throughout. We con-
clude that 
 ¼ �1, so the correct G-parity operator to use
in describing the Neveu-Schwarz model isG ¼ �Q

kA�
x
kA.

Finally, we work out the meaning of G-parity in the
language of the original Ising partition function (1). To
do this, focussing on a single Ising system, we consider the
product of the appropriate factors of G with the transfer
matrix (3):

Y
k

�x
kT ¼ ðeJ0 � e�J0 Þ�M=2

Y
k

ðe�J0=2 þ �x
ke

J0=2Þ

� exp

�
J

2

X
k

�z
k�

z
kþ1

�
; (65)

compared to

T ¼ ðeJ0 � e�J0 Þ�M=2
Y
k

ðeJ0=2 þ �x
ke

�J0=2Þ

� exp

�
J

2

X
k

�z
k�

z
kþ1

�
: (66)

Thus, inserting a G somewhere in the matrix element (2)
has the effect on (1) of multiplying Z by an overall factor
ð�1Þ and reversing the sign of one of the terms in the sum

over j, J0
P

jð
P

kA�
j
kA�

jþ1
kA Þ=2. Technically, this is accom-

plished by inserting a factor�e�J0
P

kA
�l
kA
�lþ1
kA , for a particu-

lar time slice l, in the summand of (1). To project onto

even G-parity states, simply insert the factor ð1�
e�J0

P
kA
�l
kA
�lþ1
kA Þ=2. Or perhaps a better way to say it is to

make the replacement

eJ
0P

kA
�l
kA
�lþ1
kA

=2 ! sinh

�
J0

2

X
kA

�l
kA�

lþ1
kA

�
(67)

on at least one time slice of each open string propagator.
This sinh factor is non local and also can be negative. The
nonlocality would add to the computational cost of a
Monte Carlo simulation. This is because the probabilistic
criterion for retaining an update of the spin on a site k, l
requires knowledge of all the other sites on the time slice l,
as well as those on neighboring time slices. However, the
one-dimensionality of this nonlocality may help keep the
cost manageable. The strict probabilistic interpretation of
the summand of Z, which is the theoretical basis for
Monte Carlo simulations, is marred by the fact that the
sinh is negative for some spin configurations. However, the
spin configurations where the argument of the sinh is
negative are strongly suppressed by the exponential factors
on the many other time slices. One can then hope that those
configurations will cause a minimal degradation of the
convergence of the simulation.

VI. OPEN STRING VERTEX

A striking aspect of string theory is that interactions
among strings are inherent in the nature of free string.
This is because a single string can make a transition to
two strings by simply breaking at a point. Using light-cone
quantization of the free string [9] Mandelstam’s interacting
string formalism [8] provides the most concrete realization
of this concept. As illustrated in Fig. 6, Mandelstam’s three
string vertex is simply a worldsheet path integral with the
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free string action, but for which the worldsheet fields live
on a two dimensional domain corresponding to two strings
joining ends to become a single string (or the time reversed
process). Discretizing this domain on a worldsheet grid,
Giles and I [7] clarified the nature of the singularity in-
duced by the string joining/splitting process for the bosonic
string in D space-time dimensions. Write T ¼ aN, Pþ

1 þ
Pþ
2 � Pþ ¼ MaT0, so the diagram has dimensions Pþ �

T, and the associated lattice is M� N. We found that, in
the continuum limit M, N ! 1, the 360
 corner at

the interaction point induced a behavior M�ðD�2Þ=16 �
Finite. For the critical dimension, D ¼ 26, this scaling

behavior accounts precisely for the ðPþ
1 P

þ
2 P

þÞ�1=2 ¼
ðMaT0Þ�3=2ðPþ

1 P
þ
2 =P

þ2Þ�1=2 factor required by Poincaré

invariance.
For the Neveu-Schwarz model, a fermionic worldsheet

field, H�ðzÞ ¼ P
rb

�
r z�r with r ranging over half odd

integers, is introduced. Of course, only the transverse
components Hk, k ¼ 1; . . . ; D� 2 play a role on the
light-cone worldsheet. The main thrust of this article is to
represent these fields by D� 2 independent critical Ising
models on the worldsheet lattice. The contribution of the
Ising degrees of freedom to the singular behavior at the
interaction point can be inferred by realizing that a
Majorana fermion is, roughly speaking, a half boson.
More precisely, two Majorana fermion worldsheet fields
can be interpreted, through bosonization, as a single bo-
sonic worldsheet field. Thus, the singular factor, including

Ising and coordinate variables, should be M�3ðD�2Þ=32. If
this were the end of the story, the Lorentz invariant critical
dimension would be D ¼ 16þ 2 ¼ 18, not the Neveu-
Schwarz critical dimension D ¼ 10.

The point is that the Neveu-Schwarz vertex is not simply
the overlap represented by the diagram of Fig. 6, but there
is also an operator insertion at the joining point [19]. In the
continuum limit, the insertion is just the density of the
superconformal generators, H � _x. Mandelstam showed
that if this insertion is placed a distance � from the inter-

action point, then the amplitude ���3=4 as � ! 0. More
generally, if the operator insertion had conformal weight J,

the singular behavior would be ��J=2.
We now translate these conclusions to a lattice calcula-

tion. Then, there is no need to introduce �: one simply
inserts the operator a lattice step or two away from the
interaction site. Next, with lattice normalization the inser-
tion operator itself would correspond to aJ times the con-
tinuum expression. For example, instead of _x, one would

insert xjþ1
i � xji ! a _x. Likewise, instead of H which has

delta function normalization, one would insert Sj
i !

a1=2H, which has Kronecker delta normalization. Thus,
putting � ¼ a the continuum analysis of Mandelstam

would lead to the behavior aJ � a�J=2 ¼ aJ=2. Finally, in
the lattice setup there is no reference to a, only to the
number of lattice sites. Thus, this estimate translates to the

behavior 1=MJ=2 or 1=M3=4 for the case J ¼ 3=2 of interest
here. Putting this together with the result from the overlap
leads to the overall scaling behavior

VNS �
�
1

M

�
3ðD�2Þ=32þ3=4

; (68)

which is seen to give the correct Lorentz invariance power
3=2 for D ¼ 8þ 2 ¼ 10 in accord with the known prop-
erties of the model. This result has been obtained by trans-
lating the analysis done in the continuum theory into
expectations for the results of a lattice calculation. It would
be very nice to also see it from a direct lattice calculation,
but we do not attempt that here.
Now let us look more closely at the operator insertion

from the Ising model point of view. We first need to decide
which Ising model will describe the D� 2 � d Fermi
fields Sy;zkA , A ¼ 1; . . . ; d. The most straightforward choice

would be simply d decoupled Ising models as defined by
(2), with each Sy;zkA built from the Pauli matrices following

(6). Then to make the SkA for different A anticommute, one
could define individual G-parity operators GA ¼Q

M
k¼1 �

x
kA, and include a factor of

Q
A�1
B¼1 GB in the defini-

tion of SkA:

Sy;zkA ¼ �y;z
kA

YA�1

B¼1

GB

Yk�1

l¼1

�x
lA; JW I: (69)

The trouble with this choice is that the insertion operator
_xASA will have a residual nonlocality when expressed in
terms of the original Ising variables.
There is a better choice, which can be described as

follows. Extend the index of Sy;zk to the range k ¼
1; . . . ;Md. Then identify the first d of these with S1A, the
next d with S2A, etc. Then relate the anticommuting Sy;zk to

the Ising�y;z
k by the standard Jordan-Wigner transform (6):

+
2

+
1

P  + P
++

1 2

P

P

FIG. 6. Light-cone parameter domain for a three open string
vertex. Light-cone time � is the horizontal axis and � is the
vertical axis.
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Sy;zk ¼ �y;z
k

Yk�1

l¼1

�x
l ; k ¼ 1; � � � ;Md; JW II: (70)

The advantage of this version of the Jordan-Wigner trick is
that the nonlocality of the insertion operator is subsumed in
a factor which is proportional to the G-parity operator for
one of the strings entering the vertex. When all strings
entering the vertex are restricted to even G parity, the
nonlocality in the Ising variables disappears! Thus the
insertion will be local in both the Pauli matrix and fermi-
onic representations. This is very welcome, because it is
the Pauli matrix form that will be more amenable to
numerical analysis. On the unrestricted state space, it is
only the fermionic representation that is local.

There is a price for this choice however. Since we
demand that the transfer matrix expressed in terms of the
fermionic spin variables be unchanged, the new Jordan-
Wigner transform leads to a more complicated Ising

model. To see how we plug the new Jordan-Wigner trans-
form into the transfer matrix

T ðMÞ ¼ e�i�
P

d
A¼1

P
M
k¼1

Sy
kA
Sz
kAe�iJ

P
d
A¼1

P
M�1
k¼1

Sz
kþ1;A

Sy
kA

¼ e�i�
P

Md
k¼1

Sy
k
Sz
ke�iJ

PðM�1Þd
k¼1

Sz
kþd

Sy
k : (71)

The terms in the exponent of the first factor behave exactly
as before:

�i
XMd

k¼1

SykS
z
k ¼ � i

2

XMd

k¼1

�y
k�

z
k ¼

1

2

XMd

k¼1

�x
k

ðeJ0 � e�J0 ÞMd=2e�i�
P

Md
k¼1

Sy
k
Sz
k ¼ YMd

k¼1

ðeJ0 þ �x
ke

�J0 Þ: (72)

However, the exponent of the second factor changes sub-
stantially:

�iJ
XðM�1Þd

k¼1

SzkþdS
y
k ¼

J

2

XðM�1Þd

k¼1

�z
kþd�

z
k

YkþD�3

l¼kþ1

�x
l

ðeJ0 � e�J0 ÞMd=2T ðMÞ ¼ YMd

k¼1

ðeJ0=2 þ �x
ke

�J0=2Þ exp
�
J

2

XðM�1Þd

k¼1

�z
kþd�

z
k

Ykþd�1

l¼kþ1

�x
l

�
:

(73)

Only for d ¼ 1 does this reduce to the usual Ising model.
The form of the Ising model corresponding to this transfer
matrix is worked out in the Appendix.

VII. SUMMING PLANAR LOOPS

Once the three open string vertex has been established as
in the previous section, the complete perturbation series is
determined [8,19]. A generic planar multiloop diagram in
the series is the worldsheet path integral using the free open
string worldsheet action, but with the worldsheet variables
living on a domain such as depicted in Fig. 7.

In order to digitize the sum over planar diagrams, we fix
the overall dimensions of the domain to Pþ � T, and then
set up a worldsheet grid of dimensions M� N, with T ¼
aN andPþ ¼ aT0M [7]. The discretized worldsheet action
is constructed so that the internal horizontal lines shown in
Fig. 7 represent open string boundaries. For the Neveu-
Schwarz model, the worldsheet variables are the d ¼ D�
2 transverse coordinates xð�; �Þ ! xij and the d fermionic

fields
ffiffiffi
a

p
Hð�; �Þ ! Sj

i where the Sj
i are taken to be the

Jordan-Wigner transformed Pauli spin matrices of d inde-
pendent Ising models. For each end of a horizontal line,
which depicts the breaking or joining of open strings, there
is a factor of the open string coupling g and also the

operator insertion Sj
i � ðxjþ1

i � xji Þ as explained in the pre-
vious section. The precise location of this insertion is
somewhat flexible, as long as it is within one or two lattice
steps from the end of the horizontal line. For definiteness,

wewill always place it on the longest string participating in
the vertex, with i the spatial location of the horizontal line,
and j� 1 or jþ 2 the time of the end of the horizontal line,
with the choice determined so that the insertion lies com-
pletely on the longest string participating in the vertex.
Next, we turn to G-parity restrictions. The vertex ob-

tained in the previous section, and adopted in this section,

T

p+

FIG. 7. A planar multiloop light-cone interacting string dia-
gram. The horizontal lines form the boundaries of the propagator
worldsheets for intermediate open strings. This diagram has 7
loops and 5 external strings.
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conserves G parity: it connects 3 even G-parity open
strings with each other or 2 odd G-parity strings to an
even one. We would like to restrict the open string states
to even G parity only. When a diagram involves one or
more loops, it is not sufficient to restrict the external states
to even G parity, because a pair of odd G-parity states can
be produced from an even G-parity state. Thus each inter-
nal propagator in a multiloop diagram such as depicted in
Fig. 7 must include a projector ð1þGÞ=2 onto the even
G-parity sector.

As we have discussed in the previous section, the pres-
ence of even G-parity projectors throughout the diagram
introduces nonlocality into the worldsheet dynamics. The
projectors also produce negative contributions to the path
integrand. These could potentially lead to inefficiencies
and inaccuracies in the applications of Monte Carlo algo-
rithms to this system. However, there are beneficial aspects
of the presence of the projectors. One, already mentioned,
is that restriction to the even G-parity states renders the
nonlocality in the relation between the S’s and the �’s
harmless. Thus, the operator insertions, necessary to de-
scribe the Neveu-Schwarz model, will have a local repre-
sentation in terms of the original Ising variables. Even so,
the insertions are awkward because they are indefinite in
sign and have no obvious interpretation as terms in the
worldsheet action.

It would be nice if these factors could be taken into the
exponent where they would become a modification of the
action.1 If we do that and then expand the exponential, the
effect would be to replace the desired insertion with a sum
of all possible powers of the insertion, including a term
with no insertion at all. The higher powers are innocuous
because they will either renormalize the zeroth and first
powers or introduce operators of higher conformal weight
which would be suppressed relative to the zeroth and first
powers in the continuum limit. It is the zeroth term that
poses the difficulty. In the continuum limit it would domi-
nate over the desired linear term. On the other hand, it does
not couple 3 even G-parity open strings together. Thus, if
the even G-parity restriction is enforced throughout, this
troublesome term will not contribute. So by including the
projectors, we enable the interpretation of the operator
insertions as modifications of the action.

VIII. CONCLUDING REMARKS

In this article we have extended the GT lattice light-cone
string formalism to include the Neveu-Schwarz model,
representing the Fermi fields via Ising spin systems. That
representation has the virtue of avoiding the minus signs

inherent in a description of fermions as Grassmann fields.
If there were no need to include operator insertions at the
interaction points and no need to make the even G-parity
restriction, the formalism would be ready for immediate
analysis via Monte Carlo simulations.
Alas, that would give neither the Neveu-Schwarz (NS)

model nor its even G-parity projected descendent (NSþ ).
Indeed, the simulations would be dominated by tachyon
effects, most likely yielding the same sort of almost trivial
outcome as the bosonic string [20], namely, the sum of
planar open string diagrams would produce the propagator
of a free closed string. What makes the NSþ model
dynamically interesting is precisely what makes its
Monte Carlo analysis problematic: the operator insertions
in the NS model are of indefinite sign and the projectors
necessary to describe the NSþ model are nonlocal.
Intriguingly, for the NSþ model, we argued that the re-
striction to even G-parity provides a resolution to the
operator insertion difficulty. In its present status, all of
the sign and nonlocality problems of the formalism reside
entirely in the projection procedure. We think it is some
progress to be able to attribute all of the nonlocality and
negativity to such a well-defined source, in which they may
turn well out to be relatively benign. In any case, we
suspect that a better formulation will be found to circum-
vent any difficulties that remain.
Turning to more mundane matters, we recall that our

main motivation for keeping �0 > 0 was to mitigate the
need for uncontrolled counterterms to maintain Lorentz
invariance in the loop expansion. While this should effec-
tively deal with the usual field theoretic UV divergences, it
does not by itself take care of the potential need for the
worldsheet contact counterterms studied, for example, in
[21]. This issue clearly needs further study. However, it is
comforting to know that the fundamentally stringy regu-
larization identified in [22] seems to be at least partially
realized by the GT light-cone lattice. This mechanism
works by regarding each open string loop on the world-
sheet as an emission or absorption of a closed string in the
vacuum: giving that closed string a nonzero momentum
regulates the worldsheet divergence. By studying the one
loop open string self energy, we have found that discretiz-
ing Pþ ¼ Ma, which is the discretization of GT light-cone
lattice, has a similar regulating effect as p � 0. For this
example, it guarantees that the open string gluon remains
massless. If this continues to happen in more complicated
multiloop processes, we will be in business.
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1When H is represented as a Grassmann variable this proce-
dure would have the bizarre effect of adding Grassmann odd
terms to the action. However, in the Ising model representation,
it would simply mean adding terms linear in the spin to the
action-no weirder than an external magnetic field.
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APPENDIX: ALTERNATE DESCRIPTION OF d
ISING SPIN SYSTEMS

Here we work out the Ising model corresponding to the
transfer matrix (73). The way to do this is to evaluate the
transfer matrix elements between basis states which are

eigenstates of the �z
k. Then T N can be expressed as sums

over these eigenvalues. However, it is more convenient to
factor T into d ¼ D� 2 factors, and work out the matrix
elements of each factor. So write

ðeJ0 � e�J0 ÞMd=2T ðMÞ ¼ Yd
m¼1

�YM
k¼1

ðeJ0=2 þ �x
mþðk�1Þde

�J0=2Þ YM�1

k¼1

exp

�
J

2
�z

mþkd�
z
mþðk�1Þd

Ym�1þkd

l¼mþ1þðk�1Þd
�x

l

��
; (A1)

and we evaluate the matrix elements of each Tm, where

Tm ¼ YM
k¼1

ðeJ0=2 þ �x
mþðk�1Þde

�J0=2Þ YM�1

k¼1

exp

�
J

2
�z

mþkd�
z
mþðk�1Þd

Ym�1þkd

l¼mþ1þðk�1Þd
�x

l

�

¼ YM
k¼1

ðeJ0=2 þ �x
mþðk�1Þde

�J0=2Þ YM�1

k¼1

�
cosh

J

2
þ �z

mþkd�
z
mþðk�1Þd

Ym�1þkd

l¼mþ1þðk�1Þd
�x

l sinh
J

2

�
: (A2)

Notice that in the last expression no �x appears more than linearly. Thus we can use the identities

h�0j�xj�i ¼ 1� �0�
2

; h�0jIj�i ¼ 1þ �0�
2

; (A3)

where j�i is an eigenstate of �z with eigenvalue �. Then a few minutes thought leads to

hf�0gjTmjf�gi ¼ exp

�
J0

2

XM
k¼1

�0
mþðk�1Þd�mþðk�1Þd

� YM�1

k¼1

� Ym�1þkd

l¼mþ1þðk�1Þd

1þ �0
l�l

2
cosh

J

2

þ �mþkd�mþðk�1Þd
Ym�1þkd

l¼mþ1þðk�1Þd

1� �0
l�l

2
sinh

J

2

�
: (A4)

The matrix element of the full transfer matrix is then

hf�0gj Yd
m¼1

Tmjf�gi ¼
X
ff�igg

hf�0gjT1jf�1gihf�1gjT2jf�2gi � � � hf�D�3gjTdjf�gi: (A5)

In effect we can think of each actual time slice as d coincident time slices, so that the computational scale of this new
version of the Ising model would correspond to an M� dN lattice as compared to an M� N grid of the simple Ising
model. And of course as complicated as this formulation seems, it has identical physics to d decoupled Ising models. The
only reason for suffering these extra complications is that in the application to the interacting NSþ model, the insertion
operators will be local in the new representation, whereas they would be nonlocal in the original formulation.
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