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We present a significant improvement over our previous calculations of the cosmic string contribution

to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular

scales. These smaller scales are relevant for the now-operational Planck satellite and additional suborbital

CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than

before and we additionally model and extrapolate the statistical measures from our simulations to smaller

length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann

calculations in order to yield accurate results over the multipole range 2 � ‘ � 4000. Our results suggest

that power-law behavior cuts in for ‘ * 3000 in the case of the temperature power spectrum, which then

allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature

power spectrum making up 10% of power at ‘ ¼ 10 would be larger than the Silk-damped primary

adiabatic contribution for ‘ * 3500. Astrophysical contributions such as the Sunyaev-Zeldovich effect

also become important at these scales and will reduce the sensitivity to strings, but these are potentially

distinguishable by their frequency-dependence.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) radiation and the large-scale distribution of gal-
axies indicate that cosmic structure was seeded in the very
early stages of the universe [1,2], consistent with the infla-
tionary paradigm. However, the data sets leave room for
significant effects due to the presence of cosmic strings at
subsequent times [3–6]. These strings (see Refs. [7–10]
for reviews) are particularly important in that they are
predicted by many physically motivated inflation models,
including brane inflation models in the context of string
theory [11,12] but also models rooted in grand unified
theory (GUT) [13]. Such models also predict other types
of cosmic defect, including textures and semilocal strings
[14–17], and their CMB signals are [18–22] also of great
interest.

In previous works we calculated cosmic string CMB
temperature and polarization power spectra using field
theory simulations of the Abelian Higgs model [23,24]
and used the results to fit models with both string- and
inflation-induced anisotropies to CMB data [3]. It was
found that the data (which was primarily the WMAP
third-year release [25]) favored a model with a fractional
string contribution to the temperature power spectrum at

multipole moment ‘ ¼ 10 of f10 ¼ 0:09� 0:05 with the
spectral tilt of the inflation-induced primordial perturba-
tions being ns ¼ 1:00� 0:03. The latter was in contrast
to the inflation-only result of ns ¼ 0:951þ0:015

�0:019 [26] and

showed, along with Refs. [4,22], that the inclusion of
topological defects could readily allow ns > 1 under those
data, thanks to a parameter degeneracy found in Ref. [20].
In the present article, we present a significant improve-

ment in the CMB power spectrum predictions from string
simulations, with particular emphasis on small angular
scales. While the numerical simulations of the Abelian
Higgs model in Ref. [23] yielded CMB results covering
multipoles ‘ � 2 ! 1000, the full range of angular scales
relevant for WMAP data, they did not have the dynamic
range to accurately investigate finer angular scales. Higher
multipoles are now of great interest thanks to good cover-
age by suborbital CMB experiments [27–31], plus the
imminent arrival of full-sky Planck data [32] (‘ & 2500),
and we have therefore focused on yielding accurate string
predictions for ‘ & 4000.
Our ability to now include smaller scales stems partially

from improvements in computational facilities and the
carefully-chosen initial conditions that we now employ in
our Abelian Higgs simulations. But more importantly, we
have made developments in the method used to yield the
CMB power spectra from the statistical measures of
the energy-momentum distribution in our simulations:
the unequal-time correlation functions (UETCs) [18,33].
We now model and extrapolate the measured UETCs
to smaller scales in order to mimic results from larger
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simulations and have developed an efficient means of
including UETC results at these extrapolated scales into
our CMB calculations.

The need for the above extrapolation can be understood
as follows. The width of a cosmic string is microscopic
(perhaps at the GUT scale) while their separation at times
of cosmological importance is of order the Hubble distance
and hence it is not possible to simultaneously resolve both
scales in numerical simulations during the epochs when
strings would have impacted on the CMB. We can solve
this problem by using scaling [34]: when the horizon is
greater than about 100 times the string width, we observe
that the strings enter a late-time attractor solution in which
statistical measures of the string distribution, when mea-
sured in horizon units, are constant in time. For example,
the average string length in a horizon volume divided by
the horizon size is � 50. Similarly, the UETC measure-
ments are independent of time once scaled by the horizon
size and hence scaling provides knowledge of their values
at times of cosmological importance. However, the mea-
sured UETC power is attenuated on scales close to the
string width and scaling is broken for such length scales.
Hence the resultant CMB results would show too little
power at very small angular scales: the sharp changes in
temperature caused by the Gott-Kaiser-Stebbins (GKS)
effect [35–37] would have been smeared out by having
been effectively sourced by strings whose width was
around one-hundredth of the horizon size in the post-
recombination era. For our previous work this was of little
actual concern since those articles focused upon WMAP
scales (‘ & 1000). It is, however, necessary to extrapolate
the UETC results to substring scales in order to obtain
accurate results from field theoretic simulations for much
higher multipoles.

Other approaches to calculating CMB perturbations
from strings include using simulations of the Nambu-
Goto (NG) type [38–40] and the unconnected segment
model (USM) [4,41–43]. Nambu-Goto simulations can
yield a greater dynamic range than field theoretic simula-
tions but must still invoke scaling to yield CMB results
over a wide range of scales. Furthermore, the network
correlation length used in the initial conditions appears to
persist and may limit the reliable resolution of Nambu-
Goto simulations [44,45]. The USM represents the string
network as a stochastic set of moving ‘‘sticks,’’ which
disappear at an appropriate rate in order to give the chosen
string scaling density. While it has no true dynamical
content, it is computationally cheap and offers the flexibil-
ity to choose the coarse-grained network properties to
model the relevant features of the CMB power spectra
[4,42,46–48].

The advantage of the Abelian Higgs model is that it
includes the small-scale physics near the string width,
which has a non-negligible impact on the string dynamics
[49,50]: energy from the strings is converted into massive

gauge and Higgs radiation. In NG simulations this decay
channel is not included and the string length density is
significantly higher, with the long strings being converted
into small loops that would then decay via gravitational
radiation (although this process is not actually simulated).
With the extra decay channel in the field theoretic simula-
tions, decay via gravitational radiation would be less
important, and this fact significantly changes the predic-
tions for gravitational wave observations. In the case of the
CMB, on the other hand, it is the long strings that are
important, and the key difference between the simulation
results is the interstring separation. A potential disadvant-
age of a field theory simulation is that computational
constraints require the string width to be artificially
increased in order to keep it above the simulation resolu-
tion, but we carefully show that this does not significantly
affect the UETCs and therefore the CMB power spectra
results. We note that there are potentially strong but model-
dependent constraints from the diffuse gamma-ray back-
ground on cosmic strings decaying purely into massive
radiation [51]. In this paper, we concentrate on the CMB
constraints, which are much less sensitive to the particular
model in question, as they depend only on the gravitational
properties of the strings.
In Secs. II and III we detail our methods, including an

overview of the UETC approach, our field theory simula-
tions, the tests of scaling that we employ and the substring
extrapolation. We exhibit the resulting CMB power spectra
in Sec. IV, and give conclusions in Sec. V. Unless otherwise
specified, we will use ‘‘small scales’’ to mean length scales
on the string network much smaller than the horizon.

II. METHOD OVERVIEW

As already noted, the basis for our string simulations and
CMB calculations is our previous work: Ref. [23], referred
to hereafter as BHKU.We refer the reader to that article for
the full details of our approach, but we present the essential
information in what immediately follows and highlight
the improvements made for the current article in the next
section.

A. UETC approach

In CMB power spectra calculations for inflationary
models with cosmic strings, the inflationary contribution
is essentially uncorrelated with the cosmic string contribu-
tion. This is because the inflationary perturbations are laid
down by an independent field 60 e-foldings before the
strings are formed, and because the complex string dynam-
ics rapidly destroys correlations with earlier times (see
Sec. III C). As a result we may write the total spectrum
‘ð‘þ 1ÞC‘ as a sum of two independent spectra and take
the cross-correlation term to be negligible:

C ‘ ¼ Cinf‘ þ Cstr‘ ; (1)
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where Cinf‘ is the inflationary contribution and Cstr‘ is the

string contribution. We can use standard methods [52] to
determine Cinf‘ , and it is therefore upon Cstr‘ that this article

is focused.
Physically the strings cause CMB anisotropies by creat-

ing perturbations in the space-time metric, which are
roughly of the same order as G�, where � is the string
mass per unit length, G is the gravitational constant, and
G� & 10�6 to be consistent with current observations [3].
These inhomogeneities in the metric then lead to perturba-
tions in the matter and radiation that themselves evolve and
influence the strings, but we can neglect this back-reaction
since the resulting perturbations of the strings would then
result in changes only of order ðG�Þ2 to the metric.

In order to determine the string contribution to a two-
point correlation function, such as the CMB temperature
power spectrum, we are required to solve a set of linear
differential equations of the following form, in which the
string energy-momentum tensor components act as source

terms ~Sa:

D̂ acðk; a; �; . . .Þ ~Xaðk; �Þ ¼ ~Scðk; �Þ: (2)

Here Xa is the quantity of interest and ~Xa its Fourier

transform, while D̂ac is a differential operator, dependent
upon the cosmic scale factor a, the background matter
density � and similar quantities. Our notation is such that
� is the conformal time and k is the comoving wave vector.

The homogeneous version of this equation (~Sc ¼ 0), which
corresponds to the inflationary case, can be solved by
standard codes and therefore, in principle, we may use a
Green’s function Gacðk; �0; �Þ to give the power spectrum
at conformal time �0 for the string case via:

h ~Xaðk; �0Þ ~X�
bðk; �0Þi

¼
Z �0

0

Z �0

0
d�d�0Gacðk; �0; �ÞG�

bdðk; �0; �0Þ
� h~Scðk; �Þ~S�dðk; �0Þi: (3)

Hence the data required to calculate such two-point corre-
lation functions are the two-point unequal-time corre-
lators of the string energy-momentum tensor components
[18,33]:

~U abðk; �; �0Þ ¼ h~Saðk; �Þ~S�bðk; �0Þi: (4)

Note that statistical isotropy implies that ~Uab is not depen-
dent on the direction of k and further that it is real-valued.

Significant simplification in the form of ~Uab may be
made using the scaling property, briefly mentioned in
the introduction. Under scaling, any statistical measure of
the spatial distribution of strings scales with the horizon
size, which is just � in comoving coordinates. For example,
the comoving length-density of string is �=�2, where �
is a dimensionless constant. The existence of this at-
tractor was predicted by Kibble [34] and has been con-
firmed in Nambu-Goto simulations [39,45,53] (with some

assumptions about the decay of loops) and in Abelian
Higgs simulations [23,49,54]. We will present further
evidence in support of scaling in our results section.
The power of scaling is that it enables us to write ~Uab in

terms of a function of just two variables:

~U abðk; �; �0Þ ¼ �4
0ffiffiffiffiffiffiffi
��0

p 1

V
~Cabðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ: (5)

Here �0 sets the energy scale of the problem and converts
between the scaling spatial distribution of string and the
distribution of energy. For example, in the case of the
Abelian Higgs model (see next section) it is the vacuum
expectation value of the scalar field. The comoving
simulation volume V appears here because we define our
Fourier transform so that it leaves dimensions unchanged:

~XðkÞ ¼ 1

V

Z
d3xXðxÞe�ik�x: (6)

The UETC scaling function ~Cab can be seen to allow data
to be taken for very large k at small � and �0 and then used
to provide information about small k at large � and �0. This
is critical for the present calculations, as noted in the
introduction.
Further power of the UETC scaling functions derives

from their functional form: they decay for large and small

time ratios �=�0, and for large k
ffiffiffiffiffiffiffi
��0

p
(small scales), while

causality constrains their form at low k
ffiffiffiffiffiffiffi
��0

p
. This crucially

means that we need study a scaling network for only a
relatively short range of times and in a limited simulation
volume. However as noted in the introduction, small length
scales become more important when considering small
angular scales (see next section).

While our approach is to measure ~Cab from cosmic
string simulations, and therefore find ~Uab, we do not in

fact then use Eq. (3). Instead we decompose ~Cab into a sum
over products as [55]:

~C abðk
ffiffiffiffiffiffiffi
��0

p
; �=�0Þ ¼ X

n

�n~cnaðk�Þ~cnbðk�0Þ: (7)

The problem then breaks down to

h ~Xaðk; �Þ ~X�
bðk; �0Þi ¼

�4
0

V

X
n

�nI
n
aðk; �ÞIn�b ðk; �0Þ; (8)

where

Inaðk; �0Þ ¼
Z �0

0
d�Gabðk; �0; �Þ ~cnbðk�Þffiffiffi

�
p : (9)

In practice we do not calculate this integral via a
Green’s function, but instead apply a modified version of
CMBEASY [56] to determine the CMB power spectrum
contribution from the coherent active source ~cnb=

ffiffiffi
�

p
.

In principle there are 55 possible UETCs between the
4 scalar, 4 vector, and 2 tensor degrees of freedom in the
energy-momentum tensor ~T��, but thanks to statistical
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isotropy and energy conservation, we in fact need only to
measure 5 scaling functions [57]. The scalar UETCs
that we calculate involve projections from ~T�� that,

via Einstein’s equations, directly source the two Bardeen
potentials [58]:

~S S
� ¼ ~T00 � 3

_a

a

ik̂m
k

~T0m; (10)

~S S
� ¼ �~SS� � Tmm þ 3k̂mk̂n ~Tmn: (11)

From these projections there are 3 independent UETC
scaling functions that we must measure

h~SS�ðk; �Þ~SS�� ðk; �0Þi ¼ �4
0ffiffiffiffiffiffiffi
��0

p 1

V
~CS
11ðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ; (12)

h~SS�ðk; �Þ~SS�� ðk; �0Þi ¼ �4
0ffiffiffiffiffiffiffi
��0

p 1

V
~CS
12ðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ; (13)

h~SS�ðk; �Þ~SS�� ðk; �0Þi ¼ �4
0ffiffiffiffiffiffiffi
��0

p 1

V
~CS
22ðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ: (14)

Then in the tensor case we project out the two tensor

degrees of freedom (see BHKU), which we denote as ~ST1

and ~ST2. We then determine

h~ST1ðk; �Þ~ST1� ðk; �0Þi ¼ h~ST2ðk; �Þ~ST2� ðk; �0Þi

¼ 2
�4

0ffiffiffiffiffiffiffi
��0

p 1

V
~CTðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ; (15)

where the factor of 2 is present to ensure that ~CT matches
the definition of Ref. [19].

Following Ref. [19], we make a change in the scaling
function definition when considering the two vector

degrees of freedom from ~T0i, ~S
V1, and ~SV2 (see BHKU).

Specifically we pull out a factor of k2��0 from the scaling
function such that

h~SV1ðk; �Þ~SV1� ðk; �0Þi ¼ h~SV2ðk; �Þ~SV2� ðk; �0Þi

¼ k2
ffiffiffiffiffiffiffi
��0

p
�4

0

1

V
~CVðk

ffiffiffiffiffiffiffi
��0

p
; �=�0Þ:

(16)

This definition is motivated by the fact that covariant
energy-momentum conservation requires that the vector
UETC varies as k2 at small k while the other UETCs that
we measure tend to a constant value as k ! 0; and it is
desirable for all UETC scaling functions to have the same
superhorizon properties.

However, it should be noted that the above discussion
requires a small change because scaling is broken near the
time of radiation-matter equality �eq, since �eq is a second

dimensional scale which enters the problem. We hence are
required to take UETC data in both the radiation and matter
eras—although the matter era data dominates the CMB

results—and we then use interpolation in order to model
the transition. Scaling is also broken as the Universe enters
the current accelerating phase, causing the string density to
decay, which we model by partially suppressing the stress
source.
For more details of the solution of the linearized

Einstein-Boltzmann equations in the presence of sources
see Refs. [59,60].

B. Field theoretic simulations

For computational speed, we simulate local cosmic
strings by solving the classical field equations of the sim-
plest theory that contains them: the Abelian Higgs model.
In the notation of BHKU this has Lagrangian density:

L ¼ � 1

4e2
F��F

�� þ ðD��Þ�ðD��Þ � �

4
ðj�j2 ��2

0Þ2;
(17)

with D� ¼ @� þ iA� and F�� ¼ @�A� � @�A� while e

and � are dimensionless coupling constants. In a spatially
flat Friedmann-Robertson-Walker (FRW) metric with scale
factor a, this leads to the following Euler-Lagrange equa-
tions:

€�þ 2
_a

a
_��DjDj� ¼ �a2

�

2
ðj�j2 ��2

0Þ�; (18)

_F 0j � @iFij ¼ �2a2e2 Im½��Dj��; (19)

� @iF0i ¼ �2a2e2 Im½�� _��; (20)

where the gauge choice A0 ¼ 0 has been made. Here we
use overdots to denote differentiation with respect to con-
formal time �, while @i denotes differentiation with respect
to comoving Cartesian coordinates.
When simulating this model in an expanding universe,

the simulations must resolve the comoving string width
w0=a (i.e. w0 is the fixed physical width 	��1

0 ). They

must also contain at least one horizon volume of comoving
diameter 2�. However, these two scales diverge rapidly,
with their ratio growing as �3 in the matter era, while we
require ratios * 100 in order for strings to scale. Hence
with 10243 lattice simulations, which are the largest that
are practical with our available facilities, we cannot study a
scaling network using these equations for long enough to
measure the UETCs up to sufficiently high �=�0 ratios.
Furthermore, the increase in this ratio with computer time

tcpu varies as t
1=12
cpu and hence the returns from much larger

outlays are minimal. In BHKU we therefore proceeded by
allowing temporal variations in the coupling constants �
and e:

� ¼ �0

a2ð1�sÞ ; (21)
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e ¼ e0
a1�s

; (22)

such that the comoving string width now varies as

w ¼ w0

as
; (23)

where s is the string width control parameter. If s ¼ 0, then
the factors of a on the right-hand side of Eqs. (18)–(20) are
removed and the string width remains constant in comov-
ing coordinates, while s ¼ 1 gives the normal dynamics of
the model. Note that the above dependencies preserve the
ratio �=2e2, which we set to be unity for the simulations
described in this article: the Bogomolnyi limit [61].

Simply evolving the above dynamical equations
[Eqs. (18) and (19)] while varying � and ewill not preserve
the constraint Eq. (20). Hence the BHKUmethod is to vary
the model action with respect to the fields while allowing
for the temporal dependence in � and e, which then yields
a consistent set of dynamical and constraint equations:
Eqs. (18) and (19) in addition to a modified form
of Eq. (19):

_F 0jþ2ð1� sÞ _a
a
F0j�@iFij ¼�2a2e2 Im½��Dj��: (24)

However, for s � 1 the action is no longer a 4-scalar and
hence there is a breach of covariant energy conservation.
Since it is the energy-momentum tensor that seeds the
cosmological perturbations which result from strings,
then this is clearly a potential problem. Fortunately, in
BHKU it was established that the effects on the UETCs,
and therefore the CMB power spectra, are minimal on the
relevant scales, but we present additional evidence in sup-
port of this approach in the next section.

III. METHOD REFINEMENTS AND
INTERMEDIATE RESULTS

As discussed in the introduction, the use of scaling to
translate simulation results from GUT length scales to
cosmological scales means that any effects present in our
simulations on scales close to the string width are erro-
neously transferred to scales of order 100th of the horizon
size at the decoupling of the CMB, i.e.	3 kPc rather than
	10�32 m (which would correspond to the string width if
G�	 10�6). As already mentioned, this smearing out of
the energy density would lead to reduced power in the
string contribution to the CMB power spectrum at small
angular scales.

For our previous work, which was intended to be used
only with WMAP data, this effect was not anticipated to be
significant, since WMAP only probes scales larger than
about one-tenth of the horizon at decoupling (‘ < 1000).
Additionally, the small-scale data which then existed was
not precise enough or on small enough scales for the likely
inaccuracies to be a cause of concern, unless the strings
completely dominated the CMB on such scales—some-
thing that the WMAP data was seen to rule out [3]. While it

is true that at times long after recombination, the properties
of strings on scales much smaller than the horizon can
influence WMAP scales, their effect would have been
minor, as we shall demonstrate in this article, which now
includes their contribution.
In order to include small-scale UETC power, we model

the UETCs and extrapolate the trends seen to substring
scales (Sec. III D). We have also modified our CMB cal-
culation method in order to rapidly include these extrap-
olations (Sec. III E). However, we additionally employ
larger simulations than in the past and employ different
initial conditions, both of which enhance our ability to
study the scaling epoch and improve our measurements
of the UETC scaling functions. We hence discuss our new
results for measures of scaling and of the UETCs them-
selves, before going on to discuss the inclusion of small
scales.

A. Tests of scaling

As has already been alluded to, for strings to scale their
width must be much less than their separation, which is of
order the horizon size. This statement may be made more
precise by introducing the (comoving) network length
scale �, defined by

� ¼
ffiffiffiffi
V

L

s
; (25)

where L is the comoving string length1 in the simulation
volume V. We observe in our simulations that accurate
scaling sets in at � * 40w whereupon �	 0:3�.
However, in BHKUwewere limited to an Abelian Higgs

simulation size of 5123, which is about the minimum
required to study a scaling network of strings. We therefore
were forced to be content with initial conditions that
yielded not � / � but � / ð�� ��¼0Þ, as shown in Fig. 1,

were ��¼0 is negative. That is, at early times string decay

occurred more quickly than scaling would have predicted
and � increased rapidly, but then stabilized to an approxi-
mately constant d�=d� once � * 40w (where w � ��1

0

but is slowly decreasing with � in the s ¼ 0:3 simulation
for which BHKU-style results are plotted). As can be
seen in the figure, this rapid increase aids the creation of
an approximately scaling network for simulations that
are causally limited to small times, albeit scaling with
(�� ��¼0) rather than �. Fortunately, at times of cosmo-

logical interest we have � 
 ��¼0 and therefore this offset

1We measure L by detecting the lattice grid-squares around
which the phase � has a net winding (using the gauge-invariant
method of Ref. [62]) and then we approximately reconstruct the
string path as a collection of perpendicular segments of length
�x passing through these squares. We then apply the Scherrer-
Vilenkin correction factor of 	=6 [63] in order to approximately
account for overestimate due to representing a smooth path by
perpendicular segments (see Ref. [50] for more discussion).
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is not actually relevant. Furthermore, when � was replaced
by (�� ��¼0) in the calculations of the UETC scaling

functions, the equal-time scaling functions ~Cðk�; 1Þ were
seen to be approximately constant in �, as is required for
scaling.

Despite the success of the (�� ��¼0) replacement when

using the BHKU initial conditions, with the larger 10243

simulations available for the present work we noted a slow
drift in the d�=d� value, even at late times. Further, there
was a slow rise in the magnitude of the ��¼0-corrected

equal-time scaling functions. This is expected at some
level since the dynamical equations contain the quantity

_a

a
¼ n

�
; (26)

where n is unity for the radiation era and 2 for the matter
era. The ratio of this damping scale �=n to the network
length scale � changes with time if ��¼0 � 0 and at �	
j��¼0j with negative ��¼0, the system has a lower than

asymptotic value of �=n�—it is being damped too heavily.
We hence now employ initial conditions that yield (effec-
tively) ��¼0 ¼ 0, although now we do not see scaling until

long after the causal runtime limit of our previous 5123

simulations.
In principle, the initial conditions for the fields are set by

their fluctuations (quantum or thermal) at string formation,
which have a finite, microscopic, correlation length (see
e.g. [64]). Fortunately, the string network is observed to

relax to scaling for a wide variety of initial conditions and
so it is not important to model the initial fluctuations
precisely. In BHKU we employed initial conditions that
were designed to model a vacuum phase transition at the
end of inflation: each lattice site was given an independent
phase for �, with j�j ¼ �0, and the initial time �start was
set roughly equal to the lattice spacing �x. The gauge field

and the canonical momentum _�were set to zero. However,
that set of initial conditions means that the simulations
begin with �start 	 w and this was seen in BHKU to be
responsible for the initial rise in �.
In this work we begin with � as a Gaussian random

field with correlation length l� such that l� 	 �start 
 w.

We are free to choose the two-point autocorrelation
function of this Gaussian random field, subject to the
constraints that it is zero outside the causal horizon and
that its Fourier transform (the power spectrum) must be
non-negative. For simplicity we relax the first constraint
slightly and opt for

PðyÞ ¼ 1

V

Z
dx3�ðxÞ��ðx� yÞ ¼ P0 expð�y2=2l2�Þ:

(27)

This decays so rapidly outside the horizon that it is effec-
tively causal with horizon size 	l�. We hence generate a

field in Fourier space with spectrum ~P and random phases
for each k-mode, before transforming it to real space to
become our initial � configuration. This gives h���i ¼
P0, which we take as �2

0 since the field should be close to

its vacuum except at lattice sites very near to the strings.
Further, since Hubble damping at � 
 w is too weak to
rapidly relax the fields into a network of string, we now
employ diffusive (first-order) evolution until a time �diff in
order to achieve that. We then have three parameters �start,
�diff , and l� which we may vary in order to achieve our

goal of ��¼0 ¼ 0, although each test of a point in this

3-dimensional parameter space is very computationally
expensive.
While in principle this ��¼0 ! 0 optimization should be

performed for each value of s, the insensitivity of the
string dynamics to changes in s (as noted in BHKU)
implies that this computationally costly process can be
performed only once. However, to keep the same settings
for these 3 parameters at all s values, we must use a lower
lattice spacing �x at higher s in order for strings to still be
resolved (w0=a

s > 2�x) at the end of the simulation � ¼
N�x=2, which is the causal time limit.2 This implies that
the accessible �=�0 range narrows as s is increased.
The results for � from these new initial conditions can be

seen in Fig. 1, for simulations in the matter era using s ¼ 0

−50 0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

τ / φ
0
−1

ξ 
/ φ

0−
1

new initial conditions
BHKU initial conditions

FIG. 1. Results for � from simulations using our new initial
conditions compared to those using BHKU initial conditions,
which yielded an offset scaling law. Statistical uncertainties
determined from 3 realizations are denoted using the shaded
regions (1-
 dark, 2-
 light) and the linear best-fits over the
period between the short vertical lines are indicated by the
dashed lines. The results come from 10243, s ¼ 0, �x ¼
0:5��1

0 simulations in the case of the new initial conditions

and 7683, s ¼ 0:3, �x ¼ 0:4295��1
0 for the BHKU ones.

2We continue the simulations slightly beyond the strict causal
limit, since they do not feel the periodic boundary conditions
immediately, but the further reduction in string width is not
sufficient to greatly affect the reliability of the simulations.
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(with a ¼ 1, � ¼ 2 and e ¼ 1 during diffusive evolution
and �x ¼ 0:5��1

0 ). Further, we show from the same simu-

lations examples of the equal-time scaling functions
~Cðk�; 1Þ in Fig. 2, which provide a scale-dependent test
of scaling and is the quantity that is most important for the
CMB calculations. These results exhibit scaling for k� &
100 to a good degree of accuracy over a ratio in conformal
time of 2, although with k� & 10 having large statistical
fluctuations due to the small number of Fourier modes
sampled. There is a breach of scaling at very small scales
(difficult to see on these plots), but as noted in the intro-
duction this is expected due to the proximity of the asso-
ciated length scales to the string width. We discuss this
issue and our solution to it in Sec. III D. Numerical results
for the string length density under scaling are also given in
Table I (see also Sec. IVA2).

B. Dependence of the equal-time scaling
functions upon s

In addition to ensuring that the simulations are exhibit-
ing scaling, we must also check that the use of s < 1 in our
dynamical equations does not introduce significant system-
atic errors in our UETC scaling function results. This is

most readily illustrated using the equal-time case again,
with results shown in Fig. 3. We can resolve no dependence
upon s, except for at high k�, which is again due to the
proximity of the corresponding length scales to the string
width. Since the affected scales are the very ones for which
we apply the extrapolation mentioned in the introduction,
then this effect is of no concern (see Sec. III D). For
completion, however, the s-dependence on these scales
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FIG. 2. The equal-time scaling functions ~Cðk�; 1Þ from 10243,
s ¼ 0 simulations with a matter-dominated FRW background for
5 times, as indicated in the legend in units of��1

0 . Results shown

are the average of 3 realizations, with the estimated statistical
uncertainties for � ¼ 296��1

0 indicated by the shaded regions.

TABLE I. Numerical results for the network length scale � in
horizon units and the string length density L=V normalized to
the horizon size. AH indicates that the results are from the
present Abelian Higgs simulations while NG indicates the
results are from the Nambu-Goto simulation of Ref. [44]
(see Sec. IVA2), which yield string densities approximately
2.5 (radiation) and 2.3 (matter) times greater. (Note the NG
results quoted includes only infinite strings, although loops do
not contribute significantly to our figures [50].)

Simulation Measure Radiation era Matter era

AH �=� 0:255� 0:018 0:285� 0:011
AH L�2=V 15� 2 12:2� 0:96
NG L�2=V 37:8� 1:7 28:4� 0:9
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FIG. 3. The equal-time scaling functions ~Cðk�; 1Þ from simu-
lations with a matter-dominated FRW background at three values
of s. Results shown are the average of 3 realizations, with
statistical uncertainties for the s ¼ 0:5 case indicated by the
shaded regions. Results are plotted for � ¼ 150��1

0 , which is the

start of the period when we take UETC data for the s ¼ 0 case.
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can be explained as follows. The higher s, the more rapid
the reduction in comoving string width during the Hubble
phase and therefore the attenuation of small scale power
(see Sec. III D) manifests itself at higher k�. Hence the
s ¼ 0 case yields lower results at the highest-plotted k�
values.

Since s ¼ 0 simulations enable the greatest range in
�=�0 under scaling, while accurately matching the dynam-
ics seen at higher s values, our final CMB results will
be based upon s ¼ 0 simulations and we will limit our

remaining discussion in this article to simulations at this
value of s.

C. UETC scaling function results and decoherence

Despite our improved initial conditions, we are only
able to study the system when it is scaling accurately for
conformal time ratios �=�0 	 2 (corresponding to physical
time ratios 	4 in the radiation era and 	8 in the matter
era). As can be seen in Fig. 4 this is sufficient to map out

FIG. 4. The UETC scaling functions ~Cðk ffiffiffiffiffiffi
��

p
; �=�0Þ in the matter era from 10243 simulations with s ¼ 0, averaged over 3

realizations. The raw data is highlighted by the lighter central region, with extrapolations to more extreme �=�0 values and to lower

k
ffiffiffiffiffiffiffi
��0

p
indicated by the darker regions. The vertical axis indicates j ~Cj and it should be noted that the cross-correlator is negative near its

peak.
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the important region of the UETCs, and to permit extrapo-
lation in �=�0 as explained below. It can be seen that the
autocorrelator scaling functions peak for � ¼ �0 and decay
for unequal times, with decay occurring for �=�0 ratios that
deviate only slightly from one if k

ffiffiffiffiffiffiffi
��0

p
is large but more

slowly on superhorizon scales. In the cross-correlation case
~CS
12, this is broadly true but the peak is noticeably offset on

superhorizon scales.
This behavior can be considered in more detail via the

coherence function, which we also use for �=�0 extra-
polation. We define this function as follows in order to

remove the equal-time k� dependence from the unequal-
time results:

~Dðk
ffiffiffiffiffiffiffi
��0

p
; �=�0Þ ¼

~Cðk ffiffiffiffiffiffiffi
��0

p
; �=�0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j ~Cðk�; 1Þ ~Cðk�0; 1Þj
q ; (28)

where the modulus in the square root is relevant only for
~CS
12. This has the attractive feature of being equal to �1 at

equal-times and is positive at such times for all autocorre-
lations. Our results are shown in Fig. 5 and 6, and also in
Fig. 9. The small-scale behavior can be understood by

FIG. 5. The decoherence functions ~Dðk ffiffiffiffiffiffi
��

p
; �=�0Þ in the matter era from 10243 simulations with s ¼ 0, averaged over 3 realizations.

The raw data is highlighted by the lighter central region, with extrapolations to more extreme �=�0 values and to lower k
ffiffiffiffiffiffiffi
��0

p
are

indicated by the darker regions.
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considering that the network can quickly decohere when
coarse grained on subhorizon scales 1=k � � since the
relativistic strings must simply travel 	2	=k. As a result,
the coherence function decays by jk�� k�0j 	 2	.
Figure 6 highlights this decay, and that the form of ~D as
a function of kð�� �0Þ is scale independent on small
scales. On the other hand, when plotted as a function of
�=�0, as in Fig. 5, the equal-time ridge becomes increas-
ingly sharp on these scales.

On superhorizon scales the decay is much slower, taking
of order a Hubble time: �=�0 	 2. For these longer wave
modes, the coarse-grained regions each contain a number
of horizon volumes. A particular horizon volume that is
initially overdense will become underdense due to the
stochastic string dynamics in a time that is of the same
order its initial size, i.e. 	�0. Therefore, the averaged
properties of the large coarse-grained region decohere on
this time scale, and the decoherence functions for large
scales show decay at a fixed value of �=�0, independent
of scale.

We extrapolate our UETC scaling function results to
greater time ratios in the autocorrelation cases by first
noting that the form of the coherence function at fixed

k
ffiffiffiffiffiffiffi
��0

p
is approximately Gaussian in logð�=�0Þ, but with

the width dependent on k
ffiffiffiffiffiffiffi
��0

p
. For super- and near-horizon

scales we hence take each k
ffiffiffiffiffiffiffi
��0

p
value in turn and match a

Gaussian profile exp½�log2ð�=�0Þ=2
2� to the data at the
most extreme �=�0 value and then use that profile to
extrapolate to larger time ratios. On the other hand, for
subhorizon scales the decay is very rapid and we simply
extrapolate with zeros. The results of these extrapolations
can be seen in Figs. 4 and 5.

For the cross correlator ~CS
12 on the other hand, our results

show that the �=�0-profile on horizon and superhorizon
scales is complex and non-Gaussian, making reliable
extrapolation impossible. For this correlator we use the

Gaussian fits to ~CS
11 and ~CS

22, with widths 
11 and 
22,
to provide information on the likely decay time scale. We
then fit a Gaussian of width 
12 ¼ ð
11 þ 
22Þ=2 but with
free mean and normalization to the ~CS

12 data from the
most extreme time ratios, and then employ that to yield
extrapolation.

D. Extrapolation of UETCs to substring scales

Figure 7 shows a plot of k� ~CS
11 for �

0 ¼ � from simula-
tions with s ¼ 0. From the upper pane it can be seen
that this quantity is approximately independent of k� on
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FIG. 6. Slices through the decoherence functions ~D at small
scales for the matter era. In order to demonstrate the approxi-
mately constant form at these scales when plotted as a function
of kð�� �0Þ, results are shown for the three values kð�þ �0Þ=2
indicated by the legend. The latter quantity is perpendicular to
kð�� �0Þ in the k�� k�0 plane (see also Fig. 9) and simplifies to
k� for the equal-time case.
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FIG. 7. Results for k� ~CS
11 from s ¼ 0 simulations, plotted

against k� (upper pane) and k (lower pane). The 5 lines corre-
spond to equally spaced times between � ¼ 150 and 300��1

0 . In

the upper pane the 5 lines are indistinguishable at low k� due to
the observed scaling, but scaling is broken on small scales where
lines progressively move to the right. In the lower pane the lines
are indistinguishable at high k, showing that on such scales
k� ~CS

11 is then simply a function of k, i.e. the comoving length
scale, and indicating that the attenuation of the signal occurs on
scales a few times the comoving string width, which is constant
in this s ¼ 0 case.
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subhorizon scales until k�	 200 at the earliest time
shown or until about k�	 400 at the latest time plotted.

The plateau highlights an important point: that ~CS
11 drops

off as � 1=k� on subhorizon scales, which matches our
basic expectations as well as similar measures from NG
simulations [65]. However, on smaller scales there is a
sudden attenuation of power, and at a k� value that is
increasing with time. The lower pane clarifies the later
by replotting this against k rather than k�, showing that
this is occurring at a fixed comoving scale of k � 2�0.
This corresponds to a few times the string width, which is a
fixed comoving width in this s ¼ 0 simulation.

We find evidence that all equal-time scaling functions
vary as approximately 1=k� on small scales (except in the

vector case for which ðk�Þ2 ~CV varies roughly as 1=k�).

Figure 8 shows power-law fits to k� ~C (and ðk�Þ3 ~C in the
vector case) over the range k� ¼ 30 ! 100, which lies
between the interesting effects on horizon scales and the
artifacts of the string width on very small scales. While it
would be desirable to have a further order of magnitude via
which to confirm the behavior in this regime, it is clear in
all cases that a substantial improvement in our estimate of
the scaling functions on small scales would be arrived at by
extrapolating this trend down to scales near and below the
string width.

We extrapolate the unequal time scaling functions to
small scales using our knowledge of the attenuation expe-
rienced at equal-times for both � and �0. First we define the
attenuation level R as the ratio of the extrapolated equal-
time scaling function and the measured version at time �:

Rðk; �Þ ¼ Qðk�Þ�p

~C�ðk�; 1Þ
; (29)

where we have added a subscript to ~C to indicate that the
measured correlator does not scale exactly and so is not
only dependent upon k�, while p and Q are constants
found from the power-law fit. We then extrapolate the
UETC scaling function as

~Cðk
ffiffiffiffiffiffiffi
��0

p
; �=�0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðk; �ÞRðk; �0Þ

p
~C�: (30)

This is based on the correlators being quadratic quantities
and includes an appropriate compensation factor for each
of the 2 times involved, which in practice must be nearly
equal for the scaling function to be significant, while in the
equal-time case this simply returns the power-law fit.

E. CMB calculations and UETC eigenfunction
decomposition for small scales

As explained in Sec. II, having determined the UETC

scaling functions ~Cðk ffiffiffiffiffiffiffi
��0

p
; �=�0Þ, we decompose them into

a sum of terms involving functions of a single variable
~cnðk�Þ, which then act as the sources of metric perturba-
tions in the CMB calculations. Each function hence corre-
sponds to one term in the sum for the CMB temperature or
polarization power spectra.
The following discussion is simplified if we discuss

initially only the tensor case, for which we require a single
UETC that is symmetric under the exchange of � and �0.
Since we can only represent ~cnðk�Þ numerically at discrete
k� values �i (with i ¼ 1; . . . ;M), then this step boils down
to the decomposition of a real and symmetric M�M

matrix ~Cij ¼ ~Cð ffiffiffiffiffiffiffiffiffiffi
�i�j

p
; �i=�jÞ, the eigenvectors of which

form an orthonormal set. It can hence be seen that the
decomposition:

~C ij ¼
XM
n¼1

�n~cni~cnj; (31)

is equivalent to determining the eigenvalues �n and eigen-

vectors ~cni of the matrix ~Cij. In the scalar case, the situation

is more complex but the discussion proceeds similarly,3

while in the vector case we apply the decomposition to

k2
ffiffiffiffiffiffiffi
��0

p
~C.

In BHKU we found that accurate results over the rele-
vant angular scales were obtained with M ¼ 512 and
�M ¼ 200, while only the terms with the 128 highest
j�nj values were needed. However, here we wish to include
the high-k� tails of the UETCs out to k�	 5000, but the
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FIG. 8. Results for all five equal-time scaling functions multi-
plied by k� [or ðk�Þ3 in the vector case], with power-law fits over
the range k� ¼ 50 ! 100 (between the two vertical lines). The
uppermost line is for ~CS

11, then of the middle pair of lines the
black one is ~CS

22 and the gray one is j ~CS
12j, and finally of the

lower pair the black one is ~CV and the gray one if ~CT. A
horizontal fit line would indicate that ~C (or ðk�Þ2 ~CV in the vector
case) varies as 1=k�.

3In the scalar case there are two source functions ~S� and ~S�
between which there is a finite correlation. To deal with this we
form a 2M� 2M symmetric matrix by tiling ~CS

11,
~CS
12,

~CS
21 and

~CS
22 and then take ~S� to be the first M elements of the eigen-

vector and ~S� to be the second half (see BHKU). However, this
barely changes the present discussion of small scales
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narrow width of the equal-time ridge requires �� � 1 and
hence we would requireM	 5000. Additionally, the small
amplitude of the tails implies that their signal is likely to be
contained in eigenvectors with very low eigenvalues, and
therefore we would need to include all terms in our CMB
calculations. Because of the nature of the sources, each
Einstein-Boltzmann integration is much slower than the
corresponding primordially-seeded calculation required
for CMB predictions from inflation and hence this process
would be particularly time consuming. Further, the contri-
butions to the CMB power spectrum in our target range
2 � ‘ � 4000 from extremely high k� are minor, while
our knowledge of the UETCs on such scales is only via
the above power-law extrapolations.

We proceed instead by performing the decomposition in
such way that each ‘‘eigenvector’’ is localized in k�, since
we then have an immediate understanding of how it
contributes to the CMB power spectra. First, we arrange
for all of the dominant horizon and superhorizon power
(k� & 100) to be contained within a particular set of
eigenvectors, which then completely dominate the CMB
temperature power spectrum for multipoles ‘ & 1000, but
their contributions decay for smaller angular scales.
Second, the simple form of the UETC scaling functions
on subhorizon scales allows us to obtain a knowledge of
the CMB contributions from extremely high k� values by
combining our calculations for moderate k� values with
approximate scaling laws, as explained momentarily.

The k� localization is achieved by noting that the rapid
decay of the scaling functions for unequal times means that
~Cij can be approximated as the sum

~C ij �
X
m

~Cm
ij; (32)

where, as indicated in Fig. 9, ~Cm
ij is finite only for �m � i,

j < �mþ2, with the �n chosen to yield an array of over-
lapping matrix blocks which cover the important regions of
the k�-k�0 plane: horizon scales and the subhorizon equal-
time ridge. In the regions of overlap, the UETC power is
shared between the two matrix blocks such that the con-
tribution from a given block varies smoothly from zero at
the extremes of the corresponding k� range, up to full at
the block center. As a result of this construction, each
component matrix Cm

ij has eigenvectors ~cmn
i which have

the desired locality in k�, being finite only for �m � i <
�mþ2, while there are �mþ2 � �m eigenvectors for each
block. We chose the �m values and k� spacing such that the
first block is finite only for k� < 100, while the subsequent
blocks have width �ðk�Þ ¼ 20, as indicated in Fig. 9.

Importantly, the content in all of the higher blocks is of
the same form: a ridge of given width with a central height
that decays by a fraction 	�k�=k� across the block (in
addition to the decays required to share power between
overlapping submatrices). So long as �k� � k�, then the
	1=k� power-law decay has minimal impact and the

differences between the higher blocks are effectively just
translation in k� and a change in normalization. That is, the
eigenvectors are effectively translated in k� while the
eigenvalues absorb the normalization change.
When our modified version of CMBEASY is applied to the

eigenvalues and eigenvectors from the higher blocks, the
temperature and polarization power spectra returned also
have effectively the same form, except for the approximate
rescaling:

P m
‘ ¼ ‘ð‘þ 1ÞCm‘ � fð‘=�mÞ

�

m

; (33)

where �m is the central k� value of the mth block while

 � 2 is a constant to be determined. This is illustrated for
the vector mode in Fig. 10. It can also be seen that the
contribution from a given block rises as approximately / ‘
up to a plateau for ‘ � �m ! 200�m before rapidly decay-
ing for higher ‘. The key point is that given this scaling, we
can find an approximation to the CMB power spectrum
contribution from k� values beyond the maximum value
for which we perform full calculations �full, by simply
summing over many such rescaled forms until the desired
accuracy is reached. The total power spectrum is hence

P ‘ ¼
Xmfull

m¼1

Pm
‘ þ Xmmax

m¼mfullþ1

fð‘=�mÞ
�

m

; (34)

which is shown in Fig. 11 for the scalar mode.
Furthermore, since Pm

‘ decays rapidly for ‘ * 200�m,

FIG. 9. The blockwise coverage of the k�� k�0 plane. A large
primary block contains the dominant UETC data at near- and
superhorizon scales (k� < 100). Then smaller blocks of side
�ðk�Þ ¼ 20 cover the diagonal, with overlapping to aid cover-
age. The gray-scale image shows the coherence function ~DS

11 to

illustrate that these patches cover the region over which the
UETC is significant, with light colors indicating higher values.
The dark outer region indicates the region for which we extrapo-
late the coherence function, as in Fig. 5.
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then we may extrapolate the sum for ‘ ! 1 with mmax !
1 by approximating it as an integral, which then varies as

P ‘ / 1

‘
�1
; (35)

independent of the detailed form of the function fð‘Þ. For

 � 2, this yields roughly the 1=‘ form expected at very
small angular scales due to the GKS effect [33], as will be
discussed in Sec. IVA2. For the scalar, vector, and tensor
modes, respectively, we find 
 ¼ 2:5, 1.9, and 1.7 and we
hence tentatively predict that the CMB contributions from
each vary as ‘�1:5, ‘�0:9, ‘�0:7 at very high ‘ (see next
section).
Note that the use of this approximate rescaling property

is applied only to k� values for which our knowledge of
the UETC scaling functions is arrived at via power-law
extrapolation. That is, we perform full CMB calculations
for the range of k� for which the simulations provide direct
information, and it is fortunately the case that these provide
the overwhelmingly dominant contribution for scales ‘ &
1500, while in the present article we are limiting ourselves
to ‘ � 4000 and hence the extrapolations made are fairly
reliable.

IV. CMB RESULTS

A. Temperature power spectrum

1. Results

We present our final CMB power spectrum results for
cosmological parameters: h ¼ 0:72, �bh

2 ¼ 0:214, and
�� ¼ 0:75, which match those used in BHKU and the
central values from non-CMB measurements [66–68]. We
additionally assume an optical depth to last-scattering of
� ¼ 0:1, which again matches BHKU. For the case of the
temperature power spectrum these are shown in Fig. 12.
The form is essentially that found in BHKU: at low ‘ there
is a roughly / log‘ rise up to a broad peak between ‘ �
30 ! 700 (75% of peak), with the peak itself at ‘ � 400.
At greater ‘ the spectrum decays, initially as roughly 1=‘2,
but this then slows to roughly 1=‘ for ‘ * 3000, which is
more clearly evident in Fig. 13.
The reason for this change in behavior can be seen in

Fig. 14, in which we compare our results to those in which
the cosmic string sources are artificially zeroed for times
prior to recombination. This zeroing can be seen to remove
from the signal a contribution that dominates for ‘ �
500 ! 2000 over a smaller signal that is sourced at later
times and that has the approximate 1=‘ form. That is, the
early-time signal is Silk-damped at small scales such that
the late-time signal is revealed and dominates for ‘ *
3000. Note that this decomposition into pre- and post-
recombination is ambiguous since decoupling is not
instantaneous and additionally we require the scalar and
vector sources to be temporally differentiable, implying
that we must have a gradual transition from zero to the
nominal source value. These are responsible for the small
difference in amplitude between the two power laws seen
in the figure.
Although the aim of our calculations was merely to

obtain results at ‘ � 4000 that are accurate enough to
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power spectrum as the maximum included k� value is increased.
From bottom to top in the plot these correspond to the k� & 150,
k� & 300, k� & 550 and finally k� & 5000. Results shown by
thin solid grey lines are from full CMB calculations, while the
thick grey dashed and thick black solid lines correspond to
results obtained using the rescaling property for k� * 150.
The power-law extrapolation is shown by the thin dashed line
and is a reasonably accurate description of the final k� & 5000
result for ‘ * 3000.
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allow reliable comparison against observational data, it is
also interesting to note what expectations we have for ‘ >
4000. As discussed in the previous section, the ‘ ! 1
limit of the Eq. (34) sum suggests the contributions vary
as ‘�p, where p ¼ 1:5, 0.9, and 0.7 for the scalar, vector,
and tensor modes, respectively. However, we caution
against large extrapolations using these power laws since
our simulations do not have the dynamical range required
to yield confident knowledge of the UETC power laws at
high k�, particularly in the vector and tensor cases, and that

uncertainty feeds through to the present power laws (see
Fig. 8).

2. Comparison with results from Nambu-Goto strings

Firstly our results obtained for small angular scales are
in broad agreement with analytical expectations from the
GKS effect using a Gaussian model of a Nambu-Goto
string network [33], which predicts a 1=‘ dependence in
the small-scale limit. That model would have yielded ETC
functions behaving as 1=k� at small scales, which is not
precisely as seen in our simulations.
Further, this approximate dependence has also been

confirmed in work based upon high resolution Nambu-
Goto simulations by Fraisse et al. (2008) [39]. While the
Nambu-Goto simulation result stems from a method that
does not include recombination and hence only includes
the effects of strings after last-scattering, their results
reveal a 1=‘0:9 variation in the power spectrum over the
range 400 & ‘ & 104. Their calculations are hence most
comparable4 to our results in Fig. 14, when we artifi-
cially zeroed our string sources until decoupling, which
also indicate a power-law dependence for ‘ * 400.
Importantly, our full results demonstrate for the first time
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FIG. 12. The CMB temperature power spectrum determined
from s ¼ 0 simulations and incorporating estimated UETC
power for k� & 5000. The plot shows the total (thick line)
plus the decomposition (thin lines) into scalar (S), vector (V),
and tensor (T) modes.
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FIG. 13. Results for ‘3C‘, highlighting the form of the power
spectrum at high ‘. The plot shows the total (thick line) plus the
decomposition (thin lines) into scalar (S), vector (V), and tensor
(T) modes. Additionally, the right of the figure shows the results
of our tentative power-law extrapolations to ‘ > 4000.
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FIG. 14. The string contribution to the temperature power
spectrum when including the string sources only after recombi-
nation (thin) or at all times (thick), with the difference between
the two additionally shown (dashed). Recombination is not
instantaneous and additionally the string source functions must
be temporally differentiable and thus must be gradually switched
on, hence this decomposition is ambiguous and there is an
artificial reduction in the amplitude of the power law at high ‘
for the post-recombination results.

4Note that in contrast with Fraisse et al., even these results still
include the effects of perturbations induced in the matter by the
string sources and do not make use of the flat-sky approximation,
hence they are still not including exactly the same CMB physics.
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at which angular scales this � 1=‘ dependence is valid,
namely ‘ * 3000—scales finer than a few arc minutes.

At angular scales near the peak of the spectrum
(‘	 400) there are no recently published results from
Nambu-Goto simulations against which we can compare
our results, with Contaldi et al. (1999) [40] providing the
only example of such work. However, this employed
Minkowski space-time simulations plus now outdated cos-
mological parameters and therefore a detailed comparison
is not appropriate. The basic form of our spectrum is in
good agreement with their results, although their power
spectrum shows a shift to higher ‘ compared to those
presented here. Further, their results suggest that Nambu-
Goto networks yield CMB predictions with a larger overall
normalization. This is also seen by comparing to power
spectra calculated from FRW Nambu-Goto simulations
and modern cosmological parameters, but which are valid
only for discrete multipole ranges (and miss the ‘	 400
peak) [38,69]. Nambu-Goto strings would require G� �
0:7� 10�6 in order to fit observations at ‘ < 10 [38],
while we would require G� ¼ 1:8� 10�6 to match the
WMAP5 result at ‘ ¼ 10. This is not unexpected given the
simulation results and, as shown in Table I, Nambu-Goto
calculations yield higher string densities than field theo-
retic ones, raising the power spectrum normalization and
shifting power to smaller scales. We believe this density
difference is because field theory simulations provide a
decay channel, namely, radiative decay, which is not in-
cluded the Nambu-Goto codes. Despite this, the Fraisse
et al. result for ‘ð‘þ 1ÞC‘=ðG�Þ2 at ‘ ¼ 4000 is � 25,
which compares favorably to our result of 20 at this multi-
pole. This may be due to ambiguities associated with their
noninclusion of recombination rather than a real agreement
in the amplitude of the power law.

As discussed in the introduction, the USM is a computa-
tionally cheap means of estimating the CMB power spec-
trum, and this has also been used to study the string
contribution at sub-WMAP angular scales with the USM
parameters set to approximate a Nambu-Goto network.
The published work [43] highlighted a 1=‘2 dependence
near ‘	 2000, but a more recent look at greater ‘
prompted by our results does indeed reveal an approxi-
mately 1=‘ variation in the USM power spectrum above
‘	 3000 [70].

3. Comparison with the contribution from inflation

It is of course useful to compare the cosmic string power
spectrum with that from inflation, to which it should be
added.5 This comparison is eased if we give the string
contribution an artificially high normalization such that it

is equal to the inflationary contribution at ‘ ¼ 10 and then
set both to be equal to the value observed byWMAP at that
multipole, as in Fig. 15. It can be seen that while the string
contribution approximately tracks the troughs in the infla-
tionary contribution for ‘ < 1500, the exponential suppres-
sion of the inflationary contribution at high-‘ means that
the string component grows in relative size, and dominates
for ‘ * 2000. Switching to a more realistic string contri-
bution, with one-tenth of the previous normalization, this
domination is delayed until ‘ � 3500, but importantly the
fraction of the total theoretical spectrum due to strings f‘
increases from f1500 � 0:1 to f3500 ¼ 0:5 and therefore
accurate data at ‘ * 2000 should in principle be highly
sensitive to cosmic strings.
However, these are the same angular scales for which

the Sunyaev-Zel’dovich (SZ) effect [72] begins to make a
significant contribution to the temperature power spectrum
at certain observational frequencies. This contribution
results from the distortion of the blackbody spectral profile
as the CMB photons pass through galaxy clusters and
Compton scatter off hot electrons. In Fig. 15 we plot the
predictions made by Komatsu and Seljak [73], normalized6

for the two frequency bands observed by the QUAD
project [29], namely, 100 and 150 GHz. It can be seen
that the string contribution with f10 � 0:1 is likely to be
shrouded, even at high ‘, when measurements are made at
low frequencies, but in observational bands near 220 GHz,
the SZ effect is suppressed. Unfortunately, higher frequen-
cies have a greater contribution from unresolved point
sources [30] and in practice observations at a number of
frequencies will be required in order to understand the
frequency-dependent contributions and remove them to
yield a high sensitivity to the frequency-independent cos-
mic string component from temperature power spectrum
measurements alone.

B. Polarization power spectra

CMB polarization anisotropies differ from those for
temperature in that they are created almost exclusively
at recombination. Since the polarization is caused by
Thompson scattering in the presence of a quadrupole
anisotropy, the universe must be ionized in order to create
it, but with Thompson scattering still weak enough for
it not to have suppressed the quadrupole too heavily.
Polarization is hence created only very close to recombi-
nation, and also weakly during the recent reionized epoch.
As a result, the polarization signal comes primarily from
horizon-scale UETC power impacting at times close to
recombination. The contributions from high k� near last
scattering are outside our window of interest ‘ � 4000 and
are suppressed by Silk damping. Further, the contributions

5We calculate the inflationary contribution using CAMB [71],
with the same parameters as used in the string calculations and
also ns ¼ 1:0, while assuming negligible contributions from
primordial gravity waves.

6The plotted SZ spectrum was calculated for �bh
2 ¼ 0:023

and 
8 ¼ 0:8 and scales in normalization as roughly ð�bhÞ2
7
8

[73].
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from high k� at recent times are negligible because there is
little UETC power at such scales and the reionization
contribution is secondary in importance. Our present re-
sults, shown in Fig. 16, therefore add little new information
for CMB polarization from strings beyond our previous
results [22,24].

However, for completeness, it should be noted that while
the string contribution is subdominant for all scales in the
E-mode polarization spectrum (EE) and the cross correla-
tion of temperature with the E-mode (TE), it may dominate
the B-mode polarization spectrum (BB) for scales ‘ < 400.
This is possible because the inflationary scalar mode con-
tributes to the BB spectrum only via weak gravitational
lensing, which converts EE power into BB, whereas in the
string case there are large vector and tensor mode contri-
butions to the energy-momentum tensor, with the vector-
mode being the most important contribution to the string
BB signal for ‘ * 180. Furthermore, our results indicate
that the string contribution peaks at significantly lower ‘
than the weak-lensing contribution, which should readily
prevent confusion between the two, while the weak-lensing
contaminant can also be partially removed [74]. Note that
we find a BB peak from strings that is at larger scales than
is seen in USM results when that model is set to approxi-
mate Nambu-Goto simulations [46,48], as expected given
our lower string densities, and that the USM Nambu-Goto
results suggest more confusion with the weak-lensing sig-
nal. It is also possible that the inflationary tensor mode may
make a sizeable contribution to the BB spectrum at very

large angular scales, as shown in Fig. 16, but its normal-
ization depends on the details of the inflationary model and
is poorly constrained by current data. Awealth of B-mode
data will soon be available and promises to be highly
sensitive to cosmic strings [24,46,74,75].

V. CONCLUSIONS

We have presented the first calculation of the cosmic
string CMB temperature power spectrum contribution that
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FIG. 16. A comparison between the string contribution (thick
line) to the CMB temperature and polarization power spectra
with the adiabatic scalar contribution from inflation (thin line).
The normalization of the string component is set at f10 � 0:1,
while the inflationary scalar contribution uses the same settings
as in Fig. 15. For the BB spectrum we also plot the possible
contribution from the inflationary tensor mode (dot-dashed line),
normalized at its 95 upper limit [82].
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is accurate over the multipole range ‘ ¼ 2 ! 4000, a
range that encloses the scales probed by the Planck satellite
(‘ ¼ 2 ! 2500) and additionally scales at which suborbi-
tal data are becoming increasingly accurate. Further, we
show that at ‘	 3000 there is a knee in the power spectrum
result due to the exponential decay of the early time con-
tribution at small angular scales, which then reveals the
post-recombination component. This late-time contribu-
tion varies as roughly 1=‘, which is the basic expectation
for the GKS effect [33]. Our results yield values for the
power-law exponent for each of the scalar, vector and
tensor contributions to the overall high-‘ behavior and
can, in principle, be used to estimate the temperature
contribution from strings for ‘ > 4000. However this
extrapolation must be performed with caution since our
simulations do not have the dynamic range to yield these
power laws with great confidence.

Our results indicate that the size of the cosmic string
signal in the temperature power spectrum, relative to the
adiabatic inflationary component, is roughly 10 times
greater at ‘ � 3500 than it is at ‘ � 10 or ‘ � 400–1500
and therefore small angular scales are particularly impor-
tant for cosmic strings. While it is true that other con-
tributions also become significant at small scales, for
example, the Sunyaev-Zel’dovich effect, such effects are
frequency dependent and hence can be identified and sub-
tracted. Further, our results are not limited to temperature
anisotropies but include polarization also, which is of great
future importance for strings in the case of the B-mode. We
present a comparison of our temperature and polarization
results to the latest data in a separate, shorter article [76].

Our simulations also yield greater knowledge of the
scaling properties of Abelian Higgs string networks, with
improvements in the accuracy of results such as the scaling
density and the UETCs. Additionally, we have measured
the coherence function for Abelian Higgs strings for the
first time, the form of which is important for calculations of
this kind.

That our results stem from the Abelian Higgs model
means, of course, that they are not necessarily accurate for

cosmic superstrings (see e.g. [10] for a review). These
superstrings may have intercommutation probabilities sig-
nificantly lower than that for gauge strings and additionally
may form Y-shaped junctions, which do not form in the
Abelian Higgs model for the parameters chosen here.
While small-scale structure on the strings has been shown
to lessen the impact of the intercommutation probability
[77], the effect of Y-junctions on the network properties is
highly uncertain. Both effects are likely to increase the
string density and decrease the interstring distance,
resulting in a shift of the peak in the CMB signal to greater
‘ values. This may, therefore, enable superstrings to be
distinguished from conventional cosmic strings should
a string component in the CMB be detected in future
data.
Finally, we note that the power spectrum is not a com-

plete statistical description of the anisotropies that would
be seeded by cosmic strings, since there would be a sig-
nificant non-Gaussian character created by the GKS effect.
Higher order moments such as the bispectrum, trispectrum,
and skewness have been calculated [78–81], in addition to
realizations of CMB maps [44,69]. While these calcula-
tions are challenging and either do not include recombina-
tion or are valid only for very limited multipole ranges,
non-Gaussianity is an exciting channel for future cosmic
string constraint or detection.
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