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We explore consequences of the recently discovered duality between color and kinematics, which states

that kinematic numerators in a diagrammatic expansion of gauge-theory amplitudes can be arranged to

satisfy Jacobi-like identities in one-to-one correspondence to the associated color factors. Using on-shell

recursion relations, we give a field-theory proof showing that the duality implies that diagrammatic

numerators in gravity are just the product of two corresponding gauge-theory numerators, as previously

conjectured. These squaring relations express gravity amplitudes in terms of gauge-theory ingredients,

and are a recasting of the Kawai, Lewellen, and Tye relations. Assuming that numerators of loop

amplitudes can be arranged to satisfy the duality, our tree-level proof immediately carries over to loop

level via the unitarity method. We then present a Yang-Mills Lagrangian whose diagrams through five

points manifestly satisfy the duality between color and kinematics. The existence of such Lagrangians

suggests that the duality also extends to loop amplitudes, as confirmed at two and three loops in a

concurrent paper. By ‘‘squaring’’ the novel Yang-Mills Lagrangian we immediately obtain its gravity

counterpart. We outline the general structure of these Lagrangians for higher points. We also write down

various new representations of gauge-theory and gravity amplitudes that follow from the duality between

color and kinematics.
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I. INTRODUCTION

A key lesson from studies of scattering amplitudes is
that weakly coupled gauge and gravity theories have a far
simpler and richer structure than is evident from their usual
Lagrangians. A striking example of this is Witten’s remark-
able conjecture that scattering amplitudes in twistor space
are supported on curves of a degree controlled by their
helicity and loop order [1]. At weak coupling another
remarkable structure visible in on-shell tree amplitudes is
the Kawai-Lewellen-Tye (KLT) relations, which express
gravity tree-level amplitudes as sums of products of gauge-
theory amplitudes [2,3]. These relations were originally
formulated in string theory, but hold just as well in field
theory. In fact, in many cases, they hold even when no
string theory lives above the field theory [4].

The KLT relations have recently been recast into a much
simpler form in terms of numerators of diagrams with only
three-point vertices. In the new representation the diagram-
matic numerators in gravity are simply a product of two
corresponding gauge-theory numerators [5]. Underlying
these numerator ‘‘squaring relations’’ is a newly conjec-
tured duality between kinematic numerators of gauge the-
ory and their associated color factors, by Carrasco,
Johansson, and one of this paper’s authors (BCJ). The
BCJ duality states that gauge-theory amplitudes can be
nontrivially rearranged into a form where diagrammatic
numerators satisfy a set of identities in one-to-one corre-
spondence to the Jacobi identities obeyed by color factors.
The duality appears to hold in large classes of theories
including pure Yang-Mills theory andN ¼ 4 super-Yang-

Mills (SYM). At four points the duality is automatically
satisfied, as noted 30 years ago [6] to explain certain zeros
in cross sections. BCJ also conjectured that the numerators
of gravity diagrams are simply the product of two corre-
sponding gauge-theory numerators that satisfy the duality.
These squaring relations were verified in Ref. [5] at tree
level up to eight points. Interestingly, the duality also leads
to a set of nontrivial relations between gauge-theory am-
plitudes [5], which are now well understood in string
theory [7]. The numerator duality relations have also
been understood from the vantage point of string theory
[8–10]. In particular, the heterotic string offers important
insight into these relations, because of the parallel treat-
ment of color and kinematics [9].
In this paper we describe two complementary ap-

proaches to developing a field-theory understanding of
the duality between color and kinematics, and its relation
to gravity as two copies of gauge theory. In the first
approach we use Britto-Cachazo-Feng-Witten (BCFW)
on-shell recursion relations to prove that the squaring
relations are satisfied if the numerators of gauge-theory
diagrams satisfy the BCJ duality. Our proof is inductive,
starting with three points where it is simple to verify the
double-copy property for candidate gravity theories. For
higher points, we apply the BCFW recursion relations to
gauge-theory amplitudes whose numerators are arranged
to satisfy the duality. The BCFW recursion relations, how-
ever, in general do not respect the duality. This requires us
to apply a ‘‘generalized gauge transformation’’ to rear-
range terms in the recursion relation in a way that restores

PHYSICAL REVIEW D 82, 065003 (2010)

1550-7998=2010=82(6)=065003(17) 065003-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.065003


the duality, which is a key ingredient in our proof. These
generalized gauge transformations correspond to the most
general rearrangements of amplitude numerators that do
not alter their values. (Such transformations need not cor-
respond to gauge transformations in the traditional sense.)
To apply this to gravity we make use of the fact that BCFW
recursion relations for color-dressed gauge-theory ampli-
tudes [11] are closely related to the gravity ones [12]. By
also applying a generalized gauge transformation to the
BCFW recursion relation in gravity, we show that the
squaring relations indeed reproduce the gravity amplitude
correctly.

The generalized gauge invariance contains an enormous
freedom in rearranging amplitudes, and for some rear-
rangements the squaring relations between gravity and
gauge theory hold. Such generalizations of the squaring
relations at five points were discussed in Refs. [9,10]. Here
we present an all-n generalization of the squaring relations
given in an asymmetric form, in which only one of the two
sets of gauge-theory numerators is required to satisfy the
BCJ duality.1

In our second approach to understand the color-
kinematics duality, we use a more traditional Lagrangian
viewpoint. A natural question is: what Lagrangian gener-
ates diagrams that automatically satisfy the BCJ duality?
We shall describe such a Lagrangian here, and present its
explicit form up to five points, leaving the question of the
more complicated explicit higher-point forms to the future.
We have also worked out the six-point Lagrangian and
outline its structure, and make comments about the all-
orders form of the Lagrangian. We find that a covariant
Lagrangian whose diagrams satisfy the duality is neces-
sarily nonlocal. We can make this Lagrangian local by
introducing auxiliary fields. Remarkably we find that, at
least through six points, the Lagrangian differs from ordi-
nary Feynman gauge simply by the addition of an appro-
priate zero, namely, terms that vanish by the color Jacobi
identity. Although the additional terms vanish when
summed, they appear in diagrams in just the right way so
that the BCJ duality is satisfied. Based on the structures we
find, it seems likely that any covariant Lagrangian where
diagrams with an arbitrary number of external legs satisfy
the duality must have an infinite number of interactions.

In Ref. [14], the problem was posed of how to construct
a Lagrangian that reflects the double-copy property of
gravity. That reference carried out some initial steps, show-
ing that one can factorize the graviton indices into ‘‘left’’
and ‘‘right’’ classes consistent with the factorization ob-
served in the KLT relations. (See also Ref. [15].)
Unfortunately, beyond three points the relationship of the
constructed gravity Lagrangian to gauge theory was rather

obscure. As it turns out, a key ingredient was missing: the
duality between color and kinematics, which was discov-
ered much later [5]. Using the modified local version of the
gauge-theory Lagrangian whose Feynman diagrams re-
spect the BCJ duality, we construct a Lagrangian for
gravity valid through five points, as a double copy of the
gauge-theory one. The likely appearance of an infinite
number of interactions in the modified gauge-theory
Lagrangian is perhaps natural, because we expect any
covariant gravity Lagrangian to also have an infinite num-
ber of terms.
The unitarity method [16] immediately implies that

gravity loop amplitudes must have the double-copy prop-
erty, if the corresponding gauge-theory loop amplitudes
can be put in a form that satisfies the BCJ duality, as does
indeed appear to be the case [13]. The squaring relations
then apply to gravity numerators for any value of loop
momenta, i.e. with no cut conditions applied. This is to
be contrasted with the KLT relations, which are valid only
at tree level, and can be applied at loop level only on
unitarity cuts that decompose loop amplitudes into tree
amplitudes [17]. The KLT relations take a different func-
tional form for every cut of a given amplitude, depending
on the precise tree-amplitude factors involved in the cut.
The squaring relations, on the other hand, take a simple
universal form for any choice of loop momenta.
We also present a simple application of the BCJ duality.

Since the BCJ duality states that diagrammatic numerators
have the same algebraic structure as color factors, we can
immediately make use of different known color represen-
tations of amplitudes to write dual formulas where color
and kinematic numerators are swapped. In particular,
Del Duca, Dixon, and Maltoni [18] have given a color
decomposition of tree amplitudes using adjoint-
representation color matrices. They derived this color de-
composition using the color Jacobi identity and Kleiss-
Kuijf relations [19]. By swapping color and numerator
factors in their derivation, we immediately obtain novel
forms of both gauge-theory and gravity tree amplitudes.
This paper is organized as follows. In Sec. II we review

BCJ duality. We discuss invariances of the amplitudes in
Sec. III, and also present a new asymmetric form of the
squaring relations. We give our proof that the kinematic
diagrammatic numerators for gravity are double copies of
the gauge-theory ones in Sec. IV. Then, in Sec. V, we turn
to the question of constructing a gauge-theory Lagrangian
that generates Feynman diagrams that respect the BCJ
duality. A few simple implications of BCJ duality are given
in Sec. VI.

II. REVIEW OF BCJ DUALITY

A. General considerations

Consider a gauge-theory amplitude, which we write in a
diagrammatic form,

1H. Johansson independently realized that only one set of
numerators needs to satisfy the BCJ duality to obtain gravity
from the numerator squaring relation; see Ref. [13] for a non-
trivial loop-level application.
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1

gn�2 A
tree
n ð1; 2; 3; . . . ; nÞ ¼ X

diags:i

niciQ
�i

s�i

; (2.1)

where the sum runs over all diagrams i with only three-
point vertices, the ci are color factors, the ni are kinematic
numerators, and the s�i

are the inverse propagators asso-

ciated with the channels �i of the diagram i. Any gauge-
theory amplitude can be put into this form by replacing
contact terms with numerator factors canceling propaga-
tors, i.e. s�=s� and assigning the contribution to the proper
diagram according to the color factor. The value of the
color coefficient ci of each term is obtained from the
diagram i by dressing each three-point vertex with a struc-

ture constant ~fabc, where

~f abc � i
ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ; (2.2)

and dressing each internal line with �ab.

A key property of the ~fabc is that they satisfy the Jacobi
identity. Consider, for example, the color factors of the
three diagrams illustrated in Fig. 1. They take the sche-
matic form,

cs � . . . ~fa1a2b ~fba3a4 . . . ; ct � . . . ~fa1a4b ~fba2a3 . . . ;

cu � . . . ~fa1a3b ~fba4a2 . . . ; (2.3)

where the ‘‘. . .’’s signify factors common to all three dia-
grams. The color factors then, of course, satisfy the Jacobi
identity

cs þ ct þ cu ¼ 0: (2.4)

Here we have chosen a sign convention2 that differs from
Ref. [5].

The BCJ conjecture states that numerators ni can always
be found that satisfy Jacobi relations in one-to-one corre-
spondence with the color Jacobi identities,

ci þ cj þ ck ¼ 0 ) ni þ nj þ nk ¼ 0; (2.5)

where i, j, and k label diagrams whose color factors are
related by a Jacobi identity. (In general the relative signs
between the color factors in all Jacobi identities cannot be
taken to be globally positive, but according to the BCJ
conjecture the relative signs always match between the
color and kinematic identities.) In addition, BCJ duality
also requires that the ni satisfy the same self-antisymmetry
relations as the ci. That is, if a color factor is antisymmetric
under an interchange of two legs, the corresponding nu-
merator satisfies the same antisymmetry relations,

ci ! �ci ) ni ! �ni: (2.6)

We note that when the color-ordered partial amplitudes are

expressed in terms of numerators satisfying these self-
antisymmetry relations, they automatically satisfy the
Kleiss-Kuijf relations [18,19] between color-ordered par-
tial amplitudes [5]. Here we will also assume that local
numerators exist which satisfy the BCJ duality. For pure
Yang-Mills amplitudes through six points, we have con-
firmed the existence of such numerators by explicitly con-
structing them.

B. Five-point example and generalized Jacobi-like
structures

Consider the five-point case as a simple example, dis-
cussed already in some detail from various viewpoints in
Refs. [5,8–10]. At 5 points there are 15 numerators and 9
independent duality relations, leaving 6 numerators. Of
these remaining numerators, 4 can be chosen arbitrarily
due to a ‘‘generalized gauge invariance.’’ By choosing the
remaining two ni to correctly give two of the partial
amplitudes, nontrivial relations between color-ordered am-
plitudes can be derived from the condition that the remain-
ing partial amplitudes are also reproduced correctly. For
example,

s35A
tree
5 ð1; 2; 4; 3; 5Þ � ðs13 þ s23ÞAtree

5 ð1; 2; 3; 4; 5Þ
� s13A

tree
5 ð1; 3; 2; 4; 5Þ ¼ 0: (2.7)

This relation has generalizations for an arbitrary number of
external legs [5], which have been derived using string
theory [7].
As discussed in Refs. [9,10], Eq. (2.7) is equivalent to a

relation that exhibits a Jacobi-like structure,

n4 � n1 þ n15
s45

� n10 � n11 þ n13
s24

� n3 � n1 þ n12
s12

� n5 � n2 þ n11
s51

¼ 0; (2.8)

where only the sum over terms is required to vanish. In this
equation, the Jacobi-like structure involves additional mi-
nus signs because we follow the sign conventions given in
Ref. [5] for the expansion of the five-point amplitude,

FIG. 1. A Jacobi relation between color factors of diagrams.
According to the BCJ duality the diagrammatic numerators of
amplitudes can be arranged so that they satisfy relations in one-
to-one correspondence to the color Jacobi identities.

2In any given Jacobi relation the relative signs are arbitrary
since they always can be moved between color factors and
kinematic numerators.
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Atree
5 ð1; 2; 3; 4; 5Þ � n1

s12s45
þ n2

s23s51
þ n3

s34s12

þ n4
s45s23

þ n5
s51s34

;

Atree
5 ð1; 2; 4; 3; 5Þ � n12

s12s35
þ n11

s24s51
� n3

s43s12

þ n13
s35s24

� n5
s51s43

;

Atree
5 ð1; 3; 2; 4; 5Þ ¼ n15

s13s45
� n2

s23s51
� n10

s24s13

� n4
s45s23

� n11
s51s24

: (2.9)

As explained in Ref. [9,10], relations of the form (2.8) are
the natural gauge-invariant numerator identities that
emerge from string theory. Because of the generalized
gauge invariance, these relations are less stringent than
the BCJ duality. Indeed, the individual terms in Eq. (2.8)
are not required to vanish, but only their sum. We note that
the heterotic string offers some important insight into the
BCJ duality (2.5): in the heterotic string both color and
kinematics arise from world-sheet fields, making the dual-
ity more natural [9]. Identities of the form (2.8), though
interesting, will not play a role in the analysis below. In the
remainder of this paper we will only be concerned with
numerators ni that satisfy the more stringent BCJ-duality
requirements of Eq. (2.5).

C. Gravity squaring relations

Another conjecture in Ref. [5] is that gravity tree am-
plitudes can be constructed directly from the ni through
‘‘squaring relations.’’ Consider two gauge-theory ampli-
tudes,

1

gn�2 A
tree
n ð1; 2; 3; . . . ; nÞ ¼ X

diags:i

niciQ
�i

s�i

;

1

~gn�2
~Atree

n ð1; 2; 3; . . . ; nÞ ¼ X
diags:i

~ni~ciQ
�i

s�i

:

(2.10)

These two amplitudes do not have to be from the same
theory, and can have differing gauge groups and particle
contents. In Ref. [5] the requirement that both the ni and
the ~ni satisfy the BCJ duality was imposed, i.e. they satisfy
all duality conditions ni þ nj þ nk ¼ 0 and ~ni þ ~nj þ
~nk ¼ 0. The conjectured squaring relations state that grav-
ity amplitudes are given simply by

�i

ð�=2Þn�2 M
tree
n ð1; 2; 3; . . . ; nÞ ¼ X

diags:i

ni~niQ
j
s�i

; (2.11)

where the sum runs over the same set of diagrams as in
Eq. (2.10). The states appearing in the gravity theory are
just direct products of gauge-theory states, and their inter-
actions are dictated by the product of the gauge-theory

momentum-space three-point vertices. The squaring rela-
tions (2.11) were explicitly checked through eight points
and have recently been understood from the KLT relations
in heterotic string theory [9].
Using standard factorization arguments it is simple to

see why one would expect the BCJ duality to imply that
gravity numerators are a double copy of gauge-theory
numerators. Let us assume that the numerators of all
n-point gauge-theory amplitudes (2.1) satisfy the BCJ
duality (2.5). Let us also assume that we have already
proven that the squaring relations (2.11) hold for ampli-
tudes with fewer legs. Consider an ansatz for the n-point
graviton amplitude given in terms of diagrams by the
double-copy formula (2.11). We now step through all
possible factorization channels using real momenta. By
general field-theory considerations we know that in each
channel the diagrams break up into products of lower-point
diagrams. The sum over diagrams on each side of the
factorization pole forms a lower-point amplitude. Since
each numerator factor of the n-point expression satisfies
the duality condition, we expect the lower-point tree dia-
grams on each side of the factorized propagator to inherit
this property when we choose special kinematics to fac-
torize a diagram. Thus on each side of the pole we have a
correct set of double-copy numerators for the lower-point
gravity amplitudes. Stepping through all factorization
channels we see that we have correct diagram-by-diagram
factorizations in all channels. This provides a strong in-
dication that the double-copy property follows from BCJ
duality. In Sec. IV, we will make this conclusion rigorous
using a BCFW construction.

III. INVARIANCES OF AMPLITUDES AND
GENERALIZED SQUARING RELATIONS

In this section we discuss the invariances of gauge-
theory and gravity amplitudes. This leads to a new, more
general squaring relation for gravity, in which the numer-
ators of only one of the gauge-theory factors are required to
satisfy the BCJ duality. (See also Ref. [13].) As already
noted, there is a substantial freedom in choosing the nu-
merators, which we will generically call generalized gauge
invariance, even though much of the freedom cannot be
attributed to conventional gauge invariance. Our proof of
the squaring relations will rely on an understanding of the
most general form of this freedom at n points.

A. Generalized gauge invariance

Consider a shift of the ~ni in Eq. (2.10),

~ni ! ~ni þ �i: (3.1)

The key constraint that the �i must satisfy is that they do
not alter the value of the amplitude, immediately leading
to,
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X
diags:i

�iciQ
�i

s�i

¼ 0: (3.2)

Any set of �i that satisfies this constraint can be viewed as
a valid generalized gauge transformation since it leaves the
amplitude invariant. Ordinary gauge transformations, of
course, satisfy this property. We may take Eq. (3.2) as the
fundamental constraint satisfied by any generalized gauge
transformation.

A key observation is that it is only the algebraic prop-
erties of the ci, and not their explicit values, that enter into
the cancellations in Eq. (3.2). This is so because the equa-
tion holds for any gauge group. Thus any object that shares
the algebraic properties of the ci will satisfy a similar
constraint. Since the numerators ni of the BCJ proposal
satisfy exactly the same algebraic properties as the ci, we
immediately have

X
diags:i

�iniQ
�i

s�i

¼ 0; (3.3)

as the key statement of generalized gauge invariance. This
holds for any �i that satisfies the constraint (3.2). In
particular, note that we do not need to require the �i to
satisfy any Jacobi-like relations.

The freedom in making these shifts leads to an enormous
freedom in writing different representations of either
gauge-theory or gravity amplitudes. In the gravity case,
besides shifts of either the ni or the ~ni, we can also shift the
ni and ~ni simultaneously as long as the interference terms
vanish as well.

B. A direct derivation of the identity

It is instructive to directly demonstrate Eq. (3.3) in a way
that goes beyond the explanation above. If we take the �i

to be local, then they move contributions between dia-
grams by canceling propagators in such a way that they
can be absorbed into other diagrams. We can thus decom-
pose each �i as

�i ¼
X
�i

�i;�i
s�i

; (3.4)

where the �i label the different propagators in diagram i.
For simplicity, here we take the �i to be local and linear in
inverse propagators, i.e. to contain no terms that are qua-
dratic or higher order in the inverse propagators s�i

. In this

case, the decomposition (3.4) is unique because the inverse
propagators of any diagram i are independent under mo-
mentum conservation.

Consider three diagrams labeled by i, j, and k whose
color factors are related by the Jacobi identity. These three
diagrams share all propagators except for one, as illustrated
in Fig. 1. For definiteness, let us denote the distinct inverse
propagators of diagrams i, j, k by s, t, and u, respectively.
Note that sþ tþ u � 0 (except for four-point ampli-

tudes). Instead, sþ tþ u is the sum of the invariant
‘‘masses’’ of the four legs that enter the two vertices
connected to the s propagator in diagram i (which is the
same as the four legs entering the vertices of propagator t in
j, etc.). If one of these legs is external, its mass vanishes.
Otherwise, this leg is another internal propagator shared by
the diagrams i, j, k and its mass simply the associated
variable s�. Denoting the invariant masses of the four
neighboring legs by s1, s2, s3, and s4, we have

sþ tþ u ¼ s1 þ s2 þ s3 þ s4: (3.5)

Any color-ordered amplitude must contain either none or
two of the diagrams i, j, k. For definiteness, consider the
color-ordered amplitude that contains the diagrams i and j.
With the sign conventions (2.5), ni and nj must enter this

color-ordered amplitude with opposite sign. The contribu-
tions of the generalized gauge transformation (3.1) to this
color-ordered amplitude is given by

�i;ssQ
�i

s�i

� �j;ttQ
�j

s�j

þ � � � ¼ �i;s ��j;tQ0
�i
s�i

þ � � � ; (3.6)

where
Q0

�i
s�i

represents the product of inverse propaga-

tors of diagram i except for s, i.e.
Q0

�i
s�i

¼ s�1
Q

�i
s�i

.

This contribution must cancel by itself, because all other
contributions, represented by the ‘‘� � �’’ in Eq. (3.6), have a
different propagator structure and are therefore indepen-
dent within this color-ordered amplitude. This indepen-
dence is true because the diagram k, which contributes to
a different ordering, is absent. [If we also had a contribu-
tion from diagram k, we could use Eq. (3.5) to relate
contributions that have distinct propagator structures.]
We conclude that �i;s ¼ �j;t. Repeating this analysis for

the other color-ordered amplitudes containing two of the
diagrams i, j, k, we obtain the constraints

�i;s ¼ �j;t; �j;t ¼ �k;u;

�i;s ¼ �k;u ) �i;s ¼ �j;t ¼ �k;u � �:
(3.7)

Now we have assembled all the ingredients to prove
(3.3). With the decomposition (3.4) for the �i, (3.3) reads

X
diags:i

nið
P
�i

�i;�i
s�i

Þ
Q
�i

s�i

¼ 0: (3.8)

Let us organize all terms in the decomposition (3.8) ac-
cording to their propagator structure. For definiteness, we
isolate the terms with the inverse propagator structureQ0

�i
s�i

. This gives

ni�i;s þ nj�j;t þ nk�k;uQ0
�i
s�i

¼ �� ni þ nj þ nkQ0
�i
s�i

¼ 0;

(3.9)

since we have taken the ni to satisfy the BCJ duality. We
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can repeat the same analysis for all other propagator struc-
tures appearing in Eq. (3.8), and each of them vanishes
separately. This then explicitly exhibits the cancellation
(3.3) for local �i with linear contact terms. For nonlocal
�i, or �i with quadratic or higher contact terms, the
cancellations are similar but more involved.

C. Generalized squaring relations

We now apply the identity (3.3) to find a generalization
of the BCJ squaring relations. The latter express the gravity
amplitude as

�i

ð�=2Þn�2 Mn ¼
X

diags:i

ni~niQ
�i

s�i

; (3.10)

where both ni and ~ni are in the BCJ representation.
Consider now a set of gauge-theory numerators ~n0i that

do not satisfy the duality relations. Defining ~�i ¼ ~n0i �
~ni, we find

�i

ð�=2Þn�2 Mn ¼
X

diags:i

ni~niQ
�i

s�i

¼ X
diags:i

�
ni~n

0
iQ

�i

s�i

� ni ~�iQ
�i

s�i

�
:

(3.11)

It follows from the identity (3.3) that the second term
vanishes. We thus conclude that

�i

ð�=2Þn�2 Mn ¼
X

diags:i

ni~n
0
iQ

�i

s�i

; (3.12)

where the ni satisfy the duality but the ~n0i do not need to.
Interestingly, such asymmetric constructions should work
just as well at loop level [13].

Note that we cannot also relax the BCJ duality condition
on the ni in (3.12). Indeed, performing an arbitrary gener-
alized gauge transformation �i on the ni would create
cross terms of the form

X
diags:i

�i~n
0
iQ

�i

s�i

� 0; (3.13)

which generically do not vanish because neither �i nor ~n
0
i

satisfy the duality relations.

IV. SQUARING RELATIONS BETWEEN GAUGE
AND GRAVITY THEORIES

We now derive the squaring relations (2.11) between
gravity and gauge theories. Our derivation requires two
gauge theories whose amplitudes have diagrammatic ex-
pansions with numerators that satisfy the BCJ duality. We
show that the corresponding gravity numerators are then
simply the product of these gauge-theory numerators. Our
proof relies on the existence of on-shell recursion relations
for both gravity and gauge theory based on the same shifted

momenta. As we will explain, this is, for example, satisfied
for the pure Yang-Mills/gravity pair in any dimension, and
for the N ¼ 4 SYM/N ¼ 8 supergravity pair in D ¼ 4.

A. Derivation of squaring relations for tree amplitudes

First, we consider the case of Einstein gravity obtained
from two copies of pure Yang-Mills theories. The direct
product of two Yang-Mills theories with (D� 2) states
each (not counting color) gives ðD� 2Þ2 states correspond-
ing to a theory with a graviton, an antisymmetric tensor and
dilaton. At tree level, however, we can restrict ourselves to
the pure-graviton sector since the other states do not enter
as intermediate states.
We will assume that one can always obtain local Yang-

Mills numerators that satisfy the BCJ duality. We will
prove inductively, using on-shell recursion relations with
the lower-point amplitudes in the BCJ representation, that
the n-point gravity numerator is the square of the n-point
Yang-Mills numerator in the BCJ representation.
For three points, the squaring relations are trivial: there

is only one ‘‘diagram’’ with no propagators, and the rela-
tion simply states [20]

�i

�=2
M3 ¼ ðA3Þ2; (4.1)

where A3 is the color-ordered Yang-Mills three-point
amplitude.
For larger numbers of external legs, we proceed induc-

tively. To carry out our derivation of the squaring relations
we make use of on-shell recursion relations. These are
derived using complex deformations of the external mo-
menta of the amplitude,

pa ! p̂aðzÞ ¼ pa þ zqa a ¼ 1; . . . ; n;

p̂2
aðzÞ ¼ 0;

Xn
a¼1

qa ¼ 0:
(4.2)

Note that both momentum conservation and the on-shell
conditions are preserved. To have valid recursion relations
we demand that both the gravity and the gauge-theory tree
amplitude vanish as we take the deformation parameter to
infinity3:

M̂nðzÞ ! 0; ÂnðzÞ ! 0; ~̂AnðzÞ ! 0 as z!1:

(4.3)

The details of this complex shift (such as the number of
shifted lines or the particular choice of qa) will not play a
role in our analysis, but we note that a large variety of shifts
that satisfy (4.3) is known [11,21]. The simplest of these

3Here, both gauge-theory factors are pure Yang-Mills ampli-
tudes and thus ~An ¼ An. However, keeping the later general-
ization to other gravity/gauge-theory pairs in mind, we do not
make use of this equality in the following discussion.
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are BCFW two-line shifts. At least one BCFW shift exists
for any choice of two external lines a and b, such that both
the gauge-theory and the gravity amplitude vanish at large
z [22]. Such shifts are also known to work in D � 4
dimensions. In our analysis we initially pick one arbitrary
(but fixed) such shift.

We also pick an arbitrary local choice of gauge-theory
numerators ni that satisfies the BCJ duality (2.5). The
assumption that such a choice exists at all is crucial for
the following derivation. As the ni are local, their complex
deformations n̂iðzÞ under the shift are polynomial in z; in
particular n̂iðzÞ has no poles in z. (To ensure this property,
one has to choose the polarization vectors such that they do
not contain poles in z.)

As a first step, let us analyze the recursion relation for
the gauge-theory amplitude An that arises from the com-
plex shift. The amplitude contains poles at values z ¼ z�
where an internal propagator 1=s� goes on shell, i.e.
ŝ�ðz�Þ ¼ 0. We obtain an expression for An as a sum
over residues,

A n ¼
X
�

Â�
n

s�
; with Â�

n ¼ iÂLðz�ÞÂRðz�Þ: (4.4)

This is illustrated in Fig. 2(a). The residue Â�
n at z� with

ŝ�ðz�Þ ¼ 0 factorizes into the product of a left and right
subamplitude, and it does not depend on the representation
of the amplitude. We can thus analyze each term in the sum
over � separately, without ambiguity. Note that in Eq. (4.4)
and from now on, whenever there is a product of left/right
factors, an implicit sum over the polarizations of the on-
shell intermediate state is assumed. Plugging in the left and
right subamplitudes in the BCJ representation, we obtain

1

gn�2 Â
�
n ¼ X

�-diags:i

in̂�L;in̂
�
R;iciQ0

�i
ŝ�i

ðz�Þ : (4.5)

Here, the sum goes only over diagrams i that contain the
channel �, and again the prime on the product indicates
that the propagator corresponding to that channel is not
included,

Q0
�i
s�i

¼ Q
�i��s�i

. The color factor ci arises

from the color factors of the left and right subamplitudes
after summing over the states of the intermediate gluon.

The diagrammatic representation of the residue Â�
n is

illustrated in Fig. 2(b).

On the other hand, we can directly express Â�
n in terms

of the original representation (2.1) of An. To this end, we
evaluate (2.1) at shifted momenta and read off the poles in
the deformation parameter z from the right hand side. We
obtain

1

gn�2 Â
�
n ¼ X

�-diags:i

n̂iðz�ÞciQ0
�i
ŝ�i

ðz�Þ : (4.6)

Note that the shifted numerators n̂iðzÞ satisfy the BCJ
duality for any z because the ni satisfy the BCJ duality
for any choice of on-shell external momenta, including
shifted ones. Comparing Eq. (4.5) to Eq. (4.6), we see
that in̂�L;in̂

�
R;i and n̂iðz�Þ are related by some generalized

gauge transformation:

n̂ iðz�Þ ¼ in̂�L;in̂
�
R;i þ��

i ; (4.7)

where the ��
i satisfy

X
�-diags:i

��
i ciQ0

�i
ŝ�i

ðz�Þ ¼ 0: (4.8)

It may seem unusual that we evaluate both sides in Eq. (4.7)
at shifted momenta. Unlike in usual applications of BCFW
recursion relations, however, the unshifted amplitude is
already an input in our construction and we are not inter-
ested in computing it. Instead, we are using (4.7) to relate
the shifted numerators n̂iðz�Þ to the diagrammatic numer-
ators of BCFW subamplitudes. Note that the ��

i are only
unambiguously defined at z ¼ z�, and should therefore not
be thought of as a function of z. Also note that this is not a
single generalized gauge transformation, but a distinct one
for each choice of �, and we can analyze it separately for
each �. It will be important in the following that the ��

i

satisfy all duality constraints that relate diagrams contain-
ing the internal line �, i.e.

��
i þ ��

j þ ��
k ¼ 0: (4.9)

To see this, note that ��
i ¼ n̂i � in̂L;in̂R;i, and as the n̂i

satisfy all duality relations it is sufficient to examine the
duality properties of in̂L;in̂R;i. The diagrams i, j, k in

(a) (b)
FIG. 2. (a) In an on-shell recursion relation, a given residue Â�

n is determined by diagrams sharing the same propagator labeled by
s�. (b) We can obtain a diagrammatic expansion of the recursion relation either from the numerators n̂i of the shifted full amplitude

Ân, or from the numerators n̂�L;i, n̂
�
R;i of the subamplitudes.
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Eq. (4.9) share all but one propagator, and thus they either
share the entire left or the entire right subdiagram of the
factorized amplitude. For definiteness, let us consider the
case where they share the entire right subdiagram, and thus
n̂R;i ¼ n̂R;j ¼ n̂R;k. Then the duality relation (4.9) imme-

diately follows from the corresponding duality relation for
the numerators in the left subdiagram, n̂L;i þ n̂L;j þ n̂L;k ¼
0. This is illustrated in Fig. 3.

Note that we needed to introduce the ��
i , which only

satisfy a partial set of duality relations, because the recur-
sion relation (4.5) by itself does not yield a BCJ-
compatible representation of the amplitude. In fact, from
Eq. (4.5), one can immediately read off an implied numera-
tor representation n0i of An given by

n0i ¼
X
�i

in̂�i

L;in̂
�i

R;i

Y
�i��i

s�i

ŝ�i
ðz�i

Þ : (4.10)

Generically, these numerators n0i do not satisfy any duality
relations.

We now turn to gravity. Applying the recursion relation
for gravity to the amplitude Mn, we obtain

M n ¼
X
�

i

s�
M̂Lðz�ÞM̂Rðz�Þ: (4.11)

Using our inductive assumption that the squaring relations
are valid for lower-point amplitudes we can plug in the

squaring relations (2.11) for the subamplitudes M̂L, M̂R

and obtain

1

ð�=2Þn�2 Mn ¼
X
�

i

s�

X
�-diags:i

½in̂�L;in̂�R;i�½i~̂n�L;i ~̂n�R;i�Q0
�i
ŝ�i

ðz�Þ :

(4.12)

We can now use the gauge-theory relation (4.7) to rewrite
the gravity amplitude as

1

ð�=2Þn�2
Mn ¼ X

�

i

s�

X
�-diags:i

½n̂iðz�Þ ���
i �½~̂niðz�Þ � ~��

i �Q0
�i
ŝ�i

ðz�Þ

¼ X
�

i

s�

X
�-diags:i

�
n̂iðz�Þ~̂niðz�ÞQ0

�i
ŝ�i

ðz�Þ

� ��
i ~̂niðz�Þ þ ~��

i n̂iðz�ÞQ0
�i
ŝ�i

ðz�Þ þ ��
i
~��
iQ0

�i
ŝ�i

ðz�Þ
�
:

(4.13)

The cross terms involving the numerators

~��
i n̂iðz�Þ;��

i ~̂niðz�Þ vanish due to the identity (3.3), be-
cause the ni satisfy the BCJ duality. We will now argue that
the last term also vanishes:

X
�-diags:i

��
i
~��
iQ0

�i
ŝ�i

ðz�Þ ¼ 0: (4.14)

To see this, we proceed analogously to the derivation of the
identity (3.3), treating the factor ��

i as the generalized

gauge transformation, and the other factor ~��
i as the

Jacobi-satisfying coefficient. We have shown above that

the ��
i ,

~��
i satisfy the duality relations within the class of

diagrams that contain the line � [see Eq. (4.9)]. One may
worry that this is not sufficient to guarantee (4.14), because
there is also one duality relation that relates the diagram i
to two diagrams in which line � is replaced by its t- and
u-channel analogue. These diagrams do not contain the
line � and thus do not appear in Eq. (4.14). To see that this
complication is harmless, we expand ��

i in its distinct
contact term contributions, just like we expanded �i in
Eq. (3.4):

��
i ¼ X

�i��

��
i;�i

ŝ�i
ðz�Þ: (4.15)

Note that there is no contact term ambiguity in ��
i asso-

ciated with s� because ŝ�ðz�Þ ¼ 0. In the derivation of
(3.3), the duality relation between three diagrams i, j, k
was important to cancel the contact term ambiguities as-
sociated with the propagators s, t, u [see Eq. (3.9)]. In our
case there is no such ambiguity associated with the propa-
gator s�, so we only need the duality relations (4.9) to
argue that (4.14) holds. We conclude that

�i

ð�=2Þn�2 Mn ¼ X
�

1

s�

X
�-diags:i

n̂iðz�Þ~̂niðz�ÞQ0
�i
ŝ�i

ðz�Þ : (4.16)

We now define

�i

ð�=2Þn�2 M
0
n �

X
diags:i

ni~niQ
�i

s�i

; (4.17)

where, as previously stated, the ni are the n-point Yang-
Mills numerator in the BCJ representation. Since the ni are

local, we see from (4.16) that M̂0
nðzÞ and M̂nðzÞ have

precisely the same pole structure. Indeed, the falloff (4.3)

of M̂nðzÞ at large z, together with (4.16), imply that

�i

ð�=2Þn�2 M̂nðzÞ ¼
X
�

1

s�ðzÞ
X

�-diags:i

n̂iðz�Þ~̂niðz�ÞQ0
�i
ŝ�i

ðz�Þ : (4.18)

This form makes manifest that M̂nðzÞ and M̂0
nðzÞ have

coinciding residues for all finite-z poles. However, in
principle the two functions could still differ by a function
P of momenta and polarization vectors that is polynomial
in z under the complex shift,

FIG. 3. The product in̂L;in̂R;i satisfies the duality relations
satisfied by its factors n̂L;i and n̂R;i.
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P ¼ M0
n �Mn; P̂ ðzÞ ¼ polynomial in z: (4.19)

The on-shell gravity amplitude Mn is of course invariant
under gravity on-shell gauge transformations, i.e. under
shifts of the polarization tensors that are proportional to
the corresponding external graviton momentum. This
gauge invariance actually also holds for M0

n. To see this,
note that we can break up the gravity gauge transformation
into two Yang-Mills on-shell gauge transformations acting
separately on the factors ni and ~ni in the numerators of
M0

n. We note that such a true on-shell gauge transforma-
tion leaves the duality property of the ni intact.

4 Invariance
of M0

n then immediately follows from the identity (3.3).
We conclude that P is gauge-invariant.

The shift analysis above is not yet sufficient to argue that
P is also local. While it cannot have poles in z, it could in
principle have propagators in its denominator that are
invariant under the particular shift that we chose. Note,
however, that we could repeat the analysis above for any
other shift under which both the gravity and the gauge-
theory amplitude vanish. We conclude that P must be
polynomial in z under any such shift. As explained above,
many such shifts are available; in particular, there is a valid
BCFW shift for any choice of two external lines. As no
propagator can be invariant under all of these shifts, we
conclude that P must be local.

From dimensional analysis, we also know that P must
be quadratic in momenta. Note that this is only true be-
cause we are considering a gravity theory that is not
modified by higher-dimension operators. For example, if
we had allowed for�0 corrections to gravity, the expression
P could contain contributions that are higher order in
momenta.

P is thus a gauge-invariant, local expression quadratic in
momenta. No such expression exists because the matrix
elements of any contractions DmRn of the Riemann tensor
with covariant derivatives contain at least 2nþm powers
of momenta.5 We conclude that

P ¼ 0; (4.20)

and therefore

�i

ð�=2Þn�2 Mn ¼ �i

ð�=2Þn�2
M0

n ¼
X

diags:i

ni~niQ
�i

s�i

; (4.21)

where both ni and ~ni are in the BCJ representation. As
discussed in Sec. III, it then immediately follows from the
identity (3.3) that the squaring relations also hold if we
only impose the duality relations on one of the two copies
of gauge-theory numerators. This concludes our derivation
of the squaring relations for pure Einstein gravity in arbi-
trary dimensions D � 4.

B. A five-point example

We now illustrate some crucial steps of our general
derivation with the simplest possible nontrivial example,
the D ¼ 4 five-point maximally helicity-violating (MHV)
amplitude. The simplicity of this example allows us to give
compact explicit expressions for the numerators ni and the
required generalized gauge transformations ��

i . We use
these to display some of the key relations that we derived
above on general grounds, in particular, Eqs. (4.7), (4.9),
(4.13), and (4.14).
At five points, a basis of color-ordered amplitudes under

the Kleiss-Kuijf relations [19] is given by

A5ð1; 2; 3; 4; 5Þ ¼ n1
s12s45

þ n2
s23s51

þ n3
s34s12

þ n4
s45s23

þ n5
s51s34

;

A5ð1; 4; 3; 2; 5Þ ¼ n6
s14s25

þ n5
s43s51

þ n7
s32s14

þ n8
s25s43

þ n2
s51s32

;

A5ð1; 3; 4; 2; 5Þ ¼ n9
s13s25

� n5
s34s51

þ n10
s42s13

� n8
s25s34

þ n11
s51s42

;

A5ð1; 2; 4; 3; 5Þ ¼ n12
s12s35

þ n11
s24s51

� n3
s43s12

þ n13
s35s24

� n5
s51s43

;

A5ð1; 4; 2; 3; 5Þ ¼ n14
s14s35

� n11
s42s51

� n7
s23s14

� n13
s35s42

� n2
s51s23

;

A5ð1; 3; 2; 4; 5Þ ¼ n15
s13s45

� n2
s32s51

� n10
s24s13

� n4
s45s32

� n11
s51s24

;

(4.22)

5Another way to reach the same conclusion for the special case of D ¼ 4 dimensions is to note that a local, gauge-invariant
expression must be expressible as a polynomial in the angle and square brackets of the spinor-helicity formalism. No expression
quadratic in angle and square brackets can have the correct little-group scaling property [1] of an n-point amplitude.

4To see this, recall that the ni are functions of momenta p�
a and polarization vectors ��a . A shift of the polarization vectors ���a / p�

a

treats all ni on equal footing, and thus can never spoil a duality relation ni þ nj þ nk ¼ 0.
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where we follow the notation of Ref. [5], including the
signs in the duality relations. Specifying the negative-
helicity lines to be 1 and 5, we can compute the first two
color-ordered amplitudes above directly from the Parke-
Taylor [23] formula:

A5ð1�2þ3þ4þ5�Þ ¼ i
h15i4

h12ih23ih34ih45ih51i ;

A5ð1�4þ3þ2þ5�Þ ¼ i
h15i4

h14ih43ih32ih25ih51i :
(4.23)

Let us furthermore specify the BCFW shift ½1; 5i for the
following analysis:

j1� ! j1̂� ¼ j1� � zj5�; j5i ! j5̂i ¼ j5i þ zj1i:
(4.24)

We could start with a general local expression for the ni to
ensure that they are polynomial in z under the shift. In fact,
there is a 225-parameter family of such local ni that satisfy
the duality relations and reproduce all Kleiss-Kuijf rela-
tions [19] correctly. For our purposes, however, it is more
convenient to construct a simple choice of ni by hand. To
reproduce the first amplitude A5ð1�2þ3þ4þ5�Þ correctly,
we pick

n1 ¼ �i
h15i3

h23ih34i � ½12�½45�;

n2 ¼ n3 ¼ n4 ¼ n5 ¼ 0:

(4.25)

It is obvious that n1 is polynomial under the BCFW shift
([11]), because this shift leaves the angle brackets h23i and
h34i invariant. The duality relations n4 � n2 þ n7 ¼ 0 and
n3 � n5 þ n8 ¼ 0 immediately imply that n7 and n8 van-
ish. To reproduce the second amplitude A5ð1�4þ3þ2þ5�Þ
correctly, we thus need to set

n6 ¼ �i
h15i3

h23ih34i � ½14�½25�; n7 ¼ n8 ¼ 0: (4.26)

n6 is also manifestly polynomial under the specified
BCFW shift. All other numerators n9; . . . ; n15 are now
determined through the duality relations and are of course
also polynomial under the shift. In summary, we obtain the
following choice of numerators:

n1 ¼ n12 ¼ n15 ¼ �i
h15i3

h23ih34i � ½12�½45�;

n6 ¼ n9 ¼ n14 ¼ �i
h15i3

h23ih34i � ½14�½25�;

n10 ¼ �n13 ¼ i
h15i3

h23ih34i � ð½12�½45� � ½14�½25�Þ;
n2 ¼ n3 ¼ n4 ¼ n5 ¼ n7 ¼ n8 ¼ n11 ¼ 0: (4.27)

Let us now consider the contribution of the factorization
channel s� ¼ s45 to the BCFW recursion relation. All
shifted expressions must thus be evaluated at z ¼ z� �

�½45�=½14�. The amplitude factorizes into a right three-
point anti-MHV subamplitude6

ÂRð4þ; 5̂�;�P̂þÞ ¼ n̂R ¼ �i
½4;�P̂�4

½45�½5;�P̂�½�P̂; 4� ;
(4.28)

and a left four-point subamplitude. The latter is MHV and
takes the form

ÂLð1̂�; 2þ; 3þ; P̂�Þ ¼ n̂L;s
ŝ12

� n̂L;t
ŝ23

: (4.29)

We can pick an arbitrary (local or nonlocal) representation
of n̂L;s, n̂L;t. One choice is given by

n̂L;s ¼ i
h12ih1P̂i½23�2
2h23i½3P̂� ; n̂L;t ¼ �i

h1P̂i½23�3
2½1̂2�½3P̂� ;

n̂L;u ¼ �n̂L;s � n̂L;t: (4.30)

With this choice the s- and t-channel contributions to ÂL

happen to coincide, but any other choice of nL;s, n̂L;t that
reproduces ÂL correctly would merely alter the generalized
gauge transformations needed to match to the ni satisfying
the BCJ-duality. Combining left and right subamplitudes,
the color factors of n̂L;sn̂R, n̂L;tn̂R, and n̂L;un̂R, are c1, c4,
and c15, respectively. Their corresponding numerators sat-
isfy the duality relation n1 � n4 � n15 ¼ 0. We thus define

��
1 ¼ n̂1 � in̂L;sn̂R

¼ �i
h15̂i3½1̂2�½45�

h23ih34i � i
h12ih1P̂i½4P̂�3½23�2
2h23i½3P̂�½45�½5P̂�

¼ i
h15̂i3½45�

2h12ih23ih34i � ŝ12;

��
4 ¼ n̂4 þ in̂L;tn̂R ¼ �i

h1P̂i½2̂3�3½4P̂�3
2½1̂2�½3P̂�½45�½5P̂�

¼ �i
h15̂i3½45�

2h12ih23ih34i � ŝ23;

��
15 ¼ n̂15 þ in̂L;un̂R ¼ �i

h15̂i3½45�
2h12ih23ih34i � ŝ13:

(4.31)

Note that these��
i indeed satisfy the duality relation on the

pole: ��
1 ���

4 � ��
15 ¼ 0.

The crucial step in our derivation of the squaring rela-
tions was the cancellation of the ��

i n̂i and ð��
i Þ2 pieces in

Eq. (4.13). It is now straightforward to verify this cancel-
lation directly in our current example:

6We adopt the convention that all external momenta are
incoming, and the internal momentum P is incoming in the
left subamplitude, and outgoing in the right subamplitude. We
use the spinor conventions j � Pi ¼ ijPi, j � P� ¼ ijP�, sab ¼
�½ab�habi.
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��
1 n̂1
ŝ12

þ��
4 n̂4
ŝ23

þ ��
15n̂15
ŝ13

¼ i
h15̂i3½45�

2h12ih23ih34i
� ðn̂1 � n̂4 � n̂15Þ ¼ 0;

ð��
1 Þ2
ŝ12

þ ð��
1 Þ2
ŝ23

þ ð��
15Þ2
ŝ13

¼ �
� h15̂i3½45�
2h12ih23ih34i

�
2

� ðŝ12 þ ŝ23 þ ŝ13Þ ¼ 0;

(4.32)

where we used the pole condition ŝ123 ¼ ŝ45 ¼ 0.

C. Generalization to other gravity/gauge-theory pairs

The derivation of the squaring relations in the previous
section specifically pertained to pure gravity and pure
Yang-Mills theory. However, only a few steps in the deri-
vation depended on this specific choice of theories. For a
more general gravity/gauge-theory pair, the above deriva-
tion goes through if the following three conditions are
satisfied:

(1) Every amplitude in the gauge theory can be ex-
pressed using local numerators that satisfy the BCJ
duality.

(2) There exist ‘‘valid’’ complex shifts of the external
momenta, i.e. shifts such that both gauge-theory and
gravity tree amplitudes vanish at large z. Such shifts
give rise to on-shell recursion relations.

(3) Each propagator of every gravity amplitude must
develop a pole under at least one of these valid
complex shifts. This property was crucial for our
conclusion above that P defined in Eq. (4.19) van-
ishes identically.

An interesting candidate gravity/gauge-theory pair are
theN ¼ 4 SYM andN ¼ 8 supergravity theories in four
dimensions. Just as for pure Yang-Mills theory, it remains
to be shown that amplitudes in N ¼ 4 SYM can be ex-
pressed using local numerators satisfying the BCJ duality.
Although we expect the duality to work in supersymmetric
theories [5,8,24], naively, the conditions (2) and (3) above
seem hard to satisfy; while each N ¼ 4 SYM amplitude
with n > 4 external legs admits at least one valid BCFW
shift [25,26] and a variety of valid holomorphic shifts [26–
28], the same does not hold for the amplitudes of N ¼ 8
supergravity [29]. For certain amplitudes, we seem to have
no valid BCFW shifts available at all, let alone sufficiently
many to conclude that P vanishes.

Fortunately, there is a simple fix to this problem: We
promote the numerators ni to on-shell superfields ni and
the amplitudes An, Mn to superamplitudes An, Mn,
which depend on Grassmann parameters �a;A (where a
and A denote the particle index and the SUðN Þ index,
respectively). The superamplitudes An and Mn are
�-polynomials that encode all n-point amplitudes of
SYM and supergravity as their coefficients.

At the MHV level, we can circumvent a new derivation
of the squaring relations altogether. The tree-level pure-
gluon amplitudes of SYM are identical to the ones of pure
Yang-Mills theory. The pure-graviton amplitudes in super-
gravity and pure gravity also coincide. The squaring rela-
tions then immediately apply, in particular, to the gluon/
graviton MHV amplitude pair A��þ���þ

n , M��þ���þ
n .

Choosing duality-satisfying numerators n��þ���þ
i for the

gluon amplitude, we define ‘‘supernumerators’’

n i ¼ �ð8Þð �QAÞ
h12i8 � n��þ���þ

i ; �QA ¼ X
a

jai�a;A:

(4.33)

These supernumerators satisfy all duality relations, be-
cause

n i þ nj þ nk / n��þ���þ
i þ n��þ���þ

j þ n��þ���þ
k ¼ 0:

(4.34)

The ni, though nonlocal, also manifestly satisfy the squar-
ing relations:

�i

�n�2
Mn ¼ �i�ð16Þð �QAÞ

�n�2h12i16 M��þ���þ
n

¼ �ð16Þð �QAÞ
h12i16 �X

i

ðn��þ���þ
i Þ2Q
�i

s�i

¼ X
i

ni~niQ
�i

s�i

:

(4.35)

It then follows from the identity (3.3) that all BCJ numer-
ators must satisfy the squaring relations at the MHV level.
Beyond the MHV level we make use of Refs. [30,31],

where it was shown that the superamplitudes An and Mn

vanish under a super-BCFW shift of any two lines a and b:

ja� ! jâ� ¼ ja� � zjb�; jbi ! jb̂i ¼ jbi þ zjai;
�a;A ! �̂a;A ¼ �a;A � z�b;A: (4.36)

We thus have a large number of valid super-BCFW shifts
available for the superamplitudes An and Mn, and condi-
tions (2) and (3) are easily satisfied for this gravity/gauge-
theory pair. Instead of performing sums over intermediate
polarizations in the derivation of Sec. IVA [for example in
the product n̂L;in̂R;i of Eq. (4.5)], we perform integrals over

the Grassmann parameters �P;A associated with the inter-

nal line:

n̂ �
L;in̂

�
R;i !

Z
d4�P;An̂

�
L;in̂

�
R;i: (4.37)

The remaining analysis carries through without modifica-
tion, establishing the squaring relations for N ¼ 4
SYM/N ¼ 8 supergravity.
A similar analysis can be repeated for other gravity/

gauge-theory pairs by systematically verifying the condi-
tions (1)–(3) above. Whether the KLT relations are valid
for a particular gravity/gauge-theory pair is usually ad-
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dressed using the �0 ! 0 limit of string theory amplitudes.
Our three conditions above for the squaring relations, on
the other hand, give purely field-theoretic criteria for the
validity of ‘‘gravity ¼ ðgauge theoryÞ � ðgauge theoryÞ’’.

D. Extension to loops

We note that our tree-level derivation of the squaring
relations (2.11) from the BCJ duality (2.5) immediately
extends to loops via the unitarity method [16]. In the
unitarity method, no shifts of momenta are required and
there is no issue with large-z behavior, if the cuts are
evaluated in D dimensions, ensuring cut constructability
[32]. Assuming that gauge-theory loop amplitudes satisfy
the duality, a gravity ansatz in terms of diagrams built by
taking double copies of numerators will have all the correct
cuts in all channels, since the numerators of all tree dia-
grams appearing in the cuts are double copies. This imme-
diately implies that the gravity amplitude so constructed is
correct.

Given two gauge theories whose L-loop numerators
ni; ~ni can be arranged to satisfy the BCJ duality, and whose
tree amplitudes are related through the squaring relations
to a corresponding gravity theory, we can immediately
write down the gravity L-loop amplitude [13]:

ð�iÞLþ1

ð�=2Þnþ2L�2
ML-loop

n ¼ X
diags:i

Z YL
a¼1

dDla
ð2�ÞD

ni~niQ
�i

s�i

; (4.38)

where the numerators ni~ni and propagators 1=s�i
depend

on external and loop momenta, and the sum runs over all
L-loop diagrams with only three-point vertices. We note
that this squaring relation holds at loop level for arbitrary
loop momenta, while the traditional KLT relations only
apply to unitarity cuts that factorize the loop amplitude into
a product of tree amplitudes.

In the next section we construct Lagrangians whose
diagrams reflect the BCJ duality, suggesting that the
gauge-theory duality does indeed extend to loop level.
Interestingly, not only has the extension of the duality to
loop level been explicitly demonstrated in a pure Yang-
Mills two-loop example and an N ¼ 4 super-Yang-Mills
three-loop example, but the double-copy property of the
corresponding gravity loop amplitudes has also been con-
firmed [13].

V. A LAGRANGIAN GENERATING DIAGRAMS
WITH BCJ DUALITY

We now turn to the question of finding a Lagrangian
which generates amplitudes with numerators that mani-
festly satisfy the BCJ duality. If a local Lagrangian of
this type could be found, it would enable us to construct
a corresponding gravity Lagrangian whose squaring rela-
tions with Yang-Mills theory are manifest. We show that
such a construction is indeed possible, and we present the

explicit form of a Yang-Mills Lagrangian which generates
diagrams that respect the BCJ duality up to five points. We
use it to construct the corresponding Lagrangian for grav-
ity. We also outline the structure of Lagrangians that
preserve the duality in higher-point diagrams.

A. General strategy of the construction

AYang-Mills Lagrangian with manifest BCJ duality can
only differ from the conventional Yang-Mills Lagrangian
by terms that do not affect the amplitudes. The amplitudes
are unaffected, for example, by adding total derivative
terms or by carrying out field redefinitions. In fact, the
MHV Lagrangian [33] for the Cachazo-Svrček-Witten [34]
expansion is an example where identities or structures of
tree-level amplitudes can be derived through a field rede-
finition of the original Lagrangian. Such a construction has
the additional complication that a Jacobian can appear at
loop level. Surprisingly, we find that not only does a
Lagrangian with manifest BCJ duality exist, it differs
from the conventional Lagrangian by terms whose sum is
identically zero by the color Jacobi identity! Although the
sum over added terms vanishes, they cause the necessary
rearrangements so that the BCJ duality holds. Another
curious property is that the additional terms are necessarily
nonlocal, at least if we want a covariant Lagrangian with-
out auxiliary fields.
For example, consider five-gluon tree amplitudes. To

obtain diagrams that satisfy the BCJ duality one is required
to add terms to the Lagrangian of the form

L0
5 � Tr½A	; A
� 1

h
ð½½@�A	; A
�; A�� þ ½½A
; A

��; @�A	�
þ ½½A�; @�A	�; A
�Þ; (5.1)

along with other contractions. If we expand the commuta-
tors, the added terms immediately vanish by the color
Jacobi identity. If, however, the commutators are reex-
pressed in terms of group-theory structure constants, they
generate terms that get distributed across different dia-
grams and color factors. We find similar results up to six
points, suggesting that it is a general feature for any
number of points.
Since the BCJ duality relates the structure of kinematic

numerators and color factors of diagrams with only three-
point vertices, the desired Lagrangian should contain only
three-point interactions. To achieve this we introduce aux-
iliary fields. The auxiliary fields not only reduce the inter-
actions down to only three points, they also convert the
newly introduced nonlocal terms into local interactions.
This procedure introduces a large set of auxiliary fields into
the Lagrangian. This is not surprising since we want a
double copy of this Lagrangian to describe gravity. The
ordinary gravity Lagrangian contains an infinite set of
contact terms; if we were to write it in terms of three-point
interactions we would need to introduce a new set of
auxiliary fields for each new contact term in the expansion.
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Since in our approach the gravity Lagrangian is essentially
the square of the Yang-Mills Lagrangian, it is natural to
expect that the desired Lagrangian contains a large (per-
haps infinite) number of auxiliary fields. We now begin our
construction of a Yang-Mills Lagrangian with manifest
BCJ duality.

B. The Yang-Mills Lagrangian through five points

We write the Yang-Mills Lagrangian as

L YM ¼ LþL0
5 þL0

6 þ � � � (5.2)

where L is the conventional Yang-Mills Lagrangian and
L0

n; n > 4 are the additional terms required so that the BCJ
duality is satisfied. At four points, the BCJ duality is
trivially satisfied in any gauge [5,6], so L by itself will
generate diagrams whose numerators satisfy Eq. (2.5). For
simplicity we choose Feynman gauge forL,7 though simi-
lar conclusions hold for other gauges. All contact terms are
uniquely assigned to the three-vertex diagram carrying the
corresponding color factor. The L0

n are required to leave
scattering amplitudes invariant, and they must rearrange
the numerators of diagrams in a way so that the BCJ duality
is satisfied. It turns out that the set of terms with the desired
properties is not unique. Indeed, ‘‘self-BCJ’’ terms that
satisfy the BCJ duality by themselves can also be added.
This ambiguity is due to the residual ‘‘generalized gauge
invariance’’ that remains after solving the duality identities
[5,9].

By imposing the constraint that the generated five-point
diagrams satisfy the BCJ duality (2.5), we find the follow-
ing Lagrangian:

L ¼ 1

2
Aa
�hAa� � gfa1a2a3@�A

a1
	 Aa2�Aa3	

� 1

4
g2fa1a2bfba3a4Aa1

� Aa2
	 Aa3�Aa4	L0

5

¼ � 1

2
g3fa1a2bfba3cfca4a5ð@½�Aa1

	�A
a2

 Aa3�

þ @½�A
a2
	�A

a3

 Aa1� þ @½�A

a3
	�A

a1

 Aa2�Þ 1

h
ðAa4	Aa5
Þ:

(5.3)

The numerators ni are derived from this action by first
computing the contribution from the three-point vertices,
which gives a set of three-vertex diagrams with unique
numerators. Then the contributions from the four- and five-
point interaction terms are assigned to the various diagrams
with only three-point vertices according to their color
factors. Since these terms will contain fewer propagators
than those obtained by using only three-point vertices, their
contributions to the numerators contain inverse propaga-
tors. Finally, we combine all diagrams with the same color

factor, however they arose in the procedure above, into a
single diagram. Its kinematic coefficient is the desired
numerator that satisfies the BCJ duality. In this light, the
purpose ofL0

5 is to restore the BCJ duality (2.5) violated by

the interaction terms of L.
AlthoughL0

5 is not explicitly local, as we mentioned, we

can make it local by the introduction of auxiliary fields. It
turns out that without auxiliary fields there is no solution
for a local Lagrangian in any covariant gauge that gener-
ates numerators satisfying the BCJ duality. The nonlocality
explains the difficulty of stumbling onto this Lagrangian
without knowing its desired property ahead of time.
As previously mentioned, L0

5 is identically zero by the

color Jacobi identity. To see this we can relabel color
indices to obtain

L 0
5 ¼ � 1

2
g3ðfa1a2bfba3c þ fa2a3bfba1c

þ fa3a1bfba2cÞfca4a5@½�Aa1
	�A

a2

 Aa3�

1

h
ðAa4	Aa5
Þ:

(5.4)

As apparent in (5.4), the canceling terms have different
color factors and thus appear in different channels. For the
individual diagrams these terms are nonvanishing.
Furthermore, they alter the numerators of the individual
diagrams such that the BCJ duality (2.5) is satisfied.
It is interesting to note that there is one other term that

can be added to Yang-Mills at five points which preserves
the relation (2.5):

D 5 ¼ ��

2
g3fa1a2bfba3cfca4a5ð@ð�Aa1

	ÞA
a2

 Aa3�

þ @ð�A
a2
	ÞA

a3

 Aa1� þ @ð�A

a3
	ÞA

a1

 Aa2�Þ 1

h

�ðAa4	Aa5
Þ; (5.5)

where � is an arbitrary parameter. D5 also vanishes iden-
tically by the color Jacobi identity. SinceD5 does not serve
to correct lower-point contributions to make the BCJ dual-
ity relations hold through five points, we do not need to
include it. It does however show that there are families of
Lagrangians with the desired properties.

C. Toward gravity

Now that we have a Lagrangian that gives the desired
numerators ni for gauge theory (2.10), we use it to con-
struct the tree-level gravity Lagrangian by demanding that
it gives diagrams whose numerators are a double copy of
the gauge-theory numerators, as in Eq. (2.11). However, as
explained above, we need to first bring the Yang-Mills
Lagrangian into a cubic form to achieve this. We can do
so by introducing an auxiliary field Ba

�	:

7We are considering only tree level at this point. Therefore we
ignore ghost terms.
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LYM ¼ 1

2
Aa�hAa

� þ Ba�	Ba
�	

� gfabcð@�Aa
	 þ Ba

�	ÞAb�Ac	: (5.6)

This is equivalent to the ordinary Yang-Mills Lagrangian
as we can immediately verify by integrating out Ba

�	, i.e.

by substituting the equation of motion of Ba
�	,

Ba
�	 ¼ g

2
fabcðAb

�A
c
	Þ: (5.7)

Since the BCJ duality is trivially satisfied through four
points, naively one would take the square of this action
to obtain a tree-level action for gravity valid through four
points. However, since the squaring is with respect to the
numerators ni and not numerator over propagator, ni=s�,
we need the auxiliary fields to generate the numerators
with the inverse propagators directly, instead of multiply-
ing and dividing by inverse propagators afterward. This
implies that the auxiliary fields must become dynamical (to
generate the required propagator) and that their interac-
tions must contain additional derivatives to produce the
inverse propagator necessary to cancel the propagator. At
four points this leads to the Lagrangian

LYM ¼ 1

2
Aa�hAa

� � Ba�	
hBa
�	


� gfabcð@�Aa
	 þ @
Ba


�	ÞAb�Ac	; (5.8)

where the equation of motion for the auxiliary field Ba
�	


becomes

hBa
�	
 ¼ g

2
fabc@�ðAb

	A
c

Þ: (5.9)

We are now ready to construct a gravity action that gives
the correct four-point amplitude. We begin in momentum
space, where the identification

A�ðkÞ ~A	ðkÞ ! h�	ðkÞ (5.10)

can be trivially implemented. We first demonstrate how the
gravity action can be derived from the four-point Yang-
Mills Lagrangian. We write the Yang-Mills Lagrangian in
momentum space. Since gravity does not have any color
indices, we encode the information of the structure con-
stants in the antisymmetrization and cyclicity of the inter-
action terms. We drop the coupling constant for now; it can
easily be restored in the final gravity action. We arrive at

SYM � 1

2

Z
d4k1d

4k2�
4ðk1 þ k2Þk22 ½A�ðk1ÞA�ðk2Þ

� 2B�	
ðk1ÞB�	
ðk2Þ� þ
Z

d4k1d
4k2d

4k3

� �4ðk1 þ k2 þ k3ÞP6f½k1�A	ðk1Þ
þ k
1B
�	ðk1Þ�A�ðk2ÞA	ðk3Þg; (5.11)

where P6 indicates a sum over all permutations of
fk1; k2; k3g with the antisymmetrization signs included.

From here, we can read off a gravity action valid through
four points:

S grav ¼ Skin þ Sint; (5.12)

with

S kin � 1

4

Z
d4k1d

4k2�
4ðk1 þ k2Þk22

� ½A�ðk1ÞA�ðk2Þ � 2B�	
ðk1ÞB�	
ðk2Þ�
� ½ ~A�ðk1Þ ~A�ðk2Þ � 2 ~B��ðk1Þ ~B��ðk2Þ�;

Sint �
Z

d4k1d
4k2d

4k3�
4ðk1 þ k2 þ k3ÞP6

� f½k1�A	ðk1Þ þ k


1B
�	ðk1Þ�A�ðk2ÞA	ðk3ÞgP6

� f½k1 ~A�ðk1Þ þ k�1 ~B��ðk1Þ� ~Aðk2Þ ~A�ðk3Þg:
(5.13)

In extracting the Feynman rules from this action the left
and right fields each contract independently. For example,
for the propagators we have

hA�ðk1Þ ~A
ðk1ÞA	ðk2Þ ~A�ðk2Þi ¼
i��	�
�

k21
�4ðk1 þ k2Þ;

hA�ðk1Þ ~B
��ðk1ÞA	ðk2Þ ~B��ðk2Þi ¼ � i��	�
������

2k21

� �4ðk1 þ k2Þ: (5.14)

By construction, this action will give the correct three- and
four-graviton tree-level amplitudes.
We note that one can construct the coordinate-space

action by combining the left-right fields as

A� ~A	 ! h�	; A� ~B	
� ! g�	
�;

B�
� ~A	 ! ~g�
�	; B�
� ~B	� ! f�
�	�;
(5.15)

where h�	 is the physical field, which includes the gravi-
ton, antisymmetric tensor, and dilaton. The kinetic terms in
x space take the form

S kin ¼ � 1

2

Z
dDx½h�	hh�	 � 2g�	
�hg�	
�

� 2~g�	
�h~g�	
� þ 4f�	
��hf�	
���:
(5.16)

The interaction terms can similarly be constructed, but we
do not display them here as there are 144 of them.
To move on to five points, we need to introduce a new set

of auxiliary fields to rewrite the nonlocal terms in a local
and cubic form. We simply give the result:
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L 0
5 ! Ya�	hXa

�	 þD
a�	

ð3Þ hCa

ð3Þ�	


þDa�	
�
ð4Þ hCa

ð4Þ�	
� þ gfabcðYa�	Ab
�A

c
	

þ @�D
a�	

ð3Þ Ab

	A
c

 � 1

2
@�D

a�	
�
ð4Þ @½	Ab


�A
c
�Þ

þ gfabcXa�	

�
1

2
@
C

b
�
ð3Þ�@½�A

c
	� þ @
C

b
�
ð4Þ	½�A

c
��

�
:

(5.17)

Note that these new auxiliary fields do not couple to B�	
.
It is now straightforward to transform (5.17) to momentum
space and, through the squaring process, obtain a gravity
Lagrangian valid through five points.

D. Beyond five points

As we increase the number of legs we find new viola-
tions of manifest BCJ duality, so we need to add further
terms. We have constructed a six-point correction to the
interactions so that the Lagrangian generates numerators
with manifest BCJ duality.

The general structure ofL0
6 is similar to that ofL0

5; after

relabeling color indices, we can arrange L0
6 to vanish

manifestly via two Jacobi identities:

0 ¼ ðfa1a2bfba3c þ fa2a3bfba1c þ fa3a1bfba2cÞfcda6fda4a5 ;
0 ¼ fa1a2bðfba3cfcda6 þ fbdcfca6a3 þ fba6cfca3dÞfda4a5 :

(5.18)

The first of these two color factors is contracted with 59
different terms having a schematic form8

1

h
ðAa1Aa2Aa3Þ 1

h
ðAa4Aa5ÞAa6 ; (5.19)

where the parentheses indicate which fields the 1
h
acts on.

The second color factor contracts with 49 terms of the form

1

h
ðAa1Aa2ÞAa3

1

h
ðAa4Aa5ÞAa6 : (5.20)

In each term, there are an additional two partial derivatives
in the numerator acting on the gauge fields. The large
number of terms arises from the many different ways to
contract the eight Lorentz indices. We have found that the
coefficients of these 108 terms depend on 30 distinct free
parameters, in addition to the � that showed up at five
points (5.5). Thus, there is a 30-parameter family of self-
BCJ six-point interactions.

We anticipate that this structure continues to higher
orders, with the addition of new vanishing combinations
of terms. We have seen no indication that the Lagrangian
will terminate; for each extra leg that we add to an ampli-
tude, we will likely need to add more terms to the action to

ensure that the diagrams satisfy the BCJ duality. A key
outstanding problem is to find a pattern or symmetry that
would enable us to write down the all-order BCJ-corrected
action without having to analyze each n-point level
individually.
If the construction of a Lagrangian to all orders suc-

ceeds, it would be a fully off-shell realization of the BCJ
duality at the classical level. It would be interesting to then
study nonperturbative phenomena such as instantons using
this Lagrangian to see whether BCJ duality and the squar-
ing relations can elucidate physics beyond the regime of
scattering amplitudes. Our off-shell construction suggests
that BCJ duality may also work at loop level. Of course,
one would need to account for the ghost structure and,
more importantly, demonstrate that the loop amplitudes so
constructed do indeed have the desired duality properties
manifest.

VI. A FEW SIMPLE IMPLICATIONS

In this short section, we point out that the BCJ duality
immediately leads to some novel forms of gauge and
gravity amplitudes. Del Duca, Dixon, and Maltoni [18]
presented an alternative color decomposition from the
usual one,

Atree
n ð1; 2; . . . ; nÞ ¼ gn�2

X
�2Sn�2

c1;�2;...;�n�1;n

� Atree
n ð1; �2; . . . ; �n�1; nÞ; (6.1)

where Atree
n is the full color-dressed n-gluon amplitude,

and the Atree
n are the usual color-ordered partial gauge-

theory amplitudes. The sum runs over all permutations of
n� 2 legs. The color factors are

c1;�2;...;�n�1;n � ~fa1a�2x1 ~fx1a�3x2 � � � ~fxn�3a�n�1
an : (6.2)

Diagrammatically, this color factor is associated with
Fig. 4. This form is derived starting from Eq. (2.1) and
using color Jacobi identities along with the Kleiss-Kuijf
relations, which are equivalent to the self-antisymmetry of
the diagrammatic numerator factors.
A simple observation is that when diagram numerators

are chosen to satisfy the BCJ duality, they have precisely
the same algebraic structure as color factors. Thus, we can
immediately write a dual formula decomposing the full
amplitude into numerators instead of color factors:

FIG. 4. A graphical representation of the color basis
c1;�2;...;�n�1 ;n introduced in Ref. [18]. Each vertex represents a

structure constant ~fabc, while each bond indicates contracted
indices between the ~fabc. This is also precisely the diagram
associated with the kinematic numerator n1;�2 ;...;�n�1 ;n.

8Momentum conservation can alter these counts but we give
them as an indication of the number of terms involved.
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Atree
n ð1; 2; . . . ; nÞ ¼ gn�2

X
�2Sn�2

n1;�2;...;�n�1;n

� Ascalar
n ð1; �2; . . . ; �n�1; nÞ; (6.3)

where Ascalar
n is a dual partial scalar amplitude with ordered

legs obtained by replacing the gauge-theory numerator
factors with group-theory color factors. The numerator
factors n1;�2;...;�n�1;n are the numerators of the diagrams

displayed in Fig. 4. Note that all other numerators can be
expressed as linear combinations of the n1;�2;...;�n�1;n

through the duality relations, and the form (6.3) for the
gauge-theory amplitude makes this property manifest, after
expanding Ascalar

n in terms of diagrams. This form is related
to an unusual color decomposition of gauge-theory ampli-
tudes which follows from applying KLT relations to the
low-energy limit of heterotic strings [4].

Similarly, this immediately gives us a new representa-
tion for graviton amplitudes in terms of gauge-theory
amplitudes,

Mtree
n ð1; 2; . . . ; nÞ ¼ i�n�2

X
�2Sn�2

n1;�2;...;�n�1;n

� Atree
n ð1; �2; . . . ; �n�1; nÞ; (6.4)

where Atree
n is the usual gauge-theory color-ordered

amplitude.

VII. CONCLUSIONS

In this paper we investigated consequences of a curious
duality between color and kinematic numerators of gauge-
theory diagrams [5]. In particular, using BCFW recursion
relations, we proved that the duality implies that numer-
ators of gravity amplitudes are just a product of two gauge-
theory numerators, as conjectured in Ref. [5]. The induc-
tive proof of these ‘‘squaring relations’’ makes use of a
generalized gauge invariance of gauge-theory amplitudes,
which we use to rearrange the gravity BCFW recursion
relations. We also explained how the proof extends to other
theories including N ¼ 8 supergravity as two copies of
N ¼ 4 super-Yang-Mills theory. We showed that the
squaring relations even hold in a generalized, asymmetric
form, in which only one set of gauge-theory numerators is
required to satisfy the BCJ duality. If we assume the duality
works at loop level as well, the unitarity method straight-
forwardly allows us to conclude that the squaring relations
hold at loop level [13].

In a complementary approach we described the con-
struction of a Lagrangian whose Feynman diagrams obey
the duality. Remarkably, through at least six points, and
presumably for any number of points, the Lagrangian
differs from the usual Feynman-gauge Lagrangian by
terms that vanish identically by the color Jacobi identity.

The extra terms, however, have the effect of shuffling terms
between diagrams to make the duality hold. These extra
higher-point terms are necessarily nonlocal, but with the
use of auxiliary fields we can make the Lagrangian local at
least through six points.
For the case ofN ¼ 4 super-Yang-Mills theory we took

some initial steps to recast the BCJ duality into a form
where both the duality and supersymmetry are manifest. It
would be interesting to study this further, and to connect
this to the recently uncovered [35] Grassmannian forms of
tree-level scattering amplitudes in N ¼ 4 super-Yang-
Mills theory.
Another interesting problem would be to see if we can

construct a complete Lagrangian respecting the duality
valid to all orders. The key open problem for doing so is
to find a pattern in the additional terms that generalizes to
higher points. Although we have constructed a Lagrangian
valid through six points (not presented here), it contains
108 terms and 30 parameters. Clearly, one should first
resolve its seeming complexity before attempting to con-
struct an all-order form. An intriguing question is whether
the form of the Lagrangian can be fixed by imposing
symmetry requirements (prior to applying color Jacobi
identities which make the additional terms vanish). If an
all-order form of the off-shell gauge-theory Lagrangian
and the corresponding double-copy gravity Lagrangian
could indeed be constructed, then it would be natural to
try to find a mapping between their classical solutions.
Such Lagrangians would thus lend themselves to address-
ing nonperturbative implications of the BCJ duality.
Finally, we note that our partial construction of

Lagrangians that generate diagrams respecting the gauge-
theory duality between color and kinematics and the grav-
ity double-copy property provides new evidence that these
properties may extend to loop level as well. Indeed, this
does appear to be the case, as demonstrated in a concurrent
paper [13]. We hope that a combined effort of on-shell
methods, Lagrangian approaches, and string theory will
shed further light on the origins, scope, and implications of
the BCJ duality.
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