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Projected spin network states are the canonical basis of quantum states of geometry for the recent

EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-

Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in

detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum

gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by

the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin

networks and SU(2) spin network states.
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I. INTRODUCTION

The spinfoam framework is a proposal for a regularized
path integral for quantum gravity. It was first constructed in
order to provide us with a history formalism for loop
quantum gravity (LQG), thus defining dynamics and tran-
sition amplitudes between spin network states of quantum
gravity. However, most of the spinfoam models for 4d
gravity have been constructed as discretized path integral
for constrained topological BF field theories with the
Lorentz group SLð2;CÞ as the gauge group. Their bound-
ary are resulting SLð2;CÞ-invariant spin network states
while the kinematical Hilbert space of loop quantum grav-
ity is spanned by SU(2) spin networks. This has been an
essential discrepancy creating a gap between the original
LQG theory and the developing spinfoam framework.

An early attempt to bridge between these two frame-
works was proposed by Alexandrov and collaborators
[1–4].1

This canonical formalism hints towards a ‘‘covariant
loop quantum gravity’’ which uses projected spin network
states introduced by one of the authors [6]. These projected
spin networks are SLð2;CÞ-invariant states, which are
functional of both the Lorentz connection and the time-
normal field (partially defining the embedding of the ca-
nonical hypersurface in the 4d space-time manifold). From
the spinfoam point of view, the first explicitly constructed
spinfoam model was the Barrett-Crane model [7,8], and it
was shown that it could be reformulated in term of the
same projected spin network states [6,9]. However, the
precise boundary states of the Barrett-Crane models were
a very special case of projected spin network states, called
simple spin networks, and they could not be put in one-to-
one correspondence with SU(2) spin networks thus not
allowing an easy translation of the Barrett-Crane spinfoam
amplitudes to LQG transition amplitudes.

This approach was given a second chance with the more
recent EPRL-FK spinfoam models by Engle-Pereira-
Rovelli-Livine and Freidel-Krasnov. Indeed, a new spin-
foam model was proposed to address the shortcomings of
the Barrett-Crane models and a map between its boundary
states and SU(2) spin networks was introduced thus finally
hinting towards a direct and explicit relationship between
spinfoams and loop gravity [10]. This EPR model was
quickly generalized to the EPRL-FK models, which were
constructed in both Euclidean and Lorentzian signatures
and taking into account nontrivial values of the Immirzi
parameter [11–14]. These spinfoam models are based on a
reformulation of the simplicity constraints involving the
time-normal field. These simplicity constraints are the
essential ingredient of the spinfoam program, turning to-
pological BF theory into general relativity. Considering the
nontrivial role of the time-normal field in the simplicity
constraints [10,11,13,15–17] and the construction of the
resulting spinfoam amplitudes, one can argue that it should
not be considered as a mere mathematical and technique
tool but considered as a relevant variable of the theory on
the same footing than the Lorentz connection [18,19]. This
point of view leads to considering projected spin networks
as the natural boundary states for the EPRL-FK spinfoam
amplitudes.
Recently, the isomorphism between SU(2) spin net-

works and EPRL-FK boundary states defined as SLð2;CÞ
spin networks have been investigated in detail [20]. We
propose to revisit this correspondence using projected spin
networks to define the EPRL-FK boundary states.
Projected spin networks were already shown to have a
mathematical structure very close to SU(2) spin networks
[6]. Here we pursue the line of research initiated in [6], and
we investigate in detail the correspondence between SU(2)
spin networks and projected spin networks. More particu-
larly, we look at how to consistently map SU(2) spin net-
works onto projected spin networks. Thus, instead of
postulating one spinfoam model and trying to map its
boundary states on LQG’s canonical states, we follow the
reverse problematic: what are the various ways to map

1Another early attempt was to define spinfoam models based
on the self-dual Ashtekar connection instead of the Lorentz
connection, thus directly using SU(2) spin networks (see e.g.,
[5]).
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LQG’s spin networks onto certain subspaces of projected
spin networks. Each such space of projected spin networks
could then be the Hilbert space of boundary states of a
spinfoam model which would legitimately implement the
dynamics and evolution of SU(2) spin networks for loop
quantum gravity.

In the first section, we review the framework of pro-
jected spin networks and analyze in detail their invariance
properties. Then in the second section, we introduce a
projection map from projected spin networks down to
SU(2) spin networks, and we investigate the inverse lift
operators which would reversely map SU(2) spin networks
up to the projected spin networks. We take particular care
of the role of the Immirzi parameter and focus on the
projected spin networks relevant to the EPRL-FK spinfoam
models.

A. A REVIEW OF PROJECTED SPIN NETWORKS

1. Cylindrical functions and gauge invariance

Let us consider an arbitrary oriented graph � with E
edges and V vertices. We now look at the space of
functions over SLð2;CÞE �H Vþ. Here we have introduced
the hyperboloid Hþ ¼ fxjx�x� ¼ 1; x0 > 0g made of

unit timelike vectors in the Minkowski space R3;1 with
signature ðþ ���Þ. This hyperboloid is equivalently
defined as the coset space Hþ � SLð2;CÞ=SUð2Þ �
SOð3; 1Þ=SOð3Þ.

Such functions are to be considered as functionals of the
Lorentz connection and the time-normal field, living on the
canonical hypersurface. They are called cylindrical in that
they depend on these fields through only a finite number of
degrees of freedom, more precisely the holonomies of the
Lorentz connection along the edges of the graph � and the
values of the time-normal field at its vertices.

We further require that our functionals be invariant
under the action of the Lorentz group:

’ðGe; xvÞ ¼ ’ð�sðeÞGe�
�1
tðeÞ;�vxxvÞ;

8�v 2 SLð2;CÞ�V;
(1)

where Ge are the SLð2;CÞ group elements and xv the 4-
vectors in Hþ. sðeÞ and tðeÞ are, respectively, the source
and target vertices of the edge e.

The 4-vector �vxxv is obtained by acting on xv by the
SOð3; 1Þ transformation corresponding to �v 2 SLð2;CÞ.
The easiest way to write this action is to represent 4-vectors
as 2� 2 Hermitian matrices:

x ! X ¼ x0 þ x3 x1 þ ix2
x1 � ix2 x0 � x3

� �
; (2)

with TrX ¼ 2x0 and detX ¼ jxj2. Then SLð2;CÞ group
elements act by conjugation: �xX � �X�y. From there,
we can act on the 4-vector ! ¼ ð1; 0; 0; 0Þ, or equivalently
on its corresponding matrix � ¼ I, to generate all of the
elements in Hþ:

x ¼ Bx!; X ¼ BIBy ¼ BBy; (3)

for B 2 SLð2;CÞ. It is clear that this expression is invariant
under the right SU(2) action B ! Bh with h 2 SUð2Þ,
since hy ¼ h�1. This actually shows the fact that Hþ is
the coset SLð2;CÞ=SUð2Þ. From these various representa-
tions, we can equivalently see our functionals as depending
on 4-vectors, 2� 2 Hermitian matrices or SLð2;CÞ group
elements (with an extra SU(2) invariance), i.e., respec-
tively ’ðGe; xvÞ or ’ðGe; XvÞ or ’ðGe; BvÞ.
A first important remark on these Lorentz-invariant

functions is that they are entirely determined by their
section at xv ¼ ! for all v. Indeed, let us define this
section:

�ðGeÞ � ’ðGe; xv ¼ !Þ: (4)

Effectively, these functions still satisfy a remaining SUð2Þ
invariance, inherited from the full SLð2;CÞ invariance:

�ðGeÞ ¼ �ðhsðeÞGeh
�1
tðeÞÞ; 8hv 2 SUð2Þ�V: (5)

And we can reconstruct the full functional from that par-
ticular section:

’ðGe; xvÞ ¼ ’ðGe; BvB
y
vÞ ¼ �ðB�1

sðeÞGeBtðeÞÞ: (6)

The second remark is that if we integrate over the time
normals, then we recover the standard SLð2;CÞ-invariant
cylindrical functions, whose basis are SLð2;CÞ spin net-
works. More precisely, we define the group-averaged func-
tional

’gðGeÞ ¼
Z
H V

þ
½dxv�’ðGe; xvÞ

¼
Z
SLð2;CÞV

½d�v�’ðGe;�vx!Þ; (7)

where ½dx� is the translation-invariant measure on Hþ
inherited from the Haar measure ½d�� on SLð2;CÞ. This
new function satisfy a simple SLð2; CÞ invariance at the
vertices:

’gðGeÞ ¼ ’gð�sðeÞGe�
�1
tðeÞÞ; 8�v 2 SLð2;CÞ�V;

(8)

Following [6], the next step is to endow our space of
cylindrical functions with a scalar product:

h’j’0i �
Z
½dGe� �’ðGe; xvÞ’0ðGe; xvÞ: (9)

Because of the SLð2;CÞ gauge invariance satisfied by the
functionals, it is easy to see that this definition holds for
any arbitrary choice of time normals xv as long as both
functionals are evaluated on the same set of xv’s of course.
Therefore, this scalar product can be entirely computed by
setting all time normals to the origin !:

h’j’0i ¼
Z
½dGe� ��ðGeÞ�0ðGeÞ: (10)
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We call the corresponding L2 space of functions as the
Hilbert space of projected cylindrical functionals on the
graph �, following the terminology introduced in [6], and
we will simply write H for it (leaving implicit the depen-
dence on the underlying graph �, since our whole analysis
does not involve changing graph).

The next step is to introduce the basis of H given by the
projected spin networks. To this purpose, we need to recall
a few facts about the unitary representations of the Lorentz
group SLð2;CÞ.

2. Quick overview of SLð2;CÞ representations
The Plancherel decomposition formula for SLð2;CÞ

states that L2 functions with respect to the Haar measure
on SLð2;CÞ uniquely decompose in term of the matrix
elements of the group element in the unitary irreducible
representations of SLð2;CÞ of the principal series. Such
irreducible representation (irreps) are labeled by a couple
of numbers ðn; �Þ, where n 2 N=2 is a half integer and
� 2 R a real number. There also exists a supplementary
series of unitary irreps, labeled by a single real number
bounded by 1 in modulus, but they do not enter the
Plancherel decomposition. Then the Plancherel formula
for a function f 2 L2ðSLð2;CÞÞ reads

fðGÞ ¼ 1

8�4

X
n

Z
�ðn; �Þd�Tr½Fðn; �ÞDðn;�ÞðGÞ�; (11)

where the Fourier components Fðn; �Þ are matrices in the
Hilbert space of the representation ðn; �Þ and are obtained
by the reverse formula:

Fðn; �Þ ¼
Z

dGfðGÞDðn;�ÞðG�1Þ: (12)

The measure of integration over the representation labels
�ðn; �Þd� � ðn2 þ �2Þd� is called by the Plancherel mea-
sure. This Plancherel decomposition relies on the fact that

the matrix elements Dðn;�ÞðGÞ form an orthogonal basis for
the Hilbert space L2ðSLð2;CÞÞ.

It will be useful for later to have the explicit action of the
Lorentz generators in each ðn; �Þ representation. The rele-
vant basis for us is the SU(2) basis obtained by decompos-
ing the SLð2;CÞ representation into SU(2) irreducible
representations. Indeed, one can show that the ðn; �Þ rep-
resentation decomposes onto all SU(2) irreps with spin j
bounded below by the half integer n, thus implying that the
Hilbert space of the ðn; �Þ representation is the direct sum
of the Hilbert spaces corresponding to these SU(2) irreps:

Rðn;�Þ ¼ M
j2nþN

Vj: (13)

Let us point out that we have chosen the canonical SU(2)
subgroup, which stabilizes the 4-vector ! or equivalently
the identity matrix � ¼ I (as explained previously). Then

we give the action of the suð2Þ-rotation generators ~J and

boost generators ~K in the standard basis for SU(2) repre-

sentations in term of the spin j and the magnetic momen-
tum m, diagonalizing the rotation operator J3:

J3jj; mi ¼ mjj; mi;
Jþjj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ 1Þ

q
jj; mþ 1i;

J�jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ 1Þ

q
jj; m� 1i;

(14)

K3jj; mi ¼ ��j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 �m2

q
jj� 1; mi � �jmjj; mi

þ �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 �m2

q
jjþ 1; mi;

Kþjj; mi ¼ ��j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðj�m� 1Þ

q
jj� 1; mþ 1i

� �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ 1Þ

q
jj; mþ 1i

� �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmþ 1Þðjþmþ 2Þ

q
� jjþ 1; mþ 1i;

K�jj; mi ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðjþm� 1Þ

q
jj� 1; m� 1i

� �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ 1Þ

q
jj; m� 1i

þ �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mþ 1Þðj�mþ 2Þ

q
� jjþ 1; m� 1i; (15)

where the coefficients defining the action of the boost
generators are given by

�j ¼ n�

jðjþ 1Þ ; �j ¼ i

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2 � n2Þðj2 þ �2Þ

4j2 � 1

s
: (16)

It is straightforward to check that this postulated action
satisfied as expected the SLð2;CÞ commutation relations.2

Moreover, since the coefficient �n ¼ 0 vanishes for j ¼
n, it is also clear that the truncation to spins j � n is self-
consistent. On the other hand, it is obvious that the coef-
ficients �j for j > n will never vanish, thus there is no

upper bound on the spin j. This is consistent with the fact
that a unitary representation of SLð2;CÞ necessarily has an
infinite dimension.
From this action, we can check that the SU(2) Casimir

operator has the usual value ~J2 ¼ jðjþ 1Þ. We can also
compute the values of the two Casimir operators of
SLð2;CÞ:

2The commutation relation of the SLð2;CÞ Lie algebra are

½Jþ; J3� ¼ � Jþ; ½J�; J3� ¼ J�;

½Jþ; J�� ¼2J3 ½Jþ; Kþ� ¼ ½J�; K�� ¼ ½J3; K3� ¼ 0;

½Jþ; K�� ¼� ½J�; Kþ� ¼ 2K3; ½Jþ; K3� ¼ �Kþ;

½J�; K3� ¼K�; ½Kþ; J3� ¼ �Kþ; ½K�; J3� ¼ K�;

½Kþ; K3� ¼Jþ; ½K�; K3� ¼ �J�; ½Kþ; K�� ¼ �2J3:
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C1 ¼ ~K2 � ~J2 ¼ �2 � n2 þ 1; C2 ¼ ~J � ~K ¼ 2n�:

(17)

Finally, we introduce the characters of the SLð2;CÞ
representations, �ðn;�ÞðGÞ � TrDðn;�ÞðGÞ. It is easy to
evaluate it on SU(2) group elements since we know the
decomposition of the SLð2;CÞ representation into SU(2)
representations3:

8g 2 SUð2Þ;�ðn;�ÞðgÞ ¼ X
j2nþN

�jðgÞ

¼ X
j2nþN

sinð2jþ 1Þ�
sin�

¼ cos2n�

2sin2�
; (18)

where � is the class angle of the group element g, i.e.,
meaning that g is conjugate to the diagonal matrix with
entries ½ei�; e�i��.

Now that we have quickly reviewed these basic facts on
SLð2;CÞ unitary representations and the Plancherel de-
composition, we are ready to introduce the basis of pro-
jected spin networks for our Hilbert space H of Lorentz-
invariant cylindrical functions.

C. The basis of projected spin networks

Our goal is to build a basis of the Hilbert space H of
Lorentz-invariant functions ’ðGe; xvÞ. Following the origi-
nal work [6], we start with the section �ðGeÞ ¼ ’ðGe;!Þ,
which fully determines the whole function ’ðGe; xvÞ. We
apply the Plancherel decomposition formula to�ðGeÞ, thus
attaching an irrep ðne; �eÞ and the corresponding matrix

Dðne;�eÞðGeÞ to each edge e of the graph. Then we glue these
matrices at each vertex v of the graph with vectors in the
tensor product of the irreps attached to the incoming/out-
going edges. These tensors are not chosen entirely arbi-
trarily since the functions �ðGeÞ are required to be SU(2)
invariant at each vertex.

The final result of this procedure are the projected spin
networks. A projected spin network on the graph � is
defined by the choice of a SLð2;CÞ irrep Ie ¼ ðne; �eÞ
for each edge, a choice of couple of SU(2) irrep ðjse; jteÞ
attached to the source and target vertices of each edge, and
finally a SU(2) intertwiner (or equivalently SU(2)-invariant
tensor, or a singlet state in layman terminology) iv for each
vertex v. The intertwiner iv lives in the tensor product of
the SU(2) irreps coming in and going out the vertex v, or
more precisely:

iv:
O

ejsðeÞ¼v

Vjse ! O
ejtðeÞ¼v

Vjte :

Then the functions are defined as (see Fig. 1)

’Ie;j
s;t
e ;iv

ðGe;xvÞ � Tr
Y
e

hIe; j
s
e;m

s
ejB�1

sðeÞGeBtðeÞjIe; j
t
e;m

t
ei

�Y
v

h�ejtðeÞ¼vIe; j
t
e;m

t
ejiv

�j�ejsðeÞ¼v Ie; j
s
e;m

s
ei: (19)

The trace is taken over the SU(2) representations, i.e., it
amounts to summing over the basis labels ms;t

e . We must
require that the choice of spins js;te be compatible with the
choice of the SLð2;CÞ irreps Ie ¼ ðne; �eÞ, i.e., that js;te �
ne, else the projected spin network functional would sim-
ply vanish.
First, to check that this function is well defined, one

must make sure that its definition is invariant under the
right SU(2) action on the group elements Bv. It is actually
the requirement of having SU(2)-invariant intertwiners iv
which ensures that the expression above is correctly in-
variant under the transformation Bv ! Bvhv for all hv 2
SUð2Þ�V .
Then, we would like to check that these projected spin

networks are properly SLð2;CÞ invariant. The Lorentz
action at the vertices reads as������������

Ge

xv
Bv

!
������������
�sðeÞGe�

�1
tðeÞ

�vxxv
�vBv

:

It is clear that the functions defined above are invariant
under such transformations.
Finally, the Plancherel decomposition formula ensures

that these projected spin network functionals cover the
whole Hilbert spaceH and provide us with an orthonormal
basis. Indeed we can compute the scalar product between
two such spin networks:

h’Ie;j
s;t
e ;iv

j’~Ie;~j
s;t
e ;~iv

i ¼
Z
½dGe� ��Ie;j

s;t
e ;iv

ðGeÞ�~Ie;~j
s;t
e ;~iv

ðGeÞ

¼ Y
e

	ne;~ne	ð�e � ~�eÞ
�ðne; �eÞ 	js;te ;~js;te

Y
v

hivj~ivi:

(20)

Thus, a choice of orthonormal basis is given by a choice of

FIG. 1. An edge of a projected spin network.

3The character formula is straightforwardly generalizable to
the whole SLð2;CÞ group. Indeed, all group elements are con-
jugated to a diagonal matrix. Then we can evaluate the character
on such matrices (see, e.g., [21]):

�ðn;�Þ
e
þi� 0
0 e�
�i�

� �
¼ ei�
ei2n� þ e�i�
e�i2n�

je
þi� � e�
�i�j2 :
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an orthonormal basis of SU(2) intertwiners, just as for the
standard SU(2) spin networks of loop quantum gravity.

B. BACK AND FORTH BETWEEN PROJECTED
AND SU(2) SPIN NETWORKS

We have reviewed in the previous section the projected
spin networks, which are the natural boundary states for
spin foam models. Our goal is to compare them with the
SU(2) spin network basis of loop quantum gravity. As we
have seen, the projected spin networks are Lorentz-
invariant functionals of the SLð2;CÞ connection and of
the time-normal field. Nevertheless, as soon as we fix the
value of the time-normal field (at the vertices of the graph
used to construct the spin network), they are only required
to satisfy an effective SU(2) invariance and thus they are
built using SU(2) intertwiners and not SLð2;CÞ inter-
twiners. Since SU(2) spin networks are also built from
SU(2) intertwiners, this hints towards a direct path between
the two sets of states. From this perspective, projected spin
networks seems to be extensions of SU(2) spin networks,
allowing to evaluate them on the whole Lorentz group
SLð2;CÞ and not only on the SU(2) subgroup.

1. Projecting down to SU(2) spin networks

Let us start by reminding the definition of SU(2) cylin-
drical functions on the graph �. They are functions of the E
group elements in SU(2) living on the edges of the graph
and satisfying a SU(2) invariance at every vertex:

c ðgeÞ ¼ c ðhsðeÞgeh�1
tðeÞÞ; 8hv 2 SUð2Þ�V: (21)

The natural scalar product on this space of functions is

hc jc 0iSUð2Þ ¼
Z
SUð2Þ

½dge� �c ðgeÞc 0ðgeÞ; (22)

where dg is the Haar measure on the SU(2) Lie group. Let
us call HS the L

2 space of such SU(2) invariant cylindrical
functions. Then this Hilbert space HS is spanned by the
usual spin network states. A spin network is labeled by a
set of spins je for each edge and SU(2) intertwiners iv for
every vertex. Then we define

c je;ivðgeÞ � Tr
Y
e

hje; ms
ejgejje; mt

ei
Y
v

h�ejtðeÞ¼vje; m
t
ejiv

� j �ejsðeÞ¼v je; m
s
ei; (23)

which simply amounts to contracting the Wigner matrices

Dj
msmtðgÞ ¼ hj; msjgjj; mti along every edge e with the

intertwiners sitting at the vertices. We point out that this
definition is almost the same as the one of projected spin
networks: the difference is that we evaluate projected spin
networks on the whole SLð2;CÞ group and this requires the
choice of an extra SLð2;CÞ irrep Ie for each edge of the
graph.

The scalar product between two such SU(2) spin net-
works is easily computed:

hc je;iv jc ~je;~iv
iSUð2Þ ¼

Y
e

	je;~je

dje

Y
v

hivj~ivi; (24)

where we remind that dj ¼ ð2jþ 1Þ is the dimension of

the SU(2) irrep of spin j.
Since the projected cylindrical functions and the SU(2)

cylindrical functions share the same SU(2) invariance, it is
natural to introduce the following projection:

M: H ! HS;

’ðGe; xvÞ � c ðgeÞ ¼ ’ðge;!Þ ¼ �ðgeÞ; (25)

which is simply the restriction of the projected cylindrical
function to the SU(2) subgroup. Considering the invariance
property of the function’ and its section� at xv ¼ !,8v,
the mapM is well defined, and the resulting function c is
correctly SUð2Þ invariant as wanted.
It is straightforward to compute the image of the pro-

jected spin network by the map M. First, considering the
case of functions with jse � jte, the corresponding SU(2)
function vanishes:

8jse � jte; M’Ie;j
s;t
e ;iv

¼ 0; (26)

since a SU(2) group element could never trigger a transi-
tion between two different SU(2) irreps (by definition). On
the other hand, now assuming that the two spins are equal
for all edges so that we can drop the index s, t, jse ¼ jte ¼
je, then the image of the corresponding projected spin
network is as expected simply a SU(2) spin network:

8jse ¼ jte ¼ je; M’Ie;je;iv ¼ c je;iv ; (27)

as long as the spin je is compatible with the SLð2;CÞ irrep,
i.e., je � ne (or more exactly je 2 ne þN).
In the next sections, we investigate the inverse map(s) to

M, that is, how to lift SU(2) cylindrical functions to
functions on the whole Lorentz group SLð2;CÞ.
Understanding in detail how this lifting is achieved is
crucial to the construction of the EPR-FK class of spin
foam models and their interpretation as an ansatz for the
dynamics of loop quantum gravity.
In the following, we will focus on projected spin net-

works satisfying the ‘‘matching’’ constraints jse ¼ jte. We
call Hp the Hilbert spanned by these ‘‘proper’’ projected

spin network functionals (whose evaluation on the SU(2)
subgroup does not trivially vanish). As seen from the last
equation above, inverting the map M would more or less
simply amount to choosing a SLð2;CÞ irrep Ie into which
to embed the SU(2) irrep je. We analyze this in detail
below.

2. Lifting back spin networks

Starting with a SU(2) cylindrical function c ðgeÞ invari-
ant under the SU(2) action at every vertex, the goal is to
construct a Lorentz-invariant extension for it. Following
the insight of the previous section, the simplest way to
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proceed would be to decompose the function c in SU(2)
irrep je and to choose a SLð2;CÞ irrep for every spin. At the
level of the groups, these operations are done through
convolutions with SU(2) and SLð2;CÞ characters.

More precisely, starting with c ðgeÞ, we construct the
following projected cylindrical function:

’ðGe; BvÞ �
X
fjeg

�je

Z
SUð2Þ

½dhedke�c ðkeÞ�jeðhekeÞ

��IeðB�1
sðeÞGeBtðeÞheÞ: (28)

�j is a weight depending on the spin j that we will

uniquely fix below by requiring that M’ ¼ c or more
explicitly ’ðge; IÞ ¼ c ðgeÞ. The label Ie is an arbitrary
function of the spin je and it does not need to be the same
for all the edges e of the graph. The only constraint is
that the SU(2) irrep je needs to be in the SLð2;CÞ irrep Ie,
i.e., we require that ne 	 je always (more exactly, je 2
ne þN).

First, we check that the constructed function is invariant
under SU(2) shifts Bv ! Bvhv. This is true thanks to the
SU(2) invariance of the original function c . Then, we
easily see that this function is invariant under Lorentz
transformations acting simultaneously on both Ge and
Bv. Finally, we would like to ensure that ’ is a proper
lifting of c , i.e., that M’ ¼ c . To check this, we com-
pute straightforwardly the value of’ forGe ¼ ge 2 SUð2Þ
and Bv ¼ I:

’ðge; IÞ �
X
fjeg

�je

Z
SUð2Þ

½dhedke�c ðkeÞ�jeðhekeÞ�IeðgeheÞ:

(29)

As we reviewed earlier, we can express the SLð2;CÞ char-
acter in term of the SU(2) characters when evaluated on
SU(2) group elements:

�ðne;�eÞðgeheÞ ¼
X

le2neþN

�leðgeheÞ:

We can then proceed to the integration over he using the
known convolution formula4 for SU(2) characters:

’ðge; IÞ ¼
Z
SUð2Þ

½dke�c ðkeÞ
Y
e

X
je

�je

dje
�jeðgek�1

e Þ

¼ c ðgeÞ;

as long as we fix the weights�j � d2j ¼ ð2jþ 1Þ2 in order
to recover the 	 distribution,

P
jdj�

jðgk�1Þ ¼ 	ðgk�1Þ.
Finally, we have checked that our formula (28) correctly

defines a lift of SU(2) cylindrical functions to Lorentz-
invariant projected cylindrical functions and properly in-
verses the projection map M. The parameters of this
lifting are a choice of Ie irrep label for each spin je on
each edge e. There have been two typical choices for this
parameter in the spin foam literature:
(i) The Barrett-Crane ansatz: ne ¼ 0 for all spins je on

all edges
This restricts to irreps of the type ð0; �Þ used in the
(Lorentzian) Barrett-Crane model [7,8]. Let us em-
phasize that the label of the SLð2;CÞ ne is not the
spin je, which can still vary freely. If we further fix
je ¼ 0, then we recover the simple spin networks
usually used as boundary states of the Barrett-Crane
model. Nevertheless, our analysis here suggests that
we should not proceed to such a restriction and we
would have a Hilbert space of projected spin net-
works for the BC model which would be isomorphic
to the space of SU(2) spin networks. This interpre-
tation of the BC model in term of projected spin
networks and time normals was already pushed for-
ward in [3,6,9]. In particular, in [9], it was speculated
that spins je � 0 would correspond to particle in-
sertions in the Barrett-Crane model, but we will not
pursue in this direction.

(ii) The EPRL-FK ansatz: ne ¼ je for all spins je on all
edges
This is the condition to build SLð2;CÞ coherent
states used in the construction of the Lorentzian
spinfoam models of the EPRL-FK type [11,12,14].
We will study this case in detail in the next section,
and see how the Immirzi parameter enters our defi-
nition of the inverse lift.

3. Simplicity constraints and the Immirzi parameter

Weak constraints

Following the approach used for constructing the EPRL-
FK spinfoam models, we look at weak constraints that are
satisfied by the projected spin network states [10–13].
More precisely, we compare the matrix elements of the

SUð2Þ rotation generators ~J and of the boost generators ~K
[10,11,22]. The simplicity constraints amounts to requiring
that the matrix elements of these two operators are the
same up to a global factor, which would be identified as the
Immirzi parameter.

We start with SU(2) spin network states c and ~c , which
we lift to projected spin networks ’ and ~’ using the same
mapping, i.e., the same choice of SLð2;CÞ irreps. Then
considering a fixed edge e, let us start by looking at the
matrix elements of the left action of the boost generators
~Ke on these projected spin networks:

4The convolution formula for SU(2) characters is

Z
SUð2Þ

dh�jðhkÞ�lðghÞ ¼ 	j;l

dj
�jðgk�1Þ;

where dj ¼ ð2jþ 1Þ is the dimension of the SU(2) irrep of spin
j. This follows from the orthonormality of matrix elements with
respect to the Haar measure. When g ¼ k in particular, we
recover the usual orthonormalization condition for charactersR
�j�l ¼ 	j;l.
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h’j ~KðLÞ
e j~’i �

Z
½dGe� ��ðGeÞ ~KexL

~�ðGeÞ

¼
Z
½dGe�½dhed~hedked~ke� �c ðkeÞ ~�ð~keÞ

�Y
e

X
je

d2jed
2
~je
�jeðhekeÞ�~jeð~he~keÞ

��ðne;�eÞðGeheÞ�ðne;�eÞð ~KeGe
~heÞ: (30)

The integral over the SLð2;CÞ group elements Ge can be
done using the orthonormality of the SLð2;CÞ matrix ele-
ments with respect to the Haar measure and give

�ðne;�eÞð ~Keh
�1
e

~heÞ up to a measure factor depending solely
on ðn; �Þ. Let us have a closer look at this term:

�ðne;�eÞð ~Keh
�1
e

~heÞ ¼
X
le;me

hðne; �eÞlemej ~Keh
�1
e

~he

� jðne; �eÞlemei:
First, the group variable h�1

e
~he is in the SU(2) subgroup

and therefore does not change the spin le. Thus only the

matrix elements of the boost generators ~Ke in the SU(2)
irrep of spin le matter. Next, due to the integration over he
and the insertion of the character �jeðhekeÞ, only the com-
ponent le ¼ je enters the calculation of the expectation

value above. Similarly, the integration over ~he and the

insertion of the character �
~jeð~he~keÞ forces le ¼ ~je ¼ je.

Finally, we refer to the explicit action of the boost and
rotation generators in a ðn; �Þ irrep given in (14) and (15),

8l; m;m0;

hðn; �Þl; mj ~Kjðn; �Þl; m0i ¼ �ðn;�Þ
j hðn; �Þl; mj ~Jjðn; �Þl; m0i;

(31)

where the coefficient �j is given in (16). This was already

noticed in [3,11,22]. We would like to use this fact in order

to relate the values of the expectation values h’j ~KðLÞ
e j~’i

and h’j ~JðLÞe j~’i. The obvious issue is that �
ðne;�eÞ
je

depends

on je and the precise choice of embedding ðne; �eÞ chosen
for each value of je.

Considering the Barrett-Crane ansatz ne ¼ 0 for all
values of je, we get the trivial value of the proportionality

coefficients, �ð0;�eÞ
je

¼ 0. This leads to the identity

Barrett-Crane ansatz ne ¼ 0 ) h’j ~KðLÞ
e j ~’i ¼ 0: (32)

We do not consider this ansatz particularly useful, but at
least worth mentioning considering the attention that the
Barrett-Crane model has received over the past decade.

The case of the EPRL-FK ansatz is much more interest-
ing. We choose the maximal value for the label of the
SLð2;CÞ irrep, ne ¼ je. Then we would like to fix the
value of the coefficients �je to a fixed value �e which

does not depend on the value of the spin je but only on the
considered edge e. This leads to a unique solution for �e as

a function of the spin je:

neðjeÞ ¼ je; �eðjeÞ ¼ �eðje þ 1Þ;
) �

ðne;�eÞ
je

¼ ne�e

jeðje þ 1Þ ¼ �e:
(33)

This leads to the final equality

EPRL-FK ansatz ðne; �eÞ
¼ ðje; �eðje þ 1ÞÞ ) h’j ~KðLÞ

e j~’i ¼ �eh’j ~JðLÞe j~’i: (34)

The same equality holds if considering the right action of
the boost and rotation generators. This is exactly the (lin-
ear) simplicity constraints that are imposed in the EPRL-
FK spinfoam model with Immirzi parameter �e. Let us
underline that we do not need to choose the same propor-
tionality coefficient �e for all edges e. This is what is
usually assumed in the EPRL-FK spinfoam model.
However, in our framework, we are free to choose a differ-
ent value �e for each edge of the graph, i.e., a different
value of the Immirzi parameter along the edges of the
projected spin networks. This makes it more like an
Immirzi field than an Immirzi parameter.
Finally, we introduce the precise lift inverting the pro-

jection map M in the EPRL-FK ansatz. This lift is pa-
rameterized by a choice of coefficients f�eg 2 RE for all
edges of the graph. Then we define

Lf�eg: HS ! Hp;

c ðgeÞ � ’ðGe; BvÞ
¼

Z
SUð2Þ

½dhedke�c ðkeÞ
X
je

d2je�
jeðhekeÞ

��ðje;�eðjeþ1ÞÞðB�1
sðeÞGeBtðeÞheÞ: (35)

As already shown in Sec. I B 2, this provides us with a
proper inverse for the map M:

8f�eg; 8c 2 H; MLf�egc ¼ c : (36)

We can even go further by noticing by all possible values
for ðne; �eÞ 2 N=2� R are reached as je and �e vary,
respectively, in N=2 and R. Indeed, we can inverse the
relations given above to get

je ¼ ne; �e ¼ �e

je þ 1
: (37)

This means that we can use the maps Lf�eg to obtain a full

foliation of the Hilbert of (proper) projected spin network:

Hp ¼ M
f�eg2RE

Lf�egH: (38)

In other words, this means that choosing arbitrary values of
the Immirzi parameter �e for each edge of the graph, we
will cover the whole space of proper projected spin net-
works by applying the lifting map Lf�eg to the standard

SU(2) spin networks. We underline that we are restricted to
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proper projected spin networks since we always require
that jse ¼ jte on all edges of the graph.

From the point of view of loop quantum gravity’s dy-
namics, we believe that the dynamical LQG operators
would act on the Hilbert space H of standard SU(2) spin
networks. This hints towards considering each subspace
Lf�egH of projected spin networks as superselection sec-

tors for the dynamics. A spinfoam model would then work
in a given Lf�egH subspace with all the parameters �e

fixed, and would not mix these different sectors. Since
spinfoam models are usually built for arbitrary graphs �,
the simplest restriction would be to require that the
Immirzi parameter be fixed and the same for all edges on
all graphs, i.e., �e ¼ �, 8e, �. Then we recover the
boundary states for the usual (Lorentzian) EPRL-FK spin-
foam models with fixed Immirzi parameter.

Nevertheless, our framework leaves us the freedom of
attributing a different value of the Immirzi parameter for
each edge of the graph. Let us speculate on the possibility
that the Immirzi parameter provides us with a (length/area)
scale which we would vary when coarse graining or re-
normalizing LQG’s transition amplitudes and dynamics.
Then our framework for boundary states would allow to
coarse-grain various regions of space independently.

Strong constraints

From the perspective of the construction of spinfoam
models, the weak constraints can be translated to strong
constraints in the spirit of ‘‘master constraints.’’ The logic

is to replace the weak constraints h’j ~Ke � �e
~Jej~’i ¼ 0 by

strong constraints using the SU(2) and SLð2;CÞ Casimir
operators [10,11].

Considering the EPRL-FK ansatz, nðjÞ ¼ j and �ðjÞ ¼
�ðjþ 1Þ, we can easily express the values of the SLð2;CÞ
Casimir operators in terms of the SU(2) Casimir operator:

C2 ¼ ~J � ~K ¼ 2n� ¼ 2�jðjþ 1Þ ¼ 2� ~J2;

C1 ¼ ~K2 � ~J2 ¼ �2 � n2 þ 1

¼ ð�2 � 1Þjðjþ 1Þ þ ð�2 þ 1Þðjþ 1Þ

¼ ð�2 � 1Þ ~J2 þ ð�2 þ 1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~J2 þ 1

4

s
þ 1

2

�
:

(39)

The expression of the second quadratic Casimir looks
much simpler and it is straightforward to check that the
explicit definition that the projected spin networks ’ ¼
Lf�egc indeed satisfy strong (simplicity) constraints:

8’ ¼ Lf�egc ; ð ~Je � ~Ke � 2�e
~J2eÞ� ¼ 0: (40)

Here, it does not matter whether we consider the left or
right action of the boost and rotation operators as long as
we take them all as acting on the same side of the group
variableGe. Moreover, wewrote the constraint as acting on
the section �ðGeÞ ¼ ’ðGe;!Þ. This constraint can be
rotated by the suitable Lorentz transformations to apply
it on the whole function ’ðGe; BvÞ.
As long as we require by hand that ne ¼ je, this strong

constraint is sufficient to impose that �e ¼ �eðje þ 1Þ.
However, in order to impose ne ¼ je through an operator
constraint as well, we need to impose the other constraint
involving the first Casimir operator. The drawback is that
this constraint involves a rather ugly ‘‘quantum correc-

tion’’ term in the
ffiffiffiffiffi
~J2

p
operator, which is nevertheless

necessary if we want an exact constraint at the quantum
level.

4. Comparing SU(2) and SLð2;CÞ scalar products
Since we have constructed a map between SU(2) spin

networks and projected spin networks, it is natural to
wonder if these lifts are unitary and preserve the scalar
products. It is straightforward to see that this is a priori not
the case. Indeed, considering two projected cylindrical

functions, ’ and ~’, and their projections c ¼ M’, ~� ¼
M~’, the scalar products are best expressed in terms of the

sections �, ~�:

h’j~’i ¼
Z
SLð2;CÞ

��ðGeÞ ~�ðGeÞ;

hc j ~c iSUð2Þ ¼
Z
SUð2Þ

��ðgeÞ ~�ðgeÞ:
(41)

These two evaluations are a priori very different. This can
be seen also from the scalar product between the basis
states (20) and (24):

h’Ie;j
s;t
e ;iv

j’~Ie;~j
s;t
e ;~iv

i ¼ Y
e

	ne;~ne	ð�e � ~�eÞ
�ðne; �eÞ 	js;te ;~js;te

Y
v

hivj~ivi;

hc je;iv jc ~je;~iv
iSUð2Þ ¼

Y
e

	je;~je

dje

Y
v

hivj~ivi;

which differ in their measure and normalization. The key
difference is due to the extra 	 functions due to the
SLð2;CÞ-irrep label, more specifically 	ð�e � ~�eÞ which
potentially could lead to divergences.
To illustrate this, we start with two SU(2) cylindrical

functions c , ~c and, respectively, apply the lifts Lf�eg and
Lf ~�eg. Then a straightforward calculation leads to

MAÏTÉ DUPUIS AND ETERA R. LIVINE PHYSICAL REVIEW D 82, 064044 (2010)

064044-8



hLf�egc jLf ~�eg
~c i ¼

Z
SUð2Þ

½dked~ke� �c ðkeÞ ~c ð~keÞ
Y
e

X
je

�2
je

d2je

	ð�e � ~�eÞ
ð�2

e þ j2eÞ
�jeðk�1

e
~keÞ

¼ Y
e

	ð�e � ~�eÞ
Z
SUð2Þ

½dked~ke� �c ðkeÞ ~c ð~keÞ
Y
e

X
je

�2
je

d2jeðje þ 1Þð�2
eðje þ 1Þ2 þ j2eÞ

�jeðk�1
e

~keÞ: (42)

Assuming the standard definition �je ¼ d2je ensuring that
the lifts Lf�eg correctly invert the projection map M, then
it is clear that the two scalar products do not match. Then
the natural question is which scalar product (between the
Lorentz scalar product and the SU(2) scalar product)
should we use on our kinematical Hilbert space of bound-
ary states? This question should ultimately not matter so
much since the final physical scalar should a priori be
neither of them. Nevertheless, it is a crucial issue when
building spinfoam amplitudes.

An alternative would be to give up the requirement that a
lift should be the inverse of the projection map M, i.e.,
give up the idea that the restriction of the projected cylin-
drical function to the SU(2) subgroup be equal to the
original SU(2) cylindrical function. Then we can modify
the definition of the weight �je and choose the new renor-

malized value, which now depends on the value of the
Immirzi parameter �e:

��e

je
� d2je

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðje þ 1Þð�2

eðje þ 1Þ2 þ j2eÞ
q

: (43)

This would define modified lifting maps, which would still
send SU(2) cylindrical functions onto projected cylindrical
functions, but that would conserve scalar products. Indeed,
explicitly defining the new maps,

Lf�eg: HS ! Hp;

c ðgeÞ � ’ðGe; BvÞ ¼
Z
SUð2Þ

½dhedke�c ðkeÞ

�X
je

��e

je
�jeðhekeÞ�ðje;�eðjeþ1ÞÞ

� ðB�1
sðeÞGeBtðeÞheÞ:; (44)

using the new definition of the weight ��e

je
given above, we

will have the exact equality:

hLf�egc jLf ~�eg
~c i ¼ hc j ~c iSUð2Þ

Y
e

	ð�e � ~�eÞ: (45)

Let us insist on the fact that this lifting map will still send
the basis of SU(2) spin networks on projected spin network
states satisfying the EPRL-FK ansatz, but with a different
normalization that the lifting maps Lf�eg inverting M.

Finally, the natural issue is which lifting maps should we
use to send LQG’s SU(2) cylindrical functions onto the
projected cylindrical functions of spinfoam models: should
we enforce the matching condition that the restriction of
projected cylindrical function to the SU(2) subgroup be
equal to the SU(2) cylindrical function or should we simply

require the matching of the two scalar products and the
unitarity of the lifting?

II. CONCLUSION

In this short paper, we have investigated the correspon-
dence between the SU(2) spin network states of the ca-
nonical loop quantum gravity framework and the projected
spin networks arising in spinfoam models. After a detailed
review of projected cylindrical functions and projected
spin networks, we have introduced the projection map
from projected cylindrical functions down to SU(2) cylin-
drical functions. Conversely, we have studied the lifting
maps allowing to inverse this projection map and raise
SU(2) spin network to projected spin networks on
SLð2;CÞ. We have obtained a whole family of such lifting
maps, parameterized by the Immirzi parameter, or more
precisely an Immirzi field (i.e., one value of the Immirzi
parameter for each edge of the graph on which is defined
the spin network). This way, we established an isomor-
phism between the space of SU(2) spin networks and the
space of proper projected cylindrical functions at fixed
Immirzi parameter. We have also shown that allowing the
Immirzi parameter to run through all possible real values,
we sweep the whole space of proper projected cylindrical
functions. Finally, we have analyzed the differences be-
tween the two scalar products, respectively, for SU(2)
functionals and SLð2;CÞ functionals, and we have ex-
plained how to modify the lifting maps so as to ensure
that these two scalar products match exactly.
This work hints towards considering that most useful

perspective would be to compare SU(2) spin networks to
projected spin networks and not directly to SLð2;CÞ spin
networks as was done in recent work on bridging between
the EPRL-FK spinfoam models and the canonical ap-
proach [20]. Physically, SLð2;CÞ spin networks erase all
data about the time-normal field, which is actually instru-
mental in properly implementing the simplicity con-
straints. Mathematically, both SU(2) spin networks and
projected spin networks involve SU(2) intertwiners, which
allows for a direct map between the two Hilbert spaces.
Therefore, we propose to use consistently projected spin
networks as boundary states for the EPRL-FK spinfoam
models and we hope that the present work will be useful in
order to consistently translate loop quantum gravity’s dy-
namics into spinfoam amplitudes.
We have focused on the Lorentzian case with the gauge

group SLð2;CÞ, but all our procedure applies to the
Euclidean case based on the gauge group spin(4). For the
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curious reader, we give the detail of the action of the
spinð4Þ algebra in the SU(2) basis in appendix. Problems
arise in this case when considering nontrivial values of the
Immirzi parameter and the lifting maps do not exactly
inverse the projection map. This is because spin(4) irreps
are labeled by a couple of (half) integers and not by a
continuous label (such as �) as in the Lorentzian case. Seen
from this angle, the Lorentzian case can actually be con-
sidered as simpler than the Euclidean case.

We would like to also point out that our projected
cylindrical functions obtained through a lift of SU(2)
spin networks look similar to the recently introduced ‘‘hol-
omorphic’’ spin network functionals introduced to study
the semiclassical behavior of the EPRL-FK spin ampli-
tudes [23,24]. We think that this is an issue worth studying
in more detail.

Finally, we hope that the relation between SU(2) spin
networks and projected functionals which we uncovered
will trigger more interest in studying the structure of the
space of projected spin networks. More particularly, we
would like to put emphasis on two issues. First, it would be
interesting to understand the geometrical interpretation of
improper projected spin networks i.e., states carrying two
different spins per edge jse � jte (when the spin along an
edge is different at its source vertex and at its target vertex).
Then, it would be interesting to investigate the coarse-
graining of projected cylindrical functions and see if we
can construct a projective limit à la Ashtekar-
Lewandowski as was done in loop quantum gravity [25].
Such techniques have failed up to now when applied to
spin network states for noncompact gauge groups such as
the Lorentz group SLð2;CÞ. Nevertheless, we believe that
this could be different when dealing with projected spin
networks due to their effective SU(2) gauge invariance and
their mapping into SU(2) spin networks.

APPENDIX A: IRREDUCIBLE
REPRESENTATIONS OF SPIN(4)

The group spin(4) is isomorphic to the product of two
subgroups, each isomorphic to SUð2Þ: Spinð4Þ �
SUð2ÞL � SUð2ÞR. Its algebra spinð4Þ is the linear sum
of two commuting algebras: suð2ÞL 
 suð2ÞR. Its repre-

sentations are labeled by two spins ðjR; jLÞ. If we call ~JR
and ~JR the standard generators of the left and right SU(2)
groups, the generators of the space rotation group SU(2)

are ~J ¼ ~JL þ ~JR while the ‘‘boosts’’ generators are ~K ¼
~JR � ~JL. The two Casimir operators are

C1 ¼ ~J2 þ ~K2 ¼ 2 ~J2L þ 2 ~J2R

¼ 2jLðjL þ 1Þ þ 2jRðjR þ 1Þ; (A1)

and

C2 ¼ ~J � ~K ¼ ~J2L � ~J2R ¼ jLðjL þ 1Þ � jRðjR þ 1Þ (A2)

We introduce

J� ¼ J1 � iJ2; K� ¼ K1 � iK2;

the commutation relations defining the spinð4Þ algebra are
then given by

½Jþ; J3� ¼ �Jþ; ½J�; J3� ¼ J�;

½Jþ; J�� ¼ 2J3½Jþ; Kþ� ¼ ½J�; K�� ¼ ½J3; K3� ¼ 0;

½Jþ; K�� ¼ �½J�; Kþ� ¼ 2K3; ½Jþ; K3� ¼ �Kþ;

½J�; K3� ¼ K�; ½Kþ; J3� ¼ �Kþ;

½K�; J3� ¼ K�; ½Kþ; K3� ¼ �Jþ;

½K�; K3� ¼ J�; ½Kþ; K�� ¼ 2J3

(A3)

Then for a given spin(4) representation ðjL; jRÞ, the action
of the generators in the standard SU(2) basis noted as
jðjL; jRÞ; j; mi or simply as jj; mi is given by

J3jj; mi ¼ mjj; mi;
Jþjj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ 1Þ

q
jj; mþ 1i;

J�jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ 1Þ

q
jj; m� 1i;

K3jj; mi ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 �m2

q
jj� 1; mi þ �jmjj; mi

� �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ2 �m2

q
jjþ 1; mi;

(A4)

Kþjj; mi ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðj�m� 1Þ

q
jj� 1; mþ 1i

þ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ 1Þ

q
jj; mþ 1i

þ �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmþ 1Þðjþmþ 2Þ

q
� jjþ 1; mþ 1i;

K�jj; mi ¼ ��j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðjþm� 1Þ

q
jj� 1; m� 1i

þ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ 1Þ

q
jj; m� 1i

� �jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mþ 1Þðj�mþ 2Þ

q
� jjþ 1; m� 1i; (A5)

where

�j ¼ ðjL þ jR þ 1ÞðjL � jRÞ
jðjþ 1Þ ;

�j ¼ 1

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððjL þ jR þ 1Þ2 � j2Þðj2 � ðjL � jRÞ2Þ

4j2 � 1

s
:

(A6)

As �jLþjRþ1 ¼ 0 and �jjL�jRj ¼ 0, the SU(2) spin j runs

from jjL � jRj to jL þ jR as expected. An important par-
ticular case is for the so-called simple representations
which are equivalently defined as the irreducible represen-
tations which contain a SU(2)-invariant vector, or equiv-
alently such that the second Casimir vanishes C2 ¼
~J � ~K ¼ 0. Therefore, they are such that jL ¼ jR and we

MAÏTÉ DUPUIS AND ETERA R. LIVINE PHYSICAL REVIEW D 82, 064044 (2010)

064044-10



label them by a single half integer n ¼ jL ¼ jR; then the
action of the generators on jn; j;mi remains the same but
the coefficient � and � are much simpler:

�ðnÞ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ 1� j2

4j2 � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nðnþ 1Þ � ðj� 1Þðjþ 1Þ

4j2 � 1

s
;

and �ðnÞ
j ¼ 0: (A7)
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