
Detailed discussions and calculations of quantum Regge calculus of Einstein-Cartan theory

She-Sheng Xue*

ICRANeT Piazzale della Repubblica, 10 -65122, Pescara, Italy, Department of Physics,
University of Rome ‘‘Sapienza’’, Piazzale A. Moro 5, 00185, Rome, Italy

(Received 14 April 2010; revised manuscript received 1 August 2010; published 30 September 2010)

This article presents detailed discussions and calculations of the recent paper ‘‘Quantum Regge calculus

of Einstein-Cartan theory’’ in [9]. The Euclidean space-time is discretized by a four-dimensional

simplicial complex. We adopt basic tetrad and spin-connection fields to describe the simplicial complex.

By introducing diffeomorphism and local Lorentz invariant holonomy fields, we construct a regularized

Einstein-Cartan theory for studying the quantum dynamics of the simplicial complex and fermion fields.

This regularized Einstein-Cartan action is shown to properly approach to its continuum counterpart in the

continuum limit. Based on the local Lorentz invariance, we derive the dynamical equations satisfied by

invariant holonomy fields. In the mean-field approximation, we show that the averaged size of 4-simplex,

the element of the simplicial complex, is larger than the Planck length. This formulation provides a

theoretical framework for analytical calculations and numerical simulations to study the quantum

Einstein-Cartan theory.
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I. INTRODUCTION

Since the Regge calculus [1,2] was proposed for the
discretization of gravity theory in 1961, many progresses
have been made in the approach of quantum Regge
calculus [3,4] and its variant dynamical triangulations
[5]. In particular, the renormalization-group treatment is
applied to discuss any possible scale dependence of
gravity [3]. Inspired by the success of lattice regulariza-
tion of non-Abelian gauge theories, the gauge-theoretic
formulation [6] of quantum gravity using connection
variables on a flat hypercubic lattice of the space-time
was studied in the Lagrangian formalism. The canonical
quantization approaches to the Regge calculus in Hamil-
tonian formulation are studied in Ref. [7]. A locally finite
model for gravity has been recently proposed [8]. All
these studies are very important steps to understand
the Einstein general relativity for gravitational fields
in the framework of quantum field theory. In the brief
paper [9] based on the scenario of quantum Regge cal-
culus, we present a diffeomorphism and local Lorentz
invariant (i.e., local gauge-invariant) regularization and
quantization of Euclidean Einstein-Cartan (EC) theory.
Detailed calculations and discussions are presented in
this article.

The four-dimensional Euclidean space-time is discre-
tized by a simplicial complex, analogously to the formu-
lation of the Regge calculus. In the framework of the
Einstein-Cartan theory, we adopt basic gravitational vari-
ables, i.e., a pair of tetrad and spin-connection fields to
describe the simplicial complex. Introducing diffeomor-
phism and local Lorentz invariant (i.e., local gauge-
invariant) holonomy fields in terms of tetrad and spin-

connection fields along loops, we propose an invariantly
regularized EC theory for the dynamics of simplicial com-
plex, which couples to fermion spinor fields. We show that
in the continuum limit when the wavelengths of tetrad and
spin-connection fields are much larger than the Planck
length, this regularized EC action properly approaches to
the continuum EC action. The quantum dynamics of the
simplicial complex is described by the Euclidean partition
function that is a Feynman path-integral overall quantum
tetrad, spin connection, and fermion fields with the weight
of regularized EC action. Based on local gauge invariance,
we derive the dynamical equations satisfied by invariant
holonomy fields of tetrad, spin-connection, and fermion
fields. In the mean-field approximation, we show the aver-
aged size of 4-simplex (and its 3-simplex and 2-simplex),
elements of the simplicial complex, has to be larger than
the Planck length. This formulation provides a theoretical
framework for analytical calculations, in particular, nu-
merical simulations to study the Einstein-Cartan theory
as a quantum field theory.
This article is organized as follows: In Sec. II, we give a

brief review of the continuum EC theory. In Sec. III, we
discuss the regularized EC theory based on (1) the descrip-
tion of simplicial complex by tetrad and spin-connection
fields; (2) parallel transport equations in simplicial com-
plex; (3) invariant holonomy fields and regularized EC
action and their continuum limit; (4) the Euclidean parti-
tion function. In Secs. IV and V, we study chiral gauge
symmetric bilinear and quadralinear-fermion actions,
and derive dynamical equations for holonomy fields. In
Sec. VI, we adopt the method of the mean-field approxi-
mation to show the averaged size of the 4-simplex has to be
larger than the Planck length. In the last section, we give
some concluding remarks, and detailed calculations are
arranged in Appendices A, B, C, D, and E.*xue@icra.it
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II. CONTINUUM EINSTEIN-CARTAN THEORY

The basic gravitational variables in the Einstein-Cartan
theory constitute a pair of tetrad and spin-connection fields
½e�aðxÞ; !ab

� ðxÞ�, whose Dirac-matrix values

e�ðxÞ ¼ e�
aðxÞ�a and !�ðxÞ ¼ !ab

� ðxÞ�ab: (1)

The fields e�
aðxÞ and !ab

� ðxÞ are 1-form real fields on the

four-dimensional Euclidean space-timeR4, taking values,
respectively, in the local Lorentz vector space VL and
in the Lie algebra soð4Þ of the Lorentz group SOð4Þ
of the linear transformations of VL preserving �ab ¼
ðþ;þ;þ;þÞ. In this local Lorentz vector space VL, fer-
mions are spinor fields c ðxÞ, Dirac � matrices obey

f�a; �bg ¼ �2�ab; (2)

�y
a ¼ ��a and �

2
a ¼ �1 (a ¼ 0, 1, 2, 3); the Hermitian �5

matrix

�5 ¼ �5 ¼ �0�1�2�3 ¼ �0�1�2�3; (3)

�y
5 ¼ �5 and �2

5 ¼ 1; the Hermitian spinor matrix,

�ab ¼ i

2
½�a; �b�: (4)

Totally antisymmetric tensor ����� ¼ �abcde�
ae�

be�
ce�

d.

The space-time metric of four-dimensional Euclidean
manifold R4 is

g��ðxÞ ¼ e�
aðxÞe�bðxÞ�ab ¼ �1

2fe�; e�g: (5)

And the Lorentz scalar components of the metric tensor
are then simply

�ab ¼ g��e
�
ae

�
b; (6)

where the inverse of the tetrad fields e�ae�
a ¼ ��

� and
e�

be�a ¼ �b
a.

Two gauge invariances due to the equivalence principle
have to be respected: (1) the diffeomorphism invariance
under the general coordinate transformation x ! x0ðxÞ;
(2) the local gauge invariance under the local Lorentz
coordinate transformation �ðxÞ ! �0ðxÞ, i.e.,

�0aðxÞ ¼ ½�ðxÞ�ab�bðxÞ: (7)

Under the local Lorentz coordinate transformation (7), the
finite local gauge transformation is

V ð�Þ ¼ expi½	abð�Þ�ab� 2 SOð4Þ;
V ð�Þ�aV yð�Þ ¼ ½��1ðxÞ�ba�b;

(8)

where 	abð�Þ is the antisymmetric tensor and an arbitrary
function of � ¼ �ðxÞ. The Dirac-matrix valued fields e�,

!� and fermion spinor field c are transformed as follows:

e�ð�Þ ! e0�ð�Þ ¼ V ð�Þe�ð�ÞV yð�Þ; (9)

!�ð�Þ ! !0
�ð�Þ

¼ V ð�Þ!�ð�ÞV yð�Þ þV ð�Þ@�V yð�Þ; (10)

c ð�Þ ! c 0ð�Þ ¼ V ð�Þc ð�Þ; (11)

D 0
� ¼ V ð�ÞD�V yð�Þ; (12)

where the derivative @� ¼ ea�ð@=@�aÞ, the covariant

derivative

D � ¼ @� � ig!�ð�Þ; (13)

and g is the gauge coupling. Corresponding to the finite
local gauge transformations (9)–(11), infinitesimal local
gauge transformations for fields e�, !� and c are

�e�ð�Þ ¼ 	abð�Þdab;cec�ð�Þ; (14)

�!�ð�Þ ¼ 2�5�abcd!
ab
� 	cdð�Þ � i�ab@�	

abð�Þ; (15)

�c ð�Þ ¼ i	abð�Þ�abc ð�Þ; (16)

where

dab;c ¼ i½�ab; �c� ¼ 2ð�bc�a � �ac�bÞ; (17)

and we use the commutator relation

f�
�; ���g ¼ �2i�5�
���; (18)

to obtain Eq. (15).
In an SUð2Þ gauge theory, gauge field Aað�EÞ can be

viewed as a connection
R
Aað�EÞd�a

E on the global flat
manifold. On a locally flat manifold, the spin connection
!�dx

� ¼ !að�Þd�a, where !að�Þ ¼ !�e
�
a, one can

identify that the spin-connection field !�ðxÞ or !að�Þ is
the gravity analog of gauge field and its local curvature is
given by

Rab ¼ d!ab � g!ae ^!b
e; (19)

and the Dirac-matrix valued curvature R�� ¼ Rab
���ab.

Under the gauge transformation (9) and (10),

R0ab ¼ V ð�ÞRabð�ÞV yð�Þ: (20)

The diffeomorphism invariance under the general coordi-
nate transformation x ! x0ðxÞ is preserved by all deriva-
tives and d-form fields on R4 made to be coordinate
scalars with the help of tetrad fields e�

a ¼ @�a=@x� (see

Ref. [10]). The diffeomorphism and local gauge-invariant
EC action for gravity coupling to fermions is given by the
Palatini action SP and host modification SH for the gravi-
tational field,

SECðe;!Þ ¼ SPðe;!Þ þ SHðe;!Þ þ SFðe;!; c Þ; (21)

SPðe;!Þ ¼ 1

4�

Z
d4x detðeÞ�abcdea ^ eb ^ Rcd; (22)
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SHðe;!Þ ¼ 1

2�~�

Z
d4x detðeÞea ^ eb ^ Rab; (23)

and fermion action SF (see Refs. [11,12]),

SFðe;!; c Þ ¼ 1

2

Z
d4x detðeÞ½ �c e�D�c þ H:c:�; (24)

where � � 8G, the Newton constant G ¼ 1=m2
Planck,

detðeÞ is the Jacobi of mapping x ! �ðxÞ and the integra-
tion

R
d4x � R

R4 d4x. The complex Ashtekar connection

[13] with reality condition and the real Barbero connection
[14] are linked by a canonical transformation of the con-
nection with a finite complex Immirzi parameter ~� � 0
[15], which is crucial for loop quantum gravity [16].

Classical equations of motion can be obtained by the
stationarity of the EC action (21) under variations (9)–(11),

�SECðe; !; c Þ ¼ �SEC
�e�

�e� þ �SEC
�c ðxÞ�c ðxÞ

þ �SEC
�!�

�!� ¼ 0: (25)

From Eqs. (14)–(16), we find that Eq. (25) can be ex-
pressed in terms of independent bases �5, ��, and �ab of

the Dirac matrices. Therefore, for arbitrary function
	abð�Þ, Eq. (25) leads to the following three equalities:

�SEC
�c

¼ 0;
�SEC
�e�

¼ 0;
�SEC
�!�

¼ 0: (26)

The first and second equations, respectively, lead to the
Dirac equation,

e�D�c ðxÞ ¼ 0; (27)

and the Einstein equation

�abcde
a ^ eb ^ Rcd½!ðeÞ� ¼ � �c ðxÞðe ^DÞc ðxÞ; (28)

where the energy-momentum tensor is

�c ðe ^DÞc � 1
2
�c ½e�D� �D�e��c : (29)

The gauge invariance of the EC action (21) under the gauge
transformation (15) leads to the third constraint equation
�SEC=�!� ¼ 0 of Eq. (26), which is the Cartan structure

equation,

dea � g!ab ^ eb � Ta ¼ 0; (30)

where the nonvanishing torsion field,

Ta ¼ �geb ^ ecJ
ab;c; (31)

relating to the fermion spin current

Jab;c ¼ i �c f�ab; �cgc ¼ �abcd �c�d�
5c ; (32)

f�ab; �cg ¼ i�abcd�5�d: (33)

The fermion spin current (32) contributes only to the
pseudotrace axial vector of torsion tensor, which is one
of irreducible parts of torsion tensor [17]. The solution to
Eq. (30) is

!ab
� ¼ !ab

� ðeÞ þ ~!ab
� ; ~!ab

� ¼ �gec�J
ab

c; (34)

where the connection !ab
� ðeÞ obeys Eq. (30) for torsion-

free case Ta ¼ 0,

dea � g!abðeÞ ^ eb ¼ 0: (35)

Replacing the spin-connection field !ab
� in the Einstein-

Cartan action (22) and (24), by Eq. (34),

SP½e; !� ! SP½e;!ðeÞ� þ �g2
Z

d4x detðeÞð �c�d�5c Þ
� ð �c�d�

5c Þ; (36)

SF½e;!; c ; �c � ! SF½e;!ðeÞ; c ; �c � þ 2�g2
Z

d4x detðeÞ
� ð �c�d�5c Þð �c�d�

5c Þ; (37)

one obtains the well-known Einstein-Cartan theory: the
standard tetrad action of torsion-free gravity coupling to
fermions with four-fermion interactions,

SEC½e;!ðeÞ; c ; �c � ¼ SP½e;!ðeÞ� þ SF½e;!ðeÞ; c ; �c �
þ 3�g2

Z
d4x detðeÞð �c�d�5c Þ

� ð �c�d�
5c Þ: (38)

Note that the four-fermion interaction actually is the
coupling of two fermion spin currents (32). Taking into
account the host action (23), one obtains

SEC½e; !ðeÞ; c � ¼ SP½e;!ðeÞ� þ SH½e;!ðeÞ�
þ SF½e;!ðeÞ; c � þ S4Fðe; c Þ; (39)

S4Fðe; c Þ ¼ 3��g2
Z

d4x detðeÞð �c�d�5c Þð �c�d�
5c Þ;
(40)

where � ¼ ~�2=ð~�2 þ 1Þ [18]. Using the commutator rela-
tions (18) and ½�ab; �5� ¼ 0, one can show that ( �c�d�

5c )
is a pseudovector and (40) is invariant under the gauge
transformation (11).
As we can see from Eqs. (24) to (39), the bilinear term

(24) of massless fermion fields coupled to the spin-
connection field (13) is bound to yield a nonvanishing
torsion field Ta (30), which is local and static (see, for
example, Refs. [12,19]). As a result, the spin-connection
!� is no longer torsion-free and acquires a torsion-related

spin connection ~!ab
� (34), in addition to the torsion-free spin

connection!ab
� ðeÞ. The torsion-related spin connection ~!ab

�

is related to the fermion spin current (32). The quadratic
term of the spin-connection field! in the curvature (19) and
the coupling between the spin-connection field ! and fer-
mion spin current in Eqs. (13) and (24) lead to the quadra-
linear terms of fermion fields in Eqs. (36) and (37). Another
way to see this is to treat the static torsion-related spin
connection ~!ab

� (34) as a static auxiliary field, which has

its quadratic term and linear coupling to the spin-current of
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fermion fields. Performing the Gaussian integral of the
static auxiliary field, we exactly obtain the quadralinear
term (40), in addition to the torsion-free EC action.

The action (21) and classical Eqs. (27)–(30) can be
separated into left- and right-handed parts [20], with re-
spect to the local SULð2Þ and SURð2Þ symmetries of the
Lorentz group SOð4Þ ¼ SULð2Þ � SURð2Þ. This can be
shown by writing Dirac fermions c ¼ c L þ c R, where
Weyl fermions c L;R � PL;Rc , PL;R ¼ ð1� �5Þ=2; and

Dirac-matrix valued tetrad field e� ¼ e
�
L þ e

�
R , e

�
L;R �

PL;Re
�, as well as Dirac-matrix valued spin-connection

fields !� ¼ !�
L þ!�

R , !
�
L;R � PL;R!

�.

III. THE REGULARIZED
EINSTEIN-CARTAN THEORY

A. Simplicial complex

The four-dimensional Euclidean manifold R4 is discre-
tized as an ensemble of N 0 space-time points (vertexes)
‘‘x 2 R4’’ and N 1 links (edges) ‘‘l�ðxÞ’’ connecting two

neighboring vertexes. This ensemble forms a simplicial
manifold M embedded into the R4. The way to construct
a simplicial manifold depends also on the assumed topol-
ogy of the manifold, which gives geometric constrains on
the numbers of subsimplices (N 0;N 1; . . . , see Ref. [5]).
In this article, analogously to the simplicial manifold
adopted by the Regge calculus we consider the simplicial
manifold M as a simplicial complex, whose elementary
building block is a 4-simplex (pentachoron). The 4-
simplex has five vertexes—0-simplex (a space-time point
‘‘x’’), five ‘‘faces’’—3-simplex (a tetrahedron), and each
3-simplex has four faces—2-simplex [a triangle hðxÞ], and
each 2-simplex has three faces—1-simplex [an edge or a
link ‘‘l�ðxÞ’’]. Different configurations of the simplicial

complex correspond to variations of relative vertex-
positions fxg, edges ‘‘fl�ðxÞg’’ and ‘‘deficit angles’’ asso-

ciating to 2-simplices hðxÞ. These configurations will be
described by the configurations of dynamical tetrad fields
e�ðxÞ and spin-connection fields !�ðxÞ assigned to 1-

simplexes (edges) of the simplicial complex in this article.
We are not clear now how to relate configurations of fields
e�ðxÞ and !�ðxÞ to topological constrained configurations

of the simplicial complex in dynamical triangulations.

1. Edges: 1-simplexes

The edge (1-simplex) denoted by ðx;�Þ, connecting two
neighboring vertexes labeled by x and xþ a�, can be

represented as a four-vector field l�ðxÞ, defined at the

vertex ‘‘x’’ by its forward direction � pointing from x to
xþ a� and its length

a�ðxÞ � jl�ðxÞj � 0; (41)

which is the distance between two vertexes x and xþ a�.

The fundamental tetrad field e�ðxÞ is assigned to each edge

(1-simplex) of the simplicial complex to describe the edge
location ‘‘x,’’ direction ‘‘�’’ and length a�ðxÞ. We use the

tetrad field e�ðxÞ, defined at the vertex x, to characterize

the edge (1-simplex) l�ðxÞ
l�ðxÞ � ae�ðxÞ; (42)

where the Planck length a � ð8GÞ1=2 ¼ �1=2, and

jl�ðxÞj � a

2
fjtr½e�ðxÞ � e�ðxÞ�jg1=2: (43)

By definition, either l�ðxÞ or e�ðxÞ is a Dirac-matrix valued

four-vector field, defined at the vertex ‘‘x.’’

2. Triangles: 2-simplexes

We consider an orienting 2-simplex (triangle) (see
Fig. 1). This 2-simplex (triangle) has three edges connect-
ing three neighboring vertexes that are labeled by x, xþ
a� and xþ a�. This triangle (2-simplex) has two orienta-

tions: (i) the anti-clocklike hðxÞ [x�� xþ a��
�
xþ a��

�
x]

and (ii) the clocklike hyðxÞ [x���
xþ a��

��
xþ a��

��
x].

Along the triangle path of the anti-clocklike 2-simplex

hðxÞ [x�� xþ a��
�
xþ a��

�
x], three edges and their for-

ward directions are represented by: (1) l�ðxÞ and � point-

ing from x to xþ a�; (2) l�ðxþ a�Þ and � pointing from

xþ a� to xþ a�; (3) l�ðxþ a�Þ and � pointing from

xþ a� to x. The lengths of three edges are, respectively,
represented by edge spacings a�, a� and a� [see Eqs. (41)

and (43)]. We use the tetrad fields

e�ðxÞ; e�ðxþ a�Þ; e�ðxþ a�Þ; (44)

defined at x, xþ a� and xþ a�, to, respectively, character-

ize locations, forward directions and lengths of three
edges: (42) and

l�ðxþ a�Þ ¼ ae�ðxþ a�Þ;
l�ðxþ a�Þ ¼ ae�ðxþ a�Þ;

(45)

of the anti-clocklike 2-simplex hðxÞ [see Fig. 1 and
Eqs. (42) and (43)].

B. Parallel transports and curvature

The fundamental spin-connection fields f!�ðxÞg are as-
signed to 1-simplices (edges) of the simplicial complex,
i.e., each edge ðx;�Þ we associate with it !�ðxÞ. The
torsion-free Cartan Eq. (35) is actually an equation for
infinitesimal parallel transports of tetrad fields ea�ðxÞ.
Applying this equation to the 2-simplex hðxÞ, as shown
in Fig. 1, we show that ea�ðxÞ [ea�ðxÞ] undergoes its parallel
transport to �ea�ðxþ a�Þ [ �ea�ðxþ a�Þ] along the � (�) di-

rection for an edge spacing a�ðxÞ [a�ðxÞ], following the

discretized Cartan equations:

�e a
�ðxþ a�Þ � ea�ðxÞ � a�g!

ab
� ðxÞ ^ e�bðxÞ ¼ 0; (46)
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�e a
�ðxþ a�Þ � ea�ðxÞ � a�g!

ab
� ðxÞ ^ e�bðxÞ ¼ 0: (47)

The parallel transports �ea�ðxþ a�Þ and �ea�ðxþ a�Þ are

neither independent fields, nor assigned to any edges of

the simplicial complex. They are related to ey�ðxÞ½e�ðxÞ�
and !�ðxÞ½!�ðxÞ� fields assigned to the edges ðx;��Þ and
ðx;�Þ of the 2-simplex hðxÞ by the Cartan Eq. (46) and (47).
Because of torsion-free, e�ðxÞ, ey�ðxÞ and their parallel

transports �ey�ðxþ a�Þ, �e�ðxþ a�Þ form a closed parallelo-

gram CPðxÞ (Fig. 1). Otherwise this wouldmeans the curved
space-time could not be approximated locally by a flat
space-time [21]. Note that the point (xþ a� þ a�) at the

closed parallelogram CPðxÞ (Fig. 1) is not any vertex of the
simplicial complex.

For the zero curvature case Rab
��ðxÞ ¼ 0, the curvature

Eq. (19) can be discretized as

�!ab
� ðxþa�Þ�!ab

� ðxÞ�a�g!
ae
� ðxÞ^!b

e�ðxÞ¼0; (48)

�!ab
� ðxþa�Þ�!ab

� ðxÞ�a�g!
ae
� ðxÞ^!b

e�ðxÞ¼0; (49)

where �!ab
� ðxþ a�Þ and �!ab

� ðxþ a�Þ are, respectively, par-
allel transports of !ab

� ðxÞ and !ab
� ðxÞ in the � and � direc-

tions. Analogously to the parallel transports �ea�ðxþ a�Þ and
�ea�ðxþ a�Þ given by Eqs. (46) and (47), parallel transports

�!ab
� ðxþ a�Þ and �!ab

� ðxþ a�Þ are neither independent

fields, nor assigned to any edge of the simplicial complex.
They are related to !�ðxÞ and !�ðxÞ fields assigned to the

edges ðx;�Þ and (xþ a�, �) of the 2-simplex hðxÞ by the
parallel transport Eqs. (48) and (49). The fields !�ðxÞ,
!�ðxÞ and their parallel transports �!�ðxþ a�Þ, �!�ðxþ
a�Þ also form a closed parallelogram, analogously to the

one CPðxÞ formed by the tetrad fields e�ðxÞ, e�ðxÞ and their
parallel transports �e�ðxþ a�Þ, �e�ðxþ a�Þ (see Fig. 1).
Whereas, for the nonzero curvature case Rab

��ðxÞ � 0, the

curvature Eq. (19) can be discretized as

!ab
� ðxþ a�Þ �!ab

� ðxÞ � a�g!
ae
� ðxÞ ^!b

e�ðxÞ
¼ a�R

ab
��ðxÞ; (50)

!ab
� ðxþ a�Þ �!ab

� ðxÞ � a�g!
ae
� ðxÞ ^!b

e�ðxÞ
¼ a�R

ab
��ðxÞ; (51)

which define fields !ab
� ðxþ a�Þ and !ab

� ðxþ a�Þ in terms

of fields !ab
� ðxÞ, !ab

� ðxÞ and curvature Rab
��ðxÞ. These fields

!ab
� ðxþ a�Þ and !ab

� ðxþ a�Þ are neither independent

fields, nor assigned to any edge of the simplicial complex.
They are related not only to !ab

� ðxÞ and !ab
� ðxÞ fields

assigned to the edges ðx;�Þ and ðxþ a�; �Þ of the 2-simplex
hðxÞ, but also to the curvature Rab

�� (50) and R
ab
�� (51).

These fields!ab
� ðxþ a�Þ and!ab

� ðxþ a�Þ are no longer
parallel transports �!ab

� ðxþ a�Þ and �!ab
� ðxþ a�Þ defined

by Eqs. (48) and (49). The difference between !ab
� ðxþ

a�Þ and �!ab
� ðxþ a�Þ [or between !ab

� ðxþ a�Þ and

�!ab
� ðxþ a�Þ] is the curvature a�Rab

��ðxÞ [a�Rab
��ðxÞ],

!ab
� ðxþ a�Þ � �!ab

� ðxþ a�Þ ¼ a�R
ab
��ðxÞ; (52)

!ab
� ðxþ a�Þ � �!ab

� ðxþ a�Þ ¼ a�R
ab
��ðxÞ: (53)

The fields !�ðxÞ, !�ðxÞ and fields !�ðxþ a�Þ,
!�ðxþ a�Þ do not form a closed parallelogram, due to

the nonzero curvature Rab
��ðxÞ � 0.

C. Group-valued fields

Instead of a !�ðxÞ field, we assign a group-valued field

U�ðxÞ to each edge (1-simplex) of the simplicial complex.

FIG. 1. We sketch a 2-simplex (triangle) hðxÞ formed by
three edges l�ðxÞ ¼ ae�ðxÞ, l�ðxþ a�Þ ¼ ae�ðxþ a�Þ and

l�ðxþ a�Þ ¼ ae�ðxþ a�Þ [a ¼ 1] connecting three vertexes x,

xþ a� and xþ a�. Assuming three edge spacings a�, a� and a�
(41) are so small that the geometry of the interior of each 4-
simplex and its subsimplex (3- and 2-simplex) is approximately
flat, we assign a local Lorentz frame to each 4-simplex. On the
local Lorentz manifold �aðxÞ at a space-time point ‘‘x’’, we
sketch a closed parallelogram CPðxÞ lying in the 2-simplex hðxÞ.
Its two edges e�ðxÞ and ey�ðxÞ are two edges of the 2-simplex

hðxÞ, and other two edges (dashed lines) �ey�ðxþ a�Þ and �e�ðxþ
a�Þ are parallel transports of ey�ðxÞ and ey�ðxÞ along � and �

directions, respectively [see Eqs. (46), (47), (62), and (63)]. Each
2-simplex in the simplicial complex has a closed parallelogram
lying in it. Group-valued gauge fields U�ðxÞ and Uy

� ðxÞ are,

respectively, associated to edges e�ðxÞ and ey�ðxÞ of the 2-

simplex hðxÞ, as indicated. The fields e� � e�ðxþ a�Þ and

U� � U�ðxþ a�Þ are associated to the third edge (xþ a�, �)

of the 2-simplex hðxÞ. The group fields �U�ðxþ a�Þ and �Uy
�ðxþ

a�Þ indicate the parallel transports of Uy
� ðxÞ and U�ðxÞ [see

Eqs. (48), (49), (82), and (83)] for the zero curvature case. Note
that the point (xþ a� þ a�) is not a vertex of the simplicial

complex, points: (x� a�), (x� a�), (xþ a� þ a�), (xþ a� �
a�), and (xþ a� þ a�), which are not shown in the sketch, are

not vertexes of the simplicial complex as well. Parallel transports
�e�ðxþ a�Þ and �ey�ðxþ a�Þ, as well as �U�ðxþ a�Þ and �Uy

�ðxþ
a�Þ are not associated to any edge of the simplicial complex.
Throughout this article, the notations �e and �U indicates parallel
transports that are not associated to any edge of the simplicial
complex.
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On the edge ðx;�Þ connecting two vertexes x and xþ a�
in the forward direction �, we place an SOð4Þ group-
valued spin-connection fields,

U�ðxÞ ¼ eiga!�ðxÞ; (54)

whereas the same edge (xþ a�, ��) in the backward

direction ��, we associate with it

U��ðxþ a�Þ � Uy
�ðxÞ ¼ U�1

� ðxÞ; (55)

analogously to the definition of link fields in lattice gauge
theories. On the three edges in forward directions ðx;�Þ,
(xþ a�, �) and (xþ a�, �) of the anti-clocklike 2-simplex

hðxÞ (� � � � � see Fig. 1), we define SOð4Þ group-
valued spin-connection fields,

U�ðxÞ ¼ eiga!�ðxÞ; (56)

U�ðxþ a�Þ ¼ eiga!�ðxþa�Þ; (57)

U�ðxþ a�Þ ¼ eiga!�ðxþa�Þ; (58)

which take values of the fundamental representation of the
compact group SOð4Þ. On the three edges in backward
directions ðx;��Þ, (xþ a�, ��) and (xþ a�, ��) of

the clocklike 2-simplex hyðxÞ (see Fig. 1), we define
SOð4Þ group-valued spin-connection fields,

U��ðxÞ ¼ Uy
� ðxþ a�Þ ¼ e�iga!�ðxþa�Þ; (59)

U��ðxþ a�Þ ¼ Uy
�ðxþ a�Þ ¼ e�iga!�ðxþa�Þ; (60)

U��ðxþ a�Þ ¼ Uy
�ðxÞ ¼ e�iga!�ðxÞ: (61)

These uniquely define group-valued spin-connection fields
on the anti-clocklike and clocklike 2-simplex.

1. Unitary operators for parallel transports of e�ðxÞ fields
Actually, these group-valued fields (56)–(61) can be

viewed as unitary operators for finite parallel transporta-
tions. The parallel transportation (Cartan) Eqs. (46) and
(47) can be generalized to (� � �)

�e �ðxþ a�Þ ¼ Uy
�ðxÞe�ðxÞU�ðxÞ; (62)

�e �ðxþ a�Þ ¼ Uy
� ðxÞe�ðxÞU�ðxÞ; (63)

and using Eq. (55) these equations can be equivalently
rewritten as

e�ðxÞ ¼ Uy��ðxþ a�Þ �e�ðxþ a�ÞU��ðxþ a�Þ; (64)

e�ðxÞ ¼ Uy��ðxþ a�Þ �e�ðxþ a�ÞU��ðxþ a�Þ: (65)

While for (� ¼ �), we similarly have the following paral-
lel transportation equations:

�e �ðxþ a�Þ ¼ Uy
�ðxÞe�ðxÞU�ðxÞ;

e�ðxÞ ¼ Uy��ðxþ a�Þ �e�ðxþ a�ÞU��ðxþ a�Þ;
(66)

indicating that e�ðxÞ is parallel transported to �e�ðxþ a�Þ
in the � forward direction, and �e�ðxþ a�Þ is parallel

transported to e�ðxÞ in the �� backward direction.

Similar discussions can be made for parallel transports
with the unitary operator U�ðxþ a�Þ.

2. Unitary operators for parallel transports of ey�ðxÞ fields
In the simplicial complex, each edge (1-simplex) con-

necting two vertexes has only one direction. One can
identify each edge by its starting vertex and direction
pointing to its ending vertex. On the basis of the tetrad
field e�ðxÞ (42) defined at the vertex ‘‘x’’ for the edge

ðx;�Þ starting from the vertex ‘‘x’’ in the forward direction
(�) to the vertex ‘‘xþ a�’’ below, using the unitary op-

erator U�ðxÞ for parallel transports, we will uniquely in-

troduce the ‘‘conjugated’’ field ey�ðxÞ defined at the vertex

‘‘x’’ to describe the same edge (xþ a�, ��) but in the

backward direction�� starting from the vertex ‘‘xþ a�’’

to the vertex ‘‘x.’’ Analogously to Eq. (42), this edge
starting from the vertex ‘‘xþ a�’’ in the backward direc-

tion (��) can be formally represented by

l��ðxþ a�Þ � ae��ðxþ a�Þ: (67)

By the parallel transport, we define the field
e��ðxþ a�Þ as
e��ðxþ a�Þ � Uy

�ðxÞey�ðxÞU�ðxÞ ¼ ey�ðxþ a�Þ (68)

in terms of the unitary operator U�ðxÞ and conjugated

tetrad fields ey�ðxÞ defined at the vertex ‘‘x.’’ From the

definition in Eq. (68), we rewrite

ey�ðxÞ � U�ðxÞe��ðxþ a�ÞUy
�ðxÞ ¼ �e��ðxÞ: (69)

The second equalities in Eqs. (68) and (69) are given by the
definition of parallel transports by unitary operators [see
Eq. (62)]. Equation (68) means that we can associate the
conjugated field

ey�ðxÞ ¼ U�ðxÞey�ðxþ a�ÞUy
�ðxÞ; (70)

with the same edge (xþ a�, ��) but in backward direc-

tion �� and write

ly�ðxÞ � aey�ðxÞ: (71)

As a result, the edge ðx;�Þ [(xþ a�, ��)] in the forward

(backward) direction is uniquely described by the field
e�ðxÞ [ey�ðxÞ] defined at the vertex x. Note that the con-

jugated field ey�ðxÞ is given by the parallel transport (70)

from xþ a� to x in the direction (��). In addition,

Eqs. (68) and (69) indicate that conjugated fields mean
the inverse of field’s direction (� ! ��).
This prescription shows that the edge ðx;�Þ is com-

pletely described by the fields e�ðxÞ and ey�ðxÞ, latter is a
function of fields e�ðxÞ and U�ðxÞ, as required by the
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principle of local gauge symmetries and the gauge field
U�ðxÞ corresponds a parallel transport between x and xþ
a�. In consequence, any edge (1-simplex) of the simplicial

complex is uniquely identified by its location and direction
ðz; �Þ, and described by the fields e�ðzÞ and U�ðzÞ.

Using the properties ð�aÞy ¼ ��a [see Eq. (2)] and the
definition of tetrad field e�ðxÞ ¼ e�

aðxÞ�a, where the

index � is fixed, we have

ey�ðxÞ¼ ½e�aðxÞ�a�y ¼ ð�aÞy½e�aðxÞ�y;¼�e�ðxÞ; (72)

where because of the index � being fixed, the real tetrad-
field component e�

aðxÞ � @�a=@x� can be viewed as a

one-row matrix ðe�0; e�
1; e�

2; e�
3Þ and ½e�aðxÞ�y a

one-column matrix ðe�0; e�
1; e�

2; e�
3Þy. Analogously

to Eq. (43), the length of the edge (71) in backward
direction ��,

jly�ðxÞj ¼ a

2

�
jtr½ey�ðxÞ � ey�ðxÞ�j

�
1=2 ¼ jl�ðxÞj; (73)

which is the same as the length of the edge in the forward
direction �.

We turn to the discussion of other two backward-
direction edges (xþ a�, ��) and (xþ a�, ��) of the

clocklike 2-simplex hyðxÞ (see Fig. 1). Analogously to
Eqs. (68) and (69), we have in the (� �) direction,

e��ðxÞ � U�ðxÞey�ðxþ a�ÞUy
� ðxÞ ¼ ey�ðxÞ;

ey�ðxþ a�Þ � Uy
� ðxÞe��ðxÞU�ðxÞ ¼ �e��ðxþ a�Þ;

(74)

and in the (� �) direction

e��ðxþ a�Þ � Uy
�ðxþ a�Þey�ðxþ a�ÞU�ðxþ a�Þ

¼ ey�ðxþ a�Þ:
ey�ðxþ a�Þ � U�ðxþ a�Þe��ðxþ a�ÞUy

�ðxþ a�Þ
¼ �e��ðxþ a�Þ;

(75)

As a result, the edge (xþ a�, �) [(xþ a�, ��)] in the
forward (backward) direction is uniquely described

by the field e�ðxþ a�Þ [ey�ðxþ a�Þ] defined at the vertex
xþ a�

ey�ðxþ a�Þ ¼ Uy
� ðxÞey�ðxÞU�ðxÞ; (76)

see Eq. (74). Note that the conjugated field ey�ðxþ a�Þ is
given by the parallel transport (76) from x to xþ a� in the
direction (�). We can write

ly�ðxþ a�Þ � aey�ðxþ a�Þ: (77)

Similarly, the edge (xþ a�, �) [(xþ a�, ��)] in the

forward (backward) direction is uniquely described

by the field e�ðxþ a�Þ [ey�ðxþ a�Þ] defined at the vertex

xþ a�

ey�ðxþ a�Þ ¼ U�ðxþ a�Þey�ðxþ a�ÞUy
�ðxþ a�Þ; (78)

see Eq. (75). Note that the conjugated field ey�ðxþ a�Þ is
given by the parallel transport (78) from xþ a� to xþ a�
in the direction (� �). We can write

ly�ðxþ a�Þ � aey�ðxþ a�Þ: (79)

This prescription shows that the edge (xþ a�, �) is com-
pletely described by the fields e�ðxþ a�Þ and U�ðxþ a�Þ,
and the edge (xþ a�, �) by the fields e�ðxþ a�Þ and

U�ðxþ a�Þ. The field U�ðxþ a�Þ [U�ðxþ a�Þ] corre-

sponds a parallel transport between x and xþ a� (xþ
a� and xþ a�).

Along the triangle path of the clocklike 2-simplex hyðxÞ
[x�

��
xþ a��

��
xþ a��

��
x] (see Fig. 1), these three edges

and their backward directions are formally represented by
(1) l��ðxþ a�Þ and �� pointing from xþ a� to x;

(2) l��ðxÞ and �� pointing from x to xþ a�;
(3) l��ðxþ a�Þ and �� pointing from xþ a� to xþ a�.

Based on Eqs. (68), (74), (75), (70), (76), and (78), we use
the conjugated tetrad fields

ey�ðxÞ; ey�ðxþ a�Þ; ey�ðxþ a�Þ; (80)

which are, respectively, defined at vertexes x, xþ a�,
xþ a�, to characterize both backward directions and

lengths of three edges (71), (77), and (79) of the clocklike
2-simplex hyðxÞ.
In the simplicial complex, each edge (1-simplex), des-

cribed by tetrad field e�ðxÞ, is uniquely identified by its

location and direction ðx; �Þ, and each triangle (2-simplex)
hðxÞ has a definite orientation, as indicated in Fig. 1, either
anti-clocklike or clocklike. Thus each triangle, for ex-
ample, the one presented in Fig. 1 is completely described
by the tetrad fields e�ðxÞ, e�ðxþ a�Þ, e�ðxþ a�Þ, and
unitary operators U�ðxÞ, U�ðxþ a�Þ, U�ðxþ a�Þ.

3. Unitary operators and curvature

In the zero curvature case, the group-valued fields for
parallel transports �!�ðxþ a�Þ and �!�ðxþ a�Þ, defined by
parallel transport Eqs. (48) and (49), are given by

�U�ðxþ a�Þ ¼ eiga �!�ðxþa�Þ;

�U�ðxþ a�Þ ¼ eiga �!�ðxþa�Þ:
(81)

Similarly to Eqs. (62) and (63), the parallel transport
Eqs. (48) and (49) can be generalized to

�U �ðxþ a�Þ ¼ Uy
�ðxÞU�ðxÞU�ðxÞ; (82)

�U�ðxþ a�Þ ¼ Uy
� ðxÞU�ðxÞU�ðxÞ: (83)

The parallel transport fields �U�ðxþ a�Þ and �U�ðxþ a�Þ
together with U�ðxÞ and U�ðxÞ form a closed parallelo-

gram, see Fig. 1. This closed parallelogram is not the same
as the parallelogram CPðxÞ formed by e and �e fields.
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In the nonzero curvature case, corresponding to the
fields !�ðxþ a�Þ and !�ðxþ a�Þ defined by Eqs. (50)

and (51), the group-valued fields can be similarly given by

U�ðxþ a�Þ ¼ eiga!�ðxþa�Þ;

U�ðxþ a�Þ ¼ eiga!�ðxþa�Þ;
(84)

whose values obviously depend on the curvature R��ðxÞ.
The same as the fields !�ðxþ a�Þ and !�ðxþ a�Þ, these
group-valued fields U�ðxþ a�Þ and U�ðxþ a�Þ are nei-

ther independent fields, nor assigned to any edge of the
simplicial complex. They are related to U�ðxÞ and U�ðxÞ
fields assigned to the edges ðx;�Þ and ðx; �Þ of the
2-simplex hðxÞ by

U�ðxþ a�Þ � Uy
�ðxÞU�ðxÞU�ðxÞ; (85)

U�ðxþ a�Þ � Uy
� ðxÞU�ðxÞU�ðxÞ; (86)

which are generalized from Eqs. (50) and (51). The fields
U�ðxþ a�Þ and U�ðxþ a�Þ defined in Eqs. (85) and (86)

encode the information of a nontrivial curvature. They do
not form a closed parallelogram together with U�ðxÞ and
U�ðxÞ, at the point (xþ a� þ a�) (see Fig. 1).

In order to see the nontrivial curvature information
encoded in the fields U�ðxþ a�Þ and U�ðxþ a�Þ defined
by Eqs. (84)–(86), based on Eqs. (85) and (86), we intro-
duce quantities

U��ðxÞ � U�ðxÞU�ðxÞ ¼ U�ðxÞU�ðxþ a�Þ; (87)

U��ðxÞ � U�ðxÞU�ðxÞ ¼ U�ðxÞU�ðxþ a�Þ; (88)

and calculate their expressions in the naive continuum limit.
In the naive continuum limit: ag!� � 1 (small coupling g

or weak !� field), indicating that the wavelengths of weak

and slow-varying fields!�ðxÞ aremuch larger than the edge

spacing a�, we obtain (see Appendix A)

U��ðxÞ ¼ exp

�
iga½!�ðxÞ þ!�ðxÞ� þ iga2@�!�ðxÞ

� 1
2ðgaÞ2½!�ðxÞ; !�ðxÞ� þOða3Þ

�
; (89)

where Oða3Þ indicates high-order powers of ag!�. It is

shown that the quantity U��ðxÞ [Eq. (89)] is related to the

curvature R��ðxÞ in Appendix A. For the sake of simplicity

in the following calculations to show the naive continuum
limit, the quantities introduced by (87) and (88), and their
expressions in the naive continuum limit (89) are useful.

D. Triangle constrain and area

Three tetrad fields e�ðxÞ, e�ðxþ a�Þ and e�ðxþ a�Þ
[see Eq. (44)] are three edges of the anti-clocklike
2-simplex hðxÞ, satisfying the triangle constraint

e�ðxþ a�Þ ¼ e��ðxÞ � e�ðxÞ ¼ ey�ðxÞ � e�ðxÞ: (90)

Equivalently, three tetrad fields ey�ðxÞ, ey�ðxþ a�Þ and

ey�ðxþ a�Þ [see Eqs. (70), (76), and (78) or (80)] of the

clocklike 2-simplex hyðxÞ, satisfying the triangle constraint
e��ðxþ a�Þ ¼ e�ðxÞ � e��ðxÞ ¼ e�ðxÞ � ey�ðxÞ; (91)

where e��ðxþ a�Þ ¼ ey�ðxþ a�Þ [see Eq. (75)]. Also,

Eq. (74) is used for e��ðxÞ ¼ ey�ðxÞ in the second equality
of Eqs. (90) and (91). Two of three edges are independent
for a given anti-clocklike (clocklike) 2-simplexhðxÞ [hyðxÞ].
However, in Eqs. (90) and (91), vector fields defined at

different vertexes are related without being parallel trans-
ported to the same vertex, thus these relationships are not
proper and does not properly transform under local gauge
transformations. This is an exactly essential point of local
gauge symmetries, that gauge fields U for parallel trans-
ports are needed to relate variations of gauge freedom at
different coordinate points. Using the parallel transport by
the unitary operator U�ðxÞ, we rewrite the triangle con-

straint (90) for the anti-clocklike 2-simplex hðxÞ as
U�ðxÞe�ðxþ a�ÞUy

�ðxÞ ¼ ey�ðxÞ � e�ðxÞ; (92)

where in the left-handed side, e�ðxþ a�Þ is parallel trans-
ported from the vertex xþ a� to the vertex x to be related

to ey�ðxÞ and e�ðxÞ at the same vertex x in the right-handed

side. Using �e�ðxÞ ¼ U�ðxÞe�ðxþ a�ÞUy
�ðxÞ, we rewrite

Eq. (92) as

e�ðxÞ þ e�ðxÞ þ �e�ðxÞ ¼ 0: (93)

Using the parallel transport by the unitary operator U�ðxÞ,
we rewrite the triangle constraint (91) for the clocklike
2-simplex hyðxÞ as

U�ðxÞey�ðxþ a�ÞUy
� ðxÞ ¼ e�ðxÞ � ey�ðxÞ; (94)

where in the left-handed side ey�ðxþ a�Þ is parallel trans-
ported from the vertex xþ a� to the vertex x to be related

to ey�ðxÞ and e�ðxÞ at the same vertex x in the right-handed

side. Equation (94) is identical to Eq. (92) or Eq. (93), if we

consider �ey�ðxÞ ¼ U�ðxÞey�ðxþ a�ÞUy
� ðxÞ and �ey�ðxÞ ¼

� �e�ðxÞ. The proper parallel transports by unitary operators
can shift the triangle constrain to other vertexes, for ex-
ample, xþ a� and xþ a�.

We are now in the position of discussing the area of the
2-simplex hðxÞ. We define the fundamental area operator of
the anti-clocklike 2-simplex hðxÞ (see Fig. 1)

Sh��ðxÞ � a2e�ðxÞ ^ e��ðxÞ (95)

at the vertex x. In addition, we can also define the following
area operators:

Sh��ðxþ a�Þ � a2e�ðxþ a�Þ ^ e��ðxþ a�Þ (96)

at the vertex xþ a�, and

Sh��ðxþ a�Þ � a2e�ðxþ a�Þ ^ e��ðxþ a�Þ (97)
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at the vertex xþ a�. Using Eqs. (68), (74), and (75), we
rewrite the area operators (95)–(97) of the anti-clocklike
2-simplex hðxÞ as

Sh��ðxÞ � a2e�ðxÞ ^ ey�ðxÞ; (98)

Sh��ðxþ a�Þ � a2e�ðxþ a�Þ ^ ey�ðxþ a�Þ; (99)

Sh��ðxþ a�Þ � a2e�ðxþ a�Þ ^ ey�ðxþ a�Þ: (100)

In the following, we show that area operators (98)–(100),
defined at three vertexes x, xþ a�, and xþ a� are univer-

sal up to parallel transports by unitary operators. Using
Eqs. (68) and (92), we obtain

Sh��ðxþ a�Þ ¼ a2Uy
�ðxÞ½ey�ðxÞ � e�ðxÞ�U�ðxÞ

^Uy
�ðxÞey�ðxÞU�ðxÞ;

¼ a2Uy
�ðxÞ½ey�ðxÞ ^ ey�ðxÞ�U�ðxÞ;

¼ Uy
�ðxÞSh��ðxÞU�ðxÞ: (101)

Analogously, using Eqs. (74) and (94), we obtain

Sh��ðxþ a�Þ ¼ a2Uy
� ðxÞe�ðxÞU�ðxÞ

^Uy
� ðxÞ½e�ðxÞ � ey�ðxÞ�U�ðxÞ

¼ a2Uy
� ðxÞe�ðxÞ ^ e�ðxÞU�ðxÞ

¼ Uy
� ðxÞSh��ðxÞU�ðxÞ: (102)

In Eqs. (101) and (102), we use ey�ðxÞ ¼ �e�ðxÞ, e�ðxÞ ^
e�ðxÞ ¼ ey�ðxÞ ^ ey�ðxÞ ¼ ey�ðxÞ ^ e�ðxÞ ¼ 0 and the same

for (� ! �). This shows that the area operators (98)–(100)
defined at three vertexes of the 2-simplex hðxÞ are universal
up to parallel transports.

Therefore, Eq. (95) or (98) defines the area operator of
the 2-simplex hðxÞ

Sh��ðxÞ � a2

2
½e�ðxÞey�ðxÞ � ey�ðxÞe�ðxÞ�

¼ a2
i

2
�ab½ea�ðxÞeb�ðxÞ � ea�ðxÞeb�ðxÞ�; (103)

up to parallel transports. As consequence, the area of the
2-simplex hðxÞ is uniquely determined by

ShðxÞ� jSh��ðxÞj; S2hðxÞ� 1
8tr½Sh��ðxÞ �Shy��ðxÞ�: (104)

Its uniqueness [independence of the vertexes x, xþ a� and

xþ a� of the 2-simplex hðxÞ], i.e.,
ShðxÞ� jSh��ðxÞj¼ jSh��ðxþa�Þj¼ jSh��ðxþa�Þj; (105)

can be shown by using Eqs. (101) and (102).
In the same way as Eqs. (95)–(97), we define the area

operators of the clocklike 2-simplex hyðxÞ:

Sh��ðxÞ � a2e��ðxÞ ^ e�ðxÞ ¼ �Sh��ðxÞ ¼ Shy��ðxÞ;
Sh��ðxþ a�Þ � a2e��ðxþ a�Þ ^ e�ðxþ a�Þ

¼ �Sh��ðxþ a�Þ ¼ Shy��ðxþ a�Þ;
Sh��ðxþ a�Þ � a2e��ðxþ a�Þ ^ e�ðxþ a�Þ

¼ �Sh��ðxþ a�Þ ¼ Shy��ðxþ a�Þ; (106)

whose directions are opposite to the counterparts of anti-
clocklike 2-simplex hðxÞ. However, the area of the clock-
like 2-simplex hyðxÞ is equal to the area (104).
Based on the definition of 2-simplex hðxÞ area (104), we

can define a volume element around the vertex ‘‘x’’

dVðxÞ ¼ X
hðxÞ

dVhðxÞ; dVhðxÞ � S2hðxÞ; (107)

where dVhðxÞ indicates the volume element contributed
from a 2-simplex hðxÞ, and P

hðxÞ indicates the sum over

all 2-simplices hðxÞ that share the same vertex x. This
definition of volume element (107) indicates that a
2-simplex hðxÞ contributes the volume element S2h at its

three vertexes x, xþ a� and xþ a�.

Before ending this section, we note that using the
parallel transports (68), (74), and (75), one can obtain
parallel transports of area operators (95)–(97) of triangles
(2-simplexes),

�S��ðxþ a�Þ ¼ Uy
�ðxÞSh��ðxÞU�ðxÞ;

�S��ðxþ a�Þ ¼ Uy
� ðxÞSh��ðxÞU�ðxÞ; � � � ;

(108)

which are consistent with the definitions of unitary opera-
tors U�ðxÞ and U�ðxÞ for parallel transports (62) and (63)

of edges (1-simplexes). The notation ‘‘ �S��’’ instead of S
h
��

in the left-handed side of Eqs. (108) indicates that the
parallel transport ‘‘ �S��’’ is not associated to any triangle

of the simplicial complex.

E. Local gauge transformations

In accordance with Eq. (10), the bilocal gauge trans-
formations of three U fields (56)–(58) of the anti-clocklike
2-simplex hðxÞ are,

U�ðxÞ!V ðxÞU�ðxÞV yðxþa�Þ;
U�ðxþa�Þ!V ðxþa�ÞU�ðxþa�ÞV yðxÞ;
U�ðxþa�Þ!V ðxþa�ÞU�ðxþa�ÞV yðxþa�Þ;

(109)

and their inverses (59)–(61) of the clocklike 2-simplex
hyðxÞ transform as

Uy
�ðxÞ!V ðxþa�ÞUy

�ðxÞV yðxÞ;
Uy

� ðxþa�Þ!V ðxÞUy
� ðxþa�ÞV yðxþa�Þ;

Uy
�ðxþa�Þ!V ðxþa�ÞUy

�ðxþa�ÞV yðxþa�Þ:
(110)
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In accordance with Eq. (9), the tetrad fields e�ðxÞ,
e�ðxþ a�Þ and e�ðxþ a�Þ for the anti-clocklike 2-

simplex hðxÞ transform under local gauge transformations

e�ðxÞ ! e0�ðxÞ ¼ V ðxÞe�ðxÞV yðxÞ;
e�ðxþ a�Þ ! e0�ðxþ a�Þ

¼ V ðxþ a�Þe�ðxþ a�ÞV yðxþ a�Þ;
e�ðxþ a�Þ ! e0�ðxþ a�Þ

¼ V ðxþ a�Þe�ðxþ a�ÞV yðxþ a�Þ; (111)

respectively at the vertexes x, xþ a�, and xþ a� where

they are defined. Using above local gauge transformations
(109)–(111), we obtain the following local gauge trans-

formations of the conjugated fields ey�ðxÞ, ey�ðxþ a�Þ and
ey�ðxþ a�Þ defined by Eqs. (68), (74), and (75) for the

clocklike 2-simplex hyðxÞ,

ey�ðxÞ ! ey0
� ðxÞ ¼ V ðxÞey�ðxÞV yðxÞ;

ey�ðxþ a�Þ ! ey
0

� ðxþ a�Þ
¼ V ðxþ a�Þey�ðxþ a�ÞV yðxþ a�Þ;

ey�ðxþ a�Þ ! ey
0

� ðxþ a�Þ
¼ V ðxþ a�Þey�ðxþ a�ÞV yðxþ a�Þ: (112)

These local gauge transformations (112) of the conjugated
fields at the vertexes x, xþ a� and xþ a� are in the same

manner as that given by Eqs. (111). This means that each
edge (1-simplex) l�ðxÞ of the simplicial complex is

uniquely described by tetrad fields e�ðxÞ and ey�ðxÞ, that
are defined at the vertex x, and covariantly transformed
under local gauge transformation.

It is worthwhile to mention that the transformations
(112) are just conjugated transformations (111), and
consistent with the following local gauge transforma-
tions:

e��ðxþ a�Þ ! e0��ðxþ a�Þ
¼ V ðxþ a�Þe��ðxþ a�ÞV yðxþ a�Þ;

e��ðxÞ ! e0��ðxÞ ¼ V ðxÞe��ðxÞV yðxÞ;
e��ðxþ a�Þ ! e0��ðxþ a�Þ

¼ V ðxþ a�Þe��ðxþ a�ÞV yðxþ a�Þ; (113)

which follow the transformation rules of Eq. (111).
It is shown that the tetrad fields (44) and their conjugated

fields (80) given by Eqs. (70), (76), and (78), as well as the
triangle constraints (92) and (94), are gauge covariant, and
properly transformed under local gauge transfor-
mations (109)–(112). The length (43) or (73) of edges
(1-simplexes) is unique and invariant under local gauge
transformations (109)–(112).

Under local gauge transformations (109)–(112), the fun-
damental area operators (98)–(100) of the anti-clocklike
2-simplex hðxÞ are gauge covariant and transform

Sh��ðxÞ ! Sh
0

��ðxÞ ¼ V ðxÞSh��ðxÞV yðxÞ;
Sh��ðxþ a�Þ ! Sh

0
��ðxþ a�Þ

¼ V ðxþ a�ÞSh��ðxþ a�ÞV yðxþ a�Þ;
Sh��ðxþ a�Þ ! Sh

0
��ðxþ a�Þ

¼ V ðxþ a�ÞSh��ðxþ a�ÞV yðxþ a�Þ; (114)

which are consistent with Eqs. (101), (102), (109), and
(110), and their counterparts [see Eq. (106)] of the clock-
like 2-simplex hyðxÞ transform in the same manner. The
parallel transports (108) of area operators transform con-
sistently with Eqs. (109), (110), and (114). However, the
area (104) of the 2-simplex hðxÞ is unique and invariant
under local gauge transformations.
It is worthwhile to mention that under local gauge trans-

formation (109)–(111), parallel transport fields (62) and
(63) transform locally

�e�ðxþ a�Þ ! �e0�ðxþ a�Þ
¼ V ðxþ a�Þ �e�ðxþ a�ÞV yðxþ a�Þ;

�e�ðxþ a�Þ ! �e0�ðxþ a�Þ
¼ V ðxþ a�Þ �e�ðxþ a�ÞV yðxþ a�Þ; (115)

in accordance with local gauge transformations (111) for
tetrad fields. Therefore, the closed parallelogram CPðxÞ
(see Fig. 1), formed by e�ðxÞ, e�ðxÞ and their parallel

transports �e�ðxþ a�Þ, �e�ðxþ a�Þ, is invariant under local
gauge transformation. This is consistent with the torsion-
free condition for the existence of local Lorentz frames at
each points of a curved space-time.
The prescription of using tetrad fields e�ðzÞ and gauge

fields U�ðzÞ for parallel transports to describe edges
(1-simplexes) and triangles (2-simplexes) of the simplicial
complex fully respects the principle of local gauge sym-
metries. Therefore, this prescription is independent of a
particular vertex z, oriented edge l�ðzÞ and triangle hðzÞ,
because of the gauge invariance. The formulation of
defining tetrad fields e�ðzÞ at one of edge endpoints
‘‘z’’ and direction ‘‘�,’’ and each triangle has a definite
orientation is gauge invariant.
However, the gauge transformation properties of fields

U�ðxþ a�Þ andU�ðxþ a�Þ defined by Eqs. (85) and (86),
as well as U��ðxÞ and U��ðxÞ introduced by Eqs. (87) and

(88), are very complicate under the bilocal gauge trans-
formations (109) and (110). This implies that we could not
use these fields to construct a gauge-invariant object.
We need to study the object of three U fields, U�ðxÞ,
U�ðxþ a�Þ and U�ðxþ a�Þ along a closed triangle path

of each 2-simplex hðxÞ (see Fig. 1), which will be discussed
in the next section.

SHE-SHENG XUE PHYSICAL REVIEW D 82, 064039 (2010)

064039-10



F. Regularized EC action

To illustrate how to construct a gauge-invariantly regu-
larized EC theory describing dynamical configurations of
the simplicial complex, we consider anti-clocklike 2-
simplex (triangle) hðxÞ and clocklike 2-simplex (triangle)
hyðxÞ (see Figs. 1 and 2).

For simplifying notations, we henceforth do not expli-
citly write negative signs ��, ��, �� to indicate the
backward directions of edges. In terms of the tetrad fields
e�ðxÞ and e�ðxÞ of the 2-simplex hðxÞ (see Fig. 1), we

introduce the following vertex fields v��ðxÞ:
v��ðxÞ � �5e��ðxÞ; (116)

e��ðxÞ � �ab½eaðxÞ ^ ebðxÞ���

� 1

2
�ab½ea�ðxÞeb�ðxÞ � ea�ðxÞeb�ðxÞ�

¼ i

2
½e�ðxÞe�ðxÞ � e�ðxÞe�ðxÞ�; (117)

which have properties: v��ðxÞ ¼ �v��ðxÞ, tr½v��ðxÞ� ¼ 0

and vy
��ðxÞ ¼ v��ðxÞ (see Appendix B). Under the local

gauge transformation (9) and (111), the vertex fields (116)
and (117) transform locally at a vertex x,

v��ðxÞ ! V ðxÞv��ðxÞV yðxÞ; (118)

which is transformed in the same manner as area operators
(114). In addition to the vertex field e��ðxÞ (117) at the
vertex (x), we can define in the same way the vertex fields
e��ðxþ a�Þ at the vertex (xþ a�), and e��ðxþ a�Þ at the
vertex (xþ a�) of the anti-clocklike 2-simplex hðxÞ (see
Fig. 1). Actually, the vertex fields e��ðxÞ (117), e��ðxþ
a�Þ and e��ðxþ a�Þ are related to the fundamental area

operators Sh��ðxÞ (98), Sh��ðxþ a�Þ (99) and Sh��ðxþ a�Þ
(100), e.g.,

Sh��ðxÞ ¼ ia2e��ðxÞ: (119)

As discussions for three area operators in Eqs. (95)–(103),
only one of three vertex fields e��ðxÞ, e��ðxþ a�Þ and
e��ðxþ a�Þ is independent for the anti-clocklike 2-

simplex hðxÞ. As for an clocklike 2-simplex hyðxÞ, vertex
fields can be obtained by using the relations ey��ðxÞ ¼
e��ðxÞ and e��ðxÞ ¼ �e��ðxÞ.
Using the tetrad fields e�ðxÞ and vertex fields v��ðxÞ to

construct coordinate and Lorentz scalars to preserve the
diffeomorphism and local gauge invariance, we define a
smallest holonomy field along the closed triangle path of
the 2-simplex hðxÞ (see Fig. 1):
Xhðv;UÞ ¼ tr½v��ðxÞU�ðxÞv��ðxþ a�Þ

�U�ðxþ a�Þv��ðxþ a�ÞU�ðxþ a�Þ�; (120)
whose orientation is anti-clocklike, as shown the left
graphic in Fig. 2. Considering the clocklike orientation,
as shown the right graphic in Fig. 2, we have

Xclocklike
h ðv;UÞ ¼ tr½v��ðxÞU�ðxÞv��ðxþ a�ÞU�ðx

þ a�Þv��ðxþ a�ÞU�ðxþ a�Þ�
¼ Xhðv;UÞj�$�: (121)

On the other hand,

Xy
h ðv;UÞ ¼ tr½Uy

� ðxþ a�Þvy
��ðxþ a�ÞUy

�ðxþ a�Þvy
��ðxþ a�ÞUy

�ðxÞvy
��ðxÞ�

¼ tr½U�ðxÞv��ðxþ a�ÞU�ðxþ a�Þv��ðxþ a�ÞU�ðxþ a�Þv��ðxÞ�
¼ tr½v��ðxÞU�ðxÞv��ðxþ a�ÞU�ðxþ a�Þv��ðxþ a�ÞU�ðxþ a�Þ� ¼ Xclocklike

h ðv;UÞ (122)

where in the second line of equation, we use the properties
Uy

� ðxþ a�Þ ¼ U�ðxÞ,Uy
�ðxþ a�Þ ¼U�ðxþ a�Þ, Uy

�ðxÞ¼
U�ðxþa�Þ and vy

��ðxÞ ¼ v��ðxÞ. Therefore, we have
Xhðv;UÞ þ H:c: ¼ Xhðv;UÞ þ Xclocklike

h ðv;UÞ: (123)

Equations (121)–(123) are invariant under gauge transfor-
mations (109), (110), and (118).

Using Eqs. (120)–(123), we are ready to construct the
diffeomorphism and local gauge-invariant regularized EC
action. First we consider the case v��ðxÞ ¼ e��ðxÞ�5:

A Pðe;UÞ ¼ 1

8g2
X

h2M

fXhðv;UÞ þ H:c:g; (124)

where
P

h2M is the sum over all 2-simplices h of the
simplicial complex. In the naive continuum limit:
ag!� � 1, Eq. (124) becomes (see Appendix B)

A Pðe;U�Þ ¼ 1

a2
X

h2M

S2hðxÞ�cdabec ^ ed ^ Rab þOða4Þ;

(125)

FIG. 2. The smallest holonomy field along a closed triangle
path of the 2-simplex hðxÞ: the anti-clocklike orientation
Xhðv;UÞ [left]; the clocklike orientation Xy

h ðv;UÞ [right].
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where the 2-simplex hðxÞ contributed volume element
S2hðxÞ is given in Eq. (104) or Eq. (B17). Based the volume

element dVðxÞ (107) around the vertex ‘‘x’’

X
h2M

S2hðxÞ ¼
1

3

X
x

dVðxÞ (126)

where
P

x stands for a sum overall vertexes (0-simplices) of
the simplicial complex, and the factor 1=3 is due to each 2-
simplex contributing its area to its three vertexes. The
interior of the 4-simplex is approximately flat, leading to

X
x

dVðxÞ )
Z

d4�ðxÞ ¼
Z

d4x det½eðxÞ�: (127)

As a result, Eq. (125) approaches to SPðe;!Þ (22) with an
effective Newton constant

Geff ¼ 3
4gG; (128)

and �eff � 8Geff . The second we consider the case
v��ðxÞ ¼ e��ðxÞ:

AHðe;U�Þ ¼ 1

8g2�

X
h2M

½Xhðv;UÞ þ H:c:�; (129)

where the real parameter � ¼ i~� [see Eq. (23)].
Analogously, in the naive continuum limit: ag!� � 1,

Eq. (129) approaches to SHðe;!Þ (23) [see Appendix B],

AHðe;U�Þ
¼ 1

2�eff ~�

Z
d4xdet½eðxÞ�ea^eb^RabþOða4Þ; (130)

with the effective Newton constant �eff � 8Geff (128).
The diffeomorphism and local gauge-invariant regularized
EC action is then given by

A EC ¼ AP þAH: (131)

In addition, we can generalize the link field U�ðxÞ to be

all irreducible representations j of the gauge group SOð4Þ.
The regularized EC action (131) should be a sum over all
irreducible representations j,

A EC ¼ X
j

4

dj
½Aj

Pðe�;U�Þ þAj
Hðe�;U�Þ�; (132)

where dj is the dimensions of the irreducible representa-

tions j and dj ¼ 4 for the fundamental representation,

which is the dimension of the Dirac spinor space.

G. Invariant holonomy fields along a large loop

We consider the following diffeomorphism and local
gauge-invariant holonomy fields along a loop C on the
Euclidean manifold R4

XCðv;!Þ ¼ PC tr exp

�
ig

I
C
v��ðxÞ!�ðxÞdx�

�
; (133)

where PC is the path-ordering and ‘‘tr’’ denotes the trace
over spinor space. We attempt to regularize these holon-
omy fields (133) on the simplicial complex M. Suppose
that an orientating loop C passes space-time points (ver-
texes) x1; x2; x3; � � � ; xN ¼ x1 and edges connecting be-
tween neighboring points in the simplicial complex M
(see the diagram in the left-hand side of graphic equation,
Fig. 3). At each point xi two tetrad fields e�ðxiÞ and e�0 ðxiÞ
(� � �0), respectively, orientating path incoming to (i�
1 ! i) and outgoing from (i ! iþ 1) the point xi, we have
the vertex field v��0 ðxiÞ defined by Eqs. (116) and (117).

Link fields U�ðxiÞ are defined on edges lying in the loop C.
Recalling the relationship U��ðxiþ1Þ ¼ Uy

�ðxiÞ [see

Eqs. (59)–(61)], we can write the regularization of the
holonomy fields (133) as

XCðv;UÞ ¼ PC tr½v��0 ðx1ÞU�0 ðx1Þv�0�ðx2ÞU�ðx2Þ
� � �v��0 ðxiÞU�0 ðxiÞv�0�ðxiþ1Þ
� � �v��ðxN�1ÞUy

�ðxN�1Þ�; (134)

which preserve diffeomorphism and local gauge invarian-
ces. The holonomy fields XCðe;UÞ are functionals of fields
(v, U) and loop C. Consistently with the holonomy fields
XCðe;UÞ [Eq. (134)], the holonomy field Xhðe;UÞ

FIG. 3. We sketch a graphic representation of the dynamical
Eq. (165) for the general holonomy field XC (134). The diagram
in the left-hand side of the graphic equation indicates the first
term in Eq. (165). The first and second diagrams in the right-
hand side of the graphic equation, respectively, indicate the third
and second terms in Eq. (165). We indicate the edge l�, where

the local gauge transformation is made. In the right-hand side of
graphic equation, the summation over all 2-simplices hðlÞ asso-
ciated to this edge l� is made.

FIG. 4. We sketch a graphic representation of the dynamical
Eq. (165) for the smallest holonomy field Xhðv;UÞ (120). The
diagram in the left-hand side of the graphic equation indicates
the first term in Eq. (165). The first and second diagrams in the
right-hand side of the graphic equation, respectively, indicate the
third and second terms in Eq. (165). Note that A and A0 are
the same vertex, so are B and B0. We indicate the edge l�, where

the local gauge transformation is made. In the right-hand side
of the graphic equation, the summation over all 2-simplices hðlÞ
associated to this edge l� is made.
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[Eq. (120)] is the one with the smallest loop, i.e., the closed
path of the 2-simplex (triangle) hðxÞ, see Fig. 1.

H. Euclidean partition function

The partition function ZEC and effective actionAeff
EC are

given by

ZEC ¼ exp�Aeff
EC ¼

Z
DeDU exp�AEC; (135)

with the diffeomorphism and local gauge-invariant
measure

Z
DeDU � Y

l�ðxÞ2M

Z
l�ðxÞ

de�ðxÞdU�ðxÞ�ð�Þ; (136)

where
Q

l�ðxÞ2M indicates the product of overall edges

(1-simplices) of the four-dimensional simplicial complex
M. As already mentioned, the configuration fl�ðxÞ 2 Mg
is formulated such that each edge l�ðxÞ ¼ ae�ðxÞ is de-

fined by giving its coordinate (vertex) x 2 M in one of the
endpoint coordinates x and xþ a�, and giving its forward

direction � pointing from x to xþ a�. This endpoint

coordinate x and forward direction � have to be uniquely
chosen for each edge l�ðxÞ 2 M. Beside, on such defined

edge l�ðxÞ, we place an independent gauge field U�ðxÞ
corresponding a parallel transport between x and xþ a�.

The gauge-invariant properties, discussed in Sec. III E,
guarantee that the change of a formulation does not
lead to the change in the measure of the configuration
fl�ðxÞ 2 Mg. In addition, the triangle constraint (92) and

(93) must be imposed in the measure (136), symbolically
indicated as �ð�Þ, a � functional of Eq. (92) or Eq. (93).

In the single edge measure [see Eq. (136)]

Z
l�ðxÞ

de�ðxÞdU�ðxÞ; (137)

dU�ðxÞ is the invariant Haar measure of the compact gauge

group SOð4Þ or SULð2Þ � SURð2Þ, and de�ðxÞ is the mea-

sure of the Dirac-matrix valued field e�ðxÞ ¼
P

ae
a
�ðxÞ�a,

determined by the functional measure dea�ðxÞ of the

bosonic field ea�ðxÞ. The single edge measure has to be

the measure over fields only e�ðxÞ andU�ðxÞ of the edge in
the forward direction �, because ey�ðxÞ and Uy

�ðxÞ of the
edge in the backward direction�� are related to the fields
e�ðxÞ and U�ðxÞ by Eqs. (55), (68), (70), and (72) so that

the single edge measure (137) is actually over all degrees
of fields assigned on the edge.

It should be mentioned that the measure (136) is just a
lattice form of the standard DeWitt functional measure [22]
over the continuum degrees, with the integral of the spin-
connection field !�ðxÞ replaced by the Haar integral over

the U�ðxÞ’s, analytical integration or numerical simula-

tions runs overall configuration space of continuum
degrees and no gauge fixing is needed. In addition, it

should be noted that the measure (136) does not contain
parallel transport fields �e and �U, for examples �e�ðxþ a�Þ
and �e�ðxþ a�Þ (see Fig. 1) given by the Cartan Eqs. (46)

and (47), since parallel transport fields are not associated to
any edges of the four-dimensional simplicial complex.
This means that the torsion-free Cartan equation has been
taken into account.
In this path-integral quantization formalism, the parti-

tion function (135) presents all dynamical configurations
of the simplicial complex, described by the configurations
of dynamical fields e�ðxÞ and U�ðxÞ in the weight of

exp�AEC. The effective action Aeff
EC (135) contains all

one-particle irreducible (1PI) functions (operators), i.e., all
truncated n-point Green-functions. The vacuum expecta-
tion values (vevs) of diffeomorphism and local gauge-
invariant quantities, for instance holonomy fields (134),
are given by

hXCðv;UÞi¼ 1

ZEC

Z
DeDU½XCðv;UÞ�exp�AEC: (138)

In the action (124) and (129), Xhðv;UÞ [Eq. (120)] contains
the quadratic term of e�ðxÞ field associated to each edge

of 2-simplex hðxÞ, the partition function ZEC (135) and vev
(138) are not divergent for large fluctuating e� fields,

provided the action AEC is positive definite, see discus-
sions below. On the other hand, all edge lengths do not
vanish [je�ðxÞj � 0, see Eqs. (41) and (42)], and all sim-

plicial triangle inequalities and their higher dimensional
analogs should be imposed [2,3]. Integrating spin-
connection fields U� over the Haar measure of compact

gauge groups is similar to that in the Wilson-lattice QCD,
the difference is that the Xhðv;UÞ (120) contains three U
fields in a 2-simplex h, while the Wilson action contains
four U fields in a plaquette. Equation (138) can be calcu-
lated by numerical Monte Carlo simulations. We are trying
do some numerical Monte Carlo simulations, it will take
time so that the results will be published in a separate
paper.
Before ending this section, we make some discussions

on the convergences of the partition function (135) and
vevs (138). Suppose that we first integrate Eqs. (135) and
(138) over the compact Haar measure of the SOð4Þ gauge
group, roughly speaking, the result gives, in addition to a
polynomial of tetrad fields e, a combination of both de-

creasing exponents exp½�AðþÞðeÞ� and increasing expo-

nents exp½�Að�ÞðeÞ� as functions of increasing tetrad
fields e. From the regularized action (120), one can find

that Að	ÞðeÞ depend on 2-simplex area operators Sh (104)

and are the sum over all 2-simplexes. Að	ÞðeÞ are either
some extremal values of the action AEC (131) with
respect to group-valued U fields, or those values taken
at the boundary points of the compact SOð4Þ gauge
group. Clearly, for the case of decreasing exponents

exp½�AðþÞðeÞ�, integrations Eqs. (135) and (138) over
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tetrad fields e are convergent. This is certainly the case for
perturbative weak U fields, i.e., U
 1. While for the case

of increasing exponents exp½�Að�ÞðeÞ�, integrations
Eqs. (135) and (138) over tetrad fields e are divergent.

To avoid these possible divergences, it is necessary to
add into the regularized action AEC (131) an additional
term of another dimensionality: either a curvature squared
R2 term: X2

hðv;UÞ þ H:c: with a new coupling parameter;

or a bare cosmological term: A�ðeÞ. We consider here an
additional bare cosmological term A� to the regularized
action AEC (131): AEC ! AEC þA�,

A�ðeÞ ¼ �

4 � ð4!Þ2 �
����

X
x

tr½�5e�ðxÞe�ðxÞe�ðxÞe�ðxÞ�

þ H:c:

¼ �
X
x

det½ea�ðxÞ� þ H:c: (139)

where the cosmological parameter � � �a2 and � is the
bare cosmological constant. The bare cosmological term
A�ðeÞ is a four-dimensional volume term (sum over all
vertexes x), which is independent of configurations of
group-valued U fields. The exponent exp½�A�ðeÞ� de-
creases with strong tetrad fields e, large volume confi-
gurations. Bare parameters g, � and � play an important
role for convergences of the partition function (135) and
vacuum expectation values (138). It needs further studies
to find the region of bare parameters g, � and � for the
convergences, and the scaling invariant region ðgc; �c; �cÞ
for the physically sensible continuum limit, see the dis-
cussions in the last Sec. VII.

I. Local gauge symmetry

Analogously to Eq. (25), the local gauge invariance of
the partition function (135), i.e., �ZEC ¼ 0 under the gauge
transformation (109) and (118), leads to (no summation
over index �)�

�AEC

�e�
�e� þ �AEC

�!�

�!� þ H:c:

�
¼ 0: (140)

Based on �e� and �!� (14) and (15) for an arbitrary

function 	abðxÞ and the independent bases of Dirac matri-
ces �5, �� and �ab, we obtain the ‘‘averaged’’ Cartan

Eq. (35) for the torsion-free case,�
U�

�AEC

�U�

�Uy
�

�AEC

�Uy
�

�
¼ 0; (141)

where we use

�AEC

�!�
¼ iag

�
U�

�AEC

�U�

�Uy
�

�AEC

�Uy
�

�
; (142)

for the group-valued field U�ðxÞ ¼ exp½iga!�ðxÞ� (56).

The averaged torsion-free Cartan Eq. (141) actually shows
the impossibility of spontaneous breaking of the local

gauge symmetry. This should not be surprised, since the
torsion-free (30) is a necessary condition to have a local
Lorentz frame, therefore a local gauge invariance, as re-
quired by the equivalence principle.

IV. INCLUDING FERMION FIELDS

A. Bilinear and quadralinear-fermion actions

Introducing dimensionless fermion field c 0ðxÞ �
a3=2c ðxÞ (drop ‘‘prime’’ henceforth) and using the rela-
tions �0ð�aÞy�0 ¼ �a, �

0ð�abÞy�0 ¼ �ab and

�0ey��0 ¼ e�; �0Uy
��

0 ¼ Uy
�; (143)

we consider the following regularized kinetic action of
fermion fields,

AFðe; U; c Þ ¼ 1

2

X
x;�

½ �c ðxÞe�ðxÞU�ðxÞc ðxþ a�Þ

� �c ðxþ a�ÞUy
�ðxÞe�ðxÞc ðxÞ�; (144)

where fermion fields c ðxÞ and c ðxþ a�Þ are defined at

two neighboring points (vertexes) of the edge (x, xþ a�),

(see Fig. 1), where fields U�ðxÞ and e�ðxÞ are added to

preserve local gauge and diffeomorphism invariances, andP
x;� is the sum over all edges (1-simplexes) of the sim-

plicial complex.
Using Eq. (142) and performing a variation of the

regularized fermion action (144) with respect to the spin-
connection field !�ðxÞ, i.e., �AFðe;U; c Þ=�!�, we ob-

tain the nonvanishing torsion field Ta ¼ �geb ^ ecJ ab;c,
where the regularized fermion spin current is

J ab;c ¼ �abcd �c ðxÞ�d�
5U�ðxÞc ðxþ a�Þ; � fixed;

(145)

[see Eq. (32)]. Instead of solving regularized Cartan equa-
tion and finding an effective theory, as what is done in the
continuum case (25)–(32), we assume that the U�ðxÞ in
Eqs. (144) and (145) is the group-valued spin-connection
field !�ðeÞ for the torsion-free case (35), i.e., U�ðxÞ ¼
exp½iag!�ðeÞ�. Thus, the regularization of the effective

EC theory (39) and (40) is given by Eqs. (131) and (144)
and the regularized four-fermion interaction

A4FðU; c Þ ¼ 3�g2
X
x;�

½ �c ðxÞ�d�5U�ðxÞc ðxþ a�Þ�

� ½ �c ðxþ a�ÞUy
�ðxÞ�d�

5c ðxÞ�; (146)

where � ¼ ~�2=ð~�2 þ 1Þ ¼ �2=ð�2 þ 1Þ [see Eq. (40)]. In
the naive continuum limit ag!� � 1, the regularized

fermion action AFðe;U; c Þ (144) approaches to the con-
tinuum fermion action SFðe;!�; c Þ (24), and Eqs. (145)

and (146), respectively approach to their continuum
counterparts Jab;c (32) and S4F (40). The diffeomorphism
and local gauge-invariant regularized EC action is then
given by
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A EC ¼ AP þAH þAF þA4F: (147)

The partition function ZEC and effective action Aeff
EC are

ZEC ¼ exp�Aeff
EC ¼

Z
DeDUDc exp�AEC; (148)

with the diffeomorphism and local gauge-invariant mea-
sure

Z
DeDUDc � Y

l�ðxÞ2M

Z
l�ðxÞ

de�ðxÞdU�ðxÞ�ð�Þ

� Y
x2M

Z
dc ðxÞd �c ðxÞ; (149)

where dc ðxÞd �c ðxÞ is the measure of Grassmann anticom-
muting fields. Analogously to Eq. (132), Eqs. (147)–(149)
can be straightforwardly generalized to include all irreduc-
ible representations j of the gauge group SOð4Þ that couple
to corresponding spinor states of fermion fields.

B. Holonomy fields with fermions

We consider the following diffeomorphism and local
gauge-invariant quantities

XLðe;!;c Þ ¼ �c ðx1ÞP exp

�
ig
Z
L
v��ðxÞ!�ðxÞdx�

�
c ðxNÞ;
(150)

whereL stands for an orientating (P ) path connecting two
vertexes x1 and xN (x1 � xN) on the simplicial complex
M. In Eq. (150), XLðe;!; c Þ represents the evolution of
the spin of fermion fields from the vertex xN to the vertex
x1 under the gravitational field influence. Analogously to
discussions in Sec. III G for the holonomy fields (133), we
regularize these quantities (150) on the simplicial complex
as follows:

XLðe;U; c Þ ¼ �c ðx1ÞP ½U�0 ðx1Þv�0�ðx2ÞU�ðx2Þ
� � �v��0 ðxiÞU�0 ðxiÞv�0�ðxiþ1Þ
� � �v��ðxNÞUy

�ðxNÞ�c ðxNÞ; (151)

which preserves diffeomorphism and local gauge invari-
ances. The graphic representation of XLðe;U; c Þ can be
found in Fig. 5 (see the diagram in the left-hand side of
graphic equation).

C. Chiral gauge symmetries

Analogously to the discussions in the continuum EC
theory (see the end of Sec. II), the regularized EC action
(147) can be separated into left- and right-handed parts.
Fermion fields c are decomposed into their left- and right-
handed Weyl fields: c ¼ c L þ c R and c L;R � PL;Rc ,

where the chiral projector PL;R ¼ ð1� �5Þ=2 and the com-

mutators ½�ab; PL;R� ¼ 0 and ½�a�b; PL;R� ¼ 0. The 4� 4
Dirac spinor space is split into two independent left- and
right-handed 2� 2 Weyl spinor spaces. In the chiral rep-
resentation of matrices �a and �ab

�0 ¼ i
0 �I
�I 0

� �
; �i ¼ 0 �i

��i 0

� �
;

�5 ¼ I 0
0 �I

� �
;

(152)

�ij ¼ �ij 0
0 �ij

� �
; �0i ¼ i

�i 0
0 ��i

� �
; (153)

where �ij ¼ �ijk �
k and �iði ¼ 1; 2; 3Þ are the Pauli matri-

ces, we define �a
L;R � PL;R�

a:

PL�
0 ¼ i

0 0
�I 0

� �
; PL�

i ¼ 0 0
��i 0

� �
;

PR�
0 ¼ i

0 �I
0 0

� �
; PR�

i ¼ 0 �i

0 0

� �
;

(154)

and �ab
L;R � PL;R�

ab:

PL�
ij ¼ 0 0

0 �ij

� �
; PL�

0i ¼ i
0 0
0 ��i

� �
;

PR�
ij ¼ �ij 0

0 0

� �
; PR�

0i ¼ i
�i 0
0 0

� �
:

(155)

Using Eq. (154), we separate tetrad fields e� into their left-
and right-handed fields: e� ¼ e

�
L þ e

�
R , e

�
L;R � PL;Re

�.

Using Eq. (155), we separate spin-connection fields !�

and vertex fields v�� into their left- and right-handed

fields: !� ¼ !�
L þ!�

R , !�
L;R � PL;R!

�; and v�� ¼
vL
�� þ vR

��, v
L;R
�� � PL;Rv��. This splits the Lie algebra

of the group SOð4Þ into two independent Lie algebra of sub
groups SULð2Þ � SURð2Þ. Therefore, the four-dimensional
rotational group SOð4Þ is split into two commuting and
independent groups SULð2Þ � SURð2Þ. The link fields

FIG. 5. We sketch a graphic representation of the dynamical
Eq. (165) for the field XL (151). The diagram in the left-hand
side of the graphic equation indicates the first term in Eq. (165).
The first and second diagrams in the right-hand side of the
graphic equation, respectively, indicate the third and second
terms in Eq. (165). Note that A and A0 are the same vertex, so
are B and B0. We indicate the edge l�, where the local gauge

transformation is made. We also indicate the fermion field c ðxNÞ
at staring point xN and the fermion field �c ðx1Þ at ending point x1
of the path L. In the right-hand side of the graphic equation,
the summation over all 2-simplices hðlÞ associated to this edge
l� is made.
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U�ðxÞ ¼ UR
�ðxÞ �UL

�ðxÞ, where UR
�ðxÞ 2 SURð2Þ and

UL
�ðxÞ 2 SULð2Þ respectively.
The regularized EC theory (147)–(149) possesses exact

chiral gauge symmetries, as consequences, the holonomy
fields (120), (134), and (151) can be split into the left- and
right-handed parts:

Xhðe;UÞ ¼ XL
h ðeL; ULÞ þ XR

h ðeR; URÞ; (156)

XCðe;UÞ ¼ XL
C ðeL; ULÞ þ XR

C ðeR; URÞ; (157)

XLðe;U; c Þ ¼ XL
LðeL; UL; c LÞ þ XR

LðeR;UR; c RÞ; (158)

where notations in the right-handed side of equations, for
instance, XL

LðeL; UL; c LÞ indicates the same function

XLðe;U; c Þ (151) with replacements e ! eL, U ! UL

and c ! c L. The fermion action (144) and four-fermion
interaction (146) are also separated into the left- and right-
handed parts:

A Fðe;U; c Þ ¼ AL
FðeL;UL; c LÞ þAR

FðeR; UR; c RÞ;
(159)

A 4FðU; c Þ ¼ AL
4FðUL; c LÞ þAR

4FðUR; c RÞ: (160)

The chiral gauge symmetries of the regularized EC theory
(147)–(149) are crucial for formulating the parity-violating
(chiral) gauge symmetries SULð2Þ �UYð1Þ, e.g., the stan-
dard model for particle physics, onto the simplicial com-
plex described by the dynamical tetrad fields e�ðxÞ and
group-valued spin-connection fields U�ðxÞ. We only dis-

cuss the case of Weyl fermions (massless Dirac fermions),
and the discussions on the case of Majorana fermions are
the same, thus not presented in this article.

V. DYNAMICAL EQUATIONS FOR
HOLONOMY FIELDS

Under a local gauge transformation (9)–(11), equiva-
lently (9), (11), and (109), the local gauge invariance of
holonomy fields hXi [Eq. (138)], i.e., �hXi ¼ 0, leads to the
dynamical equations for the holonomy fields Xh (120), XC
(134) and XL (151),�
�X

�e�
�e� � X

�AEC

�e�
�e�

�
þ

�
�X

�c
�c � X

�AEC

�c
�c

�

þ iag

�
X�!�

�
�

�
X
�AEC

�!�

�!�

�
þ H:c: ¼ 0; (161)

where the index � is fixed, and for the variation �X=�!�

we use Eq. (142) and the relationship

X
ab

Uab
�

�X

�Uab
�

¼ X; or
X
ab

Uaby
�

�X

�Uaby
�

¼ X: (162)

Analogously to the analysis in Sec. III I, we obtain the
dynamical equations for the holonomy fields X ¼ Xh, XC
and XL

�
�X

�e�
�e� � X

�AEC

�e�
�e�

�
þ H:c: ¼ 0; (163)

�
�X

�c
�c � X

�AEC

�c
�c

�
þ H:c: ¼ 0; (164)

and

hXi þ
�
X

�
Uy

�

�AEC

�Uy
�

��
�

�
X

�
U�

�AEC

�U�

��
¼ 0: (165)

Equation (165) has the same form as the Dyson-Schwinger
equation for the Wilson loops in lattice gauge theories. In
Figs. 3–5, we show the graphic representations of the
dynamical Eqs. (165) for the holonomy fields and XC
(134) and Xh (120) as well as XL (151).

VI. MEAN-FIELD APPROXIMATION

A. Mean-field approach

In this section, we try to approximately calculate the
partition function (135), the vacuum expectation values of
the 2-simplex area (104) and the volume element (107)
by using the approach of the mean-field approximation.
In the regularized action Xhðv;UÞ (120) associating to the
2-simplex hðxÞ (Fig. 1), we replace the vertex fields
v��ðxþ a�Þ and v��ðxþ a�Þ by assuming a nonvanishing

mean-field value Mh > 0,

ðM2
hÞ�
� � ½hv��v��i�
�; (166)

where 
, � are Dirac spinor indexes. The definition of
mean-field value (166) does not depend on whether v��

and v�� contain the matrix �5 or not, due to �2
5 ¼ 1 and

½�5; �ab� ¼ 0. The mean-field value Mh is independent of
any specific vertex, edge and 2-simplex of the simplicial
complex. Based on the definitions of the 2-simplex area
(104) and the volume element (107), the mean-field values
for the 2-simplex area and the volume element are given by

hShðxÞi ¼ a2Mh; hdVðxÞi ¼ a4NhM
2
h; (167)

where Nh is the mean value of the number of 2-simplices
hðxÞ that share the same vertex. Note that in this prelimi-
nary calculations in the mean-field approximation, we do
not take into account the cosmological term (139), since
the path integrals are convergent (see below) for positive
mean-field value Mh > 0.
Based on the mean-field value (166), the smallest hol-

onomy field Xhðv;UÞ (120) is approximated by its mean-
field counterpart

�X hðv;UÞ ¼ tr½v��ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ�M2
h;

(168)

�X y
h ðv;UÞ ¼ tr½v��ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ�M2

h;

(169)
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where using Eqs. (121) and (122) for � � � we obtain
�Xy
h ðv;UÞ. Note that two of three vertex fields vðxÞ in the

Xhðv;UÞ (120), i.e., v��ðxþ a�Þ and v��ðxþ a�Þ are

replaced by their mean-field values Mh, and the 2-simplex
hðxÞ shown in Fig. 1 can also be identified by three differ-
ent indexes � � � � � (no summation over these in-
dexes). Equations (168) and (169) depend on U�, and the

fields ðe�;U�Þ and ðe�; U�Þ associated to two edges ðx;�Þ
and ðx; �Þ of the 2-simplex (triangle) hðxÞ (see Fig. 1).
Using Eqs. (168) and (169), we define the local mean-field

action �Ah for the 2-simplex hðxÞ
�A h ¼ 1

8g2
½ �Xhðv;UÞ þ �Xy

h ðv;UÞ�v��¼�5e��
þ 1

8g2�

�½ �Xhðv;UÞ þ �Xy
h ðv;UÞ�v��¼e��

¼ tr½e�ðxÞ�h
��ðxÞe�ðxÞ � e�ðxÞ�h

��ðxÞe�ðxÞ�;
(170)

where

�h
��ðxÞ ¼ 1

8g2

�
�5 � 1

�

�
H��ðxÞ

¼ 1

8g2

�
i

2

�
M2

h

�
�5 � 1

�

�
½U�ðxÞU�ðxþ a�ÞUy

�ðxÞ�

þ H:c: (171)

The detailed derivation is given in Appendix D. In this
mean-field approximation, all 2-simplices fhðxÞg in the
simplicial complex M have the same local action (170),

namely, the single 2-simplex mean-field action �Ah (170)
and operator �h

�� (171) are independent of the vertex ‘‘x’’.

With the local mean-field action (170), we define the local
mean-field partition function

�Z h ¼
Z
h
DUDe exp� �Ah; (172)

where the local mean-field measure is defined by

Z
h
DUDe �

Z
h
dU�dU�dU�de�de�; (173)

for each 2-simplex h. Thus, the regularized EC actionAEC

(131) is approximated by its mean-field counterpart,

�A EC ¼ X
h2M

�Ah; (174)

which is the sum of the mean-field actions �Ah over all
2-simplices h. With the mean-field approximated action
(174), we define the mean-field approximated partition
function

�Z EC ¼ Y
h2M

Z
h
DUDe exp� �AEC ¼ Y

h2M

�Zh; (175)

which is the mean-field counterpart of the partition
function (135).

Using the mean-field EC action �AEC (170) and partition
function �ZEC (175), we have the following identity

ZEC � �ZEChe�ðAEC� �AECÞi�; (176)

where h� � �i� is the vacuum expectation value with respect
to the mean-field partition function �ZEC (175). Using the
convexity inequality [23]

he�ðAEC� �AECÞi�  e�hAEC� �AECi� ; (177)

one can derive the following inequality

� lnZEC � � ln �ZEC þ hAEC � �AECi�; (178)

where � lnZEC and � ln �ZEC are proportional to the free
energies. We define the right-handed side of the inequality
(178) as an approximate free energy (or approximate ef-
fective action)

F app
EC ðMh; g; �Þ � � ln �ZEC þ hAEC � �AECi�: (179)

The validity of the mean-field approximation approach
bases on the inequality (178) that gives a low bound of
the approximate free energyF app

EC ðMh; g; �Þ. We determine

the mean-field value M�
hðg; �Þ of the local mean-field

action (170), which minimizes the approximate free energy
(179) and thus optimizes the low bound in Eq. (178), by
satisfying the condition

�
�

�Mh

F app
EC ðMh; g; �Þ

�
Mh¼M�

h

¼ 0: (180)

Using the mean-field value M�
hðg; �Þ and corres-

ponding minimum of the approximate free energy
F app

EC ½M�
hðg; �Þ; g; �� (179), we can gain some insights

into the value of the 2-simplex area (166) and (167), and
the critical points of the second-order phase transition, in
terms of the gauge coupling g and Immirzi parameter �. In
addition, we can use the mean-field action (170) with the
value M�

h to calculate mean-field vacuum expectation val-

ues h� � �i� to approximate true vacuum expectation values
h� � �i that we discussed in Secs. III H, III I, and V.

B. Analytical calculations

We can analytically calculate the mean-field partition
function (175). First we integrate over quantized tetrad
e�ðxÞ and e�ðxÞ fields, which is quadratic in Eq. (170)

(see Appendix E). Using the formula (E2), we have

Y
h2M

Z
de�de� exp� �AEC ¼ Y

h2M

det
�1 ½I � �h� (181)

and the Cayley-Hamilton formula for a determinant [24]
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det
�1 ½I� �h� ¼ exp½�tr lnðI � �hÞ�

¼ 1þX
a

�h
aa þ 1

2

X
a;b

ð�h
aa�

h
bb þ �h

ab�
h
baÞ

þ � � � þ 1

n!

X
a1���an

X
P

�h
a1aP1

� � ��h
anaPn

(182)

where P indicates permutations of ð1; � � � ; nÞ and Eq. (182)
is a sum of traces of symmetrized tensor products. The
expression (182) stops at the n-th order for a finite
n-dimensional matrix �h in the space of the gauge group.

Second we integrate over group-valued spin-connection
U�ðxþ a�Þ, U�ðxÞ and U�ðxÞ fields defined at edges

(xþ a�, �), ðx;�Þ and ðx; �Þ of the 2-simplex hðxÞ by

using the properties of the invariant Haar measure:

Z
dU�ðxÞ ¼ 1; (183)

Z
dU�ðxÞU�ðxÞ ¼ 0; (184)

Z
dU�ðxÞUab

� ðxÞUycd
� ðx0Þ ¼ 1

dj
����

ac�bd�ðx� x0Þ;
(185)

where dj ¼ njLnjR (njL;jR ¼ 2jL;R þ 1; jL;R ¼ 1=2;

3=2; � � � ) is the dimensions of irreducible representations
j ¼ ðjL; jRÞ of the gauge group SULð2Þ � SURð2Þ, jR ¼
jL ¼ 1=2 and dj ¼ 4 for the fundamental representation.

In Appendix E, we give more detailed calculations to
obtain the mean-field partition function (175),

�Z EC ¼ Y
h2M

�
1þ �2 þ 1

64g4�2d3j
M4

h

�
; (186)

where
Q

h2M is the product of all 2-simplices h of the
simplicial complexM. The mean-field entropy is given by

�S ¼ ln �ZEC ¼ X
h2M

ln

�
1þ �2 þ 1

64g4�2d3j
M4

h

�

¼ N ln

�
1þ �2 þ 1

64g4�2d3j
M4

h

�
; (187)

where N ¼ P
h2M is the total number of 2-simplexes,

and the mean-field free energy

�F ¼� 1

�
ln �ZEC¼� 1

�
N ln

�
1þ �2þ1

64g4�2d3j
M4

h

�
; (188)

where the inverse ‘‘temperature’’ � ¼ 1=g2, see Eqs. (124)
and (129).

We turn to calculate h �AECi� in Eq. (178). The mean-

field value of �AEC (174) is calculated in Appendix E [see
Eq. (E7)],

h �AECi� ¼ X
h2M

h �Ahih�

¼ N
�2 þ 1

32g4�2d3j
M4

h

�
1þ �2 þ 1

64g4�2d3j
M4

h

��1
;

(189)

where the vacuum expectation value with respect to the
local mean-field partition function �Zh (172) is defined by

h� � �ih� ¼ 1
�Zh

Z
h
DUDeð� � �Þe� �Ah : (190)

The mean-field value h �AECi� (189) has discrete values
depending on the discrete values dj ¼ 4; � � � of the funda-
mental state jL;R ¼ 1=2 and excitation states jL;R ¼
3=2; � � � , coupling to different fermion spinor states c j

L;R.

We are in the position to calculate hAECi� in Eq. (178).
Since there are three vertex fields in the smallest holonomy
field Xhðv;UÞ (120) that constitutes the regularized EC
action AEC (124), (129), and (131), while there is only
one vertex field v�� in the mean-field action (168)–(170),

we assign the vertex field v�� to the localmean-field action

(168)–(171) of the 2-simplex h, the vertex fields v��, v��

to the local mean-field actions of neighboring 2-simplices,
and approximate

htr½v��ðxÞU�ðxÞv��ðxþ a�ÞU�ðxþ a�Þv��ðx
þ a�ÞU�ðxþ a�Þ�i� þ H:c:

¼ tr½hv��U�U�U�v��v��ih�� þ H:c:

� ð �ZhÞ2 tr½hv��U�U�U�ih�hv��ih�hv��ih�� þ H:c:

� ð �ZhÞ2 tr½ðhv��U�U�U�ih� þ H:c:Þhv��ih�hv��ih��:
(191)

where ðv��v��Þy ¼ ðv��v��Þ. Using Eqs. (170) and (171),
we have

hAECi� � X
h2M

ð �ZhÞ2
4M2

h

fhtr½e��h
��e�

� e��
h
��e��i�tr½h½e���ih�h½e���ih��g: (192)

In the last part of Appendix E, we obtain

hAECi� � N
1

M2
h

�
1
�Zh

��
1

8g2

�
6ðM4

hÞ3
�
1

4

��
2

d3j

�
3
�
�2 þ 1

�2

�
3
:

(193)

Putting Eqs. (187), (189), and (193) into the approximate
free energy (179), we obtain

F app
EC ðMh; g; �Þ ¼ � lnð1þ yÞ � 2y

1þ y
þ �

y5=2

ð1þ yÞ ;
(194)

where
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y ¼ �2 þ 1

64g4�2d3j
M4

h; � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

64g4�2d3j

vuut : (195)

In Fig. 6, we plot the approximate free energy (179) as a
function of the mean-field value Mh (166) for selected
values of the parameter � (195). The minimal values of
the approximate free energy F app

EC (179) locate at the non-

vanishing mean-field valueM�
h � 0, which increases as the

parameter � decreases, namely, the gauge coupling in-
creases. The gauge coupling g and Immirzi parameter �
remain to be determined. These two parameters ðg; �Þ
should be determined at critical points of the second-order
phase transition, as discussed in the last section. The mean-
field approximation approach adopted here needs to be
improved to see whether we can have a critical value �c,
and for �> �c the minimal value of the approximate free
energy F app

EC locates at the vanishing mean-field value

M�
h ¼ 0. It is usually difficult to study the vicinity of

critical points of the second-order phase transition by the
mean-field approximation approach.

Considering the case that � � 1, dj ¼ 4, g ! 4=3 for

Geff ! G [see Eq. (128) in Sec. III F], and � � 0:02, we
have

M�
h > 1; (196)

see the curve for � ¼ 0:03 in Fig. 6, since M�
h becomes

larger as � decreases. For larger gauge coupling g and
higher dimensions dj of irreducible representations, the

values of � (195) become smaller, andM�
h becomes larger.

Therefore, the mean-field value of the 2-simplex area
(166)

hShi ¼ a2M�
h > a2 ¼ 8

m2
Planck

; (197)

and the mean-field value of the volume element (167)

hdVðxÞi ¼ a4NhðM�
hÞ2 >Nh

ð8Þ2
m4

Planck

: (198)

Equations (197) and (198) indicate that the averaged sizes
of 2-simplex, 3-simplex, and 4-simplex, i.e., elements of
the simplicial complex, are larger than the Planck length,
which is probed by short wavelengths of quantum fields
e�, U�, c in strong gauge couplings g. This implies that

due to the quantum gravity, the Planck length sets the
scale for the minimal separation between two space-
time points [25]. We end this section by noting that the
mean-field approximation is not only a poor approxima-
tion, but also breaks diffeomorphism and local gauge
symmetries.

VII. SOME REMARKS

In addition to the Planck length a, the regularized EC
action (147) proposed in this article contains three dimen-
sionless parameters: the gauge coupling g; the Immirzi
parameter � and the cosmological parameter �. In the
view of the naive continuum limit, the regularized EC
action (147) proposed in this article is not unique. In
principle, permitted by the diffeomorphism and local
gauge invariances, the regularized action (147) is allowed
to contain nonlocal high-dimensional (d > 6) operators of
fields e�, U� and c with extra free parameters. On the

other hand, although the regularized EC action (147) ap-
proaches to the continuum EC action (21) in the naive
continuous limit, it has not been clear yet whether the
regularized EC theory is physically sensible. The regular-
ized EC theory is physically sensible, only if only it has a
nontrivial continuum limit, where we could possibly ex-
plore the relationship to the Minkowski counterpart.
Therefore, it is crucial, on the basis of nonperturbative
methods and renormalization-group invariance, to find:
(1) the scaling invariant region (nontrivial ultraviolet fix

points) ðgc; �c; �cÞ, where the singularity in the free
energy appears for phase transition occurring, and
the physical correlation length � of two-point
Green-functions of fields is much larger than the
Planck length, while the inverse correlation length
��1 gives the mass scale of low-energy excitations
of the ‘‘effective continuum theory’’;

(2) � function �ðgÞ, i.e., the scale dependence of the
gauge coupling g in the vicinity of the nontrivial
ultraviolet fix points gc, and renormalization-group
invariant equation

�¼ constant �a �exp
Z g

dg0=�ðg0Þ; ��a; (199)

in this scaling invariant region, and ‘‘constant’’ that
can only be obtained by nonperturbative methods.
And it is a question how Eq. (199) is related to �c

and �c;

FIG. 6 (color online). In the Planck unit a ¼ 1, the approxi-
mate free energy (179) as a function of the mean-field value Mh

(166) is plotted for selected values � ¼ 0:03, 0.3, 3. The minimal
values of the approximate free energy F app

EC locate at the non-

vanishing mean-field value M�
h. The minimal locations are

M�
hð� ¼ 0:03Þ � 7:9, M�

hð� ¼ 0:3Þ � 2:1, M�
hð� ¼ 3Þ � 0:8.
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(3) an effective action Aeff
EC (135), all relevant and

renormalizable operators [one-particle irreducible
(1PI) functions] with effective dimension-four to
obtain an effective low-energy theory in this scaling
invariant region.

The gauge-invariant correlation length � can be possibly
measured by the gauge-invariant two-point correlation
function of the holonomy fields Xhðv;UÞ (120),

hXh½vðxÞ; UðxÞ�; Xy
h ½vðyÞ; UðyÞ�i 
 e�jx�yj=�;

jx� yj � �;
(200)

where jx� yj indicates the separation between two
holonomy fields Xhðv;UÞ. Actually, Eq. (200) is related
to the invariant curvature correlation function [see
Eq. (B12)].

Although we have added the bare cosmological term
(139) into the regularized action, 1PI functionsAeff

EC (135)

effectively contain this dimensional operator (139), which
is related to the two-point correlation function (200). It is
then a question what is the scaling property of this operator
in terms of the low-energy scale ��2. We speculate that the
gauge-invariant correlation length �, instead of the Planck
length, sets the scale for the nonperturbative renormalized
cosmological constant, i.e.,

�COSM 
 ��2; (201)

which is rather similar to the scale �QCD calculated in the

lattice QCD theory. This would possibly explain why the
observed cosmological constant is much smaller than that
expected in terms of the Planck scale [see Eq. (199)]. We
also speculate that in the pure gravity at strong gauge
coupling g � 1, the scale ��2 should measure the expo-
nential area-decay law of holonomy fields (134) and (138)
for sufficiently large loops

hXCðv;UÞi 
 e�AminðCÞ=�2 ; AminðCÞ � �2; (202)

where AminðCÞ is the minimal area, corresponding to the
minimal number of 2-simplices h, that can be spanned by
the loop C (see Ref. [26]). The scaling invariant region gc,
scaling law (199) and correlation length � are important to
study our present Universe (see Ref. [27]).

The effective quadralinear-fermion interactions in the
continuum EC theory (38) are originated by integrating
over static torsion fields and the torsion-free condition is
satisfied as required by the equivalence principle. In this
sense, quadralinear-fermion interactions are inevitable as
long as the interacting between fermion and gravitational
fields is included.

The bilinear fermion action (144) introduces a non-
vanishing torsion field (145) in the regularized EC theory.
The torsion fields (145) are not exactly static, however,
they are fields only surviving in short distances at the
Planck scale, which is due to the quantum gravity [see,

for example, the mean-field approximation result (196)–
(198)]. The effective quadralinear-fermion interactions
(146) is formulated by hand together with a torsion-free
bilinear fermion action (144) so that they approach to the
fermion action of the continuum EC theory in the con-
tinuum limit. In principle, it should be possible to obtain
an effective action by solving the discretized Cartan
structure [Eq. (46) or Eq. (62)] with the nonvanishing
discretized torsion (145), and integrating over torsion
fields at short distances, in the same way as (30)–(38)
of the continuum EC theory. In this way, one will obtain
a complicate effective action of fermion fields with high-
order dimensional (d > 6) operators. However, we expect
that in the continuum limit the relevant operators of
fermion fields should be Eq. (146) and its continuum
counterpart (40).
On the other hand, due to the no-go theorem [28], the

bilinear fermion action (144) has the problem of either
fermion doubling or chiral (parity) gauge symmetry
breaking, which is inconsistent with the low-energy
standard model for particle physics. As discussed, the
effective quadralinear-fermion interactions (146) are in-
evitable, due to mediating very massive torsion fields in
short distances at the Planck scale. We expect that in the
invariant scaling region of the nontrivial ultraviolet fix
points ðgc; �c; �cÞ, the quadralinear-fermion interactions
should be relevant operators, which not only give a
possible resolution to the fermion doubling problem
[29,30], but also the compelling dynamics for fermion
mass generation [31,32], via the Nambu Jona-Lasinio
mechanism [33].
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APPENDIX A

By using Eqs. (56) and (84) and the identity eÂeB̂ ¼
eÂþB̂þ½Â;B̂�=2, we calculate U��ðxÞ (87)–(89) in the native

continuum limit: ag!� � 1. Expanding U��ðxÞ in powers
of ag!�, we have

SHE-SHENG XUE PHYSICAL REVIEW D 82, 064039 (2010)

064039-20



U��ðxÞ ¼ U�ðxÞU�ðxþ a�Þ ¼ exp

�
iga½!�ðxÞ þ!�ðxÞ� þ iga2@�!�ðxÞ � 1

2
ðgaÞ2½!�ðxÞ; !�ðxÞ� þOða3Þ

�

¼ exp

�
iga½!�ðxÞ þ!�ðxÞ� þ iga2@�!�ðxÞ � i

2
ðgaÞ2½!aeðxÞ ^!b

eðxÞ����ab þOða3Þ
�

¼ expfiga�ABG
AB
�� þOða3Þg; (A1)

where

GAB
�� ¼ ½!AB

� ðxÞ þ!AB
� ðxÞ� þ a@�!

AB
� ðxÞ

� 1
2ðgaÞ½!AeðxÞ ^!B

e ðxÞ���; (A2)

and Oða3Þ indicates high-order powers of ag!�. In Eq.
(A1), we use ½�ab; �bc� ¼ i�bb�ca (no sum with index b),
½�5; �ca� ¼ 0 and

!��ðxÞ � ½!�ðxÞ; !�ðxÞ�
¼ ½!aeðxÞ ^!ebðxÞ���½�ae; �eb�
¼ i½!aeðxÞ ^!b

eðxÞ����ab: (A3)

For exchanging � $ � in Eqs. (A1) and (A2)

GAB
�� ¼ ½!AB

� ðxÞ þ!AB
� ðxÞ� þ a@�!

AB
� ðxÞ

� 1
2ðgaÞ½!AeðxÞ ^!B

e ðxÞ���: (A4)

As a result, the curvature RAB
��ðxÞ (19)

aRAB
��ðxÞ ¼ GAB

��ðxÞ �GAB
��ðxÞ

¼ a½@�!AB
� ðxÞ � @�!

AB
� ðxÞ�

� ðgaÞ½!AeðxÞ ^!B
e ðxÞ���; (A5)

where we use

½!AeðxÞ ^!B
e ðxÞ��� ¼ �½!AeðxÞ ^!B

e ðxÞ���: (A6)

APPENDIX B

The properties of the vertex fields v��ðxÞ (116) and

(117):

v�� ¼ �5

i

2
½�a�b � �b�a� 12 ðe

a
�e

b
� � ea�e

b
�Þ

¼ �5

i

2
ðe�e� � e�e�Þ ¼ i

2
�5ðe ^ eÞ��; (B1)

vy
�� ¼ �y

5�
y
abðea ^ ebÞy�� ¼ �5�ab

1
2ðeb�ea� � eb�e

a
�Þ

¼ ��5�abðea ^ ebÞ�� ¼ �v�� ¼ v�� (B2)

for the case v��ðxÞ ¼ �5e��ðxÞ. Equations (B1) and (B2)

are the same for the case v��ðxÞ ¼ e��ðxÞ, because of

�y
5 ¼ �5. For the sake of simplifying notations in follow-

ing calculations, we introduce

tab�� � ðea ^ ebÞ�� ¼ 1
2ðea�eb� � ea�e

b
�Þ;

½tab���y ¼ �tab��; (B3)

tab�� ¼ �tab��, t
ab
�� ¼ �tba�� and e�� ¼ �abt

ab
��.

We calculate the naive continuum limit of Eqs. (120),
(122), and (123), in powers of ga!�. First, at the order

Oða0Þ, we consider all link fields in Eqs. (120) and (122)
to be identity, e.g., U�ðxÞ � 1, U�ðxþ a�Þ � 1, and

U�ðxþ a�Þ � 1. Using Eqs. (121)–(123), (B1), and (B2),
we obtain up to order Oða0Þ
Xhðv;UÞ þ Xy

h ðv;UÞ ¼ tr½v��ðxÞv��ðxþ a�Þ
� v��ðxþ a�Þ� þ H:c: ¼ 0: (B4)

Second, at the order OðaÞ, we consider two link fields in
Eqs. (120) and (122) to be identity. The case (1): U�ðxþ
a�Þ � 1 and U�ðxþ a�Þ � 1, we have up to order OðaÞ,
Xhðv;UÞ � tr½v��ðxÞU�ðxÞv��ðxþ a�Þv��ðxþ a�Þ�
� tr½v��ðxÞv��ðxþ a�Þv��ðxþ a�Þ�

þ iga!AB
� ðxÞ tr½�5�ab�AB�cd�ef�

� tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ: (B5)

for the case v��ðxÞ ¼ �5e��ðxÞ. Using Eqs. (120)–(123)

and (B4), we have

Xhðv;UÞ þ Xy
h ðv;UÞ � iga½!AB

� ðxÞ �!AB
� ðxÞ�

� tr½�5�ab�AB�cd�ef�tab��ðxÞ
� tcd��ðxþ a�Þtef��ðxþ a�Þ: (B6)

The case (2): U�ðxþ a�Þ � 1 and U�ðxþ a�Þ � 1, we

obtain the result with the replacement ½!AB
� ðxÞ �

!AB
� ðxÞ� ! ½!AB

� ðxÞ �!AB
� ðxÞ� in Eq. (B6). Taking into

account all contributions from these cases, we obtain up
to the order OðaÞ

Xhðv;UÞ þ Xy
h ðv;UÞ ¼ 0: (B7)

These results are also valid for the case v��ðxÞ ¼ e��ðxÞ,
since the calculations of Eqs. (B4)–(B6) without �5 are the
same.
Third, at the order Oða2Þ, we consider one link field in

Eqs. (120) and (122) to be identity, e.g., U�ðxþ a�Þ � 1,
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Xhðv;UÞ � tr½v��ðxÞU�ðxÞv��ðxþ a�Þv��ðxþ a�Þ
�U�ðxþ a�Þ�

� tr½v��ðxÞU�ðxÞU�ðxÞv��ðxþ a�Þ
� v��ðxþ a�Þ�; (B8)

where in the second line, we use Eq. (56), ½�ab; �5� ¼ 0,
½U�ðxÞ; v��� ¼ OðaÞ, and U�ðxþ a�Þ ¼ U�ðxÞ þOðaÞ.
Using Eq. (89) or (A1) for U��ðxÞ � U�ðxÞU�ðxÞ and the

result (B4), we have up to Oða2Þ
Xhðv;UÞ � tr½v��ðxÞU��ðxÞv��ðxþ a�Þv��ðxþ a�Þ�

¼ iagGAB
��ðxÞ tr½�5�ab�AB�cd�ef�

� tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ; (B9)

for the case v��ðxÞ ¼ �5���ðxÞ. Using the relationships

Xy
h ðv;UÞ ¼ Xhðv;UÞj�$� (121) and (122) and tab�� ¼

�tab�� (B3), we have

Xy
h ðv;UÞ � �iagGAB

��ðxÞ tr½�5�ab�AB�cd�ef�
� tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ: (B10)

As a result, using Eq. (A5) in Appendix A, we obtain up to
Oða2Þ

Xhðv;UÞ þ Xy
h ðv;UÞ

� ia2gRAB
��ðxÞ tr½�5�ab�AB�cd�ef�

� tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ: (B11)

For the case v��ðxÞ ¼ e��ðxÞ, the result is given by

Eq. (B11) without �5.
In Appendix C, we show the calculations of

tr½�5�ab�AB�cd�ef� and tr½�ab�AB�cd�ef� in

Eq. (B11). Using these results (C4) and (C8), we obtain
for the case v��ðxÞ ¼ �5e��ðxÞ,
Xhðv;UÞ þ Xy

h ðv;UÞ � 8a2gRAB
��ðxÞ�abABtab��ðxÞ

� tcd��ðxþ a�Þtcd��ðxþ a�Þ; (B12)
and for the case v��ðxÞ ¼ e��ðxÞ,
Xhðv;UÞ þ Xy

h ðv;UÞ � 2i � 8a2gRAB
��ðxÞtAB��ðxÞ

� tcd��ðxþ a�Þtcd��ðxþ a�Þ: (B13)
Using Eqs. (119) and (B3), we rewrite the fundamental

area (96) and (97) of the 2-simplex hðxÞ in terms of
tcd��ðxþ a�Þ and tcd��ðxþ a�Þ:

Sh��ðxþ a�Þ ¼ �cdS
cd
��ðxþ a�Þ;

Scd��ðxþ a�Þ ¼ �ia2tcd��ðxþ a�Þ;
(B14)

Sh��ðxþ a�Þ ¼ �cdS
cd
��ðxþ a�Þ;

Scd��ðxþ a�Þ ¼ �ia2tcd��ðxþ a�Þ;
(B15)

where Sh��ðxþ a�Þ ¼ �Sh��ðxþ a�Þ and Sh��ðxþ a�Þ ¼
�Sh��ðxþ a�Þ. As discussed in Eqs. (103), (96), and (97)

[see Sec. III D], three area operators Sh��ðxÞ, Sh��ðxþ a�Þ
and Sh��ðxþ a�Þ are identical. Therefore, equivalently to

Eqs. (104) and (107), we write the volume element con-
tributed from the 2-simplex hðxÞ as
dVh � Scd��ðxþ a�ÞScdy�� ðxþ a�Þ

¼ a4tcd��ðxþ a�Þtcd��ðxþ a�Þ ¼ Scd��ðxÞScdy�� ðxÞ
¼ a4tcd��ðxÞtcd��ðxÞ; (B16)

where indexes c, d are summed, while indexes �, � and �
are not summed. Using Eq. (C7) in Appendix C, we obtain

dVhðxÞ ¼ S2hðxÞ ¼ 1
8 tr½Sh��ðxÞShy��ðxÞ�; (B17)

where Sh��ðxÞ ¼ �abS
ab
��ðxÞ and Sab��ðxÞ ¼ �ia2tab��ðxÞ.

Using Eqs. (B12)–(B17), we can show the regularized
Palatini action (124) and Host action (129) approach to
their continuum counterparts (22) and (23) in the naive
continuum limit ag!� � 1.

APPENDIX C

It can be shown that tr½�5�ab�cd�ef� ¼ 0 for �5 ¼
�0�1�2�3 in the four-dimensional space-time. Non-
vanishing contributions of the following trace

tr ½�5�ab�AB�cd�ef�; (C1)

come from the product of two spinor matrices �’s in
Eq. (C1) being identical,

tr ½�5�ab�AB�cd�ef� ) tr½�5�ab�AB�: (C2)

In Eq. (B11), as example, we take (i) �cd�ef ¼ 1 for

c ¼ e, d ¼ f and (ii) �cd�ef ¼ �1 c ¼ f, d ¼ e,

X
cdef

½�cd�ef�tcd��ðxþa�Þtef��ðxþa�Þ

¼X
cd

½�cd�cd�tcd��ðxþa�Þtcd��ðxþa�Þ

þX
cd

½�cd�dc�tcd��ðxþa�Þtdc��ðxþa�Þ;

¼X
cd

tcd��ðxþa�Þtcd��ðxþa�Þ�
X
cd

tcd��ðxþa�Þtdc��ðxþa�Þ

¼2
X
cd

tcd��ðxþa�Þtcd��ðxþa�Þ: (C3)

Thus, in Eq. (B11) we have

tr½�5�ab�AB�cd�ef�tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ
¼ 2 tr½�5�ab�AB�tab��ðxÞtcd��ðxþ a�Þtcd��ðxþ a�Þ
¼ �8i�abABtab��ðxÞtcd��ðxþ a�Þtcd��ðxþ a�Þ; (C4)

where we use the formula
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tr ð�5�
ab�ABÞ ¼ 1

2 trð�5f�ab; �ABgÞ ¼ �4i�abAB; (C5)

and Eq. (18). In the same way we calculate Eq. (B11) for
other possibilities, e.g., �ab�ef ¼ 1 for (i) a ¼ e, b ¼ f

and (ii) �ab�ef ¼ �1 a ¼ f, b ¼ e. As a result, we obtain

Eq. (B12).
Analogous to the discussions for Eq. (C2), nonvanishing

contributions to tr½�ab�AB�cd�ef� come from the product

of two spinor matrices �’s being identical,

tr ½�ab�AB�cd�ef� ) tr½�ab�AB�: (C6)

In Eq. (B11) without �5, as example, we take
(i) �cd�ef ¼ 1 for c ¼ e, d ¼ f and (ii) �cd�ef ¼ �1

c ¼ f, d ¼ e, and use formula

tr ð�ab�ABÞ ¼ 4ð�aA�bB � �aB�bAÞ: (C7)

As a result we obtain

tr ½�ab�AB�cd�ef�tab��ðxÞtcd��ðxþ a�Þtef��ðxþ a�Þ
¼ 2 tr½�ab�AB�tab��ðxÞtcd��ðxþ a�Þtcd��ðxþ a�Þ
¼ 2 � 8tAB��ðxÞtcd��ðxþ a�Þtcd��ðxþ a�Þ; (C8)

and Eq. (B11) without �5 becomes Eq. (B13).

APPENDIX D

Using the properties (B1) of the vertex field v��ðxÞ ¼
�5e��ðxÞ, we have

�Xhðv;UÞ ¼ i

2
tr�5½e�ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þe�ðxÞ

� e�ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þe�ðxÞ�M2
h

�Xy
h ðv;UÞ ¼ i

2
tr�5½e�ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þe�ðxÞ

� e�ðxÞU�ðxÞU�ðxþ a�ÞU�ðxþ a�Þe�ðxÞ�M2
h; (D1)

and

�X hðv;UÞ þ �Xy
h ðv;UÞ ¼ i

2
M2

h tr�5e�ðxÞ½U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ �U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ�e�ðxÞ

þ i

2
M2

h tr�5e�ðxÞ½U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ �U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ�e�ðxÞ
¼ tr½e�ðxÞ�5H��ðxÞe�ðxÞ� � tr½e�ðxÞ�5H��ðxÞe�ðxÞ�; (D2)

where �5e�ðxÞ ¼ �e�ðxÞ�5 and the tensor

H��ðxÞ � i

2
M2

h½U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ �U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ�

¼ i

2
M2

h½U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ �Uy
�ðxþ a�ÞUy

�ðxþ a�ÞUy
� ðxÞ�

¼ i

2
M2

h½U�ðxÞU�ðxþ a�ÞU�ðxþ a�Þ� þ H:c: ¼ i

2
M2

h½U�ðxÞU�ðxþ a�ÞUy
�ðxÞ� þ H:c:; (D3)

H�� ¼ �H�� and Hy
�� ¼ H��, following the relations

U�ðxÞ ¼ Uy
�ðxþ a�Þ, Uy

� ðxÞ ¼ U�ðxþ a�Þ and U�ðxþ
a�Þ ¼ Uy

�ðxþ a�Þ. The H��ðxÞ is a product of three
edge fields U�ðxÞ, Uy

�ðxÞ and U�ðxþ a�Þ of the 2-simplex
hðxÞ. For the case v��ðxÞ ¼ e��ðxÞ, the same result can be
obtained by the replacement �5 ! �1 in Eq. (D2). The
sum of two contributions gives Eqs. (170) and (171) in the
main text.

APPENDIX E

For each 2-simplex hð� � � � �Þ, we have the
fundamental area operator e� ^ e� � e�e� � e�e� [see

Eq. (103)] and trðe�e� � e�e�Þ ¼ 0, we can rewrite the

mean-field action (170) as follows:

�A h ¼ trðe�e� � e�e�Þ þ �Ah

¼ tr½e�ðI � �h
��Þe� � e�ðI � �h

��Þe��

¼ tr

�
ð e� e� Þ

�
0 ðI � �h

��Þ
�ðI � �h

��Þ 0

�
e�
e�

� ��
;

(E1)

where I is the identity matrix. For each single 2-simplex h,
we have the integrations

Z
h
de�de� exp� �Ah ¼ det�1½I � �h�; (E2)
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Z
h
de�de�ðe�e�Þ exp� �Ah ¼ 1

2
½I � �h��1

�� det
�1½I � �h�;

(E3)

Z
h
de�de�e�� exp� �Ah ¼ i

4
f½I � �h��1

�� � ½I � �h��1
��g

� det�1½I � �h�: (E4)

Using Eqs. (181) and (182), we calculate the mean-field
partition function (175)

�ZEC ¼ Y
h2M

Z
h
dU�dU�dU� det

�1½I � �h�

¼ Y
h2M

Z
h
dU�dU�dU�

�
1þX

a

�h
aa þ 1

2

X
a;b

ð�h
aa�

h
bb

þ �h
ab�

h
baÞ þ � � �

�
: (E5)

In Eq. (E5), the first term is one due to the formula (183),
the second term vanishes due to the formula (184), and
nonvanishing contribution, due to Eqs. (184) and (185),
comes from the term �h

ab�
h
ba in the third term. Using

Eqs. (171), (184), and (185), we have

Z
h
dU�dU�dU�

1

2

X
a;b

�h
ab�

h
ba ¼ 1

2

�
1

8g2

�
2
M4

h

�
i

2

���i

2

�

�
Z
h
dU�dU�dU� � 2

��
�5 � 1

�

�
aj
½U��jl½U��ln½Uy

��nb

�
�
�5 � 1

�

�
bm
½U��mk½Uy

��ki½Uy
� �ia

�

¼ 1

2

�
1

8g2

�
2
M4

h

�
1

4

�
2

d3j
tr

��
�5 � 1

�

�
2
�

¼
�
1

8g2

�
2
M4

h

1

d3j

�
1þ 1

�2

�
: (E6)

As a result, we obtain the mean-field partition function
(186) in the main text.

Using Eq. (E4), we calculate the mean-field value of the

mean-field action �Ah (170) of the single 2-simplex h,

h �Ahi� ¼ htr½e��h
��e�� e��

h
��e��i�

¼ 1

2 �Zh

Z
h
DU tr

�
�h
��

I��h
��

� �h
��

I��h
��

�
det�1½I��h�

¼ 1

2 �Zh

Z
h
DU trf2�h

���
h
��þ���gdet�1½I��h�

¼ 1
�Zh

�
1

8g2

�
2
M4

h

�
1

4

�
2

d3j
tr

��
�5� 1

�

�
2
�

¼ 1
�Zh

�
1

8g2

�
2
M4

h

2

d3j

�
�2þ 1

�2

�
; (E7)

which gives Eq. (189) in the main text.
Using Eqs. (E2), (E3), and (E5) and ð�hÞ�� ¼ �ð�hÞ��

[see Eqs. (171) and (D3)], we have

h½e���ih� ¼ i

4

1
�Zh

Z
h
DUf½I � �h��1

�� � ½I � �h��1
��g

� det�1½I � �h�
¼ i

4

1
�Zh

Z
h
DU½2�h

�� þ � � �� det�1½I� �h�

¼ i

4

2
�Zh

�
1

8g2

�
2
M4

h

�
1

4

�
2

d3j

��
�5 � 1

�

�
2
�
; (E8)

and h½e���ih� ¼ �h½e���ih�. As a result, Eq. (192) becomes

hAECi� � X
h2M

ð �ZhÞ2
4M2

h

fhtr½e��h
��e�

� e��
h
��e��i� tr½h½e���ih�h½e���ih��g

¼ X
h2M

1

M2
h

�
1
�Zh

��
1

8g2

�
6ðM4

hÞ3
�
1

4

��
2

d3j

�
3
�
�2 þ 1

�2

�

�
��

�2 þ 1

�2

�
2 þ 4

�2

�
; (E9)

and we obtain Eq. (193) in the main text.
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