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This article presents detailed discussions and calculations of the recent paper ‘“Quantum Regge calculus
of Einstein-Cartan theory” in [9]. The Euclidean space-time is discretized by a four-dimensional
simplicial complex. We adopt basic tetrad and spin-connection fields to describe the simplicial complex.
By introducing diffeomorphism and local Lorentz invariant holonomy fields, we construct a regularized
Einstein-Cartan theory for studying the quantum dynamics of the simplicial complex and fermion fields.
This regularized Einstein-Cartan action is shown to properly approach to its continuum counterpart in the
continuum limit. Based on the local Lorentz invariance, we derive the dynamical equations satisfied by
invariant holonomy fields. In the mean-field approximation, we show that the averaged size of 4-simplex,
the element of the simplicial complex, is larger than the Planck length. This formulation provides a
theoretical framework for analytical calculations and numerical simulations to study the quantum

Einstein-Cartan theory.

DOI: 10.1103/PhysRevD.82.064039

I. INTRODUCTION

Since the Regge calculus [1,2] was proposed for the
discretization of gravity theory in 1961, many progresses
have been made in the approach of quantum Regge
calculus [3,4] and its variant dynamical triangulations
[5]. In particular, the renormalization-group treatment is
applied to discuss any possible scale dependence of
gravity [3]. Inspired by the success of lattice regulariza-
tion of non-Abelian gauge theories, the gauge-theoretic
formulation [6] of quantum gravity using connection
variables on a flat hypercubic lattice of the space-time
was studied in the Lagrangian formalism. The canonical
quantization approaches to the Regge calculus in Hamil-
tonian formulation are studied in Ref. [7]. A locally finite
model for gravity has been recently proposed [8]. All
these studies are very important steps to understand
the FEinstein general relativity for gravitational fields
in the framework of quantum field theory. In the brief
paper [9] based on the scenario of quantum Regge cal-
culus, we present a diffeomorphism and local Lorentz
invariant (i.e., local gauge-invariant) regularization and
quantization of Euclidean Einstein-Cartan (EC) theory.
Detailed calculations and discussions are presented in
this article.

The four-dimensional Euclidean space-time is discre-
tized by a simplicial complex, analogously to the formu-
lation of the Regge calculus. In the framework of the
Einstein-Cartan theory, we adopt basic gravitational vari-
ables, i.e., a pair of tetrad and spin-connection fields to
describe the simplicial complex. Introducing diffeomor-
phism and local Lorentz invariant (i.e., local gauge-
invariant) holonomy fields in terms of tetrad and spin-

*xue@icra.it

1550-7998/2010/82(6)/064039(25)

064039-1

PACS numbers: 04.60.Nc, 05.30.—d, 11.10.—z, 11.15.Ha

connection fields along loops, we propose an invariantly
regularized EC theory for the dynamics of simplicial com-
plex, which couples to fermion spinor fields. We show that
in the continuum limit when the wavelengths of tetrad and
spin-connection fields are much larger than the Planck
length, this regularized EC action properly approaches to
the continuum EC action. The quantum dynamics of the
simplicial complex is described by the Euclidean partition
function that is a Feynman path-integral overall quantum
tetrad, spin connection, and fermion fields with the weight
of regularized EC action. Based on local gauge invariance,
we derive the dynamical equations satisfied by invariant
holonomy fields of tetrad, spin-connection, and fermion
fields. In the mean-field approximation, we show the aver-
aged size of 4-simplex (and its 3-simplex and 2-simplex),
elements of the simplicial complex, has to be larger than
the Planck length. This formulation provides a theoretical
framework for analytical calculations, in particular, nu-
merical simulations to study the Einstein-Cartan theory
as a quantum field theory.

This article is organized as follows: In Sec. II, we give a
brief review of the continuum EC theory. In Sec. III, we
discuss the regularized EC theory based on (1) the descrip-
tion of simplicial complex by tetrad and spin-connection
fields; (2) parallel transport equations in simplicial com-
plex; (3) invariant holonomy fields and regularized EC
action and their continuum limit; (4) the Euclidean parti-
tion function. In Secs. IV and V, we study chiral gauge
symmetric bilinear and quadralinear-fermion actions,
and derive dynamical equations for holonomy fields. In
Sec. VI, we adopt the method of the mean-field approxi-
mation to show the averaged size of the 4-simplex has to be
larger than the Planck length. In the last section, we give
some concluding remarks, and detailed calculations are
arranged in Appendices A, B, C, D, and E.
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II. CONTINUUM EINSTEIN-CARTAN THEORY

The basic gravitational variables in the Einstein-Cartan
theory constitute a pair of tetrad and spin-connection fields
[e,“(x), @9 (x)], whose Dirac-matrix values

e,(x) = e, )y, and w,(x) = 0P x)0o, (1)

The fields e,,“(x) and w4’ (x) are 1-form real fields on the
four-dimensional Euclidean space-time R*, taking values,
respectively, in the local Lorentz vector space V, and
in the Lie algebra so(4) of the Lorentz group SO(4)
of the linear transformations of V, preserving 8% =
(+, +, +, +). In this local Lorentz vector space V, fer-
mions are spinor fields ¢ (x), Dirac 7y matrices obey

{Ya’ ’)/b} = _25ab’ (2)

yI = —y,and y2 = —1(a = 0, 1, 2, 3); the Hermitian s
matrix

vs =7 =Y v'v*Y = vov17275 A3)

yg = s and y% = 1; the Hermitian spinor matrix,

i
o =[y" "] )
Totally antisymmetric tensor €,,,,, = €apca€y e, e, e, .
The space-time metric of four-dimensional Euclidean
manifold R* is

g/.LV(x) = e/.l,a(x)evb(x)aab = _%{e;u 6,,}. )

And the Lorentz scalar components of the metric tensor
are then simply

51117 = g,uveuaeyb; (6)

where the inverse of the tetrad fields e*,e,* = 6*, and
e Mb et, = 6%,

Two gauge invariances due to the equivalence principle
have to be respected: (1) the diffeomorphism invariance
under the general coordinate transformation x — x'(x);
(2) the local gauge invariance under the local Lorentz

coordinate transformation &(x) — &'(x), i.e.,
&(x) = [Ax)]3€" (). @)

Under the local Lorentz coordinate transformation (7), the
finite local gauge transformation is

V() = expil 07 (£)a ] € SO4),
V() y, V(&) =[A )Ly

where 6°(£) is the antisymmetric tensor and an arbitrary
function of & = £(x). The Dirac-matrix valued fields e,
w , and fermion spinor field ¢ are transformed as follows:

e, (6) = €, (§) = V(&)e, (&) V(&) ()]

®)
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0, (&) = @, (§)
= V(o () V(&) + V(£)a, Vi), 10)

Y€)= (&) = V(Ey(§); (I
D), = VD, Vi), (12)

where the derivative 9, = e} (d/9&%), the covariant
derivative

D,=09,—igw,(£), (13)

and g is the gauge coupling. Corresponding to the finite
local gauge transformations (9)—(11), infinitesimal local
gauge transformations for fields e, @, and ¢ are

e, (£) = 0°°(&)d €, (£); (14)
8w, (&) = 2Y5€4peq@? 0°U(E) — i070,07(8);  (15)

S (&) = i0"(E)awp(é), (16)

where

dab,c = i[o-ab’ 76] = 2(5bCYa - 5acyb)’ (17)

and we use the commutator relation
{0, 07} = —2iy P, (18)

to obtain Eq. (15).

In an SU(2) gauge theory, gauge field A,(£z) can be
viewed as a connection [A,(£g)dé% on the global flat
manifold. On a locally flat manifold, the spin connection
w,dx* = w,(£€)dé, where w,(§) = w,e*,, one can
identify that the spin-connection field w ,(x) or w,(£) is
the gravity analog of gauge field and its local curvature is
given by

R = dw® — gw® A 0, (19)

and the Dirac-matrix valued curvature R,, = Rﬁbyaab.
Under the gauge transformation (9) and (10),

R = V(&R (E)V1(€). (20)

The diffeomorphism invariance under the general coordi-
nate transformation x — x/(x) is preserved by all deriva-
tives and d-form fields on R* made to be coordinate
scalars with the help of tetrad fields e, = 9§ /ox* (see
Ref. [10]). The diffeomorphism and local gauge-invariant
EC action for gravity coupling to fermions is given by the
Palatini action Sp and host modification Sy for the gravi-
tational field,

SEc(e, (()) = Sp(e, (1)) + SH(e, 0)) + Sp(e, w, L/f), (21)

1
Sple, w) = e [d”'x det(e)e peqe® A e” AR, (22)
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1
Syle, w) = — [d“x det(e)e, A e, A R, (23)
2Ky
and fermion action Sy (see Refs. [11,12]),

Sre, w, ) = % [d“xdet(e)[t,_be“D#z// + H.c] (24

where « = 87G, the Newton constant G = 1/m3,, .
det(e) is the Jacobi of mapping x — &(x) and the integra-
tion [d*x = [gsd*x. The complex Ashtekar connection
[13] with reality condition and the real Barbero connection
[14] are linked by a canonical transformation of the con-
nection with a finite complex Immirzi parameter ¥ # 0
[15], which is crucial for loop quantum gravity [16].
Classical equations of motion can be obtained by the
stationarity of the EC action (21) under variations (9)—(11),

de,, Si(x)

Sa)M

8Skcle, w, ¢) = S(x)

+

dw, = 0. (25)

From Egs. (14)-(16), we find that Eq. (25) can be ex-
pressed in terms of independent bases s, v, and o, of
the Dirac matrices. Therefore, for arbitrary function
0.,(&), Eq. (25) leads to the following three equalities:

6SEC -0 SSEC -0 5SEC _
S ’ Se ’ Sw

w M

0. (26)

The first and second equations, respectively, lead to the
Dirac equation,

e*D,(x) =0, 27
and the Einstein equation
€abea’ N e’ AR[w(e)] = ki (x)(e A D)h(x), (28)
where the energy-momentum tensor is
Ple AD)yp =3¢le, D, — Dye, . (29)

The gauge invariance of the EC action (21) under the gauge
transformation (15) leads to the third constraint equation
8Sgc/8w,, = 0 of Eq. (26), which is the Cartan structure
equation,

de® — gw™® Ae, — T =0, 30)
where the nonvanishing torsion field,
T = kge, A e J°, 3D

relating to the fermion spin current
Jre = iglot, y Y = ey Sy, (32)

{o, v} = ie™y>y, (33)
The fermion spin current (32) contributes only to the
pseudotrace axial vector of torsion tensor, which is one

of irreducible parts of torsion tensor [17]. The solution to
Eq. (30) is
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b _  ab ~ ab
0l = wi(e) + @5,

i G)Zb = ngfLJ“bC, (34)

where the connection a)ff’ (e) obeys Eq. (30) for torsion-
free case T% = 0,

de® — gw®™(e) A e, = 0. (35)
ab

Replacing the spin-connection field w?,
Cartan action (22) and (24), by Eq. (34),

Sple. 0] — Sple, w(e)] + xg? f d*x det(e)(fyly )

X (Pyay’ ¥); (36)

in the Einstein-

Sple, w, ¥, ] — Sple, w(e), ¥, f] + 2kg? fd4x det(e)
X vy ) (yay’ i), 37)

one obtains the well-known Einstein-Cartan theory: the
standard tetrad action of torsion-free gravity coupling to
fermions with four-fermion interactions,

SEC[e’ (1)(6), '7[’) l,_b] = SP[e» (l)(e)] + SF[e’ Cl)(e), l/l» Jj]
+ 3kg? [d4xdet(€)(17/’)/d’)/sl/f)

X (Pyay’ ). (38)

Note that the four-fermion interaction actually is the
coupling of two fermion spin currents (32). Taking into
account the host action (23), one obtains

Secle, w(e), ] = Sple, w(e)] + Sule, w(e)]
+ SF[e) Cl)(e), ll/] + S4F(er lr//)r (39)

Suple, ) = 37Kg? j d'x det(e) Ty yS p)Byay* v),
(40)

where ¢ = %2/(#* + 1) [18]. Using the commutator rela-
tions (18) and [o,;, ¥5] = 0, one can show that (y,v> )
is a pseudovector and (40) is invariant under the gauge
transformation (11).

As we can see from Eqgs. (24) to (39), the bilinear term
(24) of massless fermion fields coupled to the spin-
connection field (13) is bound to yield a nonvanishing
torsion field 7“ (30), which is local and static (see, for
example, Refs. [12,19]). As a result, the spin-connection
w , is no longer torsion-free and acquires a torsion-related
spin connection d)ff’ (34), in addition to the torsion-free spin
connection wf,f’ (e). The torsion-related spin connection E)ff’
is related to the fermion spin current (32). The quadratic
term of the spin-connection field w in the curvature (19) and
the coupling between the spin-connection field w and fer-
mion spin current in Egs. (13) and (24) lead to the quadra-
linear terms of fermion fields in Egs. (36) and (37). Another
way to see this is to treat the static torsion-related spin
connection (I)‘jj’ (34) as a static auxiliary field, which has
its quadratic term and linear coupling to the spin-current of
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fermion fields. Performing the Gaussian integral of the
static auxiliary field, we exactly obtain the quadralinear
term (40), in addition to the torsion-free EC action.

The action (21) and classical Eqs. (27)-(30) can be
separated into left- and right-handed parts [20], with re-
spect to the local SU;(2) and SUg(2) symmetries of the
Lorentz group SO(4) = SU;(2) ® SUg(2). This can be
shown by writing Dirac fermions = ; + ¢, where
Weyl fermions ¢, r = Py riy, Prr = (1= 7ys)/2; and
Dirac-matrix valued tetrad field e = e} + ef, e} =
P re*, as well as Dirac-matrix valued spin-connection
fields w, = 0] + wf, 0}z = P ro™.

III. THE REGULARIZED
EINSTEIN-CARTAN THEORY

A. Simplicial complex

The four-dimensional Euclidean manifold R* is discre-
tized as an ensemble of N, space-time points (vertexes)
“x € R* and N, links (edges) “l,,(x)” connecting two
neighboring vertexes. This ensemble forms a simplicial
manifold M embedded into the R*. The way to construct
a simplicial manifold depends also on the assumed topol-
ogy of the manifold, which gives geometric constrains on
the numbers of subsimplices (Ny, Ny, ..., see Ref. [5]).
In this article, analogously to the simplicial manifold
adopted by the Regge calculus we consider the simplicial
manifold M as a simplicial complex, whose elementary
building block is a 4-simplex (pentachoron). The 4-
simplex has five vertexes—O0-simplex (a space-time point
“x”), five “faces”—3-simplex (a tetrahedron), and each
3-simplex has four faces—2-simplex [a triangle A (x)], and
each 2-simplex has three faces—1-simplex [an edge or a
link “/,(x)”]. Different configurations of the simplicial
complex correspond to variations of relative vertex-
positions {x}, edges “{/,(x)}”" and “deficit angles” asso-
ciating to 2-simplices /(x). These configurations will be
described by the configurations of dynamical tetrad fields
e,(x) and spin-connection fields w,(x) assigned to 1-
simplexes (edges) of the simplicial complex in this article.
We are not clear now how to relate configurations of fields
e, (x) and w ,(x) to topological constrained configurations
of the simplicial complex in dynamical triangulations.

1. Edges: 1-simplexes
The edge (1-simplex) denoted by (x, u), connecting two
neighboring vertexes labeled by x and x + a,, can be
represented as a four-vector field /,(x), defined at the
vertex “x”” by its forward direction w pointing from x to

x + a, and its length
a,(x)=11,(x)| #0, 1)

which is the distance between two vertexes x and x + a,,.
The fundamental tetrad field e, (x) is assigned to each edge
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(1-simplex) of the simplicial complex to describe the edge
location “x,” direction “u”” and length a,,(x). We use the
tetrad field e M(x), defined at the vertex x, to characterize
the edge (1-simplex) /,,(x)

1,(x) = ae,(x), (42)
where the Planck length a = (87G)"/2 = k!/2, and
a
|1, (x)] = E{hr[eﬂ(x) “e, (O} (43)

By definition, either /,,(x) or e , (x) is a Dirac-matrix valued
four-vector field, defined at the vertex “x.”

2. Triangles: 2-simplexes
We consider an orienting 2-simplex (triangle) (see
Fig. 1). This 2-simplex (triangle) has three edges connect-
ing three neighboring vertexes that are labeled by x, x +
a, and x + a,. This triangle (2-simplex) has two orienta-

tions: (i) the anti-clocklike /(x) [xrix +a Mlﬂ>x + a,,li>x]

and (ii) the clocklike AT (x) [x—x + a,~5x + a,+>x].

Along the triangle path of the anti-clocklike 2-simplex
h(x) [xrix +a Mrgx + a,,éx], three edges and their for-
ward directions are represented by: (1) /,,(x) and w point-
ing from x to x + a,; (2) I,(x + a,) and p pointing from
u o x+a,; 3) I(x+a,) and v pointing from
x + a, to x. The lengths of three edges are, respectively,
represented by edge spacings a,,, a, and a, [see Egs. (41)
and (43)]. We use the tetrad fields

X+a

e, (x), e,(x +ay,), e,(x +a,), (44)

defined atx, x + a, and x + a,, to, respectively, character-
ize locations, forward directions and lengths of three
edges: (42) and

L(x+a,) =ae,(x+ay,),
p I P © 5)
L,(x+a,) = ae,(x +a,),

of the anti-clocklike 2-simplex h(x) [see Fig. 1 and
Egs. (42) and (43)].

B. Parallel transports and curvature

The fundamental spin-connection fields {w, (x)} are as-
signed to 1-simplices (edges) of the simplicial complex,
i.e., each edge (x, u) we associate with it w,(x). The
torsion-free Cartan Eq. (35) is actually an equation for
infinitesimal parallel transports of tetrad fields e%(x).
Applying this equation to the 2-simplex A(x), as shown
in Fig. 1, we show that e§(x) [e{, (x)] undergoes its parallel
transport to &5(x + a,) [} (x + a,)] along the u (v) di-
rection for an edge spacing a,(x) [a,(x)], following the
discretized Cartan equations:

es(x+a,) —es(x) — aﬂgwﬁb(x) Ae,(x) =0, (46)
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Ul(x+ ay)

éL(m +a,)

T rxta,+ay

ev(z+au),U,(z+a,)

1 x+a“

(), Up(z)

FIG. 1. We sketch a 2-simplex (triangle) h(x) formed by
three edges [,(x) = ae,(x), 1,(x + a,) = ae,(x + a,) and
l,(x +a,)=ae,(x + a,) [a=1] connecting three vertexes x,
x +a, and x + a,. Assuming three edge spacings a,, a, and a,
(41) are so small that the geometry of the interior of each 4-
simplex and its subsimplex (3- and 2-simplex) is approximately
flat, we assign a local Lorentz frame to each 4-simplex. On the
local Lorentz manifold £%(x) at a space-time point “x”, we
sketch a closed parallelogram Cp(x) lying in the 2-simplex A(x).
Its two edges e, (x) and el (x) are two edges of the 2-simplex
h(x), and other two edges (dashed lines) &, n(x+a,)andé,(x +
a,) are parallel transports of ef(x) and eT(x) along v and w
dlrectlons respectively [see Egs. (46), (47), (62), and (63)]. Each
2-simplex in the simplicial complex has a closed parallelogram
lying in it. Group-valued gauge fields U, (x) and Ul(x) are,
respectively, associated to edges e, (x) and el(x) of the 2-
simplex h(x), as indicated. The ﬁelds e, =e,(x+a,) and
U, =U,(x+ a,) are associated to the third edge (x+ay,, p)
of the 2- s1mp1ex h(x) The group fields U, (x + a ) and Ut nx+
a,) indicate the parallel transports of UT(x) and U (x) [see
Eqgs. (48), (49), (82), and (83)] for the zero curvature case. Note
that the point (x + a, + a,) is not a vertex of the simplicial
complex, points: (x — a,), (x — a,), (x +a, +a,), (x +a, —
a,), and (x + a, + a,), which are not shown in the sketch, are
not vertexes of the simplicial complex as well. Parallel transports
e,(x +a,) and &},(x + a,), as well as U, (x + a,) and U}, (x +
a,) are not associated to any edge of the simplicial complex.
Throughout this article, the notations & and U indicates parallel
transports that are not associated to any edge of the simplicial
complex.

eq(x+a,) —ef(x) — a,gw(x) A e, p(x) =0. (47)

The parallel transports &j(x + a,) and &} (x + a,) are
neither independent fields, nor assigned to any edges of
the simplicial complex. They are related to ey(x)[e (x)]
and o, (x)[w,(x)] fields assigned to the edges (x, — v) and
(x, w) of the 2-simplex /(x) by the Cartan Eq. (46) and (47).
Because of torsion-free, e, (x), el (x) and their parallel
transports éL(x +a,), e,(x + a,) form a closed parallelo-
gram Cp(x) (Fig. 1). Otherwise this would means the curved
space-time could not be approximated locally by a flat
space-time [21]. Note that the point (x + a,, + a,) at the
closed parallelogram Cp(x) (Fig. 1) is not any vertex of the
simplicial complex.
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For the zero curvature case R4 (x) = 0, the curvature
Eq. (19) can be discretized as

“xta,)— o (x) —a,g0i(x) Awh,(x)=0, (48)

@8 (x+a,) — 0l (x) — a,g0i (x) Awl,(x) =0, (49)

where @4"(x + a,) and @%"(x + a,) are, respectively, par-
allel transports of w$”(x) and @4’ (x) in the  and v direc-
tions. Analogously to the parallel transports &5(x + @, ) and
e}, (x + a,) given by Eqs. (46) and (47), parallel transports
@4"(x +a,) and @4 (x + a,) are neither independent
fields, nor assigned to any edge of the simplicial complex.
They are related to w ,(x) and w,(x) fields assigned to the
edges (x, w) and (x + a,, v) of the 2-simplex /(x) by the
parallel transport Eqs. (48) and (49). The fields w,(x),
w,(x) and their parallel transports @, (x + a,), @,(x +
a,) also form a closed parallelogram, analogously to the
one Cp(x) formed by the tetrad fields e, (x), e, (x) and their
parallel transports &, (x + a,), &,(x + a,,) (see Fig. 1).

Whereas, for the nonzero curvature case R?,Z (x) # 0, the
curvature Eq. (19) can be discretized as

w?®(x+a )~ w?(x) — a,gwif(x) A b, (x)

= a, R, (%), (50)

puv

0 (x +a,) — 0¥ (x) — a,g0%(x) A 0!, (x)
=a R“b (x), (5D

which define fields @4’ (x + a,,) and @4’ (x + a,) in terms
of fields w4 (x), @4’ (x) and curvature R4, (x). These fields
w3’ (x +a,) and @4 (x + a,) are neither independent
fields, nor assigned to any edge of the simplicial complex.
They are related not only to w4’(x) and w4’(x) fields
assigned to the edges (x, ) and (x + a,, v) of the 2-simplex
h(x), but also to the curvature R%5, (50) and R4%, (51).
These fields @9 (x + a,,) and w4’ (x + a,) are no longer
parallel transports @%”(x + a,) and @%"(x + a,) defined
by Egs. (48) and (49). The difference between w?(x +
a,) and @%(x+a,) [or between w(x+ a,) and
@4 (x + a,)] is the curvature a, R4, (x) [a,R%, (x)],

phuy
wi(x+a,) — @ (x+a,) = a,R,(x), (52)
w;‘f’(x +a,) — (I)Zb(x +a,) = a,,R,‘iZ(x). (53)

The fields w,(x), ,(x) and fields w,(x+a,),
w,(x + a,) do not form a closed parallelogram, due to
the nonzero curvature R?,Z (x) # 0.

C. Group-valued fields

Instead of a w , (x) field, we assign a group-valued field
U, (x) to each edge (1-simplex) of the simplicial complex.
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On the edge (x, 1) connecting two vertexes x and x + a,,
in the forward direction w, we place an SO(4) group-
valued spin-connection fields,

U, (x) = efsa@nl), (54)

whereas the same edge (x +a,, —u) in the backward
direction — u, we associate with it

U_,(x+a,) =UlL(x)=U,"x), (55)

analogously to the definition of link fields in lattice gauge
theories. On the three edges in forward directions (x, w),
(x +a,, p)and (x + a,, v) of the anti-clocklike 2-simplex
h(x) (u # v # p see Fig. 1), we define SO(4) group-
valued spin-connection fields,

U,(x) = e'gaou(d), (56)
U,(x + a,) = eisa@xtan), (57)
U,(x + a,) = eseotta), (58)

which take values of the fundamental representation of the
compact group SO(4). On the three edges in backward
directions (x, —»), (x + a,, —p) and (x +a,, —p) of
the clocklike 2-simplex A'(x) (see Fig. 1), we define
SO(4) group-valued spin-connection fields,

U_,(x) = Ul(x + a,) = e isaoslxta,), (59)
U_,(x +a,) = Ulx + a,) = e7seFa)  (60)

U_,(x+a,)= U;Q(x) = ¢ igaw, (), (61)

These uniquely define group-valued spin-connection fields
on the anti-clocklike and clocklike 2-simplex.

1. Unitary operators for parallel transports of e, (x) fields

Actually, these group-valued fields (56)—(61) can be
viewed as unitary operators for finite parallel transporta-
tions. The parallel transportation (Cartan) Egs. (46) and
(47) can be generalized to (u # v)

e,(x+a,) = Ule,0)U,x), (62)

¢,(x+a,) = Ulxe,(x)U,x), (63)

and using Eq. (55) these equations can be equivalently
rewritten as

e,(x) = UiM(x +aye,(x+a,)U_,(x+a,) (64)

e, (x) = Ut,(x + a,e,(x+a,)U_,(x +a,). (65)

While for (i = v), we similarly have the following paral-
lel transportation equations:

e,(x+a,)=Ulxe, (U, x),

- (66)
e, (x) = Uiﬂ(x +ay)e,(x+a,)U_,(x+a,)
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indicating that e, (x) is parallel transported to &, (x + a,,)
in the wu forward direction, and &, (x + a,) is parallel
transported to e,(x) in the —u backward direction.
Similar discussions can be made for parallel transports
with the unitary operator U,(x + a,,).

2. Unitary operators for parallel transports of eL(x) fields

In the simplicial complex, each edge (1-simplex) con-
necting two vertexes has only one direction. One can
identify each edge by its starting vertex and direction
pointing to its ending vertex. On the basis of the tetrad
field e, (x) (42) defined at the vertex “x” for the edge
(x, u) starting from the vertex “x” in the forward direction
(u) to the vertex “x + a,” below, using the unitary op-
erator U, (x) for parallel transports, we will uniquely in-
troduce the “conjugated” field e}, (x) defined at the vertex
“x”" to describe the same edge (x + a,, —u) but in the
backward direction — u starting from the vertex “x + a,”
to the vertex “x.” Analogously to Eq. (42), this edge
starting from the vertex “x + a,,” in the backward direc-
tion (— ) can be formally represented by

I_,(x+a,)=ae_,(x+a,) (67)

By the parallel define the field

e_,(x+a,)as

transport, we

e_,(x+a,)= UL(x)eL(x)Uﬂ(x) = eL(x +a,) (68)

in terms of the unitary operator U,(x) and conjugated
tetrad fields eL(x) defined at the vertex “x.” From the
definition in Eq. (68), we rewrite

eL(x) =U,(x)e_,(x+ aM)U;Q(x) =e_, (). (69)

The second equalities in Egs. (68) and (69) are given by the
definition of parallel transports by unitary operators [see
Eq. (62)]. Equation (68) means that we can associate the
conjugated field

e;&(x) = UM(x)eL(x + aM)U;(x), (70)

with the same edge (x + a,, —u) but in backward direc-
tion —w and write

lL(x) = aeL(x). (71)

As aresult, the edge (x, u) [(x + a,, —u)] in the forward
(backward) direction is uniquely described by the field
e,(x) [eL(x)] defined at the vertex x. Note that the con-
jugated field ef,(x) is given by the parallel transport (70)
from x +a, to x in the direction (— w). In addition,
Eqgs. (68) and (69) indicate that conjugated fields mean
the inverse of field’s direction (u — — w).

This prescription shows that the edge (x, u) is com-
pletely described by the fields e, (x) and e}:(x), latter is a
function of fields e, (x) and U,(x), as required by the
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principle of local gauge symmetries and the gauge field
U, (x) corresponds a parallel transport between x and x +
a, . In consequence, any edge (1-simplex) of the simplicial
complex is uniquely identified by its location and direction
(z, o), and described by the fields e, (z) and U ,(z).

Using the properties (y,)t = —v, [see Eq. (2)] and the
definition of tetrad field e,(x) = e,“(x)y,, where the
index w is fixed, we have

eh () =[e, () yal" = (v e, W], = —e,(x), (72)

where because of the index u being fixed, the real tetrad-
field component e, “(x) = 9“/dx* can be viewed as a
one-row matrix (e,’ e,! ¢,% e,?) and [e,*(x)]" a
one-column matrix (e,’%e,' e,% e u3)T' Analogously
to Eq. (43), the length of the edge (71) in backward

direction — u,
/
el = iutet o - ebon} =l a3

which is the same as the length of the edge in the forward
direction u.

We turn to the discussion of other two backward-
direction edges (x +a,, —») and (x + a,, —p) of the
clocklike 2-simplex ht(x) (see Fig. 1). Analogously to
Egs. (68) and (69), we have in the ( — v) direction,

e_,(x) = U,,(x)e,t(x + a,,)U,t(x) = el (),

(74)
eb(x+a,) = Ul(We_,()U,(x) = &_,(x + a,),
and in the ( — p) direction
e p,(x+a,)= UZ(x + aM)e,JE(x +a,)U,(x+a,)
— ,f
=eplx +a,).
it ) 5)

e;(x +a,)=Uy)(x+a,)e_,(x+ a,,)UZ(x +a,)
=e_,(x+a,)
As a result, the edge (x + a,, v) [(x + a,, —v)] in the
forward (backward) direction is uniquely described

by the field e, (x + a,) [ef(x + a,)] defined at the vertex
x+a,

efx + a,) = Ul (el U, (), (76)

see Eq. (74). Note that the conjugated field e} (x + a,) is
given by the parallel transport (76) from x to x + a, in the
direction (v). We can write

B(x+a,)=ael(x+a,). (77)

Similarly, the edge (x +a,, p) [(x + a,, —p)] in the
forward (backward) direction is uniquely described
by the field e, (x + a,,) [ef, (x + a,)] defined at the vertex
x+ta,

e;(x +a,)=U,(x+ a#)e;(x + a,,)U};(x +a,), (18)
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see Eq. (75). Note that the conjugated field e:ﬂ(x +a,) is
given by the parallel transport (78) from x + a, to x + a,,
in the direction ( — p). We can write

lz(x +a,) = ae;(x +a,). (79)

This prescription shows that the edge (x + a,, v) is com-
pletely described by the fields ¢, (x + a,) and U, (x + a,,),
and the edge (x + a,, p) by the fields e,(x + a,) and
U,(x+a,). The field U,(x +a,) [U,(x + a,)] corre-
sponds a parallel transport between x and x + a, (x +
a, and x + a,).

Along the triangle path of the clocklike 2-simplex AT (x)

[xl;yx + aVpr + aMH#x] (see Fig. 1), these three edges
and their backward directions are formally represented by
(1) l_M(x + aM) and —u pointing from x +a, to x;
2) I ,(x) and —v» pointing from x to x+a,;
(3) I_,(x + a,) and —p pointing from x + a, to x + a,,.
Based on Egs. (68), (74), (75), (70), (76), and (78), we use
the conjugated tetrad fields

el (x), eb(x +a,), eh(x + a,), (80)

which are, respectively, defined at vertexes x, x + a,,
xta,, to characterize both backward directions and
lengths of three edges (71), (77), and (79) of the clocklike
2-simplex AT (x).

In the simplicial complex, each edge (1-simplex), des-
cribed by tetrad field e, (x), is uniquely identified by its
location and direction (x, w), and each triangle (2-simplex)
h(x) has a definite orientation, as indicated in Fig. 1, either
anti-clocklike or clocklike. Thus each triangle, for ex-
ample, the one presented in Fig. 1 is completely described
by the tetrad fields e,(x), e,(x + a,), e,(x + a,), and
unitary operators U, (x), U,(x + a,), U,(x + a,).

3. Unitary operators and curvature
In the zero curvature case, the group-valued fields for
parallel transports @, (x + a,) and @, (x + a,,), defined by
parallel transport Eqgs. (48) and (49), are given by
U ()C +a ) — eigud)#(x+a,,),
S (81)

U,(x+a,)= eigad,(xta,),

Similarly to Eqs. (62) and (63), the parallel transport
Egs. (48) and (49) can be generalized to

U,(x+a,) = UL)U,(0)U, (), (82)

U,(x+a,) = Ulx)U,x)U,x). (83)

The parallel transport fields U,(x + a,) and U, (x + a,)
together with U,(x) and U,(x) form a closed parallelo-
gram, see Fig. 1. This closed parallelogram is not the same
as the parallelogram Cp(x) formed by e and é fields.
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In the nonzero curvature case, corresponding to the
fields w,(x + a,) and w,(x + a,) defined by Egs. (50)
and (51), the group-valued fields can be similarly given by

Ul + a,) = emoren »

U,,(X + a,u.) — ezgaw,,(x-%—aﬂ)’
whose values obviously depend on the curvature R, (x).
The same as the fields w,(x + a,) and w,(x + a,,), these
group-valued fields U,(x + a,) and U, (x + a,) are nei-
ther independent fields, nor assigned to any edge of the
simplicial complex. They are related to U, (x) and U, (x)
fields assigned to the edges (x, u) and (x, ) of the
2-simplex A(x) by

U, x+a,) =ULXU,xU,>x), (85)

U,(x+a,) = Ulx)U,xU,x), (86)

which are generalized from Egs. (50) and (51). The fields
U,(x+a,)and U,(x + a,) defined in Egs. (85) and (86)
encode the information of a nontrivial curvature. They do
not form a closed parallelogram together with U, (x) and
U,(x), at the point (x + a, + a,) (see Fig. 1).

In order to see the nontrivial curvature information
encoded in the fields U, (x + a,) and U, (x + a,) defined
by Eqgs. (84)—(86), based on Egs. (85) and (86), we intro-
duce quantities

Upy(¥) = U,(0)U,(x) = U, (U, (x +a,),  (87)

Upyu(¥) = U,)U,x) =U,(0U,(x +a,),  (88)

and calculate their expressions in the naive continuum limit.
In the naive continuum limit: agw,, << 1 (small coupling g
or weak w , field), indicating that the wavelengths of weak
and slow-varying fields  , (x) are much larger than the edge
spacing a,, we obtain (see Appendix A)

U,,(x) = exp{iga[a)#(x) + w,(0)] +iga?d o, (x)

— Yga w, (), w,()] + @(a3>}, (89)

where O(a?) indicates high-order powers of agw . It is
shown that the quantity U, (x) [Eq. (89)] is related to the
curvature R ,,(x) in Appendix A. For the sake of simplicity
in the following calculations to show the naive continuum
limit, the quantities introduced by (87) and (88), and their
expressions in the naive continuum limit (89) are useful.

D. Triangle constrain and area

Three tetrad fields e,(x), e,(x + a,) and e,(x + a,)
[see Eq. (44)] are three edges of the anti-clocklike
2-simplex h(x), satisfying the triangle constraint

e (x+a,)=e_,(x) —e,lx)= el(x) — e, (x).  (90)
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Equivalently, three tetrad fields eL(x), el(x +a,) and
e:ﬁ(x + aM) [see Egs. (70), (76), and (78) or (80)] of the
clocklike 2-simplex i1 (x), satisfying the triangle constraint

e (x+a,)=e,(x)—e_,(x) =e,(x) —el(x), O

where e_,(x +a,) = e:ﬂ(x +a,) [see Eq. (75)]. Also,
Eq. (74) is used for e_,(x) = ¢}(x) in the second equality
of Egs. (90) and (91). Two of three edges are independent
for a given anti-clocklike (clocklike) 2-simplex A (x) [AT (x)].
However, in Eqgs. (90) and (91), vector fields defined at
different vertexes are related without being parallel trans-
ported to the same vertex, thus these relationships are not
proper and does not properly transform under local gauge
transformations. This is an exactly essential point of local
gauge symmetries, that gauge fields U for parallel trans-
ports are needed to relate variations of gauge freedom at
different coordinate points. Using the parallel transport by
the unitary operator U, (x), we rewrite the triangle con-
straint (90) for the anti-clocklike 2-simplex A(x) as

U, (e, (x + a,)UL(x) = eb(x) — e, (x), (92)

where in the left-handed side, e,(x + a,,) is parallel trans-
ported from the vertex x + a, to the vertex x to be related
to e} (x) and e ,(x) at the same vertex x in the right-handed
side. Using é,(x) = U,(x)e,(x + aM)U;Q(x), we rewrite
Eq. (92) as

e,(x) +e,(x) +e,(x) =0. (93)

Using the parallel transport by the unitary operator U ,(x),
we rewrite the triangle constraint (91) for the clocklike
2-simplex At (x) as

U,(0e(x + a,)Ul(x) = e, (x) — ef(x),  (94)

where in the left-handed side e (x + a,) is parallel trans-
ported from the vertex x + a, to the vertex x to be related
to e} (x) and e . (x) at the same vertex x in the right-handed
side. Equation (94) is identical to Eq. (92) or Eq. (93), if we
consider &5(x) = U,(x)e}(x + a,)US(x) and e}(x) =
—&,(x). The proper parallel transports by unitary operators
can shift the triangle constrain to other vertexes, for ex-
ample, x + a, and x + a,,.

We are now in the position of discussing the area of the
2-simplex i(x). We define the fundamental area operator of
the anti-clocklike 2-simplex A(x) (see Fig. 1)

Shp(¥) = a’e, (x) Ae,(x) (95)

at the vertex x. In addition, we can also define the following
area operators:

h — 2
Spulx +a,)=ae,(x+a,)Ne_,(x+a,) (96)
at the vertex x + a,, and

St(x+a,) =de,(x+a,)Ae_,(x+a,) 97)
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at the vertex x + a,. Using Egs. (68), (74), and (75), we
rewrite the area operators (95)—(97) of the anti-clocklike
2-simplex A(x) as

St (x) = a’e,(x) A el (x), (98)
St (x+a,)=d%e,(x+a,) Ael(x+a,) 99)

Sh,(x +a,) =a%e,(x+a,) A e):(x +a,). (100)

In the following, we show that area operators (98)—(100),
defined at three vertexes x, x + a o and x + a, are univer-

sal up to parallel transports by unitary operators. Using
Egs. (68) and (92), we obtain

Sha(x+a,) = aULx[el(x) = e,(0)]U,(x)
A ULl (U, (x),
= azUL(x)[e,t(x) A eL(x)]UM(x),

= UL (xS, () U, (x). (101)

Analogously, using Eqgs. (74) and (94), we obtain
Shy(x + a,) = a?Ul(x)e,(x)U,(x)
AUS)[e,(x) — eb (01U, (x)
= a2Ul(x)e,(x) A e, (x)U,(x)
= UL(@)S}, (U, (). (102)

In Egs. (101) and (102), we use e}, (x) = —e,(x), e,(x) A
e, (x) = e:ft(x) A e;&(x) = eL(x) A e, (x) = 0 and the same
for (u — v). This shows that the area operators (98)—(100)
defined at three vertexes of the 2-simplex 4(x) are universal
up to parallel transports.

Therefore, Eq. (95) or (98) defines the area operator of
the 2-simplex /(x)

St (x) = %z[eﬂ(JC)ei(x) — ef(v)e, (0]

= aziaab[e;ﬂ(X)e}Z(x) — es(x)ep ()], (103)

2

up to parallel transports. As consequence, the area of the
2-simplex A(x) is uniquely determined by

S =18n, (), SHx)=Lulsh,(x)-SiL(x)]  (104)

Its uniqueness [independence of the vertexes x, x + a, and
x + a, of the 2-simplex A(x)], i.e.,

Sp(0) =184, (1= 188, (x+a, ) =188, (x+a,)l, (105)

can be shown by using Egs. (101) and (102).
In the same way as Eqgs. (95)—(97), we define the area
operators of the clocklike 2-simplex /T (x):
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St () = a?e_,(x) Ae,(x) = =Sk, (x) = SiL(x),
Sho(x+a,) =de_,(x+a,) Ne,(x+a,)
= —S8h,(x+a,) = SpLx + a,),
S};V(x +a,) = a2e_p(x +a,) ANe,(x+a,)

= -8t (x+a,) = Sih(x + a,), (106)
whose directions are opposite to the counterparts of anti-
clocklike 2-simplex h(x). However, the area of the clock-
like 2-simplex /T (x) is equal to the area (104).

Based on the definition of 2-simplex %(x) area (104), we

[T

can define a volume element around the vertex ““x

dV(x) = Y dV,(x),
h(x)

dv,(x) = S2(x), (107)
where dV,(x) indicates the volume element contributed
from a 2-simplex /(x), and Y, indicates the sum over
all 2-simplices h(x) that share the same vertex x. This
definition of volume element (107) indicates that a
2-simplex A(x) contributes the volume element S% at its
three vertexes x, x + a “ and x + a,,.

Before ending this section, we note that using the
parallel transports (68), (74), and (75), one can obtain
parallel transports of area operators (95)—(97) of triangles
(2-simplexes),

S x+a,) =ULx)S,, (U, (),

_ (108)
S;u/(x + ar/) = UI(-X)SZV()C)UV(X): T,

which are consistent with the definitions of unitary opera-
tors U, (x) and U, (x) for parallel transports (62) and (63)
of edges (1-simplexes). The notation “S,,” instead of S,
in the left-handed side of Egs. (108) indicates that the
parallel transport ““S,,” is not associated to any triangle
of the simplicial complex.

E. Local gauge transformations
In accordance with Eq. (10), the bilocal gauge trans-
formations of three U fields (56)—(58) of the anti-clocklike
2-simplex h(x) are,
U,x)— V(x)Uﬂ(x)VT(x +a,)
Uyx+a,)— Vix+a,)U,(x+a,) V),
U,(x+a,)— Vix+ a,)U,(x+ aM)VT(x +a,),

(109)

and their inverses (59)—(61) of the clocklike 2-simplex
ht(x) transform as

UL(x)—» Vix+ aM)U}:(x)VT(x),
Ulx+a,)— VO UL (x+a,) Vi +a,)

U;f(x~I—aﬂ)—>V(x+a,,)UZ(x+aM)V‘L(x+ a,).

(110)
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In accordance with Eq. (9), the tetrad fields eM(x),
e,(x+a,) and e,(x +a,) for the anti-clocklike 2-
simplex A(x) transform under local gauge transformations

en(x) = e, (x) = V(x)e,(x) VI(x),
e,(x+a,) —e(x+a,

=V +a,)e,(x+a,)Viix+a,),
e,(x+a,)—e,(x+a,)

= 'V(x-i-aﬂ)ep(x+aﬂ)'vf(x+a#), (111)
respectively at the vertexes x, x + a,, and x + a u where
they are defined. Using above local gauge transformations
(109)-(111), we obtain the following local gauge trans-
formations of the conjugated fields e}:(x), el(x + a,) and
e,JE(x + a,) defined by Eqs. (68), (74), and (75) for the
clocklike 2-simplex AT (x),

el (x) = el (x) = V(x)el,(x) VI(x),

eb(x+a,)— el (x +a,)
=V(x+a,)ebx+a,)Vix+a,),

efx+a,)— el (x+a,)

= V(x+aﬂ)eg(x+aﬂ)y*(x+aﬂ). (112)
These local gauge transformations (112) of the conjugated
fields at the vertexes x, x + a, and x + a u are in the same
manner as that given by Eqs. (111). This means that each
edge (l-simplex) [,(x) of the simplicial complex is
uniquely described by tetrad fields e, (x) and eL(x), that
are defined at the vertex x, and covariantly transformed
under local gauge transformation.

It is worthwhile to mention that the transformations
(112) are just conjugated transformations (111), and
consistent with the following local gauge transforma-
tions:

e (x+a,)—e ,(x+a,)
= V(x+ a,e_,(x+ aM)’VJr(x +a,),

e_,(x) = el (x) = V(x)e_,(x) Vi),
e_,(x+a,)—e (x+a,)

= Vx+a)e_,(x+a,)Vix+a,) (113)
which follow the transformation rules of Eq. (111).

It is shown that the tetrad fields (44) and their conjugated
fields (80) given by Egs. (70), (76), and (78), as well as the
triangle constraints (92) and (94), are gauge covariant, and
properly transformed under local gauge transfor-
mations (109)—(112). The length (43) or (73) of edges
(1-simplexes) is unique and invariant under local gauge
transformations (109)—(112).
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Under local gauge transformations (109)—(112), the fun-
damental area operators (98)—(100) of the anti-clocklike
2-simplex A(x) are gauge covariant and transform

Sk (x) = St (x) = V(x)Sh,(x) V),
Sh,(x+a,)— Sﬁ/p(x +a,)

= Vx+ a,)sh,(x + a,)Viix+a,),
SZM(x +a,)— Sﬁ/’u(x +a,)

= V(x+a,)sh,(x+a,)Vix+a,), (114)
which are consistent with Egs. (101), (102), (109), and
(110), and their counterparts [see Eq. (106)] of the clock-
like 2-simplex A'(x) transform in the same manner. The
parallel transports (108) of area operators transform con-
sistently with Egs. (109), (110), and (114). However, the
area (104) of the 2-simplex h(x) is unique and invariant
under local gauge transformations.

It is worthwhile to mention that under local gauge trans-
formation (109)—(111), parallel transport fields (62) and
(63) transform locally

2,(x + @) — ,(x + a)
=V + a,)e,(x+ a,) Vikx+a,),
e,(x+a,)—e,x+a,)

=V + a,)e,(x + aM)VT(x +a,), (115)

in accordance with local gauge transformations (111) for
tetrad fields. Therefore, the closed parallelogram Cp(x)
(see Fig. 1), formed by e, (x), e,(x) and their parallel
transports &, (x + a,), €,(x + a,,), is invariant under local
gauge transformation. This is consistent with the torsion-
free condition for the existence of local Lorentz frames at
each points of a curved space-time.

The prescription of using tetrad fields e, (z) and gauge
fields U,(z) for parallel transports to describe edges
(1-simplexes) and triangles (2-simplexes) of the simplicial
complex fully respects the principle of local gauge sym-
metries. Therefore, this prescription is independent of a
particular vertex z, oriented edge [,(z) and triangle h(z),
because of the gauge invariance. The formulation of
defining tetrad fields e,(z) at one of edge endpoints
“z” and direction “o,” and each triangle has a definite
orientation is gauge invariant.

However, the gauge transformation properties of fields
U,(x +a,)and U, (x + a,) defined by Egs. (85) and (86),
as well as U,,,(x) and U, , (x) introduced by Egs. (87) and
(88), are very complicate under the bilocal gauge trans-
formations (109) and (110). This implies that we could not
use these fields to construct a gauge-invariant object.
We need to study the object of three U fields, U, (x),
U,(x +a,) and U,(x + a,) along a closed triangle path
of each 2-simplex h(x) (see Fig. 1), which will be discussed
in the next section.
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F. Regularized EC action

To illustrate how to construct a gauge-invariantly regu-
larized EC theory describing dynamical configurations of
the simplicial complex, we consider anti-clocklike 2-
simplex (triangle) h(x) and clocklike 2-simplex (triangle)
ht(x) (see Figs. 1 and 2).

For simplifying notations, we henceforth do not expli-
citly write negative signs —u, —v, —p to indicate the
backward directions of edges. In terms of the tetrad fields
e,(x) and e,(x) of the 2-simplex h(x) (see Fig. 1), we
introduce the following vertex fields v, (x):

v,uv(x) = yse/_l,ll(x)’ (116)
e/LV(x) = Uah[eu(x) A eh(x)]/u/
= ol elx) — ex(w)el (]
— Sleu@e, = e, e, A
which have properties: v, (x) = —v,,,(x), v, (x)] = 0

and v},,(x) = v,,(x) (see Appendix B). Under the local
gauge transformation (9) and (111), the vertex fields (116)
and (117) transform locally at a vertex x,

v, (0) = V(0)v,,x) Vi), (118)

which is transformed in the same manner as area operators
(114). In addition to the vertex field e,,(x) (117) at the
vertex (x), we can define in the same way the vertex fields
e,,(x + a,) at the vertex (x + a,), and e, ,(x + a,) at the
vertex (x + a,) of the anti-clocklike 2-simplex h(x) (see
Fig. 1). Actually, the vertex fields e,,(x) (117), e,,(x +
a,) and e,,(x + a,) are related to the fundamental area
operators S%,,(x) (98), S ,(x + a,) (99) and S% ,(x + a,)
(100), e.g.,

SZ,,(x) = iazelw(x). (119)
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+

Xpn(v,U) X,Tl(v,U)

FIG. 2. The smallest holonomy field along a closed triangle
path of the 2-simplex A(x): the anti-clocklike orientation
X, (v, U) [left]; the clocklike orientation th(v, U) [right].

As discussions for three area operators in Eqgs. (95)-(103),
only one of three vertex fields e,,(x), e,,(x + a,) and
e,,(x +a,) is independent for the anti-clocklike 2-
simplex A(x). As for an clocklike 2-simplex A (x), vertex
fields can be obtained by using the relations el,,(x) =
e,,(x)and e, (x) = —e,,(x).

Using the tetrad fields e, (x) and vertex fields v, (x) to
construct coordinate and Lorentz scalars to preserve the
diffeomorphism and local gauge invariance, we define a
smallest holonomy field along the closed triangle path of
the 2-simplex h(x) (see Fig. 1):

X,(v, U) = tilv,,(x)U,(x)v,,,(x + a,)

XU,(x+a,)v,,(x+a,)U,(x + a,)] (120)

whose orientation is anti-clocklike, as shown the left
graphic in Fig. 2. Considering the clocklike orientation,
as shown the right graphic in Fig. 2, we have

X;:llocklike(vy U) = tr[vw(x)UV(x)v,,p(x +a,)U,(x

+a,)v,,(x+a,)U,(x+a,)]

X;[(v U) = t[U}(x + a,,)v,t,,(x + a,,)U:;(x + aM)va(x + aM)U;(x)v,JfM(x)]

=tulU,(x)v,,(x + a,)U,(x + a,)v,,(x +a,)U,(x + a,)v,,(x)]

= trlv,, (DU, (X)v,,(x + a,)U,(x + a,)v,,(x + a,)U,(x + a,)] = Xjokike(y, U)

where in the second line of equation, we use the properties
Ul(x + a,) = U,(x), U (x + a,) = U, (x + a,), UL (x) =
U,(x+a,)and vLV(x) = v,,,(x). Therefore, we have

X,(v, U) + He. = X, (v, U) + Xslocklike(y, ). (123)

Equations (121)—(123) are invariant under gauge transfor-
mations (109), (110), and (118).

Using Egs. (120)—(123), we are ready to construct the
diffeomorphism and local gauge-invariant regularized EC
action. First we consider the case v,,,(x) = e,,(x)ys:

= X,(v, U)l ey (121)
On the other hand,
(122)
[
A ple, U) = 1 Y {X,(v,U) + Hel, (124)

822,551

where Y ,cq is the sum over all 2-simplices & of the
simplicial complex. In the naive continuum limit:
agw, < 1, Eq. (124) becomes (see Appendix B)

1
Aple,U,) =— Z S2(x)€cqape’ A e AR + O(a*),
a” yem

(125)
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where the 2-simplex Z(x) contributed volume element
S2(x) is given in Eq. (104) or Eq. (B17). Based the volume
element dV(x) (107) around the vertex ““x”

Y Six) = %ZdV(x)

heEM

(126)

where Y stands for a sum overall vertexes (0-simplices) of
the simplicial complex, and the factor 1/3 is due to each 2-
simplex contributing its area to its three vertexes. The
interior of the 4-simplex is approximately flat, leading to

Y av(ix) = f d*é(x) = f d*x det[e(x)]. (127)

As a result, Eq. (125) approaches to Sp(e, w) (22) with an

effective Newton constant
G = 38G, (128)

and k. = 87G.y. The second we consider the case
Vo (X) = ey, (0):

1
Ayle,U,) =—— Y [X,(v,U) + He]  (129)
887 e
where the real parameter y =iy [see Eq. (23)].

Analogously, in the naive continuum limit: agw, <1,
Eq. (129) approaches to Sy (e, w) (23) [see Appendix B],

Aule,U,)

1
= - fd4xdet[e(x)]ea Ae, AR + O(a*), (130)
2Ker ¥

with the effective Newton constant k. = 877G (128).
The diffeomorphism and local gauge-invariant regularized
EC action is then given by

ﬂECZﬂp‘FﬂH. (131)

In addition, we can generalize the link field U, (x) to be
all irreducible representations j of the gauge group SO(4).
The regularized EC action (131) should be a sum over all
irreducible representations j,

!/

Lo PG

FIG. 3.  We sketch a graphic representation of the dynamical
Eq. (165) for the general holonomy field X (134). The diagram
in the left-hand side of the graphic equation indicates the first
term in Eq. (165). The first and second diagrams in the right-
hand side of the graphic equation, respectively, indicate the third
and second terms in Eq. (165). We indicate the edge /,,, where
the local gauge transformation is made. In the right-hand side of
graphic equation, the summation over all 2-simplices h(l) asso-
ciated to this edge /,, is made.
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J

4 . .
A = ZZ[A;,(% U, + Ayle,, U, (132)
J

where d; is the dimensions of the irreducible representa-
tions j and d; = 4 for the fundamental representation,
which is the dimension of the Dirac spinor space.

G. Invariant holonomy fields along a large loop

We consider the following diffeomorphism and local
gauge-invariant holonomy fields along a loop C on the
Euclidean manifold R*

Xo(v, w) = P trexp{igf vw(x)w“(x)dx”}, (133)
c

where P is the path-ordering and “tr” denotes the trace
over spinor space. We attempt to regularize these holon-
omy fields (133) on the simplicial complex M. Suppose
that an orientating loop C passes space-time points (ver-
texes) X, Xy, X3, -, Xy = x; and edges connecting be-
tween neighboring points in the simplicial complex M
(see the diagram in the left-hand side of graphic equation,
Fig. 3). At each point x; two tetrad fields e, (x;) and e,/ (x;)
(n # p'), respectively, orientating path incoming to (i —
1 — i) and outgoing from (i — i + 1) the point x;, we have
the vertex field v/w/(x,-) defined by Egs. (116) and (117).
Link fields U, (x;) are defined on edges lying in the loop C.
Recalling the relationship U_,(x;4) = U}:(x,») [see
Egs. (59)-(61)], we can write the regularization of the
holonomy fields (133) as

XC(U! U) = TC tr[v,uy,'(xl)U,u,' (xl)v/.L’v(XZ)UV(XZ)
o Upp’(xi)Up’(xi)vp’a'(xi+l)

vy, ey DU (1)1, (134)

which preserve diffeomorphism and /ocal gauge invarian-
ces. The holonomy fields X, (e, U) are functionals of fields
(v, U) and loop C. Consistently with the holonomy fields
Xco(e, U) [Eq. (134)], the holonomy field X,(e, U)

A/

A hl) h(l)
Xc o B’ ”
B

FIG. 4. We sketch a graphic representation of the dynamical
Eq. (165) for the smallest holonomy field X),(v, U) (120). The
diagram in the left-hand side of the graphic equation indicates
the first term in Eq. (165). The first and second diagrams in the
right-hand side of the graphic equation, respectively, indicate the
third and second terms in Eq. (165). Note that A and A’ are
the same vertex, so are B and B'. We indicate the edge [ s where
the local gauge transformation is made. In the right-hand side
of the graphic equation, the summation over all 2-simplices h([)
associated to this edge /,, is made.
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[Eq. (120)] is the one with the smallest loop, i.e., the closed
path of the 2-simplex (triangle) A(x), see Fig. 1.

H. Euclidean partition function
The partition function Zgc and effective action AL are
given by

Zge = exp— AL = /DeDUexp—ﬂEC, (135)

with the diffeomorphism and local gauge-invariant
measure

f DeDU = T[] f de, (x)dU,,(x)3(A), (136)
L, (EM Lu(x

where ]'[lﬂ(x)e  indicates the product of overall edges
(1-simplices) of the four-dimensional simplicial complex
M. As already mentioned, the configuration {/,,(x) € M}
is formulated such that each edge /,(x) = ae,(x) is de-
fined by giving its coordinate (vertex) x € M in one of the
endpoint coordinates x and x + a,,, and giving its forward
direction u pointing from x to x + a,. This endpoint
coordinate x and forward direction p have to be uniquely
chosen for each edge /,,(x) € M. Beside, on such defined
edge /,(x), we place an independent gauge field U, (x)
corresponding a parallel transport between x and x + a,,.
The gauge-invariant properties, discussed in Sec. IIIE,
guarantee that the change of a formulation does not
lead to the change in the measure of the configuration
{1,,(x) € M}. In addition, the triangle constraint (92) and
(93) must be imposed in the measure (136), symbolically
indicated as 6(A), a & functional of Eq. (92) or Eq. (93).
In the single edge measure [see Eq. (136)]

f de, (09U, (9),

i

(137)

dU ,(x) is the invariant Haar measure of the compact gauge
group SO(4) or SU(2) ® SUg(2), and de ,(x) is the mea-
sure of the Dirac-matrix valued field e, (x) = 3 % (x)v,,
determined by the functional measure def (x) of the
bosonic field e, (x). The single edge measure has to be
the measure over fields only e, (x) and U , (x) of the edge in
the forward direction u, because e;&(x) and U;Q (x) of the
edge in the backward direction — u are related to the fields
e, (x) and U, (x) by Egs. (55), (68), (70), and (72) so that
the single edge measure (137) is actually over all degrees
of fields assigned on the edge.

It should be mentioned that the measure (136) is just a
lattice form of the standard DeWitt functional measure [22]
over the continuum degrees, with the integral of the spin-
connection field w,, (x) replaced by the Haar integral over
the U, (x)’s, analytical integration or numerical simula-
tions runs overall configuration space of continuum
degrees and no gauge fixing is needed. In addition, it
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should be noted that the measure (136) does not contain
parallel transport fields & and U, for examples &, (x + a,,)
and ¢, (x + a,) (see Fig. 1) given by the Cartan Eqs. (46)
and (47), since parallel transport fields are not associated to
any edges of the four-dimensional simplicial complex.
This means that the torsion-free Cartan equation has been
taken into account.

In this path-integral quantization formalism, the parti-
tion function (135) presents all dynamical configurations
of the simplicial complex, described by the configurations
of dynamical fields e, (x) and U,(x) in the weight of
exp— Agc. The effective action AL (135) contains all
one-particle irreducible (1PI) functions (operators), i.e., all
truncated n-point Green-functions. The vacuum expecta-
tion values (vevs) of diffeomorphism and local gauge-
invariant quantities, for instance holonomy fields (134),
are given by

Ko(w, Uy =— f DeDU[Xo(v, UN]exp— Age. (138)
ZEC

In the action (124) and (129), X, (v, U) [Eq. (120)] contains
the quadratic term of e, (x) field associated to each edge
of 2-simplex A (x), the partition function Zgc (135) and vev
(138) are not divergent for large fluctuating e, fields,
provided the action Apgc is positive definite, see discus-
sions below. On the other hand, all edge lengths do not
vanish [|e, (x)| # 0, see Egs. (41) and (42)], and all sim-
plicial triangle inequalities and their higher dimensional
analogs should be imposed [2,3]. Integrating spin-
connection fields U, over the Haar measure of compact
gauge groups is similar to that in the Wilson-lattice QCD,
the difference is that the X, (v, U) (120) contains three U
fields in a 2-simplex h, while the Wilson action contains
four U fields in a plaquette. Equation (138) can be calcu-
lated by numerical Monte Carlo simulations. We are trying
do some numerical Monte Carlo simulations, it will take
time so that the results will be published in a separate
paper.

Before ending this section, we make some discussions
on the convergences of the partition function (135) and
vevs (138). Suppose that we first integrate Eqs. (135) and
(138) over the compact Haar measure of the SO(4) gauge
group, roughly speaking, the result gives, in addition to a
polynomial of tetrad fields e, a combination of both de-
creasing exponents exp[— A (")(e)] and increasing expo-
nents exp[—A(7(e)] as functions of increasing tetrad
fields e. From the regularized action (120), one can find
that A *)(e) depend on 2-simplex area operators S, (104)
and are the sum over all 2-simplexes. A (*)(e) are either
some extremal values of the action Agc (131) with
respect to group-valued U fields, or those values taken
at the boundary points of the compact SO(4) gauge
group. Clearly, for the case of decreasing exponents
exp[— AH)(e)], integrations Eqs. (135) and (138) over
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tetrad fields e are convergent. This is certainly the case for
perturbative weak U fields, i.e., U ~ 1. While for the case
of increasing exponents exp[—.A(7)(e)], integrations
Egs. (135) and (138) over tetrad fields e are divergent.

To avoid these possible divergences, it is necessary to
add into the regularized action Agc (131) an additional
term of another dimensionality: either a curvature squared
R? term: X;(v, U) + H.c. with a new coupling parameter;
or a bare cosmological term: A 5 (¢). We consider here an
additional bare cosmological term A , to the regularized
action ‘AEC (131) .}ZLEC — ‘AEC + quA,

Aple) = ﬁ 6’“’”"2 tr{yse,(x)e,(x)e,(x)e,(x)]

+ H.c.

= 1D detlet,(x)] + H.c. (139)

where the cosmological parameter A = Aa? and A is the
bare cosmological constant. The bare cosmological term
A \(e) is a four-dimensional volume term (sum over all
vertexes x), which is independent of configurations of
group-valued U fields. The exponent exp[—.A ,(e)] de-
creases with strong tetrad fields e, large volume confi-
gurations. Bare parameters g, v and A play an important
role for convergences of the partition function (135) and
vacuum expectation values (138). It needs further studies
to find the region of bare parameters g, ¥y and A for the
convergences, and the scaling invariant region (g., v, A.)
for the physically sensible continuum limit, see the dis-
cussions in the last Sec. VII.

L. Local gauge symmetry

Analogously to Eq. (25), the local gauge invariance of
the partition function (135), i.e., 6 Zgc = 0 under the gauge
transformation (109) and (118), leads to (no summation
over index u)

<5~7lEC

(Se#

0 Agc Se

8wM

oe, + ut H.c.> = 0. (140)
Based on de, and dw, (14) and (15) for an arbitrary
function #¢(x) and the independent bases of Dirac matri-
ces s, ¥, and o, we obtain the “averaged” Cartan

Eq. (35) for the torsion-free case,

1 1)
<UM Arc _ Ul ﬂEC) =0, (141)
8U, sU}L
where we use
5 A S o
EC _ . {Uu Agc _ Ul ﬂEC}, (142)
dw, sU, sU}L

for the group-valued field U, (x) = expligaw ,(x)] (56).
The averaged torsion-free Cartan Eq. (141) actually shows
the impossibility of spontaneous breaking of the local
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gauge symmetry. This should not be surprised, since the
torsion-free (30) is a necessary condition to have a local
Lorentz frame, therefore a local gauge invariance, as re-
quired by the equivalence principle.

IV. INCLUDING FERMION FIELDS
A. Bilinear and quadralinear-fermion actions

Introducing dimensionless fermion field /(x) =
a®?y(x) (drop “prime” henceforth) and using the rela-
tions Y (y )1 y" = y,, ¥*(04)TY’ = o,y and
,yOUl‘[; 0 — U;ru

Yely’ =e,; (143)

we consider the following regularized kinetic action of
fermion fields,

Are U, 9) = 5 STHRA WU, Wi+ a,)

— (v + a, UL e ()¢ ()]

where fermion fields #(x) and ¢(x + a,) are defined at
two neighboring points (vertexes) of the edge (x, x + a,,),
(see Fig. 1), where fields U, (x) and e,(x) are added to
preserve local gauge and diffeomorphism invariances, and
2., is the sum over all edges (1-simplexes) of the sim-
plicial complex.

Using Eq. (142) and performing a variation of the
regularized fermion action (144) with respect to the spin-
connection field w ,(x), i.e., § Ar(e, U, glf)/c?w,u we ob-
tain the nonvanishing torsion field T = kge,, A e, J°,
where the regularized fermion spin current is

jab,c — E“det_ﬂ(x)yd’ySU#(x)l,b(x + a,u,)’

(144)

u fixed,
(145)

[see Eq. (32)]. Instead of solving regularized Cartan equa-
tion and finding an effective theory, as what is done in the
continuum case (25)-(32), we assume that the U M(x) in
Egs. (144) and (145) is the group-valued spin-connection
field w,(e) for the torsion-free case (35), ie., U,(x) =
expliagw,(e)]. Thus, the regularization of the effective
EC theory (39) and (40) is given by Eqgs. (131) and (144)
and the regularized four-fermion interaction

AU, ) =32 [ )y !y UF ) ¢ (x + a,)]
X

X[x+a,) ULy v(0)], (146

where £ = 72/(%* + 1) = ¥?/(¥* + 1) [see Eq. (40)]. In
the naive continuum limit agw, <1, the regularized
fermion action A (e, U, ¢) (144) approaches to the con-
tinuum fermion action Sg(e, w ) (24), and Egs. (145)
and (146), respectively approach to their continuum
counterparts J*>¢ (32) and S,z (40). The diffeomorphism
and local gauge-invariant regularized EC action is then
given by
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AEC:ﬂP+ﬂH+*AF+A4F' (147)

The partition function Zgc and effective action AL are
Zge = exp— AL = [DeDUsz exp— Agc, (148)

with the diffeomorphism and local gauge-invariant mea-
sure

f DeDUDY = f de,,(x)dU ,(x)5(A)
L, (x)EM

] Ay ()i (x), (149)

XEM

where d i (x)d i (x) is the measure of Grassmann anticom-
muting fields. Analogously to Eq. (132), Egs. (147)—-(149)
can be straightforwardly generalized to include all irreduc-
ible representations j of the gauge group SO(4) that couple
to corresponding spinor states of fermion fields.

B. Holonomy fields with fermions

We consider the following diffeomorphism and local
gauge-invariant quantities

X, . ) = u;uo?exp{ig ]ﬁ qu)wﬂ(x)dxv}MxN),

(150)

where L stands for an orientating () path connecting two
vertexes x; and xy (x; # xy) on the simplicial complex
M. In Eq. (150), X (e, w, i) represents the evolution of
the spin of fermion fields from the vertex xy to the vertex
x; under the gravitational field influence. Analogously to
discussions in Sec. III G for the holonomy fields (133), we
regularize these quantities (150) on the simplicial complex
as follows:

(z A x1)
r ZN — lu B’ - ll’f
B
Y(zN) Y(zN) Y(zN)

FIG. 5. We sketch a graphic representation of the dynamical
Eq. (165) for the field X, (151). The diagram in the left-hand
side of the graphic equation indicates the first term in Eq. (165).
The first and second diagrams in the right-hand side of the
graphic equation, respectively, indicate the third and second
terms in Eq. (165). Note that A and A’ are the same vertex, so
are B and B'. We indicate the edge /,,, where the local gauge
transformation is made. We also indicate the fermion field ¢ (xy)
at staring point x, and the fermion field ¢ (x,) at ending point x,
of the path L. In the right-hand side of the graphic equation,
the summation over all 2-simplices h(l) associated to this edge
l,, is made.
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‘_ﬂ()ﬁ)P[Uﬂ/(ﬂ)vﬂ/y(xz)Uu(xz)

e Upp’(xi)Up’(xi)Up’(r(-xi+l)

e v/\,u(xN) UL(XN)] W (xy),
which preserves diffeomorphism and local gauge invari-
ances. The graphic representation of X (e, U, i) can be

found in Fig. 5 (see the diagram in the left-hand side of
graphic equation).

Xr(e, U, ) =

(151)

C. Chiral gauge symmetries

Analogously to the discussions in the continuum EC
theory (see the end of Sec. II), the regularized EC action
(147) can be separated into left- and right-handed parts.
Fermion fields ¢ are decomposed into their left- and right-
handed Weyl fields: s = i, + p and ¢y, p = Py p 1),
where the chiral projector P; p = (1 & 75)/2 and the com-
mutators [0?, P; z] = 0 and [y?y?, P x] = 0. The 4 X 4
Dirac spinor space is split into two independent left- and
right-handed 2 X 2 Weyl spinor spaces. In the chiral rep-
resentation of matrices y“ and o¢”

0=i<0 —I) l-:(O O'i)
Y -1 0 ) Y —at 0)

(I 0
57 \o -1)

y ij . i
cr’/=<20 EOU.), 0'0’=i(% —(Zri); (153)

where 34 = efcjo-k and o'(i = 1, 2, 3) are the Pauli matri-

ces, we define y{ = Pp gv“:

L0 O : 0 0
PL70:l<_I 0): PL?”:(_a.i 0>’

(152)

0 -1 0 o (154)
0 _— ; i — .
PR’}/ l(o 0 )r PRy (O 0 ),
anda'LR—PLRa'”b
. 0 O ; 0 O
ij — . 0 — » )
P,o (O i ), P,o 1(0 _0_,>,
(155)

(30 oi o 0
P.ol/ = PooV" =
R (O 0)’ R l(O 0)'

Using Eq. (154), we separate tetrad fields e# into their left-
and right-handed fields: e* = e} + e}, e} p = Py ge*.
Using Eq. (155), we separate spin-connection fields w*
and vertex fields v,, into their left- and right-handed

nv
fields: o* = 0] + 0, o]z =P ro*; and v,, =
vh, + ok, vik =P, rv,,. This splits the Lie algebra

of the group SO(4) into two 1ndependent Lie algebra of sub
groups SU; (2) ® SUg(2). Therefore, the four-dimensional
rotational group SO(4) is split into two commuting and
independent groups SU;(2) ® SUx(2). The link fields
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U,(x) = UR(x)® UL(x), where Uj(x) € SUR(2) and
UL (x) € SU,(2) respectively.

The regularized EC theory (147)—(149) possesses exact
chiral gauge symmetries, as consequences, the holonomy
fields (120), (134), and (151) can be split into the left- and
right-handed parts:

Xy(e, U) = XE(et, UL) + XR(eR, UR); (156)
Xc(e, U) = Xé(eL, Ut) + Xg(eR, UR); (157)
X.C(er U! lp) = X%(EL, UL! lpL) + XIE(ER’ UR’ lpR)’ (158)

where notations in the right-handed side of equations, for
instance, X%(el, UL, ¢;) indicates the same function
Xr(e, U, ) (151) with replacements e — ef, U — U*
and ¢ — ¢ ;. The fermion action (144) and four—fermlon
interaction (146) are also separated into the left- and right-
handed parts:

A F(er U, 17[/) -AL(e UL ¢L) + ‘/,ZL (e UR’ 'JfR)s
(159)
A (U, ) = ALp(UR, ) + AL(UR, grg). (160)

The chiral gauge symmetries of the regularized EC theory
(147)—(149) are crucial for formulating the parity-violating
(chiral) gauge symmetries SU; (2) ® Uy(1), e.g., the stan-
dard model for particle physics, onto the simplicial com-
plex described by the dynamical tetrad fields e, (x) and
group-valued spin-connection fields U, (x). We only dis-
cuss the case of Weyl fermions (massless Dirac fermions),
and the discussions on the case of Majorana fermions are
the same, thus not presented in this article.

V. DYNAMICAL EQUATIONS FOR
HOLONOMY FIELDS

Under a local gauge transformation (9)—(11), equiva-
lently (9), (11), and (109), the local gauge invariance of
holonomy fields (X) [Eq. (138)], i.e., 8(X) = 0, leads to the
dynamical equations for the holonomy fields X, (120), X,
(134) and X, (151),

<5—X Se, x O Arc s, > <5X5¢ Xﬁﬂﬁcalp)
de SeM

oy oy
+ iag(XéwM> - <X BéﬂEC 6a)ﬂ> + H.c. =0, (161)

Dy

where the index w is fixed, and for the variation 6X/dw,,
we use Eq. (142) and the relationship

6X
ZUZb 5Uab ’ ZUZbT 5Uah1'

ab

—X. (162)

Analogously to the analysis in Sec. IIII, we obtain the
dynamical equations for the holonomy fields X = X,,, X,
and X,
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<5—X e, xS A 5eﬂ> +He =0, (163)
de e,
S Agc
+He =
<5¢ VX5 5¢> Hec =0, (164)

and

Xy +(x( U] —(Xx|U =0. (165
00+ (U o)) - (o)) = o 00
Equation (165) has the same form as the Dyson-Schwinger
equation for the Wilson loops in lattice gauge theories. In
Figs. 3-5, we show the graphic representations of the

dynamical Eqs. (165) for the holonomy fields and X,
(134) and X;, (120) as well as X (151).

VI. MEAN-FIELD APPROXIMATION
A. Mean-field approach

In this section, we try to approximately calculate the
partition function (135), the vacuum expectation values of
the 2-simplex area (104) and the volume element (107)
by using the approach of the mean-field approximation.
In the regularized action X,(v, U) (120) associating to the
2-simplex h(x) (Fig. 1), we replace the vertex fields
v,,(x +a,)and v, (x + a,) by assuming a nonvanishing
mean-field value M, > 0,

(M)8P = [vu,v,,)]°P, (166)

where «, (8 are Dirac spinor indexes. The definition of
mean-field value (166) does not depend on whether v, ,
and v, contain the matrix ys or not, due to 'y% =1 and
[vs, o451 = 0. The mean-field value M), is independent of
any specific vertex, edge and 2-simplex of the simplicial
complex. Based on the definitions of the 2-simplex area
(104) and the volume element (107), the mean-field values
for the 2-simplex area and the volume element are given by

(Sp(0) = a’M,, (@v(x)) = a*NyMj,  (167)

where N, is the mean value of the number of 2-simplices
h(x) that share the same vertex. Note that in this prelimi-
nary calculations in the mean-field approximation, we do
not take into account the cosmological term (139), since
the path integrals are convergent (see below) for positive
mean-field value M, > 0.

Based on the mean-field value (166), the smallest hol-
onomy field X, (v, U) (120) is approximated by its mean-

field counterpart
X, (v, U) = tulv,, (U, 0)U,(x + a,)U,(x + a,)IM3,

(168)

X} v, U) = tlv,,(0)U,0)U,(x + a,)U,(x + a,) M},
(169)
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where using Egs. (121) and (122) for u # v we obtain
X;(v, U). Note that two of three vertex fields v(x) in the
X, (v, U) (120), ie., v,,(x+a,) and v,,(x + a,) are
replaced by their mean-field values M, and the 2-simplex
h(x) shown in Fig. 1 can also be identified by three differ-
ent indexes u # v # p (no summation over these in-
dexes). Equations (168) and (169) depend on U, and the
fields (e,, U,) and (e,, U,) associated to two edges (x, u)
and (x, ») of the 2-simplex (triangle) h(x) (see Fig. 1).
Using Egs. (168) and (169), we define the local mean-field
action A, for the 2-simplex /(x)

v =Y5Cuy

_ 1 _ _
A, =—[X, U+ Xl (v,U)], -
h 8g2[ W, U) + X, (v, U)],,, 827y

X [X,(v, U) + X} (v, Dly,,=e,,
= tife, ()T, (e, (x) — e, (T, (x)e, (x)]

(170)
where
1 1
[ (x) = @(75 - ;)Hy#(x)
Y (Vaefy, -t )
847 <2>Mh<75 y)[UV(x)Up(x +a,)U}L(x)]
+He (171)

The detailed derivation is given in Appendix D. In this
mean-field approximation, all 2-simplices {i(x)} in the
simplicial complex M have the same local action (170),
namely, the single 2-simplex mean-field action .fzth (170)
and operator I'? » (171) are independent of the vertex “x”.
With the local mean-field action (170), we define the local
mean-field partition function

Z,= [ DUDeexp— A, (172)
h
where the local mean-field measure is defined by
f DUDe = f du,dU,dU,de,de,, (173)
h h

for each 2-simplex h. Thus, the regularized EC action A g
(131) is approximated by its mean-field counterpart,

A g = Z Ay,
heEM

(174)

which is the sum of the mean-field actions A, over all
2-simplices h. With the mean-field approximated action
(174), we define the mean-field approximated partition
function

Zge = l—[

11 hDUDeexp—J_ZlEC = l—[ Zn,
€

heEM

(175)

which is the mean-field counterpart of the partition
function (135).
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Using the mean-field EC action A (170) and partition
function Zgc (175), we have the following identity
Zic = Zpc(e™(Prc—Arc)y (176)

where (- - ), is the vacuum expectation value with respect

to the mean-field partition function Zge (175). Using the
convexity inequality [23]

<e*(AEC*ﬂEC)>° = e*<AEC*ﬂEC>e, (177)
one can derive the following inequality
- anEC = — anEC + <*/,ZlEC - JI_AEc>o, (178)

where — InZgc and — InZgc are proportional to the free
energies. We define the right-handed side of the inequality
(178) as an approximate free energy (or approximate ef-
fective action)

FieMy, g v) = —InZge + (Agc — Agc)o.  (179)

The validity of the mean-field approximation approach
bases on the inequality (178) that gives a low bound of
the approximate free energy Fre (M, g, ¥). We determine
the mean-field value M;(g, y) of the local mean-field
action (170), which minimizes the approximate free energy
(179) and thus optimizes the low bound in Eq. (178), by
satisfying the condition

0
[6—th1~:[g(Mh, 8 7)] =0. (180)

M=,

Using the mean-field value M;(g,y) and corres-
ponding minimum of the approximate free energy
FrlM;(g ), g v] (179), we can gain some insights
into the value of the 2-simplex area (166) and (167), and
the critical points of the second-order phase transition, in
terms of the gauge coupling g and Immirzi parameter y. In
addition, we can use the mean-field action (170) with the
value M), to calculate mean-field vacuum expectation val-

ues (- - *), to approximate true vacuum expectation values
(- - +) that we discussed in Secs. III H, 11T 1, and V.

B. Analytical calculations

We can analytically calculate the mean-field partition
function (175). First we integrate over quantized tetrad
e,(x) and e,(x) fields, which is quadratic in Eq. (170)
(see Appendix E). Using the formula (E2), we have

_ -1
Il fa’e#de,,exp—ﬂEC = [T detlz = 1] (181

hEM hEM

and the Cayley-Hamilton formula for a determinant [24]
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-1
det[] — T'"] = exp[—trIn(/ — T'")]

= 4 S0 ST + T

+ - Z Zralap T Zupn

al ay

(182)

where P indicates permutations of (1, - - -, n) and Eq. (182)
is a sum of traces of symmetrized tensor products. The
expression (182) stops at the n-th order for a finite
n-dimensional matrix I'" in the space of the gauge group.

Second we integrate over group-valued spin-connection
Uyx+a,), U,(x) and U,(x) fields defined at edges

(x+a,, p), (x, u) and (x, ») of the 2-simplex h(x) by
using the properties of the invariant Haar measure:

f dU,() = 1, (183)

deM(x)U#(x) =0 (184)

[ vl = -

J

8,589 8% 8(x — x'),

(185)
Where d n]L”l]R (n,LlR 2]LR+] .]LR_]/Z
3/2,--+) is the dimensions of irreducible representations

5= Gz, ja) of the gauge group SUL(2) ® SU(2). jx =
Jji = 1/2 and d; = 4 for the fundamental representation.
In Appendix E, we give more detailed calculations to
obtain the mean-field partition function (175),

2

_ v+ 1 4
Zoe = [1 + YT g ]
hle_J[vl 64gty*d; !

(186)

where [],ecq is the product of all 2-simplices 4 of the
simplicial complex M. The mean-field entropy is given by

2
_ - v+ 1
S =1InZy = ln[l +—M4]
= hezyw 64gty?d; "
2
v-+1
64g"y d;

where N = Y, is the total number of 2-simplexes,
and the mean-field free energy

1 y>+1
g1

where the inverse “temperature” 8 = 1/g%, see Egs. (124)
and (129).

We turn to calculate (A z¢)o in Eq. (178). The mean-
field value of J_ZlEC (174) is calculated in Appendix E [see
Eq. (E7)],

f——ﬁanEC—— M4], (188)
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= S (A

hEM

<~/,_ZlEC>o

e P e 2L ]
32g4y2d; h 64g472d? L
(189)

where the vacuum expectation value with respect to the
local mean-field partition function Z;, (172) is defined by

(oY== / DUDe(: - -)e™ A, (190)
The mean-field value (Agc), (189) has discrete values
depending on the discrete values d; = 4, - - - of the funda-
mental state j; x = 1/2 and excitation states j; p =
3/2, -+, coupling to different fermion spinor states WL" R

We are in the position to calculate {( Agc), in Eq. (178).
Since there are three vertex fields in the smallest holonomy
field X, (v, U) (120) that constitutes the regularized EC
action Agc (124), (129), and (131), while there is only
one vertex field v, , in the mean-field action (168)—(170),
we assign the vertex field v, to the local mean-field action
(168)—(171) of the 2- 51mplex h, the vertex fields v, ,, v,
to the local mean-field actions of neighboring 2-simplices,
and approximate

U, (x)v,,(x +a,)U,(x + a,)v,,(x
+a,)U,(x+a,)]), + Hec.
= tl{v,,U,U,U,v,,v p,,> ]+ H.c.

~ (2, t[(v,, U, U,U,)5v,,)sv,,)t] + He.

~ (2 ul (v, U U, U, )¢ + He (v, )e(v,,)e)
(191)

(ufv,,

where (v, ,v pV) = (v,,v,,). Using Egs. (170) and (171),
we have
(Z,)*
(Agc)o = > {(tle, I e
EC h§7\4 4M w€u
—e, e, Dotil[{le,,)odle,, DE] (192)

In the last part of Appendix E, we obtain

2 () 0 (&) (5):

Putting Eqgs. (187), (189), and (193) into the approximate
free energy (179), we obtain

<‘/,ZlEC>o

2y v

_l’_
1+y X+,
(194)

My, g, y) = —In(1 +y) —

where
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y2+1 'yz+1

- YT e —o T
oo X \645%7d

- 195
y 6Ag V' (195)

In Fig. 6, we plot the approximate free energy (179) as a
function of the mean-field value M, (166) for selected
values of the parameter y (195). The minimal values of
the approximate free energy Fre (179) locate at the non-
vanishing mean-field value M) # 0, which increases as the
parameter ) decreases, namely, the gauge coupling in-
creases. The gauge coupling g and Immirzi parameter y
remain to be determined. These two parameters (g, y)
should be determined at critical points of the second-order
phase transition, as discussed in the last section. The mean-
field approximation approach adopted here needs to be
improved to see whether we can have a critical value y.,
and for y > y. the minimal value of the approximate free
energy Fpe locates at the vanishing mean-field value
M;, = 0. It is usually difficult to study the vicinity of
critical points of the second-order phase transition by the
mean-field approximation approach.

Considering the case that y > 1, d; = 4, g — 4/3 for
Ger — G [see Eq. (128) in Sec. III F], and y = 0.02, we
have

M= 1, (196)

see the curve for y = 0.03 in Fig. 6, since M, becomes
larger as y decreases. For larger gauge coupling g and
higher dimensions d; of irreducible representations, the
values of y (195) become smaller, and M}, becomes larger.

Therefore, the mean-field value of the 2-simplex area
(166)

8
8§, = azMZ >q? = 5 ,
m
Planck

(197)

and the mean-field value of the volume element (167)

X =3 x =0.3
Fp& x = 0.03
2

My

FIG. 6 (color online). In the Planck unit a = 1, the approxi-
mate free energy (179) as a function of the mean-field value M),
(166) is plotted for selected values y = 0.03, 0.3, 3. The minimal
values of the approximate free energy Fpe locate at the non-
vanishing mean-field value Mj. The minimal locations are

M;(x = 0.03) = 7.9, Mi(xy = 0.3) = 2.1, Mi(x = 3) = 0.8.
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(87)*

4
Planck

(dV(x)) = a*N,(M;)? > N, (198)

Equations (197) and (198) indicate that the averaged sizes
of 2-simplex, 3-simplex, and 4-simplex, i.e., elements of
the simplicial complex, are larger than the Planck length,
which is probed by short wavelengths of quantum fields
e,, Uy, ¢ in strong gauge couplings g. This implies that
due to the quantum gravity, the Planck length sets the
scale for the minimal separation between two space-
time points [25]. We end this section by noting that the
mean-field approximation is not only a poor approxima-
tion, but also breaks diffeomorphism and local gauge
symmetries.

VII. SOME REMARKS

In addition to the Planck length a, the regularized EC
action (147) proposed in this article contains three dimen-
sionless parameters: the gauge coupling g; the Immirzi
parameter 7y and the cosmological parameter A. In the
view of the naive continuum limit, the regularized EC
action (147) proposed in this article is not unique. In
principle, permitted by the diffeomorphism and local
gauge invariances, the regularized action (147) is allowed
to contain nonlocal high-dimensional (d > 6) operators of
fields e,, U, and ¢ with extra free parameters. On the
other hand, although the regularized EC action (147) ap-
proaches to the continuum EC action (21) in the naive
continuous limit, it has not been clear yet whether the
regularized EC theory is physically sensible. The regular-
ized EC theory is physically sensible, only if only it has a
nontrivial continuum limit, where we could possibly ex-
plore the relationship to the Minkowski counterpart.
Therefore, it is crucial, on the basis of nonperturbative
methods and renormalization-group invariance, to find:

(1) the scaling invariant region (nontrivial ultraviolet fix
points) (g, v A.), where the singularity in the free
energy appears for phase transition occurring, and
the physical correlation length ¢ of two-point
Green-functions of fields is much larger than the
Planck length, while the inverse correlation length
&1 gives the mass scale of low-energy excitations
of the ““effective continuum theory™;

(2) B function B(g), i.e., the scale dependence of the
gauge coupling g in the vicinity of the nontrivial
ultraviolet fix points g,., and renormalization-group
invariant equation

§=constant'a-expjgdg’/ﬁ(g’), E>a, (199)

in this scaling invariant region, and “‘constant” that
can only be obtained by nonperturbative methods.
And it is a question how Eq. (199) is related to vy,
and A,;
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(3) an effective action ,ﬂ%fé (135), all relevant and
renormalizable operators [one-particle irreducible
(1PI) functions] with effective dimension-four to
obtain an effective low-energy theory in this scaling
invariant region.
The gauge-invariant correlation length £ can be possibly
measured by the gauge-invariant two-point correlation
function of the holonomy fields X, (v, U) (120),

X, [v(0), UW] X[ [v(y), UGD ~ e 1%,

(200)
lx =yl > ¢
where |x — y| indicates the separation between two
holonomy fields X, (v, U). Actually, Eq. (200) is related
to the invariant curvature correlation function [see
Eq. (B12)].

Although we have added the bare cosmological term
(139) into the regularized action, 1PI functions ﬂl%fé (135)
effectively contain this dimensional operator (139), which
is related to the two-point correlation function (200). It is
then a question what is the scaling property of this operator
in terms of the low-energy scale &~ 2. We speculate that the
gauge-invariant correlation length £, instead of the Planck
length, sets the scale for the nonperturbative renormalized
cosmological constant, i.e.,

Acosm ~ €72, (201)

which is rather similar to the scale Agcp calculated in the
lattice QCD theory. This would possibly explain why the
observed cosmological constant is much smaller than that
expected in terms of the Planck scale [see Eq. (199)]. We
also speculate that in the pure gravity at strong gauge
coupling g > 1, the scale £ 2 should measure the expo-
nential area-decay law of holonomy fields (134) and (138)
for sufficiently large loops

K, U) ~ e AmlO/E A, 0> €, (202)
where A,,;,(C) is the minimal area, corresponding to the
minimal number of 2-simplices #, that can be spanned by
the loop C (see Ref. [26]). The scaling invariant region g,
scaling law (199) and correlation length ¢ are important to
study our present Universe (see Ref. [27]).

The effective quadralinear-fermion interactions in the
continuum EC theory (38) are originated by integrating
over static torsion fields and the torsion-free condition is
satisfied as required by the equivalence principle. In this
sense, quadralinear-fermion interactions are inevitable as
long as the interacting between fermion and gravitational
fields is included.

The bilinear fermion action (144) introduces a non-
vanishing torsion field (145) in the regularized EC theory.
The torsion fields (145) are not exactly static, however,
they are fields only surviving in short distances at the
Planck scale, which is due to the quantum gravity [see,
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for example, the mean-field approximation result (196)—
(198)]. The effective quadralinear-fermion interactions
(146) is formulated by hand together with a torsion-free
bilinear fermion action (144) so that they approach to the
fermion action of the continuum EC theory in the con-
tinuum limit. In principle, it should be possible to obtain
an effective action by solving the discretized Cartan
structure [Eq. (46) or Eq. (62)] with the nonvanishing
discretized torsion (145), and integrating over torsion
fields at short distances, in the same way as (30)—(38)
of the continuum EC theory. In this way, one will obtain
a complicate effective action of fermion fields with high-
order dimensional (d > 6) operators. However, we expect
that in the continuum limit the relevant operators of
fermion fields should be Eq. (146) and its continuum
counterpart (40).

On the other hand, due to the no-go theorem [28], the
bilinear fermion action (144) has the problem of either
fermion doubling or chiral (parity) gauge symmetry
breaking, which is inconsistent with the low-energy
standard model for particle physics. As discussed, the
effective quadralinear-fermion interactions (146) are in-
evitable, due to mediating very massive torsion fields in
short distances at the Planck scale. We expect that in the
invariant scaling region of the nontrivial ultraviolet fix
points (g., ¥ A.), the quadralinear-fermion interactions
should be relevant operators, which not only give a
possible resolution to the fermion doubling problem
[29,30], but also the compelling dynamics for fermion
mass generation [31,32], via the Nambu Jona-Lasinio
mechanism [33].
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APPENDIX A

By using Egs. (56) and (84) and the identity eheb =
eAtBHABI2 e calculate U,,,(x) (87)~(89) in the native
continuum limit: agw , < 1. Expanding U, (x) in powers
of agw,, we have
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U (x)

= expligaopGiE + O(a®)},

where
G148 = [wiB(x) + 0B ()] + a0, whB(x)
- %(ga)[wAe(x) A wg(-x)]y,w (Az)

and O(a?) indicates high-order powers of agw,. In Eq.
(A1), we use [0y, 0] = i84,0 ., (n0 sum with index b),
[¥s, 0ce] = 0 and

@, (x) = [0,(x), ®,(x)]

= [a)ae(x) A web(x)]p,y[o-ae’ O-eb]

= i[wae(x) A w}ej(x)]ﬂvo-ab' (A3)
For exchanging u < v in Egs. (A1) and (A2)
A = [P () + wi(0)] + ad, 0} (x)
- %(ga)[w/le(x) A wf(-x)]vlu,' (A4)
As a result, the curvature R%5(x) (19)
aRyb(x) = Gh(x) — GE(x)
= a[9, 03P (x) — 9, wiB(x)]
— (g0 () A 0i(X)]u  (AS)
where we use
[wh(x) A @8 (X)) = —[0*() A 0l(0)],,  (A6)
APPENDIX B

The properties of the vertex fields v,,(x) (116) and
(117):

i 1
Vur = Y55 [vavs — nva]i(eiie’z — ebeb

i

i
= y5§(eMeV—e,,eM) =575(e/\e)w; (B1)

-

b
Vi

72 U;rb(ea A eb);rw = Y5O pa(eh el — ebet)

= _YSUab(ea A eh)/,w/ = v =v (Bz)

v v

for the case v, (x) = yse,,(x). Equations (B1) and (B2)
are the same for the case v,,(x) = e,,(x), because of

72 = 75. For the sake of simplifying notations in follow-
ing calculations, we introduce
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= U, WU+ a,) = expligalo, () + @,(0] + g9, 0,00 = 3 (60w, (), 0,00 + O}

= expligalo, () + 0, (] + iga%0,0,() ~ 3 (¢ 0" () A wf W] + O}

(A1)
190 = (e A €b),, = 3ebeh — edeh),
[19b]F = —1b, (B3)
14h = —pab 19h = —1%% and e, = 0,19,

We calculate the naive continuum limit of Egs. (120),
(122), and (123), in powers of gaw . First, at the order
0(a®), we consider all link fields in Egs. (120) and (122)
to be identity, e.g., U,(x) =1, U,(x +a,) =1, and
U,(x + a,) = 1. Using Egs. (121)—(123), (B1), and (B2),
we obtain up to order O(a®)

Xu(v, U) + X} (v, U) = tifv,,,(0)v,,,(x + a,)
X v,,(x +a,)]+ Hc. = 0. (B4)

Second, at the order @(a), we consider two link fields in
Eqgs. (120) and (122) to be identity. The case (1): U, (x +
a,) =~ land U,(x + a,) = 1, we have up to order O(a),
X, (v, U) = trlv,,,(0)U,(x)v,,(x + a,)v,,(x + a,)]
~ tlv,,(Yv,,x +a,)v,,(x+a,)]

+ igawﬁB(-x) tr[75 O-abO-ABo-ch-ef]

X 19 () (x + a,)iSh(x + a).

/2 (B5)

for the case v, (x) = yse,,(x). Using Eqgs. (120)—~(123)
and (B4), we have

X, (v, U) + X} (v, U) = igal B (x) — wiB(x)]
Y50 T ca0 e )ish, (x)

X 5, (x + aM)tf}{,(x +a,). (B6)

The case (2): U,(x +a,)~1and U,(x +a,) = 1, we
obtain the result with the replacement [w%?(x)—
wyP(x)] = [wiB(x) — @48(x)] in Eq. (B6). Taking into
account all contributions from these cases, we obtain up
to the order O(a)

X, (v, U) + X! (v, U) = 0. (B7)

These results are also valid for the case v,,(x) = e,,(x),
since the calculations of Egs. (B4)—(B6) without s are the
same.

Third, at the order @(a?), we consider one link field in
Egs. (120) and (122) to be identity, e.g., U,(x + a,) = 1,
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X, (v, U) = tilv,,(x)U,(x)v,,(x + a,)v,,(x + a,)
XU, (x+a,)]
~ tfv,, (U, ()U,(x)v,,(x + a,)

Xv,,(x+a,)l (B8)

where in the second line, we use Eq. (56), [0, ¥s5] = 0,
[U,(x),v,,] = 0(a), and U,(x + a,) = U,(x) + O(a).
Using Eq. (89) or (Al) for U,,,(x) = U,(x)U,(x) and the
result (B4), we have up to O(a?)

Xh(v) U) = tr[vV/L('x)U,LLV('x)v'LLp('x + a#)vpv(x + av)]
= iagGAE () Y501y 0 apT a0 ef]

X 195 ()15 (x + a,) 1 (x + a,),

(B9)

for the case v,,(x) = ys0,,(x). Using the relationships
X;[(v, U) = X,(v, U)|lw_,,, (121) and (122) and tzb,, =
— 145 (B3), we have

XZ(U, U) = —iagGol(x) t[ys0 0 pp0 g0 ef]

X 19h ()L (x + a, )i (x + a,).

[ (B10)

As aresult, using Eq. (AS5) in Appendix A, we obtain up to
0(a?)

X, (v, U) + X (v, U)
= lazngﬁ (X) tr[75 TabOABO cd a-ef]

X 19 (0)1sd (x + a,)tgh(x + a,).

2 (B11)

For the case v,,(x) = e,,(x), the result is given by
Eq. (B11) without 7s.

In Appendix C, we show the -calculations of
tr[75 Tab0AB a-cdo-ef] and tr[o-ub OABT ¢cd a-ef] in
Eq. (B11). Using these results (C4) and (C8), we obtain
for the case v,,(x) = yse,,(x),

X,(v, U) + X} (v, U) = 8a?gRAE(x)€,pn 55k, (x)

X tj;dp(x + a#)t;‘f,(x +a,); (B12)

and for the case v, (x) = e, (x),

X,(v,U) + X;[(v, U) = 2i - 8a’gR4E (x) B (x)

X thdp(x + a#)tf)‘,i,(x +a,). (B13)

Using Egs. (119) and (B3), we rewrite the fundamental
area (96) and (97) of the 2-simplex A(x) in terms of

64 (x + a,) and £5%(x + a,):

Si‘w(x +a,) = a'cdeLdp(x +a,),

cd » 2.cd (B14)
Sy +a,) = —ia*ty,(x + a,),

ShV(x + al/) = o-C SC‘Ii/(x + aV)!

, - (B15)

Sf,‘f,(x +a,) = —iazt;;‘,l,(x +a,),

PHYSICAL REVIEW D 82, 064039 (2010)

where S% ,(x +a,) = —S!, (x+a,) and S, (x + a,) =
—Sﬁp(x + a,). As discussed in Egs. (103), (96), and (97)
[see Sec. III D], three area operators Si’w(x), Sﬁ') Jxta,)
and S?,(x + a,) are identical. Therefore, equivalently to
Egs. (104) and (107), we write the volume element con-
tributed from the 2-simplex /(x) as

dv, = S (x + aﬂ)SZ‘,I,f(x +a,)

= a*15d (x + a, )t (x + a,) = S5 (x0)S5 (x)

= a*153, ()15, (x), (B16)

where indexes ¢, d are summed, while indexes w, v and p
are not summed. Using Eq. (C7) in Appendix C, we obtain

dVy(x) = S3(x) = LulSh, (0)SEL ()], (B17)

where S%,(x) = 0,,5%,(x) and S9,(x) = —ia®t%),(x).
Using Egs. (B12)-(B17), we can show the regularized
Palatini action (124) and Host action (129) approach to
their continuum counterparts (22) and (23) in the naive
continuum limit agw,, <K 1.

APPENDIX C

It can be shown that ti[yso,,0.40,7] =0 for ys =
Y0Y1Y2Y3 in the four-dimensional space-time. Non-
vanishing contributions of the following trace

tr[ Y50 Tap0caTerl, (ChH

come from the product of two spinor matrices ¢’s in
Eq. (C1) being identical,
tr[ Y50 TapOcaTer] = Y5050 ap]. (C2)

In Eq. (BI1), as example, we take (i) o.40. = 1 for
c=e,d=fand(ii)0'cd0'ef= —lc=f,d=ce,

Z [T cao et (x + a#)tg’;(x +a,)
cdef
= Z[O-cdo-cd]t;ﬁ)(x + a#)t;cll}(x + au)
cd

+ Z[U-cdo-dc]t%i) (X + a,u)tgcl‘/(x + Cl,,),
cd

= Zt;dp(x + au)tf)‘,i,(x +a,)— Zt;dp(x + aﬂ)tg‘;(x +a,)
cd cd

=2>1d (x+a,)sh(x +a,). (C3)
cd
Thus, in Eq. (B11) we have
Vs ah O ap0caT e Jt50 (015 (x + a,)f;fv(x +a,)
= 2tlys0,,048)055 (0150, (x + a,)igh(x + a,)
= —SieabABt?,fL(x)t’dep(x + a,u)tZ‘f,(x +a,), (C4)

where we use the formula
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tr(yso®?o?8) = Lu(ys{o?, o*B}) = —4ie®?B, (C5)

and Eq. (18). In the same way we calculate Eq. (B11) for
other possibilities, e.g., 0,0, = 1 for (i) a =e, b= f
and (ii) 04,0, = —la = f, b = e. As aresult, we obtain
Eq. (B12).

Analogous to the discussions for Eq. (C2), nonvanishing
contributions to tt{ o, 045040, ] come from the product
of two spinor matrices o’s being identical,
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tr (0% gAB) = 4(59A5PB — §aB §bA), (C7)
As a result we obtain
tr [0y OapT a0 1150 (X150 (x + a )f W(x +a,)
=2t 04518k (014 (x + a,)t5%(x + a,)
=288 ()5t (x + a,)ish(x + a,), (C8)

and Eq. (B11) without 5 becomes Eq. (B13).

tr[0u,TapT a0 o] = tilo o ap) (Co)
In Eq. (B11) without 75, as example, we take APPENDIX D
(i) 090 =1 for c =e, d=f and (ii) o0, = —1 Using the properties (B1) of the vertex field v, (x) =
¢ = f,d = e, and use formula ¥se,.,(x), we have
- i
X,(v,U) = 3 trys[e,(x)U,(x)U,(x + a,)U,(x + a,)e,(x)
—e, (U, ™U,(x +a,)U,(x+ a,)e,(x)]M;
- i
XZ(U, U)= 3 trysle, () U, (x)U,(x + a,)U,(x + a,)e,(x)
= e,(U, (W)U, (x + a,)U,(x + a,)e, (x) M}, (D1)
and
X,(v,U) + Xl (v, U) = %Mﬁ tryse, (O[U,(0)U,(x + a,)U,(x + a,) — U, (x)U,(x + a,)U,(x + a,)]e,(x)
i
+ EM%’ tryse,(O[U,(x)U,(x + a,)U,(x +a,) — U, (x)U,(x + a,)U,(x + a,)]e,(x)
= tr[ell(x)‘}/SHV,u(x)e,U,(x)] - tr[e,u,(x)’yﬁHVy,(x)eV(x)]’ (Dz)
where yse,, (x) = —e,(x)ys and the tensor
H,,(x) = MZ[U U, (x +a,)U,(x+a,) —U,0)U,(x + a,)U,(x +a,)]
= 51\4§[UV(X)U,)(X +a,)U,(x +a,) — UL(x + a,)Ul(x + a,) U} (x)]
i i
= 5Mg[Uy(x)Up(x +a,)U,(x+a,)] +Hc = EM%[U,,(x)Up(x +a,)U}l,(x)] + He, (D3)
[
H,, =— #V and H,,# = H,,, following the relations A, = tr(e e, — e e,) + A,
U, (x) U (x+a,), Ul(x) = U,(x + a,) and Uy(x + i :
a ) Up(x +a,). The H,,(x) is a product of three = tle, (I =T, )e, —e, (I =13 ,)e,]

edge fields U, (x), Ut 1 (x) and U,(x + a,) of the 2-simplex
h(x). For the case v W(x) (x) the same result can be
obtained by the replacement vs — —1 in Eq. (D2). The
sum of two contributions gives Eqgs. (170) and (171) in the
main text.

APPENDIX E

For each 2-simplex h(u # v # p), we have the
fundamental area operator e, Ae, =e,e, —e,e, [see
Eq. (103)] and tr(e,e, — e, e,) = 0, we can rewrite the
mean-field action (170) as follows:

=“{<eu eﬂ[—u—or’w (1_0%)]<§;)}’

(ED)

where [/ is the identity matrix. For each single 2-simplex £,
we have the integrations

/}ldeﬂde,,exp—‘/’_zlh =det™ [/ - T"], (E2)
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- 1
ﬁdeude,,(eﬂe,,) exp— A, = 5[1 —TIM],} det™'[1 — "],

(E3)
. i
fh dede e exp—2y = ({1 =T, = [1 =T,
X det™'[1 —T"]. (E4)

Using Eqgs. (181) and (182), we calculate the mean-field
partition function (175)

Tee = f dU,dU,dU, det '] — T"]

heM
1
= de dU,dU, [1 + Zr +5 2 Tely,
heM a,b
L RVAE (ES)

In Eq. (ES), the first term is one due to the formula (183),
the second term vanishes due to the formula (184), and
nonvanishing contribution, due to Eqgs. (184) and (185),
comes from the term I'",T" in the third term. Using
Egs. (171), (184), and (185), we have

[, e = ))
x [ av,av,av, -2 (v - ;)aj[uy]ﬂ[up]m[vmnb
x (75 =2), [0 InlUIU1

“35e) i G) {65 ]

-G+ ) o

As a result, we obtain the mean-field partition function
(186) in the main text.
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Using Eq. (E4), we calculate the mean-field value of the
mean-field action A, (170) of the single 2-simplex £,

<*ﬁl > —<tr[€ FV,U, no V‘U, V]>

rhM I,
DU tr{—= det™'[1—T"
zzh/ U{I—F’V’ I— Fh}e [ |

f DU, T,
)
Z\8g2) "\a) & T\ Ty

L1\ ,2(y*+1
7 5e) Mia () ®0
h \O§ iy
which gives Eq. (189) in the main text.

Using Eqs. (E2), (E3), and (E5) and (I'") ., = —(I'"),,,,
[see Egs. (171) and (D3)], we have

e ddet[1 - T

Qewl =55 [ DU =T} 1T}
X det™![I — T'"]

i1
== 21" +
4thhDU[ »

SHOROE e I

-]det” 1[I — I'"]

and ([e,, % = —([e,,, 4. As aresult, Eq. (192) becomes
Z
(Ao = 3 0 e e,

heM

— e, Ie o (e, Dedle, et

S (E) ()

x [(72; S (E9)

and we obtain Eq. (193) in the main text.
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