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We study the structure of neutron stars in fðRÞ gravity theories with perturbative constraints. We derive

the modified Tolman-Oppenheimer-Volkov equations and solve them for a polytropic equation of state.

We investigate the resulting modifications to the masses and radii of neutron stars and show that

observations of surface phenomena alone cannot break the degeneracy between altering the theory of

gravity versus choosing a different equation of state of neutron-star matter. On the other hand,

observations of neutron-star cooling, which depends on the density of matter at the stellar interior, can

place significant constraints on the parameters of the theory.
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I. INTRODUCTION

Recent interest in modified theories of gravity has been
spurred by the discovery that the Universe is undergoing
accelerated expansion (see, e.g., [1–3]). The simplest so-
lution consistent with these observations posits a cosmo-
logical constant �. The magnitude of this cosmological
constant is significantly less than what was expected, and
many undertakings have been made to see if there are
plausible alternative explanations [4,5]. Outstanding
questions also present themselves in the formation of
singularities [6] and the seeming contradiction between
quantum mechanics and gravity in the context of black
hole thermodynamics [7]. All these suggest that there may
yet be much to understand about the nature of gravity at
extreme-curvature scales, far removed from our everyday
experience.

The two most popular approaches to modifying gravity
have been the introduction of an additional scalar field (e.g.
[8]), or the related approach of replacing the Einstein-
Hilbert action with a general function of the Ricci scalar
fðRÞ (e.g. [4]). Within either framework the additional
scalar degree of freedom can be tuned to mimic the cos-
mological constant, or any type of cosmological evolution
at cosmological scales [9].

Despite the premise of such modifications, the nonlinear
character of gravitational theories has proven a significant
obstacle to introducing new dynamical fields to drive
modifications to gravity at the cosmological scale without
the same fields reemerging at widely different curvature
scales. One such example is the problem of ensuring
that fðRÞ ¼ R��4=R theories pass the current parame-
trized post-Newtonian (PPN) bounds. When the new field
is dynamical, the PPN parameter � is forced to a value
of 1=2, which is very far from the present experimental

bound [10]. As a result one has to choose a function fðRÞ
only from the class which can adequately suppress the new
dynamical field on solar-system scales. The chameleon
mechanism [11–13] provides such an alternative.
In addition to the PPN constraints, instabilities related to

the functional form of fðRÞ have also been studied at
length. This is especially true for the Dolgov-Kawasaki
instability [14], which requires that @2f=@R2 > 0 in order
that the effective mass of the equivalent scalar degree of
freedom be positive. In the strong-field regime, recent
results [15] suggest that this very choice may well prohibit
the formation of compact objects above a curvature scale
readily observed. However, the fatal curvature singularity
may be avoided by the chameleon mechanism [16,17].
Perhaps the source of the instabilities and consistency

issues many of these models encounter is the result of
treating these modifications as though they are exact. The
original motivation behind introducing additional func-
tions of the curvature was to generate a new phenomenol-
ogy at a specific scale. However, many of the problems
encountered by fðRÞ gravity theories originate at curvature
scales far removed from the ones under consideration. An
alternative formulation for handling corrections to general
relativity (GR) is to view the new terms as only the next to
leading order terms in a larger expansion. In this context
there is no reason to suspect that the new phenomenology
is due to new dynamical fields. The technique for handling
a field expansion of this form is well developed [18] and is
known as perturbative constraints or order reduction [19].
Gravity with perturbative constraints allows us to

explore alternative phenomenologies of gravity while
maintaining important consistency conditions including
gauge invariance, the assumption that we are approximat-
ing a fundamentally second order field theory, and the
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conservation of stress energy. Maintaining such constraints
while enlarging the space of possible behaviors of gravi-
tation is the goal also of the parametrized post-Friedman
approach [20–22].

In previous works [23,24], we have analyzed the effect
of treating fðRÞ models of gravity via perturbative con-
straints primarily at cosmological scales. In this paper, we
examine the ramifications of modifications to gravity in the
context of compact objects. We show how the method
of perturbative constraints allows for a consistent phe-
nomenology for gravity on both large (Hubble-length
perturbations linear in metric variables, but strongly rela-
tivistic, L� c=H0) and small scales (stellar scales, non-
linear in metric perturbations, and strongly relativistic,
GM=rc2 � 1.)

The layout of this work is as follows. In Sec. II, we
review the equations of fðRÞ gravity treated with perturba-
tive constraints. In Sec. III, we derive the modified Tolman-
Oppenheimer-Volkov equations and show that the exterior
solution is the Schwartzchild–de Sitter metric. In Sec. IV,
we demonstrate that such objects are stable and we solve
numerically for their mass-radius relation for a polytropic
equations of state. Finally in Sec. V we discuss how we can
discriminate modifications to gravity from uncertainty in
the neutron-star equation of state.

II. PERTURBATIVE CONSTRAINTS

Gravity with perturbative constraints [18] (or order re-
duction [19]) is a technique for treating equations of mo-
tion that appear higher than second order, where the origin
of the higher derivatives can be traced to the truncation of
an infinite series expansion. Such a situation can arise with
nonlocal theories as well as effective field theories.

In the context of fðRÞ gravity theories, we parametrize
the deviation from general relativity by a single parameter
� and derive the equation of motion from a covariant
action

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½R� 2�þ �fðRÞ þOð�2Þ�

þ SMðg��; c Þ; (1)

with G ¼ c ¼ 1. Here g�� is the metric, g its determinant,

and R the Ricci scalar. We denote any additional terms
above order � by Oð�2Þ. We may not impose any con-
straints at the level of the action without altering the nature
of the variational principle. The resulting field equation is

R�� � 1
2g��Rþ g���þ �½fRR�� � 1

2g��f

� ðr�r� � g��hÞfR� þOð�2Þ ¼ 8�T��; (2)

where fR � @f=@R.
At zeroth order in �, these equations are second order in

the metric; we denote the solution at this order by gð0Þ��. We
then solve the system for the higher order terms by writing

g�� ¼ gð0Þ�� þ �gð1Þ�� þOð�2Þ: (3)

The perturbative consistency of this approach is guaranteed

to order n provided �nþ1gðnþ1Þ
�� � gð0Þ�� þ � � � þ �ngðnÞ��, as

we outlined in a previous paper [24]. Note that this condi-
tion is not to be understood as requiring the product �fðRÞ
to be necessarily smaller in magnitude than R.
For the purposes of this work it will prove useful to

rewrite Eq. (2) using its trace

R� �½fRR� 2fþ 3hfR� þOð�2Þ ¼ �8�T þ 4�:

(4)

Substituting the Ricci scalar R from the above equation
into Eq. (2) gives

R�� � g���þ �½fRR�� � 1
2g��ðfRR� fÞ

� ðr�r� þ 1
2g��hÞfR� þOð�2Þ ¼ 8�ðT�� � 1

2g��TÞ:
(5)

This is the form of the field equation we will be using.
Henceforth we shall understand the equality sign to mean
equality up to order � and drop the explicit use of Oð�2Þ.

III. STARS WITH PERTURBATIVE CONSTRAINTS

The metric of a static, spherically symmetric object can
always be written in the form

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ; (6)

where BðrÞ ¼ Bð0ÞðrÞ þ �Bð1ÞðrÞ þ � � � , AðrÞ ¼ Að0ÞðrÞþ
�Að1ÞðrÞ þ � � � , and Bð0ÞðrÞ and Að0ÞðrÞ are the general
relativistic metric elements.
For the purpose of this paper we presume the form

fðRÞ / Rnþ1 for an integer n � 0, �1. We shall also
assume that the energy-momentum tensor within the star
is that of a perfect fluid. Following our previous studies
[24] we find it convenient to express theOð�Þ correction in
terms of the derivative fR. The first three field equations
are

R00

B
þ �fR

�
R00

B
þ R

2

�
n

nþ 1

�
� n

2A

�
�R00

R
� n

R02

R2
þ R02

R2

þ R0

R

�
A0

2A
� 3B0

2B
� 2

r

���
¼ 4�ð�þ 3PÞ ��; (7)

R11

A
þ �fR

�
R11

A
� R

2

�
n

nþ 1

�
� n

2A

�
3R00

R
þ 3n

R02

R2

� 3
R02

R2
þ R0

R

�
B0

2B
� 3A0

2A
þ 2

r

���
¼ 4�ð�� PÞ þ�;

(8)

and

ALAN COONEY, SIMON DEDEO, AND DIMITRIOS PSALTIS PHYSICAL REVIEW D 82, 064033 (2010)

064033-2



R22

r2
þ �fR

�
R22

r2
� R

2

�
n

nþ 1

�
� n

2A

�
R00

R
þ n

R02

R2
� R02

R2

þ R0

R

�
B0

2B
� A0

2A
þ 4

r

���
¼ 4�ð�� PÞ þ�; (9)

where the prime denotes differentiation with respect to r.
The fourth field equation is identical to Eq. (9) because of
the symmetry of the spacetime. Terms with a factor fR
preceding them are already first order in the small parame-
ter � so all such terms should be evaluated at order Oð�0Þ,
where for example

Rð0Þ ¼ 8�ð�� 3PÞ þ 4� (10)

and

Mð0Þ ¼ 4�
Z

�r2dr: (11)

In order to motivate the form of the metric element AðrÞ
that we will be using, we first examine the solution exterior
to the star.

A. The exterior metric

To solve for the exterior solution to Eq. (5), we require
that outside the star T�� ¼ 0. Therefore, at Oð�0Þ, the
exterior metric satisfies

Rð0Þ
�� ¼ �gð0Þ��; (12)

where Rð0Þ
�� is the Ricci tensor derived from the metric

to Oð�0Þ. Consequently the Ricci scalar at Oð�0Þ is

Rð0Þ ¼ 4�.
Note from Eqs. (7)–(9) that theOð�Þ correction is multi-

plied by a term fR / ½ðnþ 1ÞRð0Þ�n. For n � 1 such a
theory will allow a solution with a Minkowski exterior as
well as solutions with � � 0, while for n 	 �2 the

appearance of Rð0Þ in the denominator requires that only
solutions with � � 0 exist.

In order to calculate the corrections to the vacuum
solution at successively increasing orders in �, we first
investigate the perturbative term in the field Eq. (5), when
the Ricci curvature is constant. At Oð�Þ the correction
term is proportional to

fð0ÞR Rð0Þ
�� � 1

2g
ð0Þ
��ðfð0ÞR Rð0Þ � fð0ÞÞ / ðn� 1ÞRð0Þ

��; (13)

where we evaluated everything explicitly in terms of Rð0Þ

and Rð0Þ
��. This last relation shows that, in fðRÞ theories with

n ¼ 1, the correction term in the field equation vanishes
and hence the exterior solution is identical to GR [25].

We can proceed in the same manner to arbitrary orders
in Oð�mÞ. The result can be formally written as

RðmÞ
�� ¼ gðmÞ

��F ð�;�2; . . . ; �mÞ�; (14)

where the precise form of the function F is determined by
the choice of the function fðRÞ.

The vacuum equations, therefore, choose a unique solu-
tion, the Schwartzchild–de Sitter metric, with

AðrÞ ¼
�
1� 2M

r
�

��r2

3

��1
(15)

and AðrÞBðrÞ ¼ 1 [26]. The only difference from the gen-
eral relativistic exterior metric will be in the value of the
effective cosmological constant, which in the case of fðRÞ
gravity is

�� ¼ F ð�;�2; . . . ; �mÞ�: (16)

As a result, the PPN parameters [27] for an arbitrary choice
of fðRÞ will be practically those of general relativity (see
also discussion in [25]).

B. Interior solution

In the following, we shall suppress the explicit appear-
ance of � in the field equations by the useful redefinitions

�! �þ�; P! P��; M!Mþ 4�

3
�r3: (17)

Subject to these normalizations and given the form of the
exterior solution we shall define

AðrÞ �
�
1� 2MðrÞ

r

��1
: (18)

We will use this definition to all orders in the small
parameter �, with the term MðrÞ acquiring corrections at
each successive order, as it is shorthand for a metric
element.
From the form of the elements of the Ricci tensor, and

the above definition we obtain

R00

2B
þ R11

2A
þ R22

r2
¼ 2M0

r2
: (19)

Combining this with Eqs. (7)–(9) and evaluating the result
to orderOð�Þwe derive the equation for mass conservation
in fðRÞ gravity with perturbative constraints

dM

dr
¼ 4��r2 � �fRr

2

�
4��� R

4

�
n

nþ 1

�

� n

2A

�
R00

R
þ ðn� 1ÞR

02

R2
þ R0

R

�
2

r
� A0

2A

���
: (20)

The conservation equation r�T�� ¼ 0 gives

B0

B
¼ � 2P0

�þ P
; (21)

which we use in the expression for R22 to get

R22

r2
¼ 1

r2

�
dM

dr
þM

r
þ r

A

�
P0

�þ P

��
(22)

and arrive at the equation of hydrostatic equilibrium via
Eq. (9)
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dP

dr
¼ � A

r2
ð�þ PÞ

�
Mþ 4�Pr3 � �fRr

3

�
R

4

�
n

nþ 1

�

þ n

2A

R0

R

�
2

r
þ B0

2B

�
þ 4�P

��
: (23)

Note that in solving Eqs. (20) and (23) in practice the
evolution of the density and pressure are determined
in terms of the familiar Tolman-Oppenheimer-Volkov
equations

dMð0Þ

dr
¼ 4��0r

2 (24)

and

dP0

dr
¼ �Að0Þ

r2
ð�0 þ P0ÞðMð0Þ þ 4�P0r

3Þ: (25)

Here �0 and P0 are understood to be the pressure and
density evaluated at Oð�0Þ, whereas we will denote the
pressure evolved via Eq. (23) to Oð�Þ by P1.

IV. NUMERICAL MODELS OF NEUTRON STARS

The equations we have derived so far are general and
accommodate any choice for the correction fðRÞ to the
Einstein-Hilbert action. However, in constructing numeri-
cal models of neutron stars in fðRÞ theories, we need to
specify at this point the particular value of the parameter n
we will use.

In order to address concerns for the structure and stability
of neutron stars in cosmologically motivated modifications
of gravity (see [15,28]), we might consider the case n ¼ �2
[i.e., fðRÞ ¼ R�1]. Since the matter density and pressure
directly determine the Ricci scalar, we would anticipate
such a term to be the leading order correction for small-
curvature scales. Unlike theories with additional degrees of
freedom, however, and as we would expect given the mag-
nitude of R, the low-curvature corrections lead to no ob-
servable differences in the structure of compact objects. Our
analysis of stars with these low-curvature corrections de-
mand that the perturbative parameter � not be significantly
larger than �. Such a small correction leads to no discern-
ible distinction from the predictions of general relativity.

For this reason, we will study below the case with n ¼ 1,
i.e., gravity theories with fðRÞ ¼ R2. This represents the
next to leading order correction in a high-curvature expan-
sion of the action. It is this regime where we expect the
correction to be most noticeable in the case of compact
objects.

We choose the polytropic equation of state

� ¼
�
P

K

�
1=� þ P

�� 1
(26)

for the interior of the neutron star, where � is the polytropic
index. Realistic neutron-star equations of state can be
parametrized by piecewise polytropic equations of state
[29,30] with � ’ 1� 3. The lower the polytropic index,

the stiffer the associated mass-radius relationship. For this
study we have chosen � ¼ 9=5which is consistent with the
constraints on �2 in Ref. [30].
We utilize the same dimensionless variables as in

Ref. [31], namely

�r � K�0:5=ð��1Þr; (27)

�M � K�0:5=ð��1ÞM; (28)

�� � K1=ð��1Þ�; (29)

�P � K1=ð��1ÞP; (30)

�� � K1=ð��1Þ�: (31)

Because of this normalization of the various physical
quantities, our results are independent of the normalization
K of the polytropic equation of state.
We use a fourth order Runge-Kutte integrator with

adaptive step size to solve for the mass M and radius R
of the star. We start at the center of the star by specifying its
density (and corresponding pressure) there and integrate
out to its surface defined where the pressure vanishes.
Figure 1 shows the dependence of the mass of a neutron

star on its central density in an fðRÞ ¼ R2 theory, for
different values of the small parameter ��. The central
line corresponds to neutron stars in general relativity. As
expected, for stable neutron stars the deviation from the
general relativistic case becomes significant as the central
density of the neutron star increases, since it is the matter
density that directly determines the value of the Ricci
scalar curvature. Moreover, the sign of the deviation is
determined by the sign of the perturbative parameter ��.

-6 -5 -4 -3 -2 -1 0

log ρ
c

0

0.05

0.1

0.15

0.2

M α = 0.01

α = 0

α = -0.015

FIG. 1. The mass of a neutron star as a function of its central
density in an fðRÞ ¼ R2 gravity theory for different values of the
small parameter ��. The index of the polytropic equation of state
was set to � ¼ 9=5.

ALAN COONEY, SIMON DEDEO, AND DIMITRIOS PSALTIS PHYSICAL REVIEW D 82, 064033 (2010)

064033-4



By properly choosing the sign and magnitude of this
parameter, we can cause an increase or a decrease in the
maximum mass of stable neutron stars for a particular
central density. We can also support stars of a certain
mass and radius for a range of central densities and ��.

The maximum allowed magnitude of the deviations
from the general relativistic predictions is, of course, con-
strained by the requirement that the solutions retain their
perturbative validity. Though this constraint does not have
a ready analytic expression, we can nevertheless explore
after the fact the perturbative validity of each stellar model.

In particular, as a measure of the deviations from the
general relativistic solution we choose the ratio

	 �
� �P0

1

�P0
0

�
� 1: (32)

This ratio varies with radius inside the neutron star. It
achieves, however, its highest value at or near the center
of the star, where the density (and hence the curvature) is
large. Because we require the entire solution to be pertur-
batively close to the general relativistic one, we will evalu-
ate the ratio 	 at its maximum. A necessary condition for
perturbative validity is 	 < 1.

Figure 2 shows the maximum ratio 	 as a function of the
parameter ��. This figure demonstrates that neutron stars in
fðRÞ ¼ R2 theories can certainly be treated perturbatively
as long as �0:015< ��< 0:01.

Of particular interest from an observational point of view
is the mass-radius relation for neutron stars. We show this
relation, for the same polytropic equation of state, in Fig. 3.
Depending on the value and sign of the parameter �, we
obtain stars with larger or smaller radii compared to their
general relativistic counterparts of the same gravitational

mass. The extent of this variation is constrained by pertur-
bative validity, which prevents the onset of dynamical
features such as spontaneous scalarization [32].

V. DISCUSSION

The predicted mass-radius relation for neutron stars in
fðRÞ gravity shown above differs from that computed
within general relativity. However, very similar deviations
in the mass-radius relation can also be obtained within
general relativity by simply changing the polytropic index
of the equation of state (see [30] for examples). Because
the equation of state of neutron-star matter is weakly con-
strained by current experiments, neutron-star observables
that depend only on the mass and radius of the star cannot
distinguish between small differences in the equation of
state versus small modifications to gravity.
In [33] it was shown that observables that depend also on

the effective surface gravity of neutron stars can break, in
principle, this degeneracy. In particular it was shown that
the Eddington luminosity L1

E of a bursting neutron star
depends directly on its effective surface gravity as

L1
E � 4�mprs

ð1þ XÞ
T

�
zsðzs þ 2Þ
ð1þ zsÞ3

�
�: (33)

In this equation, mp is the mass of the proton, X is the

hydrogen mass fraction in the neutron-star atmosphere, 
T

is the Thomson scattering cross section, and

zs ¼
�
1� 2M

R

��1 � 1 (34)

is the gravitational redshift from the neutron-star surface.
The parameter � is the ratio of the effective surface gravity
of the neutron star to that calculated in GR, i.e.,

� � geff
gGR

(35)

-0.015 -0.01 -0.005 0 0.005 0.01

α

0.01

0.1

1

lo
g 

|ξ
|

FIG. 2. The ratio 	 [see Eq. (32)] as a function of the parame-
ter ��, for stars with central densities log ��c ¼ �2, �3, �4
(dotted, solid, and dashed lines, respectively). The ratio 	
measures the degree of perturbative validity of the stellar mod-
els. A necessary condition for perturbative validity is 	 < 1.

0 1 2 3 4 5 6

R

0

0.05

0.1

0.15

0.2

M

α = −0.015
α = 0

α = 0.01

FIG. 3. The mass-radius relation of neutron stars for a poly-
tropic equation of state with � ¼ 9=5, in an fðRÞ ¼ �R2 gravity
for different values of the parameter ��.
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with

geff � 1

2
ffiffiffiffi
A

p d lnB

dr

��������r¼R
(36)

and

gGR ¼ 1

2R

�
zsðzs þ 2Þ
zs þ 1

�
: (37)

We can calculate easily the value of the parameter � for
the fðRÞ ¼ R2 theory considered here. From the conserva-
tion equation (21) we can write

geff ¼ � 1ffiffiffiffi
A

p P0

ð�þ PÞ : (38)

We can then evaluate the hydrostatic equilibrium equation
(23) to first order in � by noting that

Rð0Þ0

Að0Þ ¼ �8�

�
@�0

@P0

� 3

� ð�0 þP0Þ
r2

ðMð0Þ þ 4�P0r
3Þ: (39)

As a result Eq. (38) becomes

geff ¼
ffiffiffiffiffiffiffiffi
Að1Þp

r2
ðMð1Þ þ4�P1r

3Þ��

�
8�ð�0þP0Þ

ffiffiffiffiffiffiffiffi
Að0Þ

p
r



�
2�ð�0�3P0Þþ 2

r3

�
3�@�0

@P0

�
ðMð0Þ þ4�r3P0Þ

þAð0Þ

r4

�
3�@�0

@P0

�
ðMð0Þ þ4�r3P0Þ2

����������r¼R
: (40)

At the surface layer of the neutron star � ¼ P ¼ 0 and
hence

geff ¼
ffiffiffiffiffiffiffiffi
Að1Þp

R2
Mð1Þ; (41)

which has the same dependence on mass and radius as gGR
does. As a result measuring � alone will not suffice to
break the degeneracy due to the equation of state.

Nevertheless constraining observationally the cooling
rates of neutron stars can offer a discriminant. A neutron
star cools both through photon and neutrino emission. The
photon luminosity is determined by the temperature at the
photosphere, which in turn depends on the density of
the photosphere. However neutrino cooling, which de-
pends more sensitively on temperature than photon cooling
does, becomes dominant for neutron stars with tempera-
tures above 1010 K, and indeed is the primary mechanism
of cooling for young neutron stars (see [34] for a detailed

review). The high temperature and low interaction rate
make neutrino cooling particularly sensitive to the central
density of the neutron star. Figure 4 shows the relation
between the parameter �� and the central density of a
neutron star, for three different values of the mass �M ¼
0:15, 0.125, and 0.1. Large positive deviations from general
relativity, as measured by the parameter �� require larger
central densities for neutron stars of a given mass, whereas
the opposite is true for large negative deviations. As a
result, because the cooling time scale scales with central
density, observations of the surface temperatures of young
neutron star can lead to useful constraints on the deviations
from general relativity in an fðRÞ gravity model, especially
if the neutron-star masses are known.
We will study the constraints imposed on fðRÞ gravity

by current measurements of cooling rates of neutron stars
in our galaxy in a forthcoming paper.
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