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We consider a Lorentz-violating theory of inflation consisting of Einstein-aether theory with a scalar

inflaton coupled bilinearly to the expansion of the aether. We determine the conditions for linearized

stability, positive energy, and vanishing of preferred-frame post-Newtonian parameters, and find that all

these conditions can be met. In homogeneous and isotropic cosmology, the inflaton-aether expansion

coupling leads to a driving force on the inflaton that is proportional to the Hubble parameter. This force

affects the slow-roll dynamics, but still allows for a natural end to inflation.
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I. INTRODUCTION

The space-time continuum may be only a low-resolution
approximation to a more structured, discrete plenum, with
a UV cutoff on degrees of freedom. This structure might be
revealed in high energy collisions or subtle effects of long
distance propagation, or discrete symmetry violations. But
it might also manifest itself at a macroscopic level as a
result of the expansion of the Universe. The expansion
would presumably require that new ‘‘atoms of space-
time’’ together with new degrees of freedom are created
as time goes on. The aim of this paper is to explore possible
consequences of this scenario using an effective field the-
ory description.

A UV cutoff is inconsistent with locality and Lorentz
symmetry, so at least one of these properties would have to
fail if such a cutoff exists. In this paper we study a model
theory in which locality is preserved, but Lorentz symme-
try fails. To accommodate this scenario in an effective field
theory that preserves general covariance and the successes
of general relativity, one needs to incorporate a Lorentz-
violating dynamical field into the theory. Einstein-aether
theory provides a straightforward approach to doing this.
In that theory, the local structure of space-time is described
by a metric tensor, as in general relativity, but also by a
dynamical unit timelike vector field ua, called the aether.
The aether defines a preferred rest frame at each point of
space-time, but preserves rotational symmetry in that
frame. This structure would suffice to accommodate a local
UV cutoff. For a Lorentz-violating theory like this to be
viable, there must ultimately be a reason why conspicuous
Lorentz violation does not infect the low-energy matter
action in flat space-time. For the purposes of this paper, we
will simply assume that such a reason exists.

Just as the Einstein-Hilbert action is (besides a cosmo-
logical constant term) the unique lowest order covariant
term in a derivative expansion of the action, the action for

‘‘pure’’ Einstein-aether theory consists, in addition, of the
four independent two-derivative terms involving the metric
and the aether. Direct coupling of the aether to matter
would entail local Lorentz violation and is severely con-
strained by observational bounds [1].
Our primary goal is to use Einstein-aether theory to

model possible consequences associated with the growth
of the vacuum in cosmology. In particular, we study the
leading order coupling of a scalar inflaton field ’ to the
local expansion rate. Such a term cannot appear in a purely
metric theory because the local expansion rate, i.e. the
Hubble parameter H, cannot be constructed from the met-
ric in a covariant way. However, given the aether field ua,
the local expansion � relative to the preferred frame is a
space-time scalar,

� � rau
a: (1)

(In a homogeneous and isotropic cosmology, � is related to
the Hubble parameter by � ¼ 3H.) Any scalar operator
might couple to �, but here we shall consider just a (still
mysterious) scalar inflaton, since that would presumably
dominate during inflation. This of course leaves open the
possibility that scalar operators composed of matter fields
could couple to �. At late times � is everywhere small
relative to particle physics scales, so � couplings would
not lead to any observable Lorentz violation in particle
physics.
We shall consider a generic coupling of the inflaton to

the expansion, but the lowest dimension (and therefore
presumably dominant) coupling takes the form

�’ ¼ �uara’þ total derivative: (2)

This peculiar leading order term has not, as far as we know,
been considered previously. It apparently entails a viola-
tion of time-reversal symmetry, although if the rest of the
inflaton action is even in ’ then time-reversal symmetry is
preserved when accompanied with ’ ! �’. We first
examine the impact of this new coupling on all of the
noncosmological theoretical and observational constraints
on the theory, and then we study the modified inflationary
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dynamics. A key consequence of this term is that the
expansion � acts as an external force, which can either
slow down or accelerate the evolution of the inflaton. Its
effect on the primordial fluctuations has not yet been fully
investigated.

Although the particular coupling we examine may be
new, much work has already been done on cosmology in
Einstein-aether theory. Inflation with a preferred timelike
vector was first considered by Gasperini [2]. More recently,
authors have computed the effect of the aether on the
spectrum of primordial perturbations [3–6], with no direct
coupling between the aether and the inflaton. A certain
kind of aether-inflaton coupling has been considered in
which the kinetic terms in the aether action are multiplied
by functions of the scalar field [7,8]. In this model the
effective gravitational constant depends on the inflaton,
leading to the possibility of a repulsive phase that signifi-
cantly changes the dynamics of inflation. A similar model
with a nonnormalized vector field playing the role of the
aether and scalar fields has been proposed as a solution of
the cosmological constant problem by a similar mecha-
nism [9]. Cosmology with a Lagrangian that is an arbi-
trary function of the usual Einstein-aether Lagrangian
has also been considered as a possible source of dark
energy [10,11].

This paper is organized as follows. In Sec. II the theory
is defined and the equations of motion are given. In
Secs. III, IV, and V wework out the properties of linearized
spin-0 perturbations and the conditions for their stability,
absence of vacuum Cherenkov radiation, and energy pos-
itivity. This is necessary in order to establish the conditions
for viability of the model with aether-scalar coupling. In
Sec. VI these conditions are combined with those for the
spin-1 and spin-2 perturbations of pure Einstein-aether
theory, the effect of the new coupling on the parameterized
post-Newtonian (PPN) expansion is deduced, and some
additional observational constraints are discussed. In
Sec. VII the homogeneous, isotropic cosmological dynam-
ics is investigated, and we conclude with a summary and
some further remarks in Sec. VIII.

II. ACTION AND EQUATIONS OF MOTION

Einstein-aether theory is a theory of a metric gab of
signature ðþ;�;�;�Þ and a unit timelike vector field ua

[12]. This theory is defined by the Lagrangian

L� ¼ �M2

2
ðRþ Kab

cdrau
crbu

d þ �ðuaua � 1ÞÞ; (3)

where M � ð8�GÞ�ð1=2Þ is the reduced Planck mass. In
general relativity, the sign of G can be fixed by requiring
that gravitational waves carry positive energy density. The
same turns out to be true in Einstein-aether theory, hence
we will assume from the outset that G> 0, or equivalently
M2 > 0. The three terms in the action are the Ricci scalar
for gab, the Einstein-aether kinetic term, and a Lagrange

multiplier term that forces ua to be a timelike unit vector.
The tensor Kab

cd is given by

Kab
cd ¼ c1g

abgcd þ c2�
a
c�

b
d þ c3�

a
d�

b
c þ c4u

aubgcd;

(4)

where c1;2;3;4 are the dimensionless free parameters of

Einstein-aether theory.
The theory defined by the Lagrangian (3) has a

Newtonian limit with a modified Newton’s constant

GN ¼ �NG; �N ¼ 2

2� c14
: (5)

The post-Newtonian expansion will be discussed in
Sec. VIB. The Friedmann equation for spatially flat homo-
geneous cosmologies is also the same as in general rela-
tivity, but with a renormalized Newton’s constant GC in
place of G [13,14],

GC ¼ �CG; �C ¼ 2

2þ c13 þ 3c2
: (6)

The spatial curvature term in the Friedman equation is also
renormalized.
We introduce to the theory a scalar inflaton ’ with a

potential that depends both on ’ and the expansion of the
aether,

L’ ¼ 1
2ra’ra’� Vð�;’Þ: (7)

For special cases of the potential Vð�; ’Þ the cosmological
dynamics of our model overlaps with other models of
Lorentz-violating inflation. To see this, we note that in a
Friedmann-Lemaı̂tre-Robertson-Walker metric with the
aether aligned to the cosmological rest frame,

raub ¼ Hðgab � uaubÞ; (8)

whereH ¼ _a=a is the Hubble parameter. It follows that the
aether kinetic term in (3) is proportional to �2. In the model
of Kanno and Soda [7], c1;2;3;4 are allowed to depend on a

scalar field ’. This will have the same cosmological dy-
namics as our model with a potential of the form Vð�; ’Þ ¼
fð’Þ�2. The model of Zlosnik et. al. [10] does not have a
scalar field, but its Lagrangian contains an arbitrary
function of the aether kinetic term. This cosmology corre-
sponds to a potential of the form Vð�; ’Þ ¼ fð�2Þ. This
equivalence holds only for the background dynamics;
the linearized perturbations of these models will gener-
ally differ.
The equation of motion for ’ is

h’þ V’ ¼ 0; (9)

where V’ denotes the partial derivative @V=@’. The equa-
tion of motion for u is

rbK
b
a ¼ �ua þ c4ðucrcubÞrau

b �M�2raV�; (10)

where Kb
d � Kab

cdrau
c. The component of Eq. (10)

parallel to ua determines �. Finally we have the Einstein
equation:
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Gab ¼ Sab þM�2Tab; (11)

where Sab is the energy-momentum tensor for the aether in
the absence of the scalar field [15]

Sab ¼ rcðKða
cubÞ � Kc

ðaubÞ � KðabÞucÞ þ c1ðrcuarcub

�raucrbu
cÞ þ c4ðucrcuaÞðudrdubÞ

þ ðucrdK
d
c � c4ðucrcu

eÞðudrdueÞÞuaub
þ 1

2gabðKc
drcu

dÞ; (12)

round brackets denoting symmetrization. The matter
energy-momentum tensor Tab is obtained by varying the
matter action with respect to the metric. Accounting for the
contribution of the Lagrange multiplier term the energy-
momentum tensor can be written in terms of the
Lagrangian as

Tab ¼ 2
�L

�gab
þ uc

�L

�uc
uaub � Lgab: (13)

For the scalar Lagrangian (7) this formula gives

Tab ¼ ra’rb’� ð12ra’ra’� V þ �V�Þgab
þ ðucrcV�Þðuaub � gabÞ: (14)

Note that terms in the action linear in � do not contribute
to V � �V�, hence they contribute only to the part of the
stress tensor proportional to the spatial metric uaub � gab.
This can be traced to the contributions from the Lagrange
multiplier term in the action, but it can also be understood
more directly from the fact that the metric enters such
terms via the combination

ffiffiffiffiffiffiffi�g
p

� ¼ @að ffiffiffiffiffiffiffi�g
p

uaÞ. In order

to maintain the unit norm condition gabu
aub ¼ 1, a metric

variation must be accompanied by an aether variation
�kua ¼ �1

2ð�gmnu
munÞua. The combined �gab and �kua

variations yield

�ð ffiffiffiffiffiffiffi�g
p

uaÞ ¼ 1
2

ffiffiffiffiffiffiffi�g
p

uað�gmn þ umunÞ�gmn: (15)

The corresponding contribution to the stress tensor is thus
proportional to the spatial metric, and corresponds to an
isotropic pressure in the aether frame.

III. LINEARIZED PERTURBATIONS AND
DISPERSION RELATIONS

We consider linearized perturbations about the flat
space-time solution with a constant aether field

gab ¼ �ab; ua ¼ �a
0 ; ’ ¼ 0: (16)

To ensure that (16) is a solution of the equations of motion,
the potential must satisfy

Vð0; 0Þ ¼ V’ð0; 0Þ ¼ 0: (17)

In order to study linear perturbations, the potential is
expanded to second order in the fields

Vð�; ’Þ � 1
2m

2’2 þ�M�’; (18)

where m is the mass of the scalar field. The constant � has
dimensions of mass, and we include a factor of M to
compensate for the canonical normalization of the aether
perturbations. The expansion (18) does not include a term
linear in �, because such a term is a total divergence and
therefore does not affect the classical equations of motion.
The term proportional to �2 is also omitted, because it
can be absorbed into the c2 term in the Einstein-aether
Lagrangian.
Because the background solution (16) is invariant under

spatial rotations, we can decompose the perturbations into
irreducible representations of SO(3). The propagating de-
grees of freedom consist of a spin-2 graviton, a spin-1
aether-metric wave, a spin-0 aether-metric wave, and a
spin-0 inflaton perturbation. At the linearized level, the
presence of the scalar field affects only the spin-0 modes.
This is because the term �’ in the action depends only on
the timelike and longitudinal parts of the aether field, both
of which have spin-0.
We will adopt the variables and gauge choice of Foster

[16]. In this parametrization, the seven spin-0 degrees
of freedom are labeled h00, �, 	, f, w0, 
, ’, and a gen-
eral spin-0 perturbation of the metric and aether can be
written as

gab ¼
1þ h00 @i�

@i� �1þ @i@j	þ 1
2 ð�f�ij � @i@jfÞ

" #
;

(19)

ua ¼ ½1þ w0; @i
�: (20)

Here 0 labels the time coordinate, Latin indices i; j; . . . ¼
1, 2, 3 are spatial, and � ¼ �ij@i@j. We can simplify the

equations of motion by using the gauge freedom to set 
 ¼
� ¼ 0 [16]. Additionally, we can eliminate w0 using the
constraint uaua ¼ 1, giving

w0 ¼ �1
2h00: (21)

With these choices, and taking perturbations to have the

space-time dependence eiðkx�!tÞ in terms of the flat space
coordinates ðt; x; y; zÞ, the metric and aether take the form

gab ¼ diagð1þ h00;�1� k2	;�1� 1
2k

2f;�1� 1
2k

2fÞ;
(22)

ua ¼ ð1� 1
2h00; 0; 0; 0Þ: (23)

In terms of these fields the linearized versions of the
scalar field equation, the (0,0) Einstein equation, the (1,1)
Einstein equation, and the sum of the (2,2) and (3,3)
Einstein equations are

0 ¼ �!2’þ k2’þm2’� 1
2k

2i!�Mðfþ	Þ; (24)

0 ¼ �k2f� c14h00; (25)
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0 ¼ ð1þ c2Þk2!2fþ c123k
2!2	þ 2�i!’=M; (26)

0 ¼ ð1þ c13 þ 2c2Þk2!2f� k2ðk2fþ 2h00

� 2ð1þ c2Þ!2	Þ þ 4�i!’=M; (27)

where we have adopted the notation c14 ¼ c1 þ c4, c123 ¼
c1 þ c2 þ c3, etc.

In the absence of the scalar field the linearized modes all
satisfy a linear dispersion relation of the form ! ¼ sik
where si, i ¼ 0, 1, 2 is a speed depending only on the spin
of the mode. This is because the aether terms in the
Lagrangian all contain two derivatives. The scalar field
action contains terms with fewer than two derivatives, so
in general the spin-0 modes are dispersive. The disper-
sion relation is obtained by taking the determinant of
Eqs. (24)–(27) considered as a matrix equation. This can
be simplified to

ð!2 � k2 �m2Þð!2 � s20k
2Þ þ 3�C

2
�2!2

� s20
c123

�2k2 ¼ 0; (28)

where �C is given by (6) and s0 is the wave speed of the
spin-0 mode when � ¼ 0 [17]

s20 ¼
ð2� c14Þc123

ð1� c13Þð2þ c13 þ 3c2Þc14 : (29)

The fact that there are just two, rather than four, propagat-
ing spin-0 modes is a result of diffeomorphism invariance
and is reflected by the fact that Eq. (28) is quadratic in !2

and therefore admits two solutions. In general these modes
are superpositions of the spin-0 parts of the metric, aether,
and scalar fields. Their polarizations can be obtained by
solving Eqs. (24)–(27) with fixed ! and k; they depend on
the wave number and are valid only in our chosen gauge.

In the homogeneous limit k ! 0 the dispersion relation
has the form

!2ð!2 �m2 þ 3
2�C�

2Þ ¼ 0; (30)

which shows that one mode remains gapless, while the
mass of the other mode is modified by the � term.

IV. LINEARIZED STABILITYAND
CHERENKOV CONSTRAINT

In what follows we will consider stability of the classical
theory linearized about flat space-time. Although this is not
sufficient to guarantee stability of the full interacting quan-
tum theory, or even of the linearized theory about a curved
background, it is a natural physical condition to impose
and will lead to constraints on the parameters c1;2;3;4,m,M,

�. In the following three sections we will show that the
linearized theory is stable provided � is not too large
compared to m, and the aether parameters lie within the
allowed parameter range for Einstein-aether theory.

To say a theory is stable is to say that regular ‘‘initial
data’’ does not grow exponentially in ‘‘time.’’ This notion
presumes that the theory admits an initial value formula-
tion with respect to some foliation of the space-time by
surfaces, called Cauchy surfaces. If the theory is stable
with respect to one fiducial such foliation, then that suffices
to establish stability from a physical point of view. This is
because regular initial data on any other Cauchy surface
can be evolved back to the fiducial Cauchy surface, where
it will again be regular, hence the stability of its complete
evolution is assured.
In the case of linearized Einstein-aether theory, the field

equations are of hyperbolic type, but not with respect to the
space-time metric, since different modes travel at different
speeds. Nevertheless there is a maximum speed for the
modes, and this determines the class of time functions
whose constant-time surfaces are Cauchy surfaces for the
full set of equations of motion. In particular, the surfaces
orthogonal to the aether vector in a Minkowski background
can serve as Cauchy surfaces for the purpose of establish-
ing stability.
We should note that Carroll et. al. [18] have proposed a

different criterion for stability, namely, that linearized
perturbations that are oscillatory on any Lorentz time slice
should not grow with respect to the corresponding time
coordinate, and they showed that this criterion is strong
enough to rule out Einstein-aether theory for most values
of the parameters c1;2;3;4. We believe that this criterion is

not the physically relevant one, because it corresponds to
imposing stability with respect to a time function whose
constant-time surfaces are not Cauchy surfaces for the
equations. This issue will be discussed more fully in a
forthcoming publication [19].
We therefore impose stability in the aether frame. This

means that the dispersion relation (28) must have two real
solutions !� for every real wave number k. Equation (28)
is a quadratic equation in!2 with real coefficients; its roots
!2� are real provided the discriminant is positive. This is
necessary but not sufficient, since !2� must be positive in
order for !� to be real. We will use the fact that two real
numbers !2� are both positive if and only if the sum !2� þ
!2þ and product !2þ!2� are both positive. This will be
convenient to impose since the sum and product of roots
can be read directly from the coefficients of the dispersion
relation. In what follows we will work backward, first
requiring the sum and product roots to be positive and
then returning to require the discriminant to be positive.
The sum and product of the roots are given by

!2þ þ!2� ¼ ð1þ s20Þk2 þ ðm2 � 3
2�C�

2Þ; (31)

!2þ!2� ¼ s20k
4 þ ðm2 ��2=c123Þs20k2: (32)

These will be nonnegative for all k if and only if

s20 � 0; (33)
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�C�
2 � 2m2=3; (34)

�2=c123 � m2: (35)

Finally, we impose the condition that the roots!2� of the
quadratic (28) are both real. Thus we require that the
discriminant be positive,

ð1� s20Þ2k4 þ 2½ð1þ s20Þðm2 � 3
2�C�

2Þ
� 2ðm2 ��2=c123Þs20�k2 þ ðm2 � 3

2�C�
2Þ2 � 0:

(36)

The discriminant (36) is of the form ak4 þ bk2 þ c with a,
c � 0. It will be positive if b � 0 or b2 � 4ac � 0, in
other words if b � �2

ffiffiffiffiffiffi
ac

p
. This condition is

ð1þ s20 þ j1� s20jÞðm2 � 3
2�C�

2Þ
� 2ðm2 ��2=c123Þs20 � 0; (37)

where we have made use of (34) to simplify the expression.
This inequality can be simplified into two cases depending
on the sign of 1� s20:

1=c123 � 3�C=2 if s0 � 1; (38)

m2ð1� s20Þ � ð3�C=2� s20=c123Þ�2 if s0 < 1: (39)

We now consider a further physical constraint on the
theory: If the phase velocity of scalar-aether waves is less
than the speed of light, then highly energetic particles can
Cherenkov radiate in vacuum. Observations of cosmic rays
strongly constrain this behavior [20]. We therefore require
the phase velocity of aether waves to be � 1 for all k.

First we show that if a mode has phase velocity � 1 for
some k then its phase velocity remains � 1 for all k. If a
mode becomes subluminal at a particular wave number k it
would have to satisfy the dispersion relation with!2 ¼ k2,

½m2ðs20 � 1Þ þ ð32�C � s20=c123Þ�2�k2 ¼ 0: (40)

If this equation holds for any k > 0 then it holds for all k.
This means that if a given mode has speed� 1 for any k, it
has speed � 1 for all k.

It is therefore sufficient to enforce that the modes are
superluminal in the limit k ! 1. To find the phase veloc-
ities in this limit, we express (28) as a polynomial in !
and keep only the dominant power of k in each coefficient.
The resulting mode speeds are simply 1 and s0, so the
Cherenkov constraint is simply s0 � 1, as it is in pure
Einstein-aether theory.

Thus when the Cherenkov constraint is imposed, (38) is
the condition for stability. Equations (34), (35), and (38)
together with s20 � 1 are therefore necessary and sufficient
conditions for stability and absence of vacuum Cherenkov
radiation.

We now derive the condition for the group velocity of
the linearized waves to be positive. This will play a role in
the energy positivity constraint. In order for the waves to

have positive group velocity, we must have d!2=dk2 > 0.
In the limit k ! 1, the group velocity is positive. Since
d!2=dk2 is a continuous function of k, it is sufficient to
show that there is no solution of the dispersion relation for
which d!2=dk2 ¼ 0.
Solving d!2=dk2 ¼ 0 yields

2s20k
2 ¼ ð�2=c123 �m2Þs20 þ ð1þ s20Þ!2: (41)

Solving for k, and substituting back into the dispersion
relation gives a!4 þ b!2 þ c ¼ 0 where

a ¼ ðs20 � 1Þ2; (42)

b ¼ 2s20½ð1� s20Þm2 þ ð1þ s20Þ�2=c123 � 3�C�
2�; (43)

c ¼ ðm2 ��2=c123Þ2s20: (44)

Assuming (35) and s20 � 0 implies c � 0. Just as in the

discussion following (36), there are no real roots for! (i.e.
no positive roots for !2) if and only if b >�2

ffiffiffiffiffiffi
ac

p
, where

bþ 2
ffiffiffiffiffiffi
ac

p ¼ 4s20ð1=c123 � 3�C=2Þ�2: (45)

Therefore, the group velocity is positive for all k if and
only if Eqs. (33) and (38) hold, as required by stability.

V. POSITIVITY OF ENERGY DENSITY

In addition to real frequencies, we further require that
the linearized perturbations have positive energy. In doing
so we necessarily run into the issue that there is no suitable
local covariant expression for the energy density of a
diffeomorphism-invariant theory that accounts for the en-
ergy in the gravitational field. However, for wavelike linear
perturbations that are periodic in time, it is possible to
define the average energy density. The positive energy
conditions for Einstein-aether theory have been found both
by pseudotensor methods [21] and using the Noether cur-
rent [16]. The two methods can be shown to produce
equivalent results [22]; we will follow the latter approach,
which is simpler both conceptually and computationally.
The Noether current is defined as follows [22]. We first

define the canonical one-form �a via the total divergence
that arises when varying the action

�S ¼
Z ffiffiffiffiffiffi

jgj
q

d4xðE½c � � �c þra�
a½�c �Þ; (46)

where E is the equation of motion, and c schematically
denotes collectively all the dynamical fields. The Noether
current one-form Ja½�� associated to the vector field �a is
then given by

Ja½�� ¼ �a½L�c � � L�a; (47)

where L� is the Lie derivative, and L is the Lagrangian.

When the field equation E ¼ 0 is satisfied the Noether
current Ja constructed this way is conserved,
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raJ
a ¼ 0: (48)

The energy is the Noether charge associated with the
asymptotic time translation ta. It is obtained by choosing
�a to coincide with ta at infinity and integrating the flux of
the corresponding current Ja through a Cauchy surface �,

E ¼
Z
�
Jad�a; (49)

where d�a is the induced volume form on �.
The Noether current is a sum of two terms J� and J’

which correspond to contributions from L� and L’, re-

spectively. The Noether current J� was found by Foster
[23]. To evaluate J’ it is useful to integrate the linearized

Lagrangian by parts, giving a new Lagrangian

L0
’ ¼ 1

2ra’ra’� 1
2m

2’2 þ�Muara’: (50)

With suitable asymptotic boundary conditions this
Lagrangian leads to the same equations of motion. It also
gives the same Noether charge, and therefore the same
time-averaged energy density, even though it does not
give the same Noether current. The advantage of L0

’ over

L’ is that it contains no derivatives of u or g, so the

corresponding canonical one-form contains only terms
proportional to �’, not to �u or �g. Varying the action,
we find the contribution of L0

’ to the canonical one-form is

�a’½�’� ¼ ðra’þ�MuaÞ�’: (51)

The corresponding Noether current is then determined
from (47),

Ja’½�� ¼ ðra’þ�MuaÞ _’� L0
’�

a: (52)

We use the Noether current to find the energy density of
linearized waves following Foster [16]. Consider a com-
pact source in an asymptotically flat space-time. Fixing R
to be a sphere of large coordinate radius r, the rate at which
energy is radiated from the source is given by the flux of
the Noether charge

� _E ¼
Z
R

~J � d ~A; (53)

where ~J is the spatial part of Ja. The energy is being carried
away by waves with average energy density u and group
velocity vg (which we assume positive), so that the average

rate of energy loss is

� h _Ei ¼
Z
R
uvgdA; (54)

where h�i denotes time averaging over one period of the
wave. Equating the two expressions for the rate of energy
loss we find

u ¼ hJri=vg: (55)

To find the total energy density we need to evaluate this
formula with the total Noether current, J’ þ J�.

To carry out this calculation, note that for sufficiently
large r all of the dynamical fields can be approximated by
spherical waves for which

@ic ¼ �ð1=vpÞ _c r̂i; (56)

where vp is the phase velocity of the mode and r̂ is the

outward facing unit normal. Equation (56) allows spatial
derivatives in the energy density to be exchanged for time
derivatives. The contribution to the energy density coming
from J’ is

u’ ¼ h _’2i=ðvpvgÞ: (57)

To find the total energy density we add this to the contri-
bution to the energy density from the Lagrangian L� [16].
Up to a positive factor we obtain

u / M2ð2� c14Þk4h _f2i þ 8c14h _’2i: (58)

It follows that 0 � c14 � 2 is a sufficient condition for
positive energy density. We cannot yet conclude that it is a
necessary condition, since ’ and f are related by the
linearized equations of motion (24)–(27), which imply
for the complex amplitudes

½c123ð!2 � k2 �m2Þ þ�2�’ ¼ 1
2�Mð1� c13Þi!k2f:

(59)

Substituting this into (58) we find that up to a positive
multiplicative factor the energy density is given by

ð2� c14Þ½c123ð!2 � k2 �m2Þ þ�2�2
þ 2c14�

2ð1� c13Þ2!2; (60)

where ! and k are related by the dispersion relation (28).
This expression holds for both of the spin-0 modes, each of
which corresponds to a different solution of the dispersion
relation.
We can now consider two separate limits of the disper-

sion relation. In the homogeneous limit ! ¼ k ¼ 0, the
second term in (60) drops out, and positivity requires
c14 � 2. In the limit k ! 1 with ! ¼ k, the first term is
subleading in k, so that c14 � 0 is also needed. The upshot
of this calculation is that the constraint from energy
positivity of the spin-0 modes is

0 � c14 � 2; (61)

which is the same as in Einstein-aether theory without the
scalar coupling.

VI. COMBINED CONSTRAINTS

In this section we first gather together all the con-
straints derived from stability, Cherenkov radiation, and
energy positivity. Next we consider the constraints from
post-Newtonian effects, and finally combine these with the
other constraints to determine the allowed parameter
region.
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A. Stability, Cherenkov, and energy constraints

The constraints discussed already, together with those
for the spin-1 and spin-2 modes [12], which are not af-
fected by the presence of the scalar field, are as follows:

spin -0 stability
3�C

2
� 1

c123
� m2

�2
; (62)

spin -0 speed
ð2� c14Þc123

ð1� c13Þð2þ c13 þ 3c2Þc14 � 1; (63)

spin -1 speed
2c1 � c21 þ c23
2c14ð1� c13Þ � 1; (64)

spin -2 speed
1

1� c13
� 1; (65)

spin -0 energy 0 � c14 � 2; (66)

spin -1 energy ð2c1 � c21 þ c23Þð1� c13Þ � 0; (67)

spin -2 energy M2 � 0: (68)

Since the spin-1 and spin-2 modes satisfy a dispersion
relation of the form !2 ¼ s2k2, the stability constraint
for each of these modes is implied by the Cherenkov
constraint s2 � 1. By contrast, the spin-0 modes have a k
dependent phase velocity, so the separate stability and
Cherenkov constraints involve several conditions.

The first inequality in (62) is actually implied by the
other inequalities. To see this, note that (63), (65), and (66)
imply that c123 and �C (6) must have the same sign. The
first inequality in (62) therefore reduces to the inequality
c13 � 1, which is already implied by (65).

B. Post-Newtonian parameters

As we mentioned in Sec. I, Einstein-aether theory has a
Newtonian limit with a renormalized gravitational constant
GN given in (5). The spin-2 energy constraint says that G
must be positive. Combined with the spin-0 energy con-
straint, this also implies that �N and therefore Newton’s
constant GN (5) is also positive.

The post-Newtonian parameters � and � take the same
values (unity) as in general relativity [24]. The effects of
Lorentz violation are captured at first post-Newtonian or-
der by the dimensionless preferred-frame parameters 
1

and 
2. These can be expressed in terms of c1;2;3;4 as

[25,26]


1 ¼ �8ðc23 þ c1c4Þ
2c1 � c21 þ c23

; (69)


2 ¼ 
1

2
� ðc1 þ 2c3 � c4Þð2c1 þ 3c2 þ c34Þ

c123ð2� c14Þ : (70)

The preferred-frame parameters are constrained observa-
tionally to be small [27], 
1 & 10�4 and 
2 & 4	 10�7,
and because Einstein-aether theory has four free parame-
ters they can be made to vanish exactly in a two-
dimensional subspace of parameter space. We will see
that similar considerations apply also in the presence of
the scalar field.
We now consider the effect on the post-Newtonian ex-

pansion of coupling to the scalar field ’. The stability
constraint (62) shows that ’ cannot be massless if the
cosmological Newton constant is to be positive. In order
to simplify our analysis, we will further assume that m is
large enough so that the Compton wavelength of ’ parti-
cles is much smaller than any scale on which gravity has
been tested in the late universe. Newton’s law of gravita-
tion has been tested to submillimeter scales, so we shall
assume the lower bound m * 10�3 eV on the mass. If the
mass is smaller than this, a more complete analysis would
be required to determine the effects of the scalar field
coupling to gravity. Most likely the mass of the inflaton
must be tremendously larger than this anyway.
Assuming that all fields vary on scales much larger than

1=m, we can integrate out the scalar field. We first solve the
linearized scalar field Eq. (9) by an expansion in h=m2,

’ ¼ �ðhþm2Þ�1�M� ¼ ��M

m2
�þ�M

m4
h�þ . . . ;

(71)

where in what follows we will keep only the leading order
contribution,’ ¼ �ð�M=m2Þ�. If we substitute this value
back into the linearized scalar field action and expand to
Oð’2Þ we find

L’ ¼ �2M2

2m4
ra�ra�þ�2M2

2m2
�2: (72)

The ðr�Þ2 term is of higher order in the derivative expan-
sion, and so will be neglected. The remaining term can be
absorbed in the c2 term of the aether action, which is given
by � 1

2M
2c2�

2. Therefore, upon integrating out the scalar

field, the new Lagrangian is simply L� with a new value of
the parameter c2 which we denote c02,

c2 ! c02 ¼ c2 ��2

m2
: (73)

The higher derivative terms in the expansion (71) lead to
higher derivative terms in the aether action. If we neglect
these higher-order corrections, the post-Newtonian pa-
rameters can be determined from the known results for
Einstein-aether theory (69) and (70) using c02 in place of c2.
Just as in pure Einstein-aether theory, we can set

both preferred-frame parameters 
1, 
2 to zero, now by
choosing

c2 ¼ �2c21 � c1c3 þ c23
3c1

þ�2

m2
; (74)
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c4 ¼ � c23
c1

: (75)

Once this choice of c4 has been made, the spin-1 and spin-2
speed constraints and the spin-0 and spin-1 energy con-
straints (64)–(67) can be conveniently expressed in terms
of c� � c1 � c3, and they hold if and only if 0 � cþ � 1
and c� � 0 [26]. Moreover, once this choice of c2 has been
made, we have

c123 ¼ c213
3c1

þ�2

m2
; (76)

which is positive when the other constraints hold, since the
positivity of c1 is implied by c� � 0. The second inequal-
ity of (62) then becomes

�2 � c123m
2 ¼ �2 þ c213

3c1
m2; (77)

which is also automatically satisfied when the other con-
straints are imposed.

The condition for absence of vacuum Cherenkov radia-
tion into the spin-0 mode (63) depends on c2, and therefore
on � via (74). In pure Einstein-aether theory (i.e. when
� ¼ 0), the value of c2 in Eq. (74) goes to zero as c� ! 0.
In this limit, s0 (29) depends on the ratio between cþ and
c�. However, if � � 0, then c2 does not go to zero, and

s0 ! 1 as c� ! 0. This means that the Cherenkov con-
straint can always be satisfied in an open neighborhood of
c� ¼ 0. As shown in Fig. 1, the range of allowed c� is
significantly enlarged as � increases.

C. Other constraints

Further constraints arise from the effective cosmological
value of Newton’s constant in the Friedman equation, and
radiation and orbital dynamics of compact binaries.
As explained above, when the PPN parameters 
1;2 have

been set to zero by the choices (74) and (75), it follows
from the other constraints that c123 � 0. Then (63) also
implies that �C (6) is positive. This would be the value of
the cosmological Newton constant relevant during infla-
tion. For later times, after the inflaton is integrated out,1 the
relevant value is G0

C ¼ �0
CG, where �

0
C is given by (6) but

with c02 in place of c2. When c2 and c4 are set according to
(74) and (75), it follows [26] that �0

C ¼ �N . Predictions of

primordial element abundances from big bang nucleosyn-
thesis are sensitive toG0

C, and agreement with observations

requires [14] that G0
C not differ too much from earthbound

measurements of Newton’s constant,

jG0
C=GN � 1j & 1=8: (78)

This constraint is thus trivially satisfied when the
preferred-frame PPN parameters vanish.
The rate of change in orbital period of binary pulsars due

to gravitational and aether radiation, ignoring effects from
strong self-gravity of the bodies, was computed by Foster
[16]. The observed orbital decay agrees with that found in
general relativity to within better than one percent [27].
The constraint that the rate in weak field Einstein-aether
theory agree with that found in general relativity is indi-
cated in Fig. 1. The strong-field effects that contribute to
the damping rate and orbital dynamics of binary systems
was computed in [28] in terms of as yet unknown parame-
ters that characterize the velocity dependence of the energy
(or action) of the bodies. Strong-field effects are likely to
lead to further constraints on the parameters, restricting c�
to be less than 
0:01� 0:1.

VII. HOMOGENEOUS COSMOLOGY

We consider now the cosmology of Einstein-aether the-
ory coupled to a single scalar inflaton field, with a potential
that depends on the expansion of the aether. The metric is
assumed to be homogeneous, isotropic, and spatially flat,
hence it can be written in the form

ds2 ¼ dt2 � aðtÞ2d~x2: (79)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. The allowed ranges for the parameters c� ¼ c1 � c3,
assuming c2 and c4 are chosen so that the preferred-frame
PPN parameters vanish. The spin-0 Cherenkov constraint is
satisfied below the solid lines, which correspond (from lowest
to highest) to � ¼ 0, � ¼ 1

4m, � ¼ 1
2m, � ¼ m, and �=m !

1. The dashed line corresponds to the parameter values for
which the damping rate from weak-field binary systems calcu-
lated in [16] agrees with general relativity.

1The derivative terms in the Klein-Gordon equation are pre-
sumably negligible when H � m, which occurs at a temperature
T � ffiffiffiffiffiffiffiffiffi

mM
p

. This is satisfied at the nucleosynthesis temperature

0:1 MeV as long as m � 10�18 eV.
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In a homogeneous and isotropic solution the aether must
be aligned with the cosmological rest frame. In this
case, the spatial components of the aether equation are
automatically satisfied, and the time component of the
aether equation of motion (10) just determines the
Lagrange multiplier �. That the aether relaxes to such an
isotropic configuration during cosmological expansion is
shown perturbatively in [3,7]. A nonlinear extension of this
analysis is currently underway [29].

We note that our results for homogeneous cosmology
apply as well to the extended version of Hořava grav-
ity [30] proposed in Ref. [31]. As shown in Ref. [32],
this follows because the aether in these solutions is
hypersurface-orthogonal.

With the metric (79), the expansion is � ¼ 3H and the
homogeneous scalar (inflaton) field equation (9) is

€’þ � _’þ V’ ¼ 0; (80)

where the driving force �V’ is now dependent on the

expansion �. The terms in V’ containing positive powers

of � lead to driving forces that are most relevant during
inflation when the expansion is large. As the expansion
slows, these forces subside, allowing for a graceful end to
inflation.

The Friedmann equation can be derived by considering a
metric of the form ds2 ¼ NðtÞ2dt2 � aðtÞ2d~x2 and varying
the action with respect to N. The normalization condition
for u together with the symmetry completely fixes u to
ua ¼ ð1=N; 0; 0; 0Þ, and the symmetry reduced Lagrangian
density is (up to a total derivative)

ffiffiffiffiffiffiffi�g
p

L ¼ Na3
�
�M2

C

3
�2 þ 1

2N2
_’2 � Vð�;’Þ

�
; (81)

where � ¼ 3H=N and we have introduced a ‘‘reduced
cosmological Planck mass’’ MC � M=

ffiffiffiffiffiffi
�C

p
with �C de-

fined in (6). For terms in the action that are linear in �, the
factor of 1=N in � cancels the factor N in the determinant
of the metric, so that such terms do not contribute to the
Friedmann equation. This is in agreement with the general
form of the stress tensor (14).

Varying (81) with respect to N gives the Friedmann
equation

�2 ¼ 3

M2
C

�
1

2
_’2 þ V � �V�

�
; (82)

where the gauge condition N ¼ 1 has been adopted. This
equation determines � only implicitly as a function of ’
and _’, since the potential V also depends on �.

We now focus on the case when the potential has only
quadratic terms,

Vð�;’Þ ¼ 1
2m

2’2 þ�M�’; (83)

with �> 0. The Friedmann equation (82) then has the
standard form for a massive scalar. While the �’ coupling
does not show up in the Friedmann equation, it does affect

the Einstein equation, via the pressure term in the scalar
stress tensor (14),

p ¼ _V� ¼ �M _’: (84)

The inflaton field equation (80) becomes

€’þ � _’þm2’þ�M� ¼ 0: (85)

The last term acts as an external force that pushes ’ in the
negative direction.
Slow-roll solutions can be obtained by neglecting the

kinetic term _’2 in (82), and the term €’ in the Klein-Gordon
equation (80). The slow-roll equations in this case become

� ¼
ffiffiffi
3

2

s
m

MC

j’j; (86)

_’ ¼ �
ffiffiffi
2

3

s
mMC

�
sgnð’Þ þ �

�c

�
; (87)

where we have defined

�c ¼
ffiffiffiffiffiffiffiffiffi
2

3�C

s
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ c13 þ 3c2

3

s
m: (88)

This slow-roll solution need not be stable: If the Hubble
force ��M� is dominant then there is a feedback effect,
where this force leads to larger field values, which leads to
a more rapid expansion and therefore a stronger Hubble
force. The slow-roll solution will be stable provided that ’
and _’ are of the opposite sign for all values of ’, i.e. if
j�j � �c. This condition is implied by the condition for
stability of the linearized modes (62). This is not surpris-
ing, since that condition was originally inferred from the
zero wave vector limit of the dispersion relation (34), and
we have restricted even in the nonlinear analysis to a
quadratic potential.
The general behavior of this dynamical system for dif-

ferent values of �=�c is illustrated with phase portraits in
Fig. 2. Plotted there is the flow on the ð’; _’Þ plane that is
obtained when � is eliminated using the Friedmann equa-
tion. In terms of the dimensionless variables ~’ ¼ ’=MC

and ~t ¼ mt, we can write the system in the form

d

d~t
ð~’; ~’0Þ ¼

�
~’0;�~’�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð~’02 þ ~’2Þ

s �
~’0 þ

ffiffiffi
2

3

s
�

�c

��
;

(89)

where the prime denotes derivative with respect to ~t. The
right-hand side is the vector field plotted in the figure.
The number of e-folds of expansion during inflation is

N ¼ lnðaf=aiÞ ¼
R
da=a, where ai and af are the scale

factors at the beginning and end of inflation, respectively.
N can be computed in terms of the field values at the start
and end of inflation as

N ¼ 1

3

Z
�dt ¼ 1

3

Z �

_’
d’: (90)
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FIG. 2. Phase portraits of inflaton dynamics with the potential V ¼ 1
2m

2’2 þ�M�’, given by the dynamical system (89) with
�> 0. (a) The result for standard slow-roll inflation. Solutions are attracted toward the slow-roll solution, which appears as two
almost-horizontal lines on the plot. At the end of the slow-roll period, a reheating phase begins where the field undergoes damped
oscillation about the minimum of the potential, which appears as an inward spiral in the phase portrait. In (b) the basic picture
remains the same, but the value of _’ for the slow-roll solutions is changed. The duration of the slow-roll period is increased if
’i < 0 or decreased if ’i > 0. In (c), � is at exactly �c, so any configuration with ’< 0 and _’ ¼ 0 is a fixed point, corresponding
to a de Sitter space-time. When � is increased beyond the critical value, as in (d), the slow-roll solution becomes unstable and ’
grows without bound. Although only portraits with �> 0 have been shown, the system has combined � ! �� and ’ ! �’
symmetry, allowing the phase portraits with �< 0 to be obtained from the phase portraits with �> 0 by a reflection through the
origin.
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During slow roll � and _’ are given by (86) and (87) and ’
has a fixed sign, so

N ¼ ’2
i � ’2

f

4M2
Cð1þ sgnð’iÞ�=�cÞ

; (91)

where ’i and ’f are the values of the inflaton field at the

start and end of inflation, respectively. As � ! �c one of
the slow-roll solutions approaches a de Sitter solution with
constant negative ’, corresponding to the limit N ! 1.
These solutions are illustrated in Fig. 2(c) on the negative
’ axis.

The number of e-folds can be made arbitrarily large
compared to the � ¼ 0 case, for fixed values of ’i;f and

MC, by taking � ! �c. However, the ratio �=�c is con-
strained by the second inequality in (62), which is the
condition that the spin-0 aether mode not grow exponen-
tially in the long-wavelength limit. Expressed in terms of
�c (88), it yields

�2

�2
c

� 3c13 þ 3c2
2þ c13 þ 3c2

: (92)

It follows that the limit� ! �c is achieved only by c13 !
1 or by c2 ! 1. While the possibility that c13 could be
close to 1 has not been ruled out, all the mode speeds (63)–
(65) diverge in this limit, suggesting that it is pathological.
Additionally, it is expected that a strong-field analysis of
binary systems will constrain c� to be smaller than order
unity. As for the case where c2 ! 1, as noted in Sec. VIB,
’ can be integrated out so that the low-energy theory
depends only on c02, given by (73). It is possible to keep
c02 small even while c2 becomes large by taking�=m large,
though this requires a cancellation to occur between c2 and
�2=m2.

If the preferred-frame parameters 
1 and 
2 are con-
strained to vanish exactly as in Sec. VIB, then as explained
above, the constraint (92) is implied by the other con-
straints. In this case, c2 and therefore �c are determined
by �=m and c�. Then �=�c can be expressed as

�2

�2
c

¼
�
1þ 2m2

3�2

cþ þ c�ð1� cþÞ
cþ þ c�

��1
: (93)

This approaches 1 only if�=m ! 1, or cþ ! 1 and c� !
1. These are the same conditions as inferred abovewithout
having constrained 
1;2 to vanish.

Cosmological perturbations

Finally, we briefly discuss the effect of inflaton-aether
coupling on the spectrum of perturbations generated during
inflation. In single-field slow-roll inflation the primordial
perturbations originate from quantum vacuum fluctuations
of the coupled inflaton-metric mode. The introduction of
the aether field leads to an additional spin-0 as well as a
spin-1 mode, each with their own quantum fluctuations. If

these modes are not directly coupled to matter and the
background is exactly de Sitter, the aether modes decay
exponentially [3], though they may be sourced during
reheating by anisotropic stresses [4]. These perturbations
may grow in power-law spacetimes for certain values of the
parameters c1;2;3;4 [6].
Introduction of scalar-aether coupling further modifies

this scenario. There are two spin-0 coupled inflaton-aether-
metric modes whose dispersion relation is nontrivial even
in flat space. The generalization of this dispersion relation
to curved space-time determines both the amplitude of
vacuum fluctuations and the time at which the modes
freeze. Moreover, the modified background equation of
motion determines how the Hubble parameter changes
with time, and therefore the time at which modes of differ-
ent comoving wavelengths reach the Hubble radius.
A priori it is not clear whether the spin-0 modes will

freeze or decay on superhorizon scales. This behavior is
determined by how the modes couple to the background
expansion, and is different for a scalar and the spin-0 part
of a vector.

VIII. SUMMARY

We have considered Einstein-aether theory coupled to a
scalar field via a potential that depends on the local rate of
expansion of space in the frame of the aether, � ¼ rau

a.
This could be an effective field theory description of
Lorentz-violating UV physics in the vacuum, for example,
at the scale of a fundamental cutoff. We have mostly
focused on the lowest order term �M�’, which leads to
breaking of time-reversal invariance, nontrivial dispersion,
and a cosmological dynamics modified by a driving force
on the scalar proportional to �.
Although we are most interested in this model for the

potentially observable effects of Lorentz violation on cos-
mology, we have strived to examine all of the theoretical
and observational constraints that arise when perturbing
around a locally flat space-time. We find that when the
post-Newtonian parameters are matched to general relativ-
ity, the combined constraints on the remaining free cou-
plings c1 and c3 imposed by stability, positive energy
density, and absence of vacuum Cherenkov radiation, take
the same form as in Einstein-aether theory, except for the
spin-0 Cherenkov constraint, which is relaxed (Fig. 1).
There is a single constraint on the new parameter �,
the second inequality of (62), which is automatically sat-
isfied when the PPN parameters match those of general
relativity (77).
An aether field uncoupled to matter does not affect the

dynamics of homogeneous, isotropic, spatially flat cosmol-
ogy except by a renormalization of Newton’s constant
G ! GC (6). It turns out that the lowest order scalar-aether
coupling �’ contributes isotropic pressure and no energy
density. Therefore, it does not affect the Friedmann equa-
tion, but the driving force it adds to the scalar field equation
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can act either to oppose or accelerate the expansion of the
Universe in a slow-roll scenario, altering the number of
e-folds of expansion. An unbounded increase in the num-
ber of e-folds is possible, although this requires carefully
chosen values of the couplings in order to evade current
constraints, and may be ruled out by future constraints.
This illustrates the importance of considering all con-
straints when building cosmological models.

A next step would be to derive the spectrum of primor-
dial perturbations in the model. This would involve gen-
eralizing the treatment of linearized perturbations from flat
space to a general inflating background. This differs from
previous work since the two scalar modes—that of the
inflaton and that of the aether—are mixed, and because
the slow-roll dynamics is modified. In particular, it would
be interesting to determine how the spectral index and the
tensor-to-scalar ratio depend on the coupling constants of
the theory.

While we have focused on the coupling to a scalar
inflaton, other types of coupling to the expansion are
possible, allowing for a wide range of Lorentz-violating
phenomena. For example, any scalar operator could appear
in the Lagrangian multiplied by �, allowing effects to be
switched off (or on) as the expansion of the Universe slows.
In this context, it should be kept in mind that in the present
universe the largest potentially observable values of � are
not due to the Hubble expansion, but rather probably occur
outside stellar mass black holes, where �
 km�1.
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