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We investigate the stability of a new warped black string with nontrivial topologies in five-dimensional

anti–de Sitter spacetime. After studying the linear gravitational perturbation, we find that this black string

is unstable when the Kaluza-Klein mass falls in a certain range, and the instability exists for all topological

spacetimes.
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I. INTRODUCTION

String theory makes the radical prediction that spacetime
has extra dimensions and gravity propagates in higher
dimensions. With the development of string theory, black
holes in higher-dimensional spacetimes have come to play a
fundamental role in physics [1], and there is an expectation
that such higher-dimensional black holes can be produced
either in particle collisions with a mass energy in the TeV
range or in the Earth’s atmosphere due to the high energy
cosmic ray showers [2–4]. While the possibility of
observing signatures of these kinds of black holes has
been discussed before [5,6], some essential properties of
higher-dimensional black holes have so far not been fully
understood. Black hole uniqueness theorems, which are
well established for the black hole in four-dimensional
spacetimes [7–10], do not apply to higher-dimensional
black holes. For example, five-dimensional stationary vac-
uum black holes are not unique: there exist the Myers-Perry
solution [1], which is a generalization of the Kerr solution
to arbitrary dimensions, and rotating black ring solutions
with the same angular momenta and masses but different
horizon topologies [11]. Even for the n-dimensional, hyper-
spherically symmetric, asymptotically flat, static vacuum,
Schwarzschild-Tangherlini solution, the uniqueness prop-
erty fails if one drops the condition of asymptotic flatness
but still insists on the same spacetime topology. In higher
dimensions, there can be more than one solution with non-
static or nonflat asymptotic backgrounds, sentencing the
higher-dimensional uniqueness theorem to death [12].

Worse still, the stability of configurations in higher
dimensions is also questionable. While four-dimensional
black holes are always stable (as discussed in detail by
many authors [13,14]), it was first found by Gregory and
Laflamme [15] that black strings and p-branes in asymp-
totically flat higher-dimensional spacetime are unstable
under gravitational perturbations. This instability, often
referred to as the Gregory-Laflamme (G-L) instability,
is quite general in higher-dimensional spacetimes and

continues to attract attention amongst physicists (for a
recent comprehensive review, see Ref. [16]) since the
detailed nature of this instability, along with its generali-
zations to other cases, is still not fully understood. For
example, an instability was recently reported in charged
black holes in higher-dimensional de Sitter spacetime
[17,18].
Hence it is of great interest to study stable/unstable

configurations in higher-dimensional anti–de Sitter (AdS)
spacetimes, in part to broaden the testing ground for the
proposed AdS/CFT correspondence [19–21], which relates
a gravitational theory on asymptotically AdS spaces in
dþ 1 dimensions to a nongravitational quantum field the-
ory in d dimensions. The stability of higher-dimensional
AdS configurations has been much less explored relative to
their asymptotically flat counterparts. Gregory first studied
the stability of the Randall-Sundrum spacetime and found
the G-L instability within a certain range of the z direction
mode [22]. An examination of the stability of the AdS
configurations has been extended to the uniform black
string solutions, including the exact Schwarzschild
[23,24] and Kerr [25] black string solutions to the
type IIB equations of motion in AdS5 � S5 spacetimes,
and approximate black ring solutions in (A)dS spacetime
[26]. In all of these cases a G-L instability was observed
within a certain parameter range, such as the mode of
perturbation or the horizon size or the AdS radius.
Uniform black string solutions are different from the

warped AdS black string. For example, they have no
dependence on the compact extra dimension. Although
there is no way to obtain a solution in d-dimensional
anti–de Sitter spacetime by simply adding an extra dimen-
sion, static solutions can be numerically obtained for d ¼ 5
[27] and higher [28] by allowing nontrivial radial depen-
dence of the metric component associated with this extra
dimension. Stability studies have been carried out for this
case [29] and extended to nonuniform black string solu-
tions [30], where only a perturbative dependence on the
extra dimension was considered. Although the stability of
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higher-dimensional configurations with nonperturbative
extra-dimensional dependence, which are exact warped
solutions of the Einstein equations, were first investigated
several years ago [31], the issue of classical stability of the
AdS configurations has not been addressed extensively. It
is generally expected that the AdS solutions can provide a
laboratory to test the Gubser-Mitra (GM) conjecture[32],
which correlates the dynamical and thermodynamical
stability for systems with translational symmetry and infi-
nite extent. A recent attempt to test this relation for a
Banados-Teitelboim-Zanelli black string in four dimen-
sions was carried out in [33].

In this paper we further study the stability of warped
AdS black strings in five dimensions. We examine the
stability under gravitational tensor perturbations of both
topologically trivial and nontrivial warped AdS black
string solutions to the Einstein equations, extending a study
of the scalar perturbation case [34]. In higher dimensions
the horizon topologies are very rich [35–41], and their
influence on stability can be significant. Furthermore, a
nonasymptotically flat spacetime can also accommodate
richer global topologies. Even an asymptotically AdS four-
dimensional black hole can have horizons with different
genus g [42–45]. Studies of quasinormal modes of scalar
fields in such spacetimes indicated that the topology of the
four-dimensional AdS black hole does influence stability
[46,47]. For the five-dimensional AdS black string and
AdS soliton string with Ricci-flat horizons (genus g ¼ 1),
it has been argued that there is no G-L instability [48].
However, for the higher-dimensional uniform AdS black
string [28] with spherical topology, the G-L instability was
observed for certain values of the AdS radius, whereas the
toroidal and hyperbolic spacetimes were found to be stable
[29]. These results show that the topological influence on
the G-L instability in higher-dimensional AdS configura-
tions is important. In this paper we investigate the stability
of the warped AdS black string for different topologies,
examining the topological influence on the stability.

Our paper is organized as follows: In the next section we
will present the five-dimensional warped AdS topological
black string obtained from the Einstein equation and con-
struct the theoretical framework of the tensor perturbation
on its background. We will analyze the analytic solution of
the perturbation equations. In Sec. III, we will numerically
solve the perturbation equation and examine the stability of
the spacetime. In the last section we will present our
summary and discussion.

II. TENSOR PERTURBATION OF THE
NONTRIVIAL TOPOLOGICAL BLACK STRING

We consider spacetimes that satisfy the Einstein
equations with negative cosmological constant G�� �
�g�� ¼ 0. In five dimensions the warped AdS black string

is an exact solution to these equations:

ds2 ¼ �aðzÞ2
�
fkðrÞdt2 þ dr2

fkðrÞ
þ r2ðd�2 þ�kð�Þd�2Þ

�
þ dz2 (1)

¼ 1

L2cos2c

�
fkðrÞdt2 þ dr2

fkðrÞ
þ r2ðd�2 þ�kð�Þd�2Þ þ L2dc 2

�
; (2)

where fkðrÞ ¼ r2=L2 þ g� 2M=r, L is the AdS radius,
and the warp factor aðzÞ ¼ coshðzÞ=L, with the coordinate
transformation cosc ¼ sechz relating the two metric
forms.
Here k ¼ 1, 0, �1 corresponds to three different

topologies:

�1ð�Þ ¼ sin2� ðsphericalÞ;
�0ð�Þ ¼ 1 ðtoroidalÞ;

��1ð�Þ ¼ sinh2� ðhyperbolicÞ;
(3)

with genus g � 2 topological classes obtained upon ap-
propriate identification in the hyperbolic space.
To examine whether this new solution of the Einstein

equation is a stable configuration, we consider linear
perturbations on this warped AdS black string, where the
gravitational tensor perturbation is taken to have the
form [15]

h�� ¼ e�tumðzÞ

h11ðrÞ h12ðrÞ
h12ðrÞ h22ðrÞ

h33ðrÞ
h33ðrÞ�kð�Þ

0

0
BBBBB@

1
CCCCCA:

(4)

The time dependence of the perturbation is chosen with
constant frequency �. In this form, the perturbation is
unstable if the real part of � is positive, which will be
used as a criterion in the stability analysis. This can be
compared with the study of the quasinormal modes, where
the time evolution of the perturbation is usually described
by e�i!t. By comparison, we see that our imaginary part
Imð�Þ corresponds to the real part of the quasinormal
frequency�Reð!Þ, while our real part Reð�Þ corresponds
to the imaginary part of the quasinormal frequency Imð!Þ.
The dependence on z for each component in the perturba-
tion is uniform and separable. The gravitational tensor
perturbation satisfies the transverse-traceless gauge condi-
tions h ¼ 0 and r�h�� ¼ 0. Applying the traceless con-

dition, we can express h33 in terms of h11 and h22, and from

the transverse constraint we can express dh12
dr and dh22

dr in

terms of h11, h12, and h22, thereby reducing the number of
independent components in the perturbation tensor.
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The linearized Einstein equations yield

r�r�h�� þ 2R����h
�� ¼ 0: (5)

Although a total of 15 equations must be satisfied by h��,

many of them become trivial once (4) is used and the
transverse-traceless condition is applied. Furthermore,
while nontrivial equations are obtained for the 11, 12, 22,
and 33 components, the equation for the 33 component can
be recovered from the other three independent equations.
From the equations for the 11, 12, and 22 components, we
can eliminate h12 and h22 and finally arrive at a second

order ordinary differential equation for h11 only. In this
equation, the equation for umðzÞ separates out with a sepa-
ration constant mK that satisfies the equation

cosh 2z
d2um
dz2

þ ðm2
K � 4cosh2zÞum ¼ 0: (6)

This m2
K represents the influence of the fifth dimension on

the final perturbation equation, and is usually called the
Kaluza-Klein (KK) mass. We finally arrive at a second
order ordinary differential equation for h11ðrÞ with the KK
mass mK,

�
5m2

K � 10

4
L4f3kðrÞ �

�
9�2

4
L4 þ k

3m2
K � 6

2
L2 � ðm2

K � 2Þ
�
m2

K � 7

2

�
r2
�
L2f2kðrÞ

þ
�
k
5�2

2
L6 þ

�
k2

m2
K � 2

4
þ 4m2

K þ 13

2
r2�2

�
L4 þ k

3m2
K � 6

2
r2L2 þ 9m2

K � 18

4
r4
�
fkðrÞ � k2�2 � 4r2�4

4
L6

� k
3r2�2

2
L4 � 9r4�2

4
L2

�
r2L2f2kðrÞ

d2h11ðrÞ
dr2

þ
�
15m2

K � 30

2
L4f4kðrÞ �

�
45�2

4
L4 þ kð10m2

K � 20ÞL2

� 3ðm2
K � 2Þðm2

K � 6Þr2
�
L2f3kðrÞ þ

�
k
49�2

4
L6 þ

�
k2

5m2
K � 10

2
þ 16m2

K þ 79

4
r2�2

�
L4 � kðm2

K � 2Þ

� ðm2
K � 11Þr2L2 � 3ðm2

K � 2Þ
�
m2

K � 7

2

�
r4
�
f2kðrÞ �

�
3k2 � 4r2�2

4
L4 þ k

3r2

2
L2 � 9r4

4

�
�2L2fkðrÞ

�
�
kþ 2r�

2
L2 þ 3r2

2

��
k� 2r�

2
L2 þ 3r2

2

�
ðkL2 þ 3r2Þ�2

�
rL2fkðrÞdh11ðrÞdr

þ
�
5ðm2

K � 2ÞL6f5kðrÞ

�
�
k10L2 þ 7m2

K þ 58

4
r2
�
ðm2

K � 2ÞL4f4kðrÞ �
�
k�2L6 �

�
k2ð5m2

K � 10Þ þm2
K þ 16

2
r2�2

�
L4

� k
3ðm2

K þ 10Þðm2
K � 2Þ

2
r2L2 þ ðm2

K þ 4Þðm2
K � 2Þ

�
m2

K � 7

2

�
r4
�
L2f3kðrÞ þ

�
k28�2 þ 17r2�4

4
L8

þ kðm2
K � 2Þr2�2L6 þ

�
k2

ðm2
K � 2Þ2
4

� 3ðm4
K �m2

K þ 4Þr2�2

�
r2L4 þ k

3ðm2
K � 2Þ2
2

r4L2 þ 9ðm2
K � 2Þ2
4

r6
�
f2kðrÞ

�
�
k
9r2�2 þ 2

2
L6 þ 3

�
k2

m2
K þ 4

2
þ 2m2

K þ 7

2
r2�2

�
r2L4 þ 9kðm2

K þ 1Þr4L2 þ 27m2
Kr

6

2

�
�2L2fkðrÞ

þ k2r2�4 � 4r4�6

4
L8 þ k

3r4�4

2
L6 þ 9r6�4

4
L4

�
h11ðrÞ ¼ 0; (7)

where k here represents the topology, with k ¼ 0, 1, and
�1 indicating the flat, spherical, and hyperbolic spaces,
respectively. The behavior of the gravitational perturbation
(4) is determined by this equation. Before solving this
perturbation equation numerically, we first analytically
examine its asymptotic behavior.

In the asymptotic limit r ! 1, Eq. (7) reduces to

d2h11
dr2

�m2
Kh11
r2

¼ 0: (8)

This equation is independent of � and is universal for all
three topologies. Its solution is

h11 ! C1r
½ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2

K

p
Þ=2� þ C2r

½ð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2

K

p
Þ=2� ðr ! 1Þ:

(9)

It is clear that a physically reasonable solution should be
finite at infinity. This boundary condition can always be
satisfied by setting C1 ¼ 0 at r ! 1 asm2

K � 0. However,
near the horizon Eq. (7) reduces to

ðr� RþÞ2 d
2h11
dr2

þ ðr� RþÞdh11dr

� L4�2R2þ
ð3R2þ þ kL2Þ2 h11 ¼ 0; (10)

where Rþ is the horizon radius satisfying R2þ=L2 þ k�
2M=Rþ ¼ 0. The solution is
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h11 !C1ðr�RþÞ½ðL2�RþÞ=ðj3R2
þþkL2jÞ�

þC2ðr�RþÞ�½ðL2�RþÞ=ðj3R2
þþkL2jÞ� ðr!RþÞ: (11)

We notice that the two linearly independent parts are
symmetric under the sign reversal of �. For unstable
perturbations with Reð�Þ> 0, we set C2 ¼ 0 to ensure
finiteness near the horizon.

Putting both of these boundary conditions together, it
would appear that the asymptotic behavior permits the
existence of an unstable perturbation. However, to obtain
a definitive answer concerning the stability of the AdS
black string (1), we have to match these two asymptotic
solutions in the intermediate range. This entails solving the
original differential equation (7), for which we must rely
on numerical calculations.

III. NUMERICAL SOLUTION

We now turn to the task of solving the gravitational
perturbation equation (7) on the background of the AdS
black string numerically. We will use the numerical method
first proposed by Horowitz and Hubeny [49] and later
extensively applied in [50] to solve the perturbation equa-
tion. Noticing that the equation is unchanged under the
scale transformation L ! �L, M ! �M, � ! �=�, and
r ! �r, we can choose L ¼ 1 without loss of generality.

Substituting r ¼ 1=x, one gets a second order differential
equation for h11ðxÞ in the range 0< x< X, where
X ¼ 1=Rþ. The perturbation equation we need to solve
can be changed into

sðxÞ d
2h11
dx2

þ tðxÞ
x� X

dh11
dx

þ uðxÞh11
ðx� XÞ2 ¼ 0; (12)

where three coefficients can be expanded around x ¼ X as

sðxÞ ¼ X1
n¼0

snðx� XÞn;

tðxÞ ¼ X1
n¼0

tnðx� XÞn;

uðxÞ ¼ X1
n¼0

unðx� XÞn:

(13)

Equation (12) can be solved by a series expansion about
x ¼ X,

h11ðxÞ ¼
X1
n¼0

anðx� XÞnþ�; (14)

where � is the lowest order of h11 in the expansion.
Following standard mathematical methods, the recursion
relation for an can be obtained in the form

an ¼ �
P

n�1
k¼0½ðkþ �Þðkþ �� 1Þsn�k þ ðkþ �Þtn�k þ un�k�ak

ðnþ �Þðnþ �� 1Þs0 þ ðnþ �Þt0 þ u0
; (15)

where � is determined by the equation s0�ð�� 1Þ þ
t0�þ u0 ¼ 0 to be � ¼ � X�

3þgX2 . Notice that one should
choose the solution of � positively proportional to �,
which corresponds to the ingoing wave at the horizon [49].

The boundary condition at infinity is now h11ð0Þ ¼P1
n¼0 anð�XÞnþ� ¼ 0. Since the summation depends on

the value of � and m, the problem is transformed into
finding the zeros of

P1
n¼0 anð�XÞnþ� as a function of� for

a fixed m. If the value of � lies in the right half of the
complex plane, according to the time-dependent part of our
ansatz e�t, the black string is unstable under such pertur-
bation. Of course, the summation of infinite terms is im-
possible in a real calculation. We instead stop the
summation at finite n, taken to be sufficiently large so as
to ensure that the solution will remain stable even as the
summation goes beyond this n. The convergence of the
result becomes slower for small mK, which needs a larger
value of n in the partial sum to reduce the relative error in
the computation. Since this takes a lot of computer time we
employ the trial and error method proposed in [51] to
truncate the sum at some large n. However, whatever large
value of n we adopt, an initial tiny error may grow through
recursion relations. We therefore improve the precision
of all input data with the help of a built-in function of

MATHEMATICA. In our calculation we take the truncation at

n ¼ 350 for most cases, which ensures the precision of the
numerical calculation for � is not worse than 10�10 when
the KK mass is around or bigger than unity. When the KK
mass is very small, the accuracy for the calculation of �
will be reduced; however, with our selected truncation
number we can still keep the accuracy to be higher than
10�3 when the KK mass is very small.
Now we describe general features of our numerical re-

sults. We find that in most situations � has a negative real
part, and that the larger this part is, the larger the imaginary
part will be. In our ansatz e�t, the imaginary part of �
represents the energy of the perturbation. Thus in most
cases the gravitational perturbation has stable decay modes
and the perturbation with higher energy decays faster. The
only exception is the case with k ¼ �1 andM ¼ 0, where
most solutions of � are purely real negative without an
imaginary part, which means that the gravitational pertur-
bation decays without oscillation. Similar behavior has also
been reported for the hyperbolic four-dimensional AdS
black hole under scalar perturbations [47].
Besides these observed decay modes, we also obtain

purely positive real values for � in some regions of
parameter space, which represents the purely growing
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mode of the gravitational perturbation. These purely real
�’s are the minimum value upon comparison with other

modes� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

R þ�2
I

q
[52], which indicates that they are

always the ground state perturbative modes. Their exis-
tence signals an instability. The growing modes of the
perturbation in the ground states appear for a certain range
of the KK mass for different topologies and sizes of the
warped AdS black string. In Table I we list the character-
istic range of the KK mass for different topological AdS
black strings when their radii are bigger than, equal to, or
smaller than the AdS radius, respectively. It is clear that the
growing modes exist for all topologies. This observation
supports our approximate analysis in the last section.

For the spherical spacetime with k ¼ 1, we see that as
the horizon size increases, the range of KK mass accom-
modating unstable modes also increases. This property is
also exhibited in Fig. 1, which is consistent with the left
panel of Fig. 1 in [31], where only the stability of the
spherical AdS black string is studied. For the k ¼ 0 case
we find that the ranges of m2

K that allow instability are
independent of horizon radius, as shown in Fig. 2. When
the spacetime is of higher genus (hyperbolic with k ¼ �1)
the warped AdS black string contains richer physics. It can

allow the black string to contain negative mass, which is
also seen for the hyperbolic AdS black hole case [53], with
horizon smaller than the AdS radius. In this situation, the
gravitational perturbation is always unstable regardless of
the value of the KK mass. This result agrees with the
finding in the four-dimensional AdS spacetime obtained
by Hawking and Page [54].
For the hyperbolic topology, when M ¼ 0, we have the

AdS black hole of zero mass, and the horizonRþ ¼ 1 is just
the AdS radius of unitL. If the KKmass vanishes (i.e.mK ¼
0, which means that the extra dimensions have no influence)
the space itself is stable, as shown in Table I. Interestingly,
when the effects of extra dimensions are turned on, the
gravitational perturbation becomes unstable. This can be
seen even for very small values of m2

K, and this instability

lasts until m2
K � 2. For the positive mass AdS black string,

the range of the KK mass allowing instability is shown in
Table I. In Fig. 3 we show the unstable range ofm2

K for zero
mass and positive mass hyperbolic AdS black strings.

TABLE I. The range of KK mass yielding instability for differ-
ent black string topologies and sizes.

Topology M Rþ � Range of KK mass

k ¼ 1 5
16

1
2

2�
7 2<m2

K < 2:7
k ¼ 1 1 1 �

4 0:6<m2
K < 2

k ¼ 1 5 2 2�
13 0:135<m2

K < 2
k ¼ 0 1

16
1
2

2�
3 m2

K < 2
k ¼ 0 1

2 1 �
3 m2

K < 2
k ¼ 0 4 2 �

6 m2
K < 2

k ¼ �1 � 3
16

1
2 2� No boundary found

k ¼ �1 0 1 �
2 0<m2

K < 2
k ¼ �1 3 2 2�

11 m2
K < 2

FIG. 1. The range of KK mass allowing instability for a
spherical AdS black string.

FIG. 2. The range of KK mass allowing instability for a flat
AdS black string.

FIG. 3. The range of KK mass allowing instability for a hyper-
bolic AdS black string with zero and positive mass.
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In all cases m2
K ¼ 2 is special; at this point the positive

real part of � vanishes. The peculiar value m2
K ¼ 2 can

be understood by looking at Eq. (6), where the general
solution to the differential equation of umðzÞ has the
very simple form C1ðcoshð2zÞ þ 1Þ þ C2ðcoshð2zÞ þ 2Þ�
sinhð2zÞ=ðcoshð2zÞ þ 1Þ rather than, generally, the very
complicated hypergeometric functions, and many terms
in Eq. (7) vanish when m2

K ¼ 2. The complexity of
Eq. (7) puts practical limitations on exploring the full
parameter space of continuously varying M or Rþ with
regard to stability. However, the behaviors presented here
reflect the general properties of the stability of this warped
AdS black string with different topologies.

IV. SUMMARYAND DISCUSSION

We have examined the stability of a new warped black
string in five-dimensional AdS spacetime with nontrivial
topologies obtained by solving Einstein equations. From
the numerical calculation, we have shown that the black
string can be unstable for all topologies provided that the
KK mass falls within a certain range. The influence of the
topology and extra dimension on the instability has been
clearly exhibited.

The stability of the AdS black string solution is an
interesting topic. It provides a new laboratory to test the
Gubser-Mitra conjecture [32], that correlates the dynami-
cal and thermodynamical stability for systems with trans-
lational symmetry and infinite extent. This conjecture has
passed a large number of tests [31,33], but it is also known
to fail in certain cases [55].
Our research here has been completely dynamical. It

will be interesting to see how the instability we ob-
served here can be related to the thermodynamic insta-
bility. Note that usually the thermodynamic discussion
cannot involve the KK mass. Understanding the relation
between the dynamic instability and the thermodynamic
instability of black strings remains an interesting topic
for further study that we hope will be carried out in the
future.
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